1
|
Hasan S, Mahmud Z, Hossain M, Islam S. Harnessing the role of aberrant cell signaling pathways in glioblastoma multiforme: a prospect towards the targeted therapy. Mol Biol Rep 2024; 51:1069. [PMID: 39424705 DOI: 10.1007/s11033-024-09996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Glioblastoma Multiforme (GBM), designated as grade IV by the World Health Organization, is the most aggressive and challenging brain tumor within the central nervous system. Around 80% of GBM patients have a poor prognosis, with a median survival of 12-15 months. Approximately 90% of GBM cases originate from normal glial cells via oncogenic processes, while the remainder arise from low-grade tumors. GBM is notorious for its heterogeneity, high recurrence rates, invasiveness, and aggressive behavior. Its malignancy is driven by increased invasive migration, proliferation, angiogenesis, and reduced apoptosis. Throughout various stages of central nervous system (CNS) development, pivotal signaling pathways, including Wnt/β-catenin, Sonic hedgehog signaling (Shh), PI3K/AKT/mTOR, Ras/Raf/MAPK/ERK, STAT3, NF-КB, TGF-β, and Notch signaling, orchestrate the growth, proliferation, differentiation, and migration of neural progenitor cells in the brain. Numerous upstream and downstream regulators within these signaling pathways have been identified as significant contributors to the development of human malignancies. Disruptions or aberrant activations in these pathways are linked to gliomagenesis, enhancing the invasiveness, progression, and aggressiveness of GBM, along with epithelial to mesenchymal transition (EMT) and the presence of glioma stem cells (GSCs). Traditional GBM treatment involves surgery, radiotherapy, and chemotherapy with Temozolomide (TMZ). However, most patients experience tumor recurrence, leading to low survival rates. This review provides an overview of the major cell signaling pathways involved in gliomagenesis. Furthermore, we explore the signaling pathways leading to therapy resistance and target key molecules within these signaling pathways, paving the way for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Subbrina Hasan
- Laboratory of Neuroscience and Neurogenetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Mahmud Hossain
- Laboratory of Neuroscience and Neurogenetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Sohidul Islam
- Department of Biochemistry & Microbiology, North South University, Dhaka, 1229, Bangladesh
| |
Collapse
|
2
|
Goyal A, Murkute SL, Bhowmik S, Prasad CP, Mohapatra P. Belling the "cat": Wnt/β-catenin signaling and its significance in future cancer therapies. Biochim Biophys Acta Rev Cancer 2024; 1879:189195. [PMID: 39413855 DOI: 10.1016/j.bbcan.2024.189195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/15/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
The WNT/β-catenin is among one of the most extensively studied cellular signaling pathways involved in the initiation and progression of several deadly cancers. It is now understood that the WNT/β-catenin signaling, during tumor progression operates in a very complex fashion beyond the earlier assumed simple WNT 'On' or 'Off' mode as it recruits numerous WNT ligands, receptors, transcriptional factors and also cross-talks with other signaling molecules including the noncanonical WNT regulators. WNT/β-catenin signaling molecules are often mutated in different cancers which makes them very challenging to inhibit and sometimes ranks them among the undruggable targets. Furthermore, due to the evolutionary conservation of this pathway, inhibiting WNT/β-catenin has caused significant toxicity in normal cells. These challenges are reflected in clinical trial data, where the use of WNT/β-catenin inhibitors as standalone treatments remains limited. In this review, we have highlighted the crucial functional associations of diverse WNT/β-catenin signaling regulators with cancer progression and the phenotypic switching of tumor cells. Next, we have shed light on the roles of WNT/β-catenin signaling in drug resistance, clonal evolution, tumor heterogeneity, and immune evasion. The present review also focuses on various classes of routine and novel WNT/β-catenin therapeutic regimes while addressing the challenges associated with targeting the regulators of this complex pathway. In the light of multiple case studies on WNT/β-catenin inhibitors, we also highlighted the challenges and opportunities for future clinical trial strategies involving these treatments. Additionally, we have proposed strategies for future WNT/β-catenin-based drug discovery trials, emphasizing the potential of combination therapies and AI/ML-driven prediction approaches. Overall, here we showcased the opportunities, possibilities, and potentialities of WNT/β-catenin signaling modulatory therapeutic regimes as promising precision cancer medicines for the future.
Collapse
Affiliation(s)
- Akansha Goyal
- Department of Biotechnology, NIPER Guwahati, Sila Katamur, Changsari, 781101 Kamrup, Assam, India
| | - Satyajit Laxman Murkute
- Department of Biotechnology, NIPER Guwahati, Sila Katamur, Changsari, 781101 Kamrup, Assam, India
| | - Sujoy Bhowmik
- Department of Biotechnology, NIPER Guwahati, Sila Katamur, Changsari, 781101 Kamrup, Assam, India
| | - Chandra Prakash Prasad
- Department of Medical Oncology Lab, DR BRA-IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Purusottam Mohapatra
- Department of Biotechnology, NIPER Guwahati, Sila Katamur, Changsari, 781101 Kamrup, Assam, India.
| |
Collapse
|
3
|
Wen Z, Wang L, Liu SW, Fan HJS, Song JW, Lee HJ. Exploring DIX-DIX Homo- and Hetero-Oligomers in Wnt Signaling with AlphaFold2. Cells 2024; 13:1646. [PMID: 39404409 PMCID: PMC11475284 DOI: 10.3390/cells13191646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Wnt signaling is involved in embryo development and cancer. The binding between the DIX domains of Axin1/2, Dishevelled1/2/3, and Coiled-coil-DIX1 is essential for Wnt/β-catenin signaling. Structural and biological studies have revealed that DIX domains are polymerized through head-to-tail interface interactions, which are indispensable for activating β-catenin Wnt signaling. Although different isoforms of Dvl and Axin proteins display both redundant and specific functions in Wnt signaling, the specificity of DIX-mediated interactions remains unclear due to technical challenges. Using AlphaFold2(AF2), we predict the structures of 6 homodimers and 22 heterodimers of DIX domains without templates and compare them with the reported X-ray complex structures. PRODIGY is used to calculate the binding affinities of these DIX complexes. Our results show that the Axin2 DIX homodimer has a stronger binding affinity than the Axin1 DIX homodimer. Among Dishevelled (Dvl) proteins, the binding affinity of the Dvl1 DIX homodimer is stronger than that of Dvl2 and Dvl3. The Coiled-coil-DIX1(Ccd1) DIX homodimer shows weaker binding than the Axin1 DIX homodimer. Generally, heterodimer interactions tend to be stronger than those of homodimers. Our findings provide insights into the mechanism of the Wnt signaling pathway and highlight the potential of AF2 and PRODIGY for studying protein-protein interactions in signaling pathways.
Collapse
Affiliation(s)
- Zehua Wen
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 64300, China; (Z.W.); (L.W.); (S.-W.L.)
| | - Lei Wang
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 64300, China; (Z.W.); (L.W.); (S.-W.L.)
| | - Shi-Wei Liu
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 64300, China; (Z.W.); (L.W.); (S.-W.L.)
| | - Hua-Jun Shawn Fan
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 64300, China; (Z.W.); (L.W.); (S.-W.L.)
| | - Jong-Won Song
- Department of Chemistry Education, Daegu University, Daegudae-ro 201, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea;
| | - Ho-Jin Lee
- Division of Natural & Mathematical Sciences, LeMoyne-Owen College, Memphis, TN 38126, USA
| |
Collapse
|
4
|
Paclikova P, Harnos J. Efficient cloning of linear DNA inserts (ECOLI) into plasmids using site-directed mutagenesis. Sci Rep 2024; 14:21591. [PMID: 39284917 PMCID: PMC11405386 DOI: 10.1038/s41598-024-72169-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
This study introduces a novel cost-effective technique for cloning of linear DNA plasmid inserts, aiming to address the associated expenses linked with popular in vitro DNA assembly methods. Specifically, we introduce ECOLI (Efficient Cloning Of Linear Inserts), a method utilizing a PCR product-based site-directed mutagenesis. In comparison to other established in vitro DNA assembly methods, our approach is without the need for costly synthesis or specialized kits for recombination or restriction sites. ECOLI offers a fast, efficient, and economical alternative for cloning inserts up to several hundred nucleotides into plasmid constructs, thus enhancing cloning accessibility and efficiency. This method can enhance molecular biology research, as we briefly demonstrated on the Dishevelled gene from the WNT signaling pathway.
Collapse
Affiliation(s)
- Petra Paclikova
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Jakub Harnos
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
5
|
Qian Y, Ma Z, Xu Z, Duan Y, Xiong Y, Xia R, Zhu X, Zhang Z, Tian X, Yin H, Liu J, Song J, Lu Y, Zhang A, Guo C, Jin L, Kim WJ, Ke J, Xu F, Huang Z, He Y. Structural basis of Frizzled 4 in recognition of Dishevelled 2 unveils mechanism of WNT signaling activation. Nat Commun 2024; 15:7644. [PMID: 39223191 PMCID: PMC11369211 DOI: 10.1038/s41467-024-52174-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
WNT signaling is fundamental in development and homeostasis, but how the Frizzled receptors (FZDs) propagate signaling remains enigmatic. Here, we present the cryo-EM structure of FZD4 engaged with the DEP domain of Dishevelled 2 (DVL2), a key WNT transducer. We uncover a distinct binding mode where the DEP finger-loop inserts into the FZD4 cavity to form a hydrophobic interface. FZD4 intracellular loop 2 (ICL2) additionally anchors the complex through polar contacts. Mutagenesis validates the structural observations. The DEP interface is highly conserved in FZDs, indicating a universal mechanism by which FZDs engage with DVLs. We further reveal that DEP mimics G-protein/β-arrestin/GRK to recognize an active conformation of receptor, expanding current GPCR engagement models. Finally, we identify a distinct FZD4 dimerization interface. Our findings delineate the molecular determinants governing FZD/DVL assembly and propagation of WNT signaling, providing long-sought answers underlying WNT signal transduction.
Collapse
Affiliation(s)
- Yu Qian
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhengxiong Ma
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhenmei Xu
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yaning Duan
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yangjie Xiong
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Ruixue Xia
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xinyan Zhu
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zongwei Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xinyu Tian
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Han Yin
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jian Liu
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jing Song
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yang Lu
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Anqi Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Changyou Guo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Lihua Jin
- Northeast Forestry University, Harbin, China
| | - Woo Jae Kim
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jiyuan Ke
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Fei Xu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Zhiwei Huang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yuanzheng He
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
6
|
Bell I, Khan H, Stutt N, Horn M, Hydzik T, Lum W, Rea V, Clapham E, Hoeg L, Van Raay TJ. Nkd1 functions downstream of Axin2 to attenuate Wnt signaling. Mol Biol Cell 2024; 35:ar93. [PMID: 38656801 PMCID: PMC11244159 DOI: 10.1091/mbc.e24-02-0059-t] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
Wnt signaling is a crucial developmental pathway involved in early development as well as stem-cell maintenance in adults and its misregulation leads to numerous diseases. Thus, understanding the regulation of this pathway becomes vitally important. Axin2 and Nkd1 are widely utilized negative feedback regulators in Wnt signaling where Axin2 functions to destabilize cytoplasmic β-catenin, and Nkd1 functions to inhibit the nuclear localization of β-catenin. Here, we set out to further understand how Axin2 and Nkd1 regulate Wnt signaling by creating axin2gh1/gh1, nkd1gh2/gh2 single mutants and axin2gh1/gh1;nkd1gh2/gh2 double mutant zebrafish using sgRNA/Cas9. All three Wnt regulator mutants were viable and had impaired heart looping, neuromast migration defects, and behavior abnormalities in common, but there were no signs of synergy in the axin2gh1/gh1;nkd1gh2/gh2 double mutants. Further, Wnt target gene expression by qRT-PCR and RNA-seq, and protein expression by mass spectrometry demonstrated that the double axin2gh1/gh1;nkd1gh2/gh2 mutant resembled the nkd1gh2/gh2 phenotype demonstrating that Nkd1 functions downstream of Axin2. In support of this, the data further demonstrates that Axin2 uniquely alters the properties of β-catenin-dependent transcription having novel readouts of Wnt activity compared with nkd1gh2/gh2 or the axin2gh1/gh1;nkd1gh2/gh2 double mutant. We also investigated the sensitivity of the Wnt regulator mutants to exacerbated Wnt signaling, where the single mutants displayed characteristic heightened Wnt sensitivity, resulting in an eyeless phenotype. Surprisingly, this phenotype was rescued in the double mutant, where we speculate that cross-talk between Wnt/β-catenin and Wnt/Planar Cell Polarity pathways could lead to altered Wnt signaling in some scenarios. Collectively, the data emphasizes both the commonality and the complexity in the feedback regulation of Wnt signaling.
Collapse
Affiliation(s)
- Ian Bell
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Haider Khan
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Nathan Stutt
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Matthew Horn
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Teesha Hydzik
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Whitney Lum
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Victoria Rea
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Emma Clapham
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Lisa Hoeg
- Department of Bioinformatics, University of Guelph, Guelph, Ontario, N1G 2W1 Canada
| | - Terence J. Van Raay
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| |
Collapse
|
7
|
Zhong Y, Yang S, Wang X, Sun C. Research progress of ZIC5 for tumor metastasis. Biochem Soc Trans 2024; 52:1363-1372. [PMID: 38747731 DOI: 10.1042/bst20231263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 06/27/2024]
Abstract
The zinc finger protein of the cerebellum (ZIC) family comprises five members (ZIC1-5), homologous with the odd-paired (OPA) gene in Drosophila melanogila. These transcription factors contain five Cys2His zinc finger domains, constituting one of the most abundant transcription factor families in human cells. ZIC proteins significantly contribute to transcriptional regulation and chromatin remodeling. As a member of the ZIC family, ZIC5 is essential for animal growth and development. Numerous studies have investigated the connection between ZIC proteins and cancer as well as tumor metastases in recent years. Many studies have found that within tumor tissues, the transcription and translation processes increase the expression of ZIC5 which is linked to tumor aggressiveness. This review aims to provide an objective summary of the impact of ZIC5 on tumor metastasis and consider the potential application of ZIC5 targets in both tumor therapy and the early detection of cancer.
Collapse
Affiliation(s)
- Yiming Zhong
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shangzhi Yang
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xianli Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chuanyu Sun
- Department of Urology, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai 200040, China
| |
Collapse
|
8
|
Sengupta S, Yaeger JD, Schultz MM, Francis KR. Dishevelled localization and function are differentially regulated by structurally distinct sterols. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.593701. [PMID: 38798572 PMCID: PMC11118412 DOI: 10.1101/2024.05.14.593701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The Dishevelled (DVL) family of proteins form supramolecular protein and lipid complexes at the cytoplasmic interface of the plasma membrane to regulate tissue patterning, proliferation, cell polarity, and oncogenic processes through DVL-dependent signaling, such as Wnt/β-catenin. While DVL binding to cholesterol is required for its membrane association, the specific structural requirements and cellular impacts of DVL-sterol association are unclear. We report that intracellular sterols which accumulate within normal and pathological conditions cause aberrant DVL activity. In silico and molecular analyses suggested orientation of the β- and α-sterol face within the DVL-PDZ domain regulates DVL-sterol binding. Intracellular accumulation of naturally occurring sterols impaired DVL2 plasma membrane association, inducing DVL2 nuclear localization via Foxk2. Changes to intracellular sterols also selectively impaired DVL2 protein-protein interactions This work identifies sterol specificity as a regulator of DVL signaling, suggests intracellular sterols cause distinct impacts on DVL activity, and supports a role for intracellular sterol homeostasis in cell signaling.
Collapse
Affiliation(s)
- Sonali Sengupta
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD, 57104, USA
| | - Jazmine D.W. Yaeger
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD, 57104, USA
| | - Maycie M. Schultz
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD, 57104, USA
| | - Kevin R. Francis
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD, 57104, USA
- Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, 57105, USA
| |
Collapse
|
9
|
Asai R, Prakash VN, Sinha S, Prakash M, Mikawa T. Coupling and uncoupling of midline morphogenesis and cell flow in amniote gastrulation. eLife 2024; 12:RP89948. [PMID: 38727576 PMCID: PMC11087055 DOI: 10.7554/elife.89948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
Large-scale cell flow characterizes gastrulation in animal development. In amniote gastrulation, particularly in avian gastrula, a bilateral vortex-like counter-rotating cell flow, called 'polonaise movements', appears along the midline. Here, through experimental manipulations, we addressed relationships between the polonaise movements and morphogenesis of the primitive streak, the earliest midline structure in amniotes. Suppression of the Wnt/planar cell polarity (PCP) signaling pathway maintains the polonaise movements along a deformed primitive streak. Mitotic arrest leads to diminished extension and development of the primitive streak and maintains the early phase of the polonaise movements. Ectopically induced Vg1, an axis-inducing morphogen, generates the polonaise movements, aligned to the induced midline, but disturbs the stereotypical cell flow pattern at the authentic midline. Despite the altered cell flow, induction and extension of the primitive streak are preserved along both authentic and induced midlines. Finally, we show that ectopic axis-inducing morphogen, Vg1, is capable of initiating the polonaise movements without concomitant PS extension under mitotic arrest conditions. These results are consistent with a model wherein primitive streak morphogenesis is required for the maintenance of the polonaise movements, but the polonaise movements are not necessarily responsible for primitive streak morphogenesis. Our data describe a previously undefined relationship between the large-scale cell flow and midline morphogenesis in gastrulation.
Collapse
Affiliation(s)
- Rieko Asai
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Vivek N Prakash
- Department of Physics, University of MiamiCoral GablesUnited States
| | - Shubham Sinha
- Department of Physics, University of MiamiCoral GablesUnited States
| | - Manu Prakash
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Takashi Mikawa
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
10
|
Omble A, Mahajan S, Bhoite A, Kulkarni K. Dishevelled2 activates WGEF via its interaction with a unique internal peptide motif of the GEF. Commun Biol 2024; 7:543. [PMID: 38714795 PMCID: PMC11076555 DOI: 10.1038/s42003-024-06194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/15/2024] [Indexed: 05/10/2024] Open
Abstract
The Wnt-planar cell polarity (Wnt-PCP) pathway is crucial in establishing cell polarity during development and tissue homoeostasis. This pathway is found to be dysregulated in many pathological conditions, including cancer and autoimmune disorders. The central event in Wnt-PCP pathway is the activation of Weak-similarity guanine nucleotide exchange factor (WGEF) by the adapter protein Dishevelled (Dvl). The PDZ domain of Dishevelled2 (Dvl2PDZ) binds and activates WGEF by releasing it from its autoinhibitory state. However, the actual Dvl2PDZ binding site of WGEF and the consequent activation mechanism of the GEF have remained elusive. Using biochemical and molecular dynamics studies, we show that a unique "internal-PDZ binding motif" (IPM) of WGEF mediates the WGEF-Dvl2PDZ interaction to activate the GEF. The residues at P2, P0, P-2 and P-3 positions of IPM play an important role in stabilizing the WGEFpep-Dvl2PDZ interaction. Furthermore, MD simulations of modelled Dvl2PDZ-WGEFIPM peptide complexes suggest that WGEF-Dvl2PDZ interaction may differ from the reported Dvl2PDZ-IPM interactions. Additionally, the apo structure of human Dvl2PDZ shows conformational dynamics different from its IPM peptide bound state, suggesting an induced fit mechanism for the Dvl2PDZ-peptide interaction. The current study provides a model for Dvl2 induced activation of WGEF.
Collapse
Affiliation(s)
- Aishwarya Omble
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shrutika Mahajan
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Ashwini Bhoite
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kiran Kulkarni
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
11
|
Zech TJ, Wolf A, Hector M, Bischoff-Kont I, Krishnathas GM, Kuntschar S, Schmid T, Bracher F, Langmann T, Fürst R. 2-Desaza-annomontine (C81) impedes angiogenesis through reduced VEGFR2 expression derived from inhibition of CDC2-like kinases. Angiogenesis 2024; 27:245-272. [PMID: 38403816 PMCID: PMC11021337 DOI: 10.1007/s10456-024-09906-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/15/2024] [Indexed: 02/27/2024]
Abstract
Angiogenesis is a crucial process in the progression of various pathologies, like solid tumors, wet age-related macular degeneration, and chronic inflammation. Current anti-angiogenic treatments still have major drawbacks like limited efficacy in diseases that also rely on inflammation. Therefore, new anti-angiogenic approaches are sorely needed, and simultaneous inhibition of angiogenesis and inflammation is desirable. Here, we show that 2-desaza-annomontine (C81), a derivative of the plant alkaloid annomontine previously shown to inhibit endothelial inflammation, impedes angiogenesis by inhibiting CDC2-like kinases (CLKs) and WNT/β-catenin signaling. C81 reduced choroidal neovascularization in a laser-induced murine in vivo model, inhibited sprouting from vascular endothelial growth factor A (VEGF-A)-activated murine aortic rings ex vivo, and reduced angiogenesis-related activities of endothelial cells in multiple functional assays. This was largely phenocopied by CLK inhibitors and knockdowns, but not by inhibitors of the other known targets of C81. Mechanistically, CLK inhibition reduced VEGF receptor 2 (VEGFR2) mRNA and protein expression as well as downstream signaling. This was partly caused by a reduction of WNT/β-catenin pathway activity, as activating the pathway induced, while β-catenin knockdown impeded VEGFR2 expression. Surprisingly, alternative splicing of VEGFR2 was not detected. In summary, C81 and other CLK inhibitors could be promising compounds in the treatment of diseases that depend on angiogenesis and inflammation due to their impairment of both processes.
Collapse
Affiliation(s)
- T J Zech
- Faculty of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt, Germany.
| | - A Wolf
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - M Hector
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - I Bischoff-Kont
- Faculty of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt, Germany
| | - G M Krishnathas
- Faculty of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt, Germany
| | - S Kuntschar
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - T Schmid
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - F Bracher
- Pharmaceutical Chemistry, Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - T Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - R Fürst
- Faculty of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt, Germany
- Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
12
|
Schulte G, Scharf MM, Bous J, Voss JH, Grätz L, Kozielewicz P. Frizzleds act as dynamic pharmacological entities. Trends Pharmacol Sci 2024; 45:419-429. [PMID: 38594145 DOI: 10.1016/j.tips.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
The Frizzled family of transmembrane receptors (FZD1-10) belongs to the class F of G protein-coupled receptors (GPCRs). FZDs bind to and are activated by Wingless/Int1 (WNT) proteins. The WNT/FZD signaling system regulates crucial aspects of developmental biology and stem-cell regulation. Dysregulation of WNT/FZD communication can lead to developmental defects and diseases such as cancer and fibrosis. Recent insight into the activation mechanisms of FZDs has underlined that protein dynamics and conserved microswitches are essential for FZD-mediated information flow and build the basis for targeting these receptors pharmacologically. In this review, we summarize recent advances in our understanding of FZD activation, and how novel concepts merge and collide with existing dogmas in the field.
Collapse
Affiliation(s)
- Gunnar Schulte
- Section of Receptor Biology & Signaling, Dept. Physiology & Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | - Magdalena M Scharf
- Section of Receptor Biology & Signaling, Dept. Physiology & Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Julien Bous
- Section of Receptor Biology & Signaling, Dept. Physiology & Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Jan Hendrik Voss
- Section of Receptor Biology & Signaling, Dept. Physiology & Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Lukas Grätz
- Section of Receptor Biology & Signaling, Dept. Physiology & Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Pawel Kozielewicz
- Section of Receptor Biology & Signaling, Dept. Physiology & Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| |
Collapse
|
13
|
Lu D, Liu Y, Kang L, Zhang X, Hu J, Ye H, Huang B, Wu Y, Zhao J, Dai Z, Wang J, Han D. Maternal fiber-rich diet promotes early-life intestinal development in offspring through milk-derived extracellular vesicles carrying miR-146a-5p. J Nanobiotechnology 2024; 22:65. [PMID: 38365722 PMCID: PMC10870446 DOI: 10.1186/s12951-024-02344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/12/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUNDS The intestinal development in early life is profoundly influenced by multiple biological components of breast milk, in which milk-derived extracellular vesicles (mEVs) contain a large amount of vertically transmitted signal from the mother. However, little is known about how maternal fiber-rich diet regulates offspring intestinal development by influencing the mEVs. RESULTS In this study, we found that maternal resistant starch (RS) consumption during late gestation and lactation improved the growth and intestinal health of offspring. The mEVs in breast milk are the primary factor driving these beneficial effects, especially enhancing intestinal cell proliferation and migration. To be specific, administration of mEVs after maternal RS intake enhanced intestinal cell proliferation and migration in vivo (performed in mice model and indicated by intestinal histological observation, EdU assay, and the quantification of cyclin proteins) and in vitro (indicated by CCK8, MTT, EdU, and wound healing experiments). Noteworthily, miR-146a-5p was found to be highly expressed in the mEVs from maternal RS group, which also promotes intestinal cell proliferation in cells and mice models. Mechanically, miR-146a-5p target to silence the expression of ubiquitin ligase 3 gene NEDD4L, thereby inhibiting DVL2 ubiquitination, activating the Wnt pathway, and promoting intestinal development. CONCLUSION These findings demonstrated the beneficial role of mEVs in the connection between maternal fiber rich diet and offspring intestinal growth. In addition, we identified a novel miRNA-146a-5p-NEDD4L-β-catenin/Wnt signaling axis in regulating early intestinal development. This work provided a new perspective for studying the influence of maternal diet on offspring development.
Collapse
Affiliation(s)
- Dongdong Lu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Adaptation Physiology Group, Wageningen University & Research, Wageningen, 6700 AH, The Netherlands
| | - Yisi Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Luyuan Kang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiangyu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jie Hu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hao Ye
- Adaptation Physiology Group, Wageningen University & Research, Wageningen, 6700 AH, The Netherlands
| | - Bingxu Huang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
14
|
Xu Z, Guo Y, Wang L, Cui J. HECW1 restrains cervical cancer cell growth by promoting DVL1 ubiquitination and downregulating the activation of Wnt/β-catenin signaling. Exp Cell Res 2024; 435:113949. [PMID: 38266865 DOI: 10.1016/j.yexcr.2024.113949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 01/26/2024]
Abstract
HECW1 belongs to ubiquitin ligase (E3) HECT family, and is found to be involved in tumorigenesis and tumor progression. However, the function of HECW1 in cervical cancer (CC) remains unknown. Clinical analysis showed that HECW1 is significantly decreased in CC tumor tissues. Ectopic expression of HECW1 suppressed cell growth, promoting cell cycle arrest and apoptosis in CC cells, while downregulation of HECW1 reversed these trends, impeded proliferation and accelerated cell cycle progression of CC cells. Overexpressing of HECW1 reduced mitochondrial membrane potential and the protein expression of voltage-dependent anion channel 1 (VDAC1). In addition, upregulation of HECW1 inhibited nuclear β-catenin accumulation, downregulated β-catenin/TCF/LEF-mediated transcriptional activity and the expression of downstream gene c-Myc, whereas inhibition of HECW1 received opposite results. Further results confirmed HECW1 affects the protein expression of dishevelled-1 (DVL1), a potent activator of Wnt/β-catenin, and inhibition of HECW1 inhibited the ubiquitination of DVL1, upregulating its expression. Inhibition of DVL1 restrained the promotion effect of HECW1 suppression on cell proliferation. In vivo experiments also verified that HECW1 suppression promoted the tumor formation of CC cells. Summary, we demonstrated that HECW1 inhibits CC cell proliferation and tumor formation by downregulating DVL1 induced Wnt/β-catenin signaling pathway activation.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Gynecological Diseases (Gynecology Oncology) Clinical Research Center, Zhengzhou, Henan, China
| | - Yilin Guo
- Henan Gynecological Diseases (Gynecology Oncology) Clinical Research Center, Zhengzhou, Henan, China
| | - Lu Wang
- Henan Gynecological Diseases (Gynecology Oncology) Clinical Research Center, Zhengzhou, Henan, China
| | - Jinquan Cui
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
15
|
Vural A, Lanier SM. Properties of biomolecular condensates defined by Activator of G-protein Signaling 3. J Cell Sci 2024; 137:jcs261326. [PMID: 38264908 PMCID: PMC10911133 DOI: 10.1242/jcs.261326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024] Open
Abstract
Activator of G-protein signaling 3 (AGS3; also known as GPSM1), a receptor-independent activator of G-protein signaling, oscillates among defined subcellular compartments and biomolecular condensates (BMCs) in a regulated manner that is likely related to the functional diversity of the protein. We determined the influence of cell stress on the cellular distribution of AGS3 and core material properties of AGS3 BMCs. Cellular stress (oxidative, pHi and thermal) induced the formation of AGS3 BMCs in HeLa and COS-7 cells, as determined by fluorescent microscopy. Oxidative stress-induced AGS3 BMCs were distinct from G3BP1 stress granules and from RNA processing BMCs defined by the P-body protein Dcp1a. Immunoblots indicated that cellular stress shifted AGS3, but not the stress granule protein G3BP1 to a membrane pellet fraction following cell lysis. The stress-induced generation of AGS3 BMCs was reduced by co-expression of the signaling protein Gαi3, but not the AGS3-binding partner DVL2. Fluorescent recovery following photobleaching of individual AGS3 BMCs indicated that there are distinct diffusion kinetics and restricted fluidity for AGS3 BMCs. These data suggest that AGS3 BMCs represent a distinct class of stress granules that serve as a previously unrecognized signal processing node.
Collapse
Affiliation(s)
- Ali Vural
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Stephen M. Lanier
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
16
|
Asai R, Prakash VN, Sinha S, Prakash M, Mikawa T. Coupling and uncoupling of midline morphogenesis and cell flow in amniote gastrulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.26.542486. [PMID: 37293063 PMCID: PMC10245986 DOI: 10.1101/2023.05.26.542486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Large-scale cell flow characterizes gastrulation in animal development. In amniote gastrulation, particularly in avian gastrula, a bilateral vortex-like counter-rotating cell flow, called 'polonaise movements', appears along the midline. Here, through experimental manipulations, we addressed relationships between the polonaise movements and morphogenesis of the primitive streak, the earliest midline structure in amniotes. Suppression of the Wnt/planar cell polarity (PCP) signaling pathway maintains the polonaise movements along a deformed primitive streak. Mitotic arrest leads to diminished extension and development of the primitive streak and maintains the early phase of the polonaise movements. Ectopically induced Vg1, an axis-inducing morphogen, generates the polonaise movements, aligned to the induced midline, but disturbs the stereotypical cell flow pattern at the authentic midline. Despite the altered cell flow, induction and extension of the primitive streak are preserved along both authentic and induced midlines. Finally, we show that ectopic axis-inducing morphogen, Vg1, is capable of initiating the polonaise movements without concomitant PS extension under mitotic arrest conditions. These results are consistent with a model wherein primitive streak morphogenesis is required for the maintenance of the polonaise movements, but the polonaise movements are not necessarily responsible for primitive streak morphogenesis. Our data describe a previously undefined relationship between the large-scale cell flow and midline morphogenesis in gastrulation.
Collapse
Affiliation(s)
- Rieko Asai
- Cardiovascular Research Institute, University of California, San Francisco. San Francisco, California 94158, USA
| | - Vivek N. Prakash
- Department of Physics, University of Miami, Coral Gables, Florida 33146, USA
| | - Shubham Sinha
- Department of Physics, University of Miami, Coral Gables, Florida 33146, USA
| | - Manu Prakash
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Takashi Mikawa
- Cardiovascular Research Institute, University of California, San Francisco. San Francisco, California 94158, USA
| |
Collapse
|
17
|
Derrick CJ, Szenker-Ravi E, Santos-Ledo A, Alqahtani A, Yusof A, Eley L, Coleman AHL, Tohari S, Ng AYJ, Venkatesh B, Alharby E, Mansard L, Bonnet-Dupeyron MN, Roux AF, Vaché C, Roume J, Bouvagnet P, Almontashiri NAM, Henderson DJ, Reversade B, Chaudhry B. Functional analysis of germline VANGL2 variants using rescue assays of vangl2 knockout zebrafish. Hum Mol Genet 2024; 33:150-169. [PMID: 37815931 PMCID: PMC10772043 DOI: 10.1093/hmg/ddad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
Developmental studies have shown that the evolutionarily conserved Wnt Planar Cell Polarity (PCP) pathway is essential for the development of a diverse range of tissues and organs including the brain, spinal cord, heart and sensory organs, as well as establishment of the left-right body axis. Germline mutations in the highly conserved PCP gene VANGL2 in humans have only been associated with central nervous system malformations, and functional testing to understand variant impact has not been performed. Here we report three new families with missense variants in VANGL2 associated with heterotaxy and congenital heart disease p.(Arg169His), non-syndromic hearing loss p.(Glu465Ala) and congenital heart disease with brain defects p.(Arg135Trp). To test the in vivo impact of these and previously described variants, we have established clinically-relevant assays using mRNA rescue of the vangl2 mutant zebrafish. We show that all variants disrupt Vangl2 function, although to different extents and depending on the developmental process. We also begin to identify that different VANGL2 missense variants may be haploinsufficient and discuss evidence in support of pathogenicity. Together, this study demonstrates that zebrafish present a suitable pipeline to investigate variants of unknown significance and suggests new avenues for investigation of the different developmental contexts of VANGL2 function that are clinically meaningful.
Collapse
Affiliation(s)
- Christopher J Derrick
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | | | - Adrian Santos-Ledo
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Ahlam Alqahtani
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Amirah Yusof
- Genome Institute of Singapore (GIS), A*STAR, 60 Biopolis St, 138672, Singapore
| | - Lorraine Eley
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Alistair H L Coleman
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Sumanty Tohari
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
| | - Alvin Yu-Jin Ng
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
- MGI Tech Singapore Pte Ltd, 21 Biopolis Rd, 138567, Singapore
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
| | - Essa Alharby
- Center for Genetics and Inherited Diseases, Taibah University, 7534 Abdul Muhsin Ibn Abdul Aziz, Al Ihn, Al-Madinah al-Munawwarah 42318, Saudi Arabia
- Faculty of Applied Medical Sciences, Taibah University, Janadah Bin Umayyah Road, Tayba, Al-Madinah al-Munawwarah 42353, Saudi Arabia
| | - Luke Mansard
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 80 Av. Augustin Fliche, 34000 Montpellier, France
| | | | - Anne-Francoise Roux
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 80 Av. Augustin Fliche, 34000 Montpellier, France
| | - Christel Vaché
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 80 Av. Augustin Fliche, 34000 Montpellier, France
| | - Joëlle Roume
- Département de Génétique, CHI Poissy, St Germain-en-Laye, 10 Rue du Champ Gaillard, 78300 Poissy, France
| | - Patrice Bouvagnet
- CPDPN, Hôpital MFME, CHU de Martinique, Fort de France, Fort-de-France 97261, Martinique, France
| | - Naif A M Almontashiri
- Center for Genetics and Inherited Diseases, Taibah University, 7534 Abdul Muhsin Ibn Abdul Aziz, Al Ihn, Al-Madinah al-Munawwarah 42318, Saudi Arabia
- Faculty of Applied Medical Sciences, Taibah University, Janadah Bin Umayyah Road, Tayba, Al-Madinah al-Munawwarah 42353, Saudi Arabia
| | - Deborah J Henderson
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Bruno Reversade
- Genome Institute of Singapore (GIS), A*STAR, 60 Biopolis St, 138672, Singapore
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
- Smart-Health Initiative, BESE, KAUST, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Medical Genetics Department, Koç Hospital Davutpaşa Caddesi 34010 Topkapı Istanbul, Istanbul, Turkey
| | - Bill Chaudhry
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| |
Collapse
|
18
|
Zhu J, Zhao F, Chai Y, Jia X, Li F. Delivery of microRNA-423-5p by exosome from adipose-derived stem/stromal cells inhibits DVL3 to potentiate autologous fat graft survival through adipogenesis and inflammatory response. Hum Cell 2024; 37:229-244. [PMID: 38040867 DOI: 10.1007/s13577-023-01010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
Autologous fat grafting represents a reconstructive technique but is limited by unstable graft retention. Based on existing reports and bioinformatics prediction, we hypothesized that delivering exosomes from human adipose-derived stem/stromal cells (hADSC-Exo) would increase fat graft survival and further explore the mechanism. hADSC-Exo were extracted and identified. An autologous fat grafting model was established using donor and recipient mice, followed by hADSC-Exo treatment. hADSC-Exo promoted the retention of autologous fat grafts in mice, along with increased adipocyte activity, angiogenesis, and decreased inflammation in grafts. Moreover, hADSC-Exo potentiated the adipose differentiation of 3T3-L1 cells, enhanced the angiogenic and migratory capacity of human umbilical vein endothelial cells, and inhibited the inflammation and viability of RAW 264.7 cells. The therapeutic effect of hADSC-Exo on fat grafting was associated with the delivery of microRNA (miR)-423-5p. Deletion of miR-423-5p in Exo impaired the function of hADSC-Exo on fat retention. miR-423-5p bound to DVL3 to suppress DVL3 expression, and DVL3 deletion promoted adipose differentiation of 3T3-L1 cells. In conclusion, our findings further widen the theoretical basis of the clinical application of hADSC-Exo in autologous fat grafts.
Collapse
Affiliation(s)
- Jinglin Zhu
- Department of Adipose Remodeling, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33, Badachu Road, Shijingshan District, 100144, Beijing, People's Republic of China
| | - Fangning Zhao
- Plastic Surgery Hospital, The Fourth Craniomaxillofacial Department, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, People's Republic of China
| | - Yimeng Chai
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, 110002, Liaoning, People's Republic of China
| | - Xinyu Jia
- Department of Adipose Remodeling, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33, Badachu Road, Shijingshan District, 100144, Beijing, People's Republic of China
| | - Facheng Li
- Department of Adipose Remodeling, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33, Badachu Road, Shijingshan District, 100144, Beijing, People's Republic of China.
| |
Collapse
|
19
|
Qin K, Yu M, Fan J, Wang H, Zhao P, Zhao G, Zeng W, Chen C, Wang Y, Wang A, Schwartz Z, Hong J, Song L, Wagstaff W, Haydon RC, Luu HH, Ho SH, Strelzow J, Reid RR, He TC, Shi LL. Canonical and noncanonical Wnt signaling: Multilayered mediators, signaling mechanisms and major signaling crosstalk. Genes Dis 2024; 11:103-134. [PMID: 37588235 PMCID: PMC10425814 DOI: 10.1016/j.gendis.2023.01.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/01/2022] [Accepted: 01/29/2023] [Indexed: 08/18/2023] Open
Abstract
Wnt signaling plays a major role in regulating cell proliferation and differentiation. The Wnt ligands are a family of 19 secreted glycoproteins that mediate their signaling effects via binding to Frizzled receptors and LRP5/6 coreceptors and transducing the signal either through β-catenin in the canonical pathway or through a series of other proteins in the noncanonical pathway. Many of the individual components of both canonical and noncanonical Wnt signaling have additional functions throughout the body, establishing the complex interplay between Wnt signaling and other signaling pathways. This crosstalk between Wnt signaling and other pathways gives Wnt signaling a vital role in many cellular and organ processes. Dysregulation of this system has been implicated in many diseases affecting a wide array of organ systems, including cancer and embryological defects, and can even cause embryonic lethality. The complexity of this system and its interacting proteins have made Wnt signaling a target for many therapeutic treatments. However, both stimulatory and inhibitory treatments come with potential risks that need to be addressed. This review synthesized much of the current knowledge on the Wnt signaling pathway, beginning with the history of Wnt signaling. It thoroughly described the different variants of Wnt signaling, including canonical, noncanonical Wnt/PCP, and the noncanonical Wnt/Ca2+ pathway. Further description involved each of its components and their involvement in other cellular processes. Finally, this review explained the various other pathways and processes that crosstalk with Wnt signaling.
Collapse
Affiliation(s)
- Kevin Qin
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael Yu
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hongwei Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Interventional Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zander Schwartz
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jeffrey Hong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lily Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
20
|
Rose SC, Larsen M, Xie Y, Sharfstein ST. Salivary Gland Bioengineering. Bioengineering (Basel) 2023; 11:28. [PMID: 38247905 PMCID: PMC10813147 DOI: 10.3390/bioengineering11010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/19/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024] Open
Abstract
Salivary gland dysfunction affects millions globally, and tissue engineering may provide a promising therapeutic avenue. This review delves into the current state of salivary gland tissue engineering research, starting with a study of normal salivary gland development and function. It discusses the impact of fibrosis and cellular senescence on salivary gland pathologies. A diverse range of cells suitable for tissue engineering including cell lines, primary salivary gland cells, and stem cells are examined. Moreover, the paper explores various supportive biomaterials and scaffold fabrication methodologies that enhance salivary gland cell survival, differentiation, and engraftment. Innovative engineering strategies for the improvement of vascularization, innervation, and engraftment of engineered salivary gland tissue, including bioprinting, microfluidic hydrogels, mesh electronics, and nanoparticles, are also evaluated. This review underscores the promising potential of this research field for the treatment of salivary gland dysfunction and suggests directions for future exploration.
Collapse
Affiliation(s)
- Stephen C. Rose
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, SUNY, 257 Fuller Road, Albany, NY 12203, USA (Y.X.)
| | - Melinda Larsen
- Department of Biological Sciences and The RNA Institute, University at Albany, SUNY, 1400 Washington Ave., Albany, NY 12222, USA;
| | - Yubing Xie
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, SUNY, 257 Fuller Road, Albany, NY 12203, USA (Y.X.)
| | - Susan T. Sharfstein
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, SUNY, 257 Fuller Road, Albany, NY 12203, USA (Y.X.)
| |
Collapse
|
21
|
Roth JF, Braunschweig U, Wu M, Li JD, Lin ZY, Larsen B, Weatheritt RJ, Gingras AC, Blencowe BJ. Systematic analysis of alternative exon-dependent interactome remodeling reveals multitasking functions of gene regulatory factors. Mol Cell 2023; 83:4222-4238.e10. [PMID: 38065061 DOI: 10.1016/j.molcel.2023.10.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/09/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023]
Abstract
Alternative splicing significantly expands biological complexity, particularly in the vertebrate nervous system. Increasing evidence indicates that developmental and tissue-dependent alternative exons often control protein-protein interactions; yet, only a minor fraction of these events have been characterized. Using affinity purification-mass spectrometry (AP-MS), we show that approximately 60% of analyzed neural-differential exons in proteins previously implicated in transcriptional regulation result in the gain or loss of interaction partners, which in some cases form unexpected links with coupled processes. Notably, a neural exon in Chtop regulates its interaction with the Prmt1 methyltransferase and DExD-Box helicases Ddx39b/a, affecting its methylation and activity in promoting RNA export. Additionally, a neural exon in Sap30bp affects interactions with RNA processing factors, modulating a critical function of Sap30bp in promoting the splicing of <100 nt "mini-introns" that control nuclear RNA levels. AP-MS is thus a powerful approach for elucidating the multifaceted functions of proteins imparted by context-dependent alternative exons.
Collapse
Affiliation(s)
- Jonathan F Roth
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | - Mingkun Wu
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jack Daiyang Li
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Brett Larsen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Robert J Weatheritt
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Benjamin J Blencowe
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
22
|
Jung HJ, Dixon EE, Coleman R, Watnick T, Reiter JF, Outeda P, Cebotaru V, Woodward OM, Welling PA. Polycystin-2-dependent transcriptome reveals early response of autosomal dominant polycystic kidney disease. Physiol Genomics 2023; 55:565-577. [PMID: 37720991 PMCID: PMC11178268 DOI: 10.1152/physiolgenomics.00040.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in polycystin genes, Pkd1 and Pkd2, but the underlying pathogenic mechanisms are poorly understood. To identify genes and pathways that operate downstream of polycystin-2 (PC2), a comprehensive gene expression database was created, cataloging changes in the transcriptome immediately following PC2 protein depletion. To explore cyst initiation processes, an immortalized mouse inner medullary collecting duct line was developed with the ability to knock out the Pkd2 gene conditionally. Genome-wide transcriptome profiling was performed using RNA sequencing in the cells immediately after PC2 was depleted and compared with isogenic control cells. Differentially expressed genes were identified, and a bioinformatic analysis pipeline was implemented. Altered expression of candidate cystogenic genes was validated in Pkd2 knockout mice. The expression of nearly 900 genes changed upon PC2 depletion. Differentially expressed genes were enriched for genes encoding components of the primary cilia, the canonical Wnt pathway, and MAPK signaling. Among the PC2-dependent ciliary genes, the transcription factor Glis3 was significantly downregulated. MAPK signaling formed a key node at the epicenter of PC2-dependent signaling networks. Activation of Wnt and MAPK signaling, concomitant with the downregulation of Glis3, was corroborated in Pkd2 knockout mice. The data identify a PC2 cilia-to-nucleus signaling axis and dysregulation of the Gli-similar subfamily of transcription factors as a potential initiator of cyst formation in ADPKD. The catalog of PC2-regulated genes should provide a valuable resource for future ADPKD research and new opportunities for drug development.NEW & NOTEWORTHY Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease. Mutations in polycystin genes cause the disease, but the underlying mechanisms of cystogenesis are unknown. To help fill this knowledge gap, we created an inducible cell model of ADPKD and assembled a catalog of genes that respond in immediate proximity to polycystin-2 depletion using transcriptomic profiling. The catalog unveils a ciliary signaling-to-nucleus axis proximal to polycystin-2 dysfunction, highlighting Glis, Wnt, and MAPK signaling.
Collapse
Affiliation(s)
- Hyun Jun Jung
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Eryn E Dixon
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Richard Coleman
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Terry Watnick
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States
- Chan Zuckerberg Biohub, San Francisco, California, United States
| | - Patricia Outeda
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Valeriu Cebotaru
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Owen M Woodward
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Paul A Welling
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
23
|
Alshahrani SH, Rakhimov N, Rana A, Alsaab HO, Hjazi A, Adile M, Abosaooda M, Abdulhussien Alazbjee AA, Alsalamy A, Mahmoudi R. Dishevelled: An emerging therapeutic oncogene in human cancers. Pathol Res Pract 2023; 250:154793. [PMID: 37683388 DOI: 10.1016/j.prp.2023.154793] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023]
Abstract
Cancer is a multifaceted and complex disorder characterized by uncontrolled rates of cell proliferation and its ability to spread and attack other organs. Emerging data indicated several pathways and molecular targets are engaged in cancer progression. Among them, the Wnt signaling pathway was shown to have a crucial role in cancer onset and progression. Dishevelled (DVL) acts in a branch point of canonical and non-canonical Wnt pathway. DVL not only acts in the cytoplasm to inactivate the destruction complex of β-catenin but is also transported into the nucleus to affect the transcription of target genes. Available data revealed that the expression levels of DVL increased in cell and clinical specimens of various cancers, proposing that it may have an oncogenic role. DVL promoted cell invasion, migration, cell cycle, survival, proliferation, 3D-spheroid formation, stemness, and epithelial mesenchymal transition (EMT) and it suppressed cell apoptosis. The higher levels of DVL is associated with the clinicopathological characteristic of cancer-affected patients, including lymph node metastasis, tumor grade, histological type, and age. In addition, the higher levels of DVL could be a promising diagnostic and prognostic biomarker in cancer as well as it could be a mediator in cancer chemoresistance to Methotrexate, paclitaxel, and 5-fluorouracil. This study aimed to investigate the underlying molecular mechanism of DVL in cancer pathogenesis as well as to explore its importance in cancer diagnosis and prognosis as well as its role as a mediator in cancer chemotherapy.
Collapse
Affiliation(s)
| | - Nodir Rakhimov
- Department of Oncology, Samarkand State Medical University, Amir Temur Street 18, Samarkand, Uzbekistan; Department of Scientific Affairs,Tashkent State Dental Institute, Makhtumkuli 103, Tashkent, Uzbekistan
| | - Arti Rana
- Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| | - Hashem O Alsaab
- Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohaned Adile
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | | | | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Reza Mahmoudi
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Littman J, Yang W, Olansen J, Phornphutkul C, Aaron RK. LRP5, Bone Mass Polymorphisms and Skeletal Disorders. Genes (Basel) 2023; 14:1846. [PMID: 37895195 PMCID: PMC10606254 DOI: 10.3390/genes14101846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
The formation and maintenance of the gross structure and microarchitecture of the human skeleton require the concerted functioning of a plethora of morphogenic signaling processes. Through recent discoveries in the field of genetics, numerous genotypic variants have been implicated in pathologic skeletal phenotypes and disorders arising from the disturbance of one or more of these processes. For example, total loss-of-function variants of LRP5 were found to be the cause of osteoporosis-pseudoglioma syndrome (OPPG). LRP5 encodes for the low-density lipoprotein receptor-related protein 5, a co-receptor in the canonical WNT-β-catenin signaling pathway and a crucial protein involved in the formation and maintenance of homeostasis of the human skeleton. Beyond OPPG, other partial loss-of-function variants of LRP5 have been found to be associated with other low bone mass phenotypes and disorders, while LRP5 gain-of-function variants have been implicated in high bone mass phenotypes. This review introduces the roles that LRP5 plays in skeletal morphogenesis and discusses some of the structural consequences that result from abnormalities in LRP5. A greater understanding of how the LRP5 receptor functions in bone and other body tissues could provide insights into a variety of pathologies and their potential treatments, from osteoporosis and a variety of skeletal abnormalities to congenital disorders that can lead to lifelong disabilities.
Collapse
Affiliation(s)
- Jake Littman
- Department of Orthopedic Surgery, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wentian Yang
- Department of Orthopedic Surgery, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Jon Olansen
- Department of Orthopedic Surgery, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Chanika Phornphutkul
- Division of Human Genetics, Department of Pediatrics, Hasbro Children’s Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Roy K. Aaron
- Department of Orthopedic Surgery, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
25
|
Poznyak AV, Sukhorukov VN, Popov MA, Chegodaev YS, Postnov AY, Orekhov AN. Mechanisms of the Wnt Pathways as a Potential Target Pathway in Atherosclerosis. J Lipid Atheroscler 2023; 12:223-236. [PMID: 37800111 PMCID: PMC10548192 DOI: 10.12997/jla.2023.12.3.223] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 10/07/2023] Open
Abstract
The proteins of the Wnt family are involved in a variety of physiological processes by means of several canonical and noncanonical signaling pathways. Wnt signaling has been recently identified as a major player in atherogenesis. In this review, we summarize the existing knowledge on the influence of various components of the Wnt signaling pathways on the initiation and progression of atherosclerosis and associated conditions. We used the PubMed database to search for recent papers on the involvement of the Wnt pathways in atherosclerosis. We used the combination of "Wnt" and "atherosclerosis" keywords to find the initial papers, and chose papers published after 2018. In the first section of the paper, we describe the general mechanisms of the Wnt signaling pathways and their components. The next section is dedicated to existing studies assessing the implication of Wnt signaling elements in different atherogenic processes, such as cholesterol retention, endothelial dysfunction, vascular inflammation, and atherosclerotic calcification of the vessels. Lastly, various therapeutic strategies based on interference with the Wnt signaling pathways are considered. We also compare the efficacy and availability of the proposed treatment methods. Wnt signaling can be considered a potential target in the treatment and prevention of atherosclerosis. Therefore, in this review, we reviewed evidences showing that wnt signaling is an important signal for developing appropriate treatment strategies for atherosclerosis.
Collapse
Affiliation(s)
| | - Vasily N. Sukhorukov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI "Petrovsky NRCS"), Moscow, Russia
| | - Mikhail A. Popov
- Department of Cardiac Surgery, Moscow Regional Research and Clinical Institute (MONIKI), Moscow, Russia
| | - Yegor S Chegodaev
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI "Petrovsky NRCS"), Moscow, Russia
| | - Anton Y. Postnov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI "Petrovsky NRCS"), Moscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI "Petrovsky NRCS"), Moscow, Russia
| |
Collapse
|
26
|
García-Sánchez D, González-González A, Álvarez-Iglesias I, del Dujo-Gutiérrez M, Bolado-Carrancio A, Certo M, Pérez-Núñez MI, Riancho JA, Rodríguez-Rey JC, Delgado-Calle J, Pérez-Campo FM. Engineering a Pro-Osteogenic Secretome through the Transient Silencing of the Gene Encoding Secreted Frizzled Related Protein 1. Int J Mol Sci 2023; 24:12399. [PMID: 37569774 PMCID: PMC10419110 DOI: 10.3390/ijms241512399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The evidence sustaining the regenerative properties of mesenchymal stem cells' (MSCs) secretome has prompted a paradigm change, where MSCs have shifted from being considered direct contributors to tissue regeneration toward being seen as cell factories for producing biotech medicines. We have previously designed a method to prime MSCs towards osteogenic differentiation by silencing the Wnt/β-Catenin inhibitor Sfpr1. This approach produces a significant increase in bone formation in osteoporotic mice. In this current work, we set to investigate the contribution of the secretome from the MSCs where Sfrp1 has been silenced, to the positive effect seen on bone regeneration in vivo. The conditioned media (CM) of the murine MSCs line C3H10T1/2, where Sfrp1 has been transiently silenced (CM-Sfrp1), was found to induce, in vitro, an increase in the osteogenic differentiation of this same cell line, as well as a decrease of the expression of the Wnt inhibitor Dkk1 in murine osteocytes ex vivo. A reduction in the RANKL/OPG ratio was also detected ex vivo, suggesting a negative effect of CM-Sfrp1 on osteoclastogenesis. Moreover, this CM significantly increases the mineralization of human primary MSCs isolated from osteoportotic patients in vitro. Proteomic analysis identified enrichment of proteins involved in osteogenesis within the soluble and vesicular fractions of this secretome. Altogether, we demonstrate the pro-osteogenic potential of the secretome of MSCs primmed in this fashion, suggesting that this is a valid approach to enhance the osteo-regenerative properties of MSCs' secretome.
Collapse
Affiliation(s)
- Daniel García-Sánchez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Cantabria-IDIVAL, 39012 Santander, Spain; (D.G.-S.); (A.G.-G.); (I.Á.-I.); (M.d.D.-G.); (M.C.); (J.C.R.-R.)
| | - Alberto González-González
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Cantabria-IDIVAL, 39012 Santander, Spain; (D.G.-S.); (A.G.-G.); (I.Á.-I.); (M.d.D.-G.); (M.C.); (J.C.R.-R.)
| | - Itzíar Álvarez-Iglesias
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Cantabria-IDIVAL, 39012 Santander, Spain; (D.G.-S.); (A.G.-G.); (I.Á.-I.); (M.d.D.-G.); (M.C.); (J.C.R.-R.)
| | - Mónica del Dujo-Gutiérrez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Cantabria-IDIVAL, 39012 Santander, Spain; (D.G.-S.); (A.G.-G.); (I.Á.-I.); (M.d.D.-G.); (M.C.); (J.C.R.-R.)
| | - Alfonso Bolado-Carrancio
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK;
| | - Matilde Certo
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Cantabria-IDIVAL, 39012 Santander, Spain; (D.G.-S.); (A.G.-G.); (I.Á.-I.); (M.d.D.-G.); (M.C.); (J.C.R.-R.)
| | - María Isabel Pérez-Núñez
- Department of Traumatology, Hospital Universitario Marqués de Valdecilla, University of Cantabria, 39008 Santander, Spain;
| | - José A. Riancho
- Department of Internal Medicine, Hospital Universitario Marqués de Valdecilla-IDIVAL, University of Cantabria, CEBERER, 39012 Santander, Spain;
| | - José Carlos Rodríguez-Rey
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Cantabria-IDIVAL, 39012 Santander, Spain; (D.G.-S.); (A.G.-G.); (I.Á.-I.); (M.d.D.-G.); (M.C.); (J.C.R.-R.)
| | - Jesús Delgado-Calle
- Department of Physiology and Cell Biology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Flor María Pérez-Campo
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Cantabria-IDIVAL, 39012 Santander, Spain; (D.G.-S.); (A.G.-G.); (I.Á.-I.); (M.d.D.-G.); (M.C.); (J.C.R.-R.)
| |
Collapse
|
27
|
Manfreda L, Rampazzo E, Persano L. Wnt Signaling in Brain Tumors: A Challenging Therapeutic Target. BIOLOGY 2023; 12:biology12050729. [PMID: 37237541 DOI: 10.3390/biology12050729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
The involvement of Wnt signaling in normal tissue homeostasis and disease has been widely demonstrated over the last 20 years. In particular, dysregulation of Wnt pathway components has been suggested as a relevant hallmark of several neoplastic malignancies, playing a role in cancer onset, progression, and response to treatments. In this review, we summarize the current knowledge on the instructions provided by Wnt signaling during organogenesis and, particularly, brain development. Moreover, we recapitulate the most relevant mechanisms through which aberrant Wnt pathway activation may impact on brain tumorigenesis and brain tumor aggressiveness, with a particular focus on the mutual interdependency existing between Wnt signaling components and the brain tumor microenvironment. Finally, the latest anti-cancer therapeutic approaches employing the specific targeting of Wnt signaling are extensively reviewed and discussed. In conclusion, here we provide evidence that Wnt signaling, due to its pleiotropic involvement in several brain tumor features, may represent a relevant target in this context, although additional efforts will be needed to: (i) demonstrate the real clinical impact of Wnt inhibition in these tumors; (ii) overcome some still unsolved concerns about the potential systemic effects of such approaches; (iii) achieve efficient brain penetration.
Collapse
Affiliation(s)
- Lorenzo Manfreda
- Department of Women and Children's Health, University of Padova, Via Giustininani, 3, 35128 Padova, Italy
- Pediatric Research Institute, Corso Stati Uniti, 4, 35127 Padova, Italy
| | - Elena Rampazzo
- Department of Women and Children's Health, University of Padova, Via Giustininani, 3, 35128 Padova, Italy
- Pediatric Research Institute, Corso Stati Uniti, 4, 35127 Padova, Italy
| | - Luca Persano
- Department of Women and Children's Health, University of Padova, Via Giustininani, 3, 35128 Padova, Italy
- Pediatric Research Institute, Corso Stati Uniti, 4, 35127 Padova, Italy
| |
Collapse
|
28
|
Sun J, Shao X, Huang J, Gong M, Zhang J, Yuan Z. Multiple toxicity evaluations of perfluorooctane sulfonate on intact planarian Dugesia japonica. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60932-60945. [PMID: 37042918 DOI: 10.1007/s11356-023-26842-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/03/2023] [Indexed: 05/10/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is gaining widespread attention as a persistent organic pollutant with multiple mechanisms of toxicity. In this study, PFOS at different concentrations and different exposure times was used to evaluate the multiple toxicities on intact planarian Dugesia japonica. The proliferation of neoblasts, apoptosis, DNA damage and the expression levels of neuronal genes and the major genes of the Wnt pathway were effectively studied. The results demonstrated that the balance between proliferation and apoptosis of intact planarian cells was disrupted after PFOS exposure, which in turn affected tissue homeostasis and differentiation. PFOS exposure led to increased DNA damage and altered neuronal gene expression. In addition, PFOS exposure could down-regulate the expression of Wnt pathway genes, but the inhibition of the Wnt pathway by PFOS was time- and concentration-dependent. These findings suggest that PFOS has multiple toxic effects on planarians and may interfere with cell proliferation and neurodevelopment by affecting the key gene expression in the Wnt pathway, providing estimable information on the neurodevelopmental toxicity and ecotoxicity of PFOS toxicity in aquatic animals and environments.
Collapse
Affiliation(s)
- Jingyi Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Xinxin Shao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Jinying Huang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Mengxin Gong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Jianyong Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Zuoqing Yuan
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China.
| |
Collapse
|
29
|
Katanaev VL, Baldin A, Denisenko TV, Silachev DN, Ivanova AE, Sukhikh GT, Jia L, Ashrafyan LA. Cells of the tumor microenvironment speak the Wnt language. Trends Mol Med 2023; 29:468-480. [PMID: 37045723 DOI: 10.1016/j.molmed.2023.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023]
Abstract
Wnt signaling plays numerous functions in cancer, from primary transformation and tumor growth to metastasis. In addition to these cancer cell-intrinsic functions, Wnt signaling emerges to critically control cross-communication among cancer cells and the tumor microenvironment (TME). Here, we summarize the evidence that not only multiple cancer cell types, but also cells constituting the TME 'speak the Wnt language'. Fibroblasts, macrophages, endothelia, and lymphocytes all use the Wnt language to convey messages to and from cancer cells and among themselves; these messages are important for tumor progression and fate. Decoding this language will advance our understanding of tumor biology and unveil novel therapeutic avenues.
Collapse
Affiliation(s)
- Vladimir L Katanaev
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia; College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China.
| | - Alexey Baldin
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 4 Akademika Oparina Str., Moscow 117997, Russia
| | - Tatiana V Denisenko
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 4 Akademika Oparina Str., Moscow 117997, Russia
| | - Denis N Silachev
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 4 Akademika Oparina Str., Moscow 117997, Russia; Department of Functional Biochemistry of Biopolymers, A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Anna E Ivanova
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 4 Akademika Oparina Str., Moscow 117997, Russia
| | - Gennadiy T Sukhikh
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 4 Akademika Oparina Str., Moscow 117997, Russia
| | - Lee Jia
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Lev A Ashrafyan
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 4 Akademika Oparina Str., Moscow 117997, Russia
| |
Collapse
|
30
|
Quezada MJ, Lopez-Bergami P. The signaling pathways activated by ROR1 in cancer. Cell Signal 2023; 104:110588. [PMID: 36621728 DOI: 10.1016/j.cellsig.2023.110588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
The receptor tyrosine kinase orphan receptor 1 (ROR1) is a receptor for WNT5A and related Wnt proteins, that play an important role during embryonic development by regulating cell migration, cell polarity, neural patterning, and organogenesis. ROR1 exerts these functions by transducing signals from the Wnt secreted glycoproteins to the intracellular Wnt/PCP and Wnt/Ca++ pathways. Investigations in adult human cells, particularly cancer cells, have demonstrated that besides these two pathways, the WNT5A/ROR1 axis can activate a number of signaling pathways, including the PI3K/AKT, MAPK, NF-κB, STAT3, and Hippo pathways. Moreover, ROR1 is aberrantly expressed in cancer and was associated with tumor progression and poor survival by promoting cell proliferation, survival, invasion, epithelial to mesenchymal transition, and metastasis. Consequently, numerous therapeutic tools to target ROR1 are currently being evaluated in cancer patients. In this review, we will provide a detailed description of the signaling pathways regulated by ROR1 in cancer and their impact in tumor progression.
Collapse
Affiliation(s)
- María Josefina Quezada
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires 1405, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina
| | - Pablo Lopez-Bergami
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires 1405, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina.
| |
Collapse
|
31
|
miR-503 targets MafK to inhibit subcutaneous preadipocyte adipogenesis causing a decrease of backfat thickness in Guanzhong Black pigs. Meat Sci 2023; 198:109116. [PMID: 36657261 DOI: 10.1016/j.meatsci.2023.109116] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Reducing backfat thickness (BFT), determined by subcutaneous fat deposition, is vital in Chinese developed pig breeds. The level of miR-503 in the backfat of Guanzhong Black pigs was found to be lower than that in Large White pigs, implying that miR-503 may be related to BFT. However, the effect and mechanism of miR-503 on adipogenic differentiation in subcutaneous preadipocytes remain unknown. Compared with Large White pigs, the BFT and body fat content of Guanzhong Black pigs were greater, but the level of miR-503 was lower in subcutaneous adipose tissue (SAT) at 180 days of age. Furthermore, miR-503 promoted preadipocyte proliferation by increasing the proportion of S-phase and EdU-positive cells. However, miR-503 inhibited preadipocyte differentiation by downregulating adipogenic gene expression. Mechanistically, miR-503 directly targeted musculoaponeurotic fibrosarcoma oncogene homolog K (MafK) in both proliferating and differentiating preadipocytes to repress adipogenesis. Our findings provide a novel miRNA biomarker for reducing pig BFT levels to improve carcass quality.
Collapse
|
32
|
Chong ZX, Ho WY, Yeap SK. Delineating the tumour-regulatory roles of EYA4. Biochem Pharmacol 2023; 210:115466. [PMID: 36849065 DOI: 10.1016/j.bcp.2023.115466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Eyes absent homolog 4 (EYA4) is a protein that regulates many vital cellular processes and organogenesis pathways. It possesses phosphatase, hydrolase, and transcriptional activation functions. Mutations in the Eya4 gene can cause sensorineural hearing loss and heart disease. In most non-nervous system cancers such as those of the gastrointestinal tract (GIT), hematological and respiratory systems, EYA4 acts as a putative tumor suppressor. However, in nervous system tumors such as glioma, astrocytoma, and malignant peripheral nerve sheath tumor (MPNST), it plays a putative tumor-promoting role. EYA4 interacts with various signaling proteins of the PI3K/AKT, JNK/cJUN, Wnt/GSK-3β, and cell cycle pathways to exert its tumor-promoting or tumor-suppressing effect. The tissue expression level and methylation profiles of Eya4 can help predict the prognosis and anti-cancer treatment response among cancer patients. Targeting and altering Eya4 expression and activity could be a potential therapeutic strategy to suppress carcinogenesis. In conclusion, EYA4 may have both putative tumor-promoting and tumor-suppressing roles in different human cancers and has the potential to serve as a prognostic biomarker and therapeutic agent in various cancer types.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia.
| |
Collapse
|
33
|
The Functions of TRIM56 in Antiviral Innate Immunity and Tumorigenesis. Int J Mol Sci 2023; 24:ijms24055046. [PMID: 36902478 PMCID: PMC10003129 DOI: 10.3390/ijms24055046] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
As a member of the TRIM (tripartite motif) protein family, TRIM56 can function as an E3 ubiquitin ligase. In addition, TRIM56 has been shown to possess deubiquitinase activity and the ability to bind RNA. This adds to the complexity of the regulatory mechanism of TRIM56. TRIM56 was initially found to be able to regulate the innate immune response. In recent years, its role in direct antiviral and tumor development has also attracted the interest of researchers, but there is no systematic review on TRIM56. Here, we first summarize the structural features and expression of TRIM56. Then, we review the functions of TRIM56 in TLR and cGAS-STING pathways of innate immune response, the mechanisms and structural specificity of TRIM56 against different types of viruses, and the dual roles of TRIM56 in tumorigenesis. Finally, we discuss the future research directions regarding TRIM56.
Collapse
|
34
|
Rasha F, Boligala GP, Yang MV, Martinez-Marin D, Castro-Piedras I, Furr K, Snitman A, Khan SY, Brandi L, Castro M, Khan H, Jahan N, Almodovar S, Melkus MW, Pruitt K, Layeequr Rahman R. Dishevelled 2 regulates cancer cell proliferation and T cell mediated immunity in HER2-positive breast cancer. BMC Cancer 2023; 23:172. [PMID: 36809986 PMCID: PMC9942370 DOI: 10.1186/s12885-023-10647-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Dishevelled paralogs (DVL1, 2, 3) are key mediators of Wnt pathway playing a role in constitutive oncogenic signaling influencing the tumor microenvironment. While previous studies showed correlation of β-catenin with T cell gene expression, little is known about the role of DVL2 in modulating tumor immunity. This study aimed to uncover the novel interaction between DVL2 and HER2-positive (HER2+) breast cancer (BC) in regulating tumor immunity and disease progression. METHODS DVL2 loss of function studies were performed with or without a clinically approved HER2 inhibitor, Neratinib in two different HER2+ BC cell lines. We analyzed RNA (RT-qPCR) and protein (western blot) expression of classic Wnt markers and performed cell proliferation and cell cycle analyses by live cell imaging and flow cytometry, respectively. A pilot study in 24 HER2+ BC patients was performed to dissect the role of DVL2 in tumor immunity. Retrospective chart review on patient records and banked tissue histology were performed. Data were analyzed in SPSS (version 25) and GraphPad Prism (version 7) at a significance p < 0.05. RESULTS DVL2 regulates the transcription of immune modulatory genes involved in antigen presentation and T cell maintenance. DVL2 loss of function down regulated mRNA expression of Wnt target genes involved in cell proliferation, migration, invasion in HER2+ BC cell lines (±Neratinib). Similarly, live cell proliferation and cell cycle analyses reveal that DVL2 knockdown (±Neratinib) resulted in reduced proliferation, higher growth arrest (G1), limited mitosis (G2/M) compared to non-targeted control in one of the two cell lines used. Analyses on patient tissues who received neoadjuvant chemotherapy (n = 14) further demonstrate that higher DVL2 expression at baseline biopsy pose a significant negative correlation with % CD8α levels (r = - 0.67, p < 0.05) while have a positive correlation with NLR (r = 0.58, p < 0.05), where high NLR denotes worse cancer prognosis. These results from our pilot study reveal interesting roles of DVL2 proteins in regulating tumor immune microenvironment and clinical predictors of survival in HER2+ BC. CONCLUSION Our study demonstrates potential immune regulatory role of DVL2 proteins in HER2+ BC. More in-depth mechanistic studies of DVL paralogs and their influence on anti-tumor immunity may provide insight into DVLs as potential therapeutic targets benefiting BC patients.
Collapse
Affiliation(s)
- Fahmida Rasha
- grid.416992.10000 0001 2179 3554Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430 USA
| | - Geetha Priya Boligala
- grid.416992.10000 0001 2179 3554Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430 USA ,grid.416992.10000 0001 2179 3554Depart of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX USA
| | - Mingxiao V. Yang
- grid.416992.10000 0001 2179 3554Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430 USA
| | - Dalia Martinez-Marin
- grid.416992.10000 0001 2179 3554Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430 USA ,grid.416992.10000 0001 2179 3554Depart of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX USA
| | - Isabel Castro-Piedras
- grid.416992.10000 0001 2179 3554Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430 USA
| | - Kathryn Furr
- grid.416992.10000 0001 2179 3554Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430 USA
| | - Annie Snitman
- grid.416992.10000 0001 2179 3554Department of Surgery, Texas Tech University Health Sciences Center, School of Medicine, 3601 4th Street, Lubbock, TX 79430 USA
| | - Sonia Y. Khan
- grid.416992.10000 0001 2179 3554Department of Surgery, Texas Tech University Health Sciences Center, School of Medicine, 3601 4th Street, Lubbock, TX 79430 USA ,grid.416992.10000 0001 2179 3554Breast Center of Excellence, Texas Tech University Health Sciences Center, Lubbock, TX USA
| | - Luis Brandi
- grid.416992.10000 0001 2179 3554Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX USA
| | - Maribel Castro
- grid.416992.10000 0001 2179 3554Department of Surgery, Texas Tech University Health Sciences Center, School of Medicine, 3601 4th Street, Lubbock, TX 79430 USA
| | - Hafiz Khan
- grid.416992.10000 0001 2179 3554Department of Public Health, Julia Jones Matthews, Texas Tech University Health Sciences Center, Lubbock, TX USA
| | - Nusrat Jahan
- grid.416992.10000 0001 2179 3554Department of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX USA
| | - Sharilyn Almodovar
- grid.416992.10000 0001 2179 3554Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430 USA
| | - Michael W. Melkus
- grid.416992.10000 0001 2179 3554Department of Surgery, Texas Tech University Health Sciences Center, School of Medicine, 3601 4th Street, Lubbock, TX 79430 USA ,grid.416992.10000 0001 2179 3554Breast Center of Excellence, Texas Tech University Health Sciences Center, Lubbock, TX USA
| | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA. .,Depart of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Rakhshanda Layeequr Rahman
- Depart of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA. .,Department of Surgery, Texas Tech University Health Sciences Center, School of Medicine, 3601 4th Street, Lubbock, TX, 79430, USA. .,Breast Center of Excellence, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
35
|
Caliskan C, Yuce Z, Ogun Sercan H. Dvl proteins regulate SMAD1, AHR, mTOR, BRD7 protein expression while differentially regulating canonical and non-canonical Wnt signaling pathways in CML cell lines. Gene X 2023; 854:147109. [PMID: 36509295 DOI: 10.1016/j.gene.2022.147109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Dishevelled (Dvl) is a scaffold protein that transmits Wnt signals to downstream effector molecules via both canonical and non-canonical Wnt signaling pathways. Deregulated activation of Dvl proteins has been reported in various solid tumors. However, it is not clear which pathway and proteins are responsible for observed aberrant activities and their relevance in disease prognosis. In addition, there is relatively limited knowledge on the role Dvl proteins may have in hematologic malignancy etiopathogenesis. In this study, we demonstrated that Dvl genes are not expressed in normal bone marrow but are expressed at different levels in the bone marrow of patients with chronic myeloid leukemia. We showed SMAD1, AHR, mTOR, BRD7 protein expressions are significantly affected by Dvl silencing and overexpression in CML cell lines. Wnt/β-catenin and Wnt/PCP signaling pathway components are effectively repressed after Dvl silencing in K562 cells, while regulator of Wnt/Ca2+ signaling showed increase in both CML cell lines. Targeting Dvl proteins increases imatinib susceptibility of the K562 and MEG-01 cell lines. In light of our data, Dvl could be a potential therapeutic target in the treatment of CML.
Collapse
Affiliation(s)
- Ceyda Caliskan
- Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, Balcova, Izmir, Turkey; School of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Zeynep Yuce
- Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, Balcova, Izmir, Turkey
| | - Hakki Ogun Sercan
- Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, Balcova, Izmir, Turkey.
| |
Collapse
|
36
|
Perkins RS, Singh R, Abell AN, Krum SA, Miranda-Carboni GA. The role of WNT10B in physiology and disease: A 10-year update. Front Cell Dev Biol 2023; 11:1120365. [PMID: 36814601 PMCID: PMC9939717 DOI: 10.3389/fcell.2023.1120365] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
WNT10B, a member of the WNT family of secreted glycoproteins, activates the WNT/β-catenin signaling cascade to control proliferation, stemness, pluripotency, and cell fate decisions. WNT10B plays roles in many tissues, including bone, adipocytes, skin, hair, muscle, placenta, and the immune system. Aberrant WNT10B signaling leads to several diseases, such as osteoporosis, obesity, split-hand/foot malformation (SHFM), fibrosis, dental anomalies, and cancer. We reviewed WNT10B a decade ago, and here we provide a comprehensive update to the field. Novel research on WNT10B has expanded to many more tissues and diseases. WNT10B polymorphisms and mutations correlate with many phenotypes, including bone mineral density, obesity, pig litter size, dog elbow dysplasia, and cow body size. In addition, the field has focused on the regulation of WNT10B using upstream mediators, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). We also discussed the therapeutic implications of WNT10B regulation. In summary, research conducted during 2012-2022 revealed several new, diverse functions in the role of WNT10B in physiology and disease.
Collapse
Affiliation(s)
- Rachel S. Perkins
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Rishika Singh
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amy N. Abell
- Department of Biological Sciences, University of Memphis, Memphis, TN, United States
| | - Susan A. Krum
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Gustavo A. Miranda-Carboni
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States,Department of Medicine, Division of Hematology and Oncology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States,*Correspondence: Gustavo A. Miranda-Carboni,
| |
Collapse
|
37
|
Whole-Exome Sequencing Identified Rare Genetic Variants Associated with Undervirilized Genitalia in Taiwanese Pediatric Patients. Biomedicines 2023; 11:biomedicines11020242. [PMID: 36830778 PMCID: PMC9953256 DOI: 10.3390/biomedicines11020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Disorders/differences of sex development (DSDs) are a group of rare and phenotypically variable diseases. The underlying genetic causes of most cases of 46XY DSDs remains unknown. Despite the advent of genetic testing, current investigations of the causes of DSDs allow genetic-mechanism identification in about 20-35% of cases. This study aimed primarily to establish a rapid and high-throughput genetic test for undervirilized males with and without additional dysmorphic features. Routine chromosomal and endocrinological investigations were performed as part of DSD evaluation. We applied whole-exome sequencing (WES) complemented with multiplex ligation-dependent probe amplification to seek explainable genetic causes. Integrated computing programs were used to call and predict the functions of genetic variants. We recruited 20 patients and identified the genetic etiologies for 14 (70%) patients. A total of seven of the patients who presented isolated DSD phenotypes were found to have causative variants in the AR, MAP3K1, and FLNA genes. Moreover, the other seven patients presented additional phenotypes beyond undervirilized genitalia. Among them, two patients were compatible with CHARGE syndrome, one with Robinow syndrome, and another three with hypogonadotropic hypogonadism. One patient, who carried a heterozygous FLNA mutation, also harbored a heterozygous PTPN11 mutation and thus presented some phenotypes of Noonan syndrome. We identified several genetic variants (12 nonsense mutations and one microdeletion) that account for syndromic and nonsyndromic DSDs in the Taiwanese population. The identification of these causative genes extended our current understanding of sex development and related congenital disorders.
Collapse
|
38
|
Griffin TA, Schnier PD, Cleveland EM, Newberry RW, Becker J, Carlson GA. Fibril treatment changes protein interactions of tau and α-synuclein in human neurons. J Biol Chem 2023; 299:102888. [PMID: 36634849 PMCID: PMC9978635 DOI: 10.1016/j.jbc.2023.102888] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/07/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
In several neurodegenerative disorders, the neuronal proteins tau and α-synuclein adopt aggregation-prone conformations capable of replicating within and between cells. To better understand how these conformational changes drive neuropathology, we compared the interactomes of tau and α-synuclein in the presence or the absence of recombinant fibril seeds. Human embryonic stem cells with an inducible neurogenin-2 transgene were differentiated into glutamatergic neurons expressing (1) WT 0N4R tau, (2) mutant (P301L) 0N4R tau, (3) WT α-synuclein, or (4) mutant (A53T) α-synuclein, each genetically fused to a promiscuous biotin ligase (BioID2). Neurons expressing unfused BioID2 served as controls. After treatment with fibrils or PBS, interacting proteins were labeled with biotin in situ and quantified using mass spectrometry via tandem mass tag labeling. By comparing interactions in mutant versus WT neurons and in fibril- versus PBS-treated neurons, we observed changes in protein interactions that are likely relevant to disease progression. We identified 45 shared interactors, suggesting that tau and α-synuclein function within some of the same pathways. Potential loci of shared interactions include microtubules, Wnt signaling complexes, and RNA granules. Following fibril treatment, physiological interactions decreased, whereas other interactions, including those between tau and 14-3-3 η, increased. We confirmed that 14-3-3 proteins, which are known to colocalize with protein aggregates during neurodegeneration, can promote or inhibit tau aggregation in vitro depending on the specific combination of 14-3-3 isoform and tau sequence.
Collapse
Affiliation(s)
- Tagan A Griffin
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Paul D Schnier
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, California, USA; Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Elisa M Cleveland
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Robert W Newberry
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, California, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA
| | - Julia Becker
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - George A Carlson
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, California, USA; Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, USA.
| |
Collapse
|
39
|
Craig SEL, Michalski MN, Williams BO. Got WNTS? Insight into bone health from a WNT perspective. Curr Top Dev Biol 2023; 153:327-346. [PMID: 36967199 DOI: 10.1016/bs.ctdb.2023.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
WNT signaling, essential for many aspects of development, is among the most commonly altered pathways associated with human disease. While initially studied in cancer, dysregulation of WNT signaling has been determined to be essential for skeletal development and the maintenance of bone health throughout life. In this review, we discuss the role of Wnt signaling in bone development and disease with a particular focus on two areas. First, we discuss the roles of WNT signaling pathways in skeletal development, with an emphasis on congenital and idiopathic skeletal syndromes and diseases that are associated with genetic variations in WNT signaling components. Next, we cover a topic that has long been an interest of our laboratory, how high and low levels of WNT signaling affects the establishment and maintenance of healthy bone mass. We conclude with a discussion of the status of WNT-based therapeutics in the treatment of skeletal disease.
Collapse
Affiliation(s)
- Sonya E L Craig
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Megan N Michalski
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Bart O Williams
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States.
| |
Collapse
|
40
|
Abstract
In light of the demonstrated antagonism of Wnt5A signaling toward the growth of several bacterial pathogens, it was important to study the influence of Wnt5A on gut-resident bacteria and its outcome. Here, we demonstrate that in contrast to inhibiting the survival of the established gut pathogen Salmonella enterica, Wnt5A clearly promotes the survival of the common gut commensals Enterococcus faecalis and Lactobacillus rhamnosus within macrophages through a self-perpetuating Wnt5A-actin axis. A Wnt5A-actin axis furthermore regulates the subsistence of the natural bacterial population of the Peyer's patches, as is evident from the diminution in the countable bacterial CFU therein through the application of Wnt5A signaling and actin assembly inhibitors. Wnt5A dependency of the gut-resident bacterial population is also manifested in the notable difference between the bacterial diversities associated with the feces and Peyer's patches of Wnt5A heterozygous mice, which lack a functional copy of the Wnt5A gene, and their wild-type counterparts. Alterations in the gut commensal bacterial population resulting from either the lack of a copy of the Wnt5A gene or inhibitor-mediated attenuation of Wnt5A signaling are linked with significant differences in cell surface major histocompatibility complex (MHC) II levels and regulatory versus activated CD4 T cells associated with the Peyer's patches. Taken together, our findings reveal the significance of steady state Wnt5A signaling in shaping the gut commensal bacterial population and the T cell repertoire linked to it, thus unveiling a crucial control device for the maintenance of gut bacterial diversity and T cell homeostasis. IMPORTANCE Gut commensal bacterial diversity and T cell homeostasis are crucial entities of the host innate immune network, yet the molecular details of host-directed signaling pathways that sustain the steady state of gut bacterial colonization and T cell activation remain unclear. Here, we describe the protective role of a Wnt5A-actin axis in the survival of several gut bacterial commensals and its necessity in shaping gut bacterial colonization and the associated T cell repertoire. This study opens up new avenues of investigation into the role of the Wnt5A-actin axis in protection of the gut from dysbiosis-related inflammatory disorders.
Collapse
|
41
|
Gittin DI, Petersen CP. A Wnt11 and Dishevelled signaling pathway acts prior to injury to control wound polarization for the onset of planarian regeneration. Curr Biol 2022; 32:5262-5273.e2. [PMID: 36495871 PMCID: PMC9901562 DOI: 10.1016/j.cub.2022.10.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/20/2022] [Accepted: 10/27/2022] [Indexed: 12/13/2022]
Abstract
Regeneration is initiated by wounding, but it is unclear how injury-induced signals precisely convey the identity of the tissues requiring replacement. In the planarian Schmidtea mediterranea, the first event in head regeneration is the asymmetric activation of the Wnt inhibitor notum in longitudinal body-wall muscle cells, preferentially at anterior-facing versus posterior-facing wound sites. However, the mechanism driving this early symmetry-breaking event is unknown. We identify a noncanonical Wnt11 and Dishevelled pathway regulating notum polarization, which opposes injury-induced notum-activating Wnt/β-catenin signals and regulates muscle orientation. Using expression analysis and experiments to define a critical time of action, we demonstrate that Wnt11 and Dishevelled signals act prior to injury and in a growth-dependent manner to orient the polarization of notum induced by wounding. In turn, injury-induced notum dictates polarization used in the next round of regeneration. These results identify a self-reinforcing feedback system driving the polarization of blastema outgrowth and indicate that regeneration uses pre-existing tissue information to determine the outcome of wound-induced signals.
Collapse
Affiliation(s)
- David I Gittin
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Christian P Petersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; Robert Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
42
|
Babcock RL, Pruitt K. Letting go: Dishevelled phase separation recruits Axin to stabilize β-catenin. J Cell Biol 2022; 221:e202211001. [PMID: 36383195 PMCID: PMC9674272 DOI: 10.1083/jcb.202211001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Dishevelled exerts a molecular force that guides cell fate, but how it does so remains enigmatic. In this issue, Kang et al. (2022. J. Cell Biol.https://doi.org/10.1083/jcb.202205069) show Dvl2 undergoes liquid-liquid phase separation to stabilize β-catenin by pulling Axin into its biomolecular condensate at the plasma membrane.
Collapse
Affiliation(s)
- Rachel L. Babcock
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Kevin Pruitt
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX
| |
Collapse
|
43
|
Kang K, Shi Q, Wang X, Chen YG. Dishevelled phase separation promotes Wnt signalosome assembly and destruction complex disassembly. J Cell Biol 2022; 221:213667. [PMID: 36342472 PMCID: PMC9811998 DOI: 10.1083/jcb.202205069] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/21/2022] [Accepted: 09/19/2022] [Indexed: 11/09/2022] Open
Abstract
The amplitude of Wnt/β-catenin signaling is precisely controlled by the assembly of the cell surface-localized Wnt receptor signalosome and the cytosolic β-catenin destruction complex. How these two distinct complexes are coordinately controlled remains largely unknown. Here, we demonstrated that the signalosome scaffold protein Dishevelled 2 (Dvl2) undergoes liquid-liquid phase separation (LLPS). Dvl2 LLPS is mediated by an intrinsically disordered region and facilitated by components of the signalosome, such as the receptor Fzd5. Assembly of the signalosome is initiated by rapid recruitment of Dvl2 to the membrane, followed by slow and dynamic recruitment of Axin1. Axin LLPS mediates assembly of the β-catenin destruction complex, and Dvl2 attenuates LLPS of Axin. Compared with the destruction complex, Axin partitions into the signalosome at a lower concentration and exhibits a higher mobility. Together, our results revealed that Dvl2 LLPS is crucial for controlling the assembly of the Wnt receptor signalosome and disruption of the phase-separated β-catenin destruction complex.
Collapse
Affiliation(s)
- Kexin Kang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qiaoni Shi
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xu Wang
- Guangzhou Laboratory, Guangzhou, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China,Guangzhou Laboratory, Guangzhou, China,School of Basic Medicine, Nanchang University, Nanchang, China,Correspondence to Ye-Guang Chen:
| |
Collapse
|
44
|
Kot M, Neglur PK, Pietraszewska A, Buzanska L. Boosting Neurogenesis in the Adult Hippocampus Using Antidepressants and Mesenchymal Stem Cells. Cells 2022; 11:cells11203234. [PMID: 36291101 PMCID: PMC9600461 DOI: 10.3390/cells11203234] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
The hippocampus is one of the few privileged regions (neural stem cell niche) of the brain, where neural stem cells differentiate into new neurons throughout adulthood. However, dysregulation of hippocampal neurogenesis with aging, injury, depression and neurodegenerative disease leads to debilitating cognitive impacts. These debilitating symptoms deteriorate the quality of life in the afflicted individuals. Impaired hippocampal neurogenesis is especially difficult to rescue with increasing age and neurodegeneration. However, the potential to boost endogenous Wnt signaling by influencing pathway modulators such as receptors, agonists, and antagonists through drug and cell therapy-based interventions offers hope. Restoration and augmentation of hampered Wnt signaling to facilitate increased hippocampal neurogenesis would serve as an endogenous repair mechanism and contribute to hippocampal structural and functional plasticity. This review focuses on the possible interaction between neurogenesis and Wnt signaling under the control of antidepressants and mesenchymal stem cells (MSCs) to overcome debilitating symptoms caused by age, diseases, or environmental factors such as stress. It will also address some current limitations hindering the direct extrapolation of research from animal models to human application, and the technical challenges associated with the MSCs and their cellular products as potential therapeutic solutions.
Collapse
Affiliation(s)
- Marta Kot
- Correspondence: ; Tel.: +48-22-60-86-563
| | | | | | | |
Collapse
|
45
|
Asano N, Takeuchi A, Imatani A, Saito M, Jin X, Hatta W, Uno K, Koike T, Masamune A. Wnt Signaling and Aging of the Gastrointestinal Tract. Int J Mol Sci 2022; 23:12210. [PMID: 36293064 PMCID: PMC9603545 DOI: 10.3390/ijms232012210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
Aging is considered a risk factor for various diseases including cancers. In this aging society, there is an urgent need to clarify the molecular mechanisms involved in aging. Wnt signaling has been shown to play a crucial role in the maintenance and differentiation of tissue stem cells, and intensive studies have elucidated its pivotal role in the aging of neural and muscle stem cells. However, until recently, such studies on the gastrointestinal tract have been limited. In this review, we discuss recent advances in the study of the role of Wnt signaling in the aging of the gastrointestinal tract and aging-related carcinogenesis.
Collapse
Affiliation(s)
- Naoki Asano
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Falginella FL, Kravec M, Drabinová M, Paclíková P, Bryja V, Vácha R. Binding of DEP domain to phospholipid membranes: More than just electrostatics. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183983. [PMID: 35750206 DOI: 10.1016/j.bbamem.2022.183983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/06/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Over the past decades an extensive effort has been made to provide a more comprehensive understanding of Wnt signaling, yet many regulatory and structural aspects remain elusive. Among these, the ability of Dishevelled (DVL) protein to relocalize at the plasma membrane is a crucial step in the activation of all Wnt pathways. The membrane binding of DVL was suggested to be mediated by the preferential interaction of its C-terminal DEP domain with phosphatidic acid (PA). However, due to the scarcity and fast turnover of PA, we investigated the role on the membrane association of other more abundant phospholipids. The combined results from computational simulations and experimental measurements with various model phospholipid membranes, demonstrate that the membrane binding of DEP/DVL constructs is governed by the concerted action of generic electrostatics and finely-tuned intermolecular interactions with individual lipid species. In particular, while we confirmed the strong preference for PA lipid, we also observed a weak but non-negligible affinity for phosphatidylserine, the most abundant anionic phospholipid in the plasma membrane, and phosphatidylinositol 4,5-bisphosphate. The obtained molecular insight into DEP-membrane interaction helps to elucidate the relation between changes in the local membrane composition and the spatiotemporal localization of DVL and, possibly, other DEP-containing proteins.
Collapse
Affiliation(s)
- Francesco L Falginella
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Marek Kravec
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| | - Martina Drabinová
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petra Paclíková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| | - Vítĕzslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 62500, Czech Republic; Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno 612 65, Czech Republic
| | - Robert Vácha
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| |
Collapse
|
47
|
Boligala GP, Yang MV, van Wunnik JC, Pruitt K. Nuclear Dishevelled: An enigmatic role in governing cell fate and Wnt signaling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119305. [PMID: 35688346 DOI: 10.1016/j.bbamcr.2022.119305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
The Dishevelled gene was first identified in Drosophila mutants with disoriented hair and bristle polarity and subsequent work has now demonstrated its importance in critical and diverse aspects of biology. Since those early discoveries, Dishevelled has been shown to coordinate a plethora of developmental and cellular processes that range from controlling cell polarity during gastrulation to partnering with chromatin modifying enzymes to regulate histone methylation at genomic loci. While the role of DVL in development is well-respected and the cytosolic function of DVL has been studied more extensively, its nuclear role continues to remain murky. In this review we highlight some of the seminal discoveries that have contributed to the field, but the primary focus is to discuss recent advances with respect to the nuclear role of Dishevelled. This nuclear function of Dishevelled is a dimension which is proving to be increasingly important yet remains enigmatic.
Collapse
Affiliation(s)
- Geetha Priya Boligala
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Mingxiao V Yang
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jenna C van Wunnik
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kevin Pruitt
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
48
|
Tesolin P, Bertinetto FE, Sonaglia A, Cappellani S, Concas MP, Morgan A, Ferrero NM, Zabotti A, Gasparini P, Amoroso A, Quartuccio L, Girotto G. High Throughput Genetic Characterisation of Caucasian Patients Affected by Multi-Drug Resistant Rheumatoid or Psoriatic Arthritis. J Pers Med 2022; 12:jpm12101618. [PMID: 36294757 PMCID: PMC9605087 DOI: 10.3390/jpm12101618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/14/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022] Open
Abstract
Rheumatoid and psoriatic arthritis (RA and PsA) are inflammatory rheumatic disorders characterised by a multifactorial etiology. To date, the genetic contributions to the disease onset, severity and drug response are not clearly defined, and despite the development of novel targeted therapies, ~10% of patients still display poor treatment responses. We characterised a selected cohort of eleven non-responder patients aiming to define the genetic contribution to drug resistance. An accurate clinical examination of the patients was coupled with several high-throughput genetic testing, including HLA typing, SNPs-array and Whole Exome Sequencing (WES). The analyses revealed that all the subjects carry very rare HLA phenotypes which contain HLA alleles associated with RA development (e.g., HLA-DRB1*04, DRB1*10:01 and DRB1*01). Additionally, six patients also carry PsA risk alleles (e.g., HLA-B*27:02 and B*38:01). WES analysis and SNPs-array revealed 23 damaging variants with 18 novel “drug-resistance” RA/PsA candidate genes. Eight patients carry likely pathogenic variants within common genes (CYP21A2, DVL1, PRKDC, ORAI1, UGT2B17, MSR1). Furthermore, “private” damaging variants were identified within 12 additional genes (WNT10A, ABCB7, SERPING1, GNRHR, NCAPD3, CLCF1, HACE1, NCAPD2, ESR1, SAMHD1, CYP27A1, CCDC88C). This multistep approach highlighted novel RA/PsA candidate genes and genotype-phenotype correlations potentially useful for clinicians in selecting the best therapeutic strategy.
Collapse
Affiliation(s)
- Paola Tesolin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Francesca Eleonora Bertinetto
- Department of Medical Sciences, University of Turin, and Immunogenetic and Transplant Biology Service, University Hospital “Città della Salute e della Scienza”, 10124 Turin, Italy
| | - Arianna Sonaglia
- Division of Rheumatology, Department of Medicine (DAME), ASUFC, University of Udine, 33100 Udine, Italy
| | - Stefania Cappellani
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34137 Trieste, Italy
| | - Maria Pina Concas
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34137 Trieste, Italy
- Correspondence: ; Tel.: +39-0403785539
| | - Anna Morgan
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34137 Trieste, Italy
| | - Norma Maria Ferrero
- Department of Medical Sciences, University of Turin, and Immunogenetic and Transplant Biology Service, University Hospital “Città della Salute e della Scienza”, 10124 Turin, Italy
| | - Alen Zabotti
- Division of Rheumatology, Department of Medicine (DAME), ASUFC, University of Udine, 33100 Udine, Italy
| | - Paolo Gasparini
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34137 Trieste, Italy
| | - Antonio Amoroso
- Department of Medical Sciences, University of Turin, and Immunogenetic and Transplant Biology Service, University Hospital “Città della Salute e della Scienza”, 10124 Turin, Italy
| | - Luca Quartuccio
- Division of Rheumatology, Department of Medicine (DAME), ASUFC, University of Udine, 33100 Udine, Italy
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34137 Trieste, Italy
| |
Collapse
|
49
|
Identification and Validation of Prognostic Markers for Lung Squamous Cell Carcinoma Associated with Chronic Obstructive Pulmonary Disease. JOURNAL OF ONCOLOGY 2022; 2022:4254195. [PMID: 36035311 PMCID: PMC9402374 DOI: 10.1155/2022/4254195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/28/2022] [Accepted: 07/03/2022] [Indexed: 12/04/2022]
Abstract
Background Globally, the incidence and associated mortality of chronic obstructive pulmonary disease (COPD) and lung carcinoma are showing a worsening trend. There is increasing evidence that COPD is an independent risk factor for the occurrence and progression of lung carcinoma. This study aimed to identify and validate the gene signatures associated with COPD, which may serve as potential new biomarkers for the prediction of prognosis in patients with lung carcinoma. Methods A total of 111 COPD patient samples and 40 control samples were obtained from the GSE76925 cohort, and a total of 4933 genes were included in the study. The weighted gene coexpression network analysis (WGCNA) was performed to identify the modular genes that were significantly associated with COPD. The KEGG pathway and GO functional enrichment analyses were also performed. The RNAseq and clinicopathological data of 490 lung squamous cell carcinoma patients were obtained from the TCGA database. Further, univariate Cox regression and Lasso analyses were performed to screen for marker genes and construct a survival analysis model. Finally, the Human Protein Atlas (HPA) database was used to assess the gene expression in normal and tumor tissues of the lungs. Results A 6-gene signature (DVL1, MRPL4, NRTN, NSUN3, RPH3A, and SNX32) was identified based on the Cox proportional risk analysis to construct the prognostic RiskScore survival model associated with COPD. Kaplan–Meier survival analysis indicated that the model could significantly differentiate between the prognoses of patients with lung carcinoma, wherein higher RiskScore samples were associated with a worse prognosis. Additionally, the model had a good predictive performance and reliability, as indicated by a high AUC, and these were validated in both internal and external sets. The 6-gene signature had a good predictive ability across clinical signs and could be considered an independent factor of prognostic risk. Finally, the protein expressions of the six genes were analyzed based on the HPA database. The expressions of DVL1, MRPL4, and NSUN3 were relatively higher, while that of RPH3A was relatively lower in the tumor tissues. The expression of SNX32 was high in both the tumor and paracarcinoma tissues. Results of the analyses using TCGA and GSE31446 databases were consistent with the expressions reported in the HPA database. Conclusion Novel COPD-associated gene markers for lung carcinoma were identified and validated in this study. The genes may be considered potential biomarkers to evaluate the prognostic risk of patients with lung carcinoma. Furthermore, some of these genes may have implications as new therapeutic targets and can be used to guide clinical applications.
Collapse
|
50
|
Superresolution microscopy localizes endogenous Dvl2 to Wnt signaling-responsive biomolecular condensates. Proc Natl Acad Sci U S A 2022; 119:e2122476119. [PMID: 35867833 PMCID: PMC9335300 DOI: 10.1073/pnas.2122476119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Wnt signaling governs cell fate and tissue polarity across species. The Dishevelled proteins are central to Wnt signaling cascades. Wnt-mediated multiprotein complexes such as the “signalosome” and the “destruction complex” have been proposed to represent biomolecular condensates. These nonmembranous, specialized compartments have been suggested to form through liquid–liquid phase separation and ensure correctly proceeding physiological reactions. Although biomolecular condensates have increasingly been studied, key questions remain regarding, for example, their architecture and physiological regulation. Here, superresolution microscopy after endogenous labeling of Dishevelled-2 gives insights into protein functions and Wnt signaling at physiological levels. It reveals the distinct molecular architecture of endogenous Wnt condensates at single-molecule resolution and illustrates close interactions at the centrosome. During organismal development, homeostasis, and disease, Dishevelled (Dvl) proteins act as key signaling factors in beta-catenin–dependent and beta-catenin–independent Wnt pathways. While their importance for signal transmission has been genetically demonstrated in many organisms, our mechanistic understanding is still limited. Previous studies using overexpressed proteins showed Dvl localization to large, punctate-like cytoplasmic structures that are dependent on its DIX domain. To study Dvl’s role in Wnt signaling, we genome engineered an endogenously expressed Dvl2 protein tagged with an mEos3.2 fluorescent protein for superresolution imaging. First, we demonstrate the functionality and specificity of the fusion protein in beta-catenin–dependent and beta-catenin–independent signaling using multiple independent assays. We performed live-cell imaging of Dvl2 to analyze the dynamic formation of the supramolecular cytoplasmic Dvl2_mEos3.2 condensates. While overexpression of Dvl2_mEos3.2 mimics the previously reported formation of abundant large “puncta,” supramolecular condensate formation at physiological protein levels is only observed in a subset of cells with approximately one per cell. We show that, in these condensates, Dvl2 colocalizes with Wnt pathway components at gamma-tubulin and CEP164-positive centrosomal structures and that the localization of Dvl2 to these condensates is Wnt dependent. Single-molecule localization microscopy using photoactivated localization microscopy (PALM) of mEos3.2 in combination with DNA-PAINT demonstrates the organization and repetitive patterns of these condensates in a cell cycle–dependent manner. Our results indicate that the localization of Dvl2 in supramolecular condensates is coordinated dynamically and dependent on cell state and Wnt signaling levels. Our study highlights the formation of endogenous and physiologically regulated biomolecular condensates in the Wnt pathways at single-molecule resolution.
Collapse
|