1
|
Shen P, Lin W, Huang Y, Ba X, Han L, Li T, Qin K, Chen Z, Tu S. Wutou decoction attenuates rheumatoid arthritis in rats through SIRT1-mediated deacetylation of the HMGB1/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118921. [PMID: 39389393 DOI: 10.1016/j.jep.2024.118921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/13/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese medicine (TCM), Wutou Decoction (WTD) has long been used to alleviate arthritis. Emerging studies have reported that WTD could improve the symptoms of rheumatoid arthritis (RA). However, the mechanism by which WTD is involved in the treatment of RA remains elusive, posing a challenge to the worldwide acceptance of WTD as an efficient RA therapy. AIM OF THE STUDY This study investigated the antiarthritic efficacy of WTD in a collagen-induced arthritis (CIA) rat model and explored silent information regulator 1 (SIRT1)-mediated deacetylation of the high mobility group box 1 (HMGB1)/NF-κB pathway. MATERIALS AND METHODS A rat CIA model was used to evaluate the antiarthritic activity of WTD. Clinical arthritis score assessment, left ankle thickness assessment, micro-CT, histopathological staining, immunofluorescence staining, and ELISA were conducted to elucidate the anti-inflammatory effects of WTD. The M1 macrophage polarization state, cell viability, and invasion were also determined to assess the effects of WTD on macrophage proliferation and invasion in vitro. Additionally, in vivo and in vitro HMGB1 nuclear translocation and NF-κB activation were analysed. Finally, deacetylase activity was assessed by Western blot, NAD+/NADH analysis, and co-immunoprecipitaion. RESULTS WTD significantly alleviated arthritis in CIA rats and inhibited pathological changes in joint lesions while concurrently suppressing TNF-α, IL-6, and IL-1β release. Mechanistically, WTD suppressed M1 infiltration in ankle tissues and their invasion in vitro. Furthermore, WTD downregulated HMGB1/p65 nuclear translocation and acetylation, which may be associated with SIRT1 upregulation. CONCLUSIONS Overall, WTD potentially alleviates RA through SIRT1-mediated downregulation of HMGB1 and NF-κB acetylation.
Collapse
Affiliation(s)
- Pan Shen
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, China; Department of Dermatology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, China.
| | - Weiji Lin
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, China.
| | - Yao Huang
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, China.
| | - Xin Ba
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, China.
| | - Liang Han
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, China.
| | - Tingting Li
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, China.
| | - Kai Qin
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, China.
| | - Zhe Chen
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, China.
| | - Shenghao Tu
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, China.
| |
Collapse
|
2
|
Bohler F, Bohler L, Taranikanti V. Targeting pericyte retention in Diabetic Retinopathy: a review. Ann Med 2024; 56:2398200. [PMID: 39268600 PMCID: PMC11404372 DOI: 10.1080/07853890.2024.2398200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 09/17/2024] Open
Abstract
Diabetic retinopathy is a common yet severe complication of diabetes mellitus and is the leading cause of blindness in middle-aged adults. After years of poorly managed hyperglycemia, complications begin as non-proliferative diabetic retinopathy but can then progress into the proliferative stage marked by neovascularization of the retina. Multiple pathologic mechanisms caused by chronic hyperglycemia damage the retinal vasculature leading to pericyte drop out and the progression of the disease. This review outlines the major pathways of pathogenesis in diabetic retinopathy, highlighting the protective role pericytes play in preserving the blood-retinal barrier. Given the loss of this cell line is a defining feature of the disease, ways in which to prevent pericyte dropout within retinal vasculature is discussed, targeting various pathogenesis pathways of diabetic retinopathy.
Collapse
Affiliation(s)
- Forrest Bohler
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI
| | - Lily Bohler
- College of Letters and Science, Montana State University, Bozeman, MT
| | - Varna Taranikanti
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI
| |
Collapse
|
3
|
Joghataie P, Ardakani MB, Sabernia N, Salary A, Khorram S, Sohbatzadeh T, Goodarzi V, Amiri BS. The Role of Circular RNA in the Pathogenesis of Chemotherapy-Induced Cardiotoxicity in Cancer Patients: Focus on the Pathogenesis and Future Perspective. Cardiovasc Toxicol 2024; 24:1151-1167. [PMID: 39158829 DOI: 10.1007/s12012-024-09914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
Cardiotoxicity is a serious challenge cancer patients face today. Various factors are involved in cardiotoxicity. Circular RNAs (circRNAs) are one of the effective factors in the occurrence and prevention of cardiotoxicity. circRNAs can lead to increased proliferation, apoptosis, and regeneration of cardiomyocytes by regulating the molecular pathways, as well as increasing or decreasing gene expression; some circRNAs have a dual role in cardiomyocyte regeneration or death. Identifying each of the pathways related to these processes can be effective on managing patients and preventing cardiotoxicity. In this study, an overview of the molecular pathways involved in cardiotoxicity by circRNAs and their effects on the downstream factors have been discussed.
Collapse
Affiliation(s)
- Pegah Joghataie
- Department of Cardiology, School of Medicine, Hazrat-E Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | | | - Neda Sabernia
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Tooba Sohbatzadeh
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Alborz, Iran
| | - Vahid Goodarzi
- Department of Anesthesiology, Rasoul-Akram Medical Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Bahareh Shateri Amiri
- Assistant Professor of Internal Medicine, Department of Internal Medicine, School of Medicine, Hazrat-E Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Dash UK, Mazumdar D, Singh S. High Mobility Group Box Protein (HMGB1): A Potential Therapeutic Target for Diabetic Encephalopathy. Mol Neurobiol 2024; 61:8188-8205. [PMID: 38478143 DOI: 10.1007/s12035-024-04081-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/28/2024] [Indexed: 09/21/2024]
Abstract
HMGB (high mobility group B) is one of the ubiquitous non-histone nuclear protein superfamilies that make up the HMG (high mobility group) protein group. HMGB1 is involved in a variety of physiological and pathological processes in the human body, including a structural role in the cell nucleus as well as replication, repair, DNA transcription, and assembly of nuclear proteins. It functions as a signaling regulator in the cytoplasm and a pro-inflammatory cytokine in the extracellular environment. Among several studies, HMGB1 protein is also emerging as a crucial factor involved in the development and progression of diabetic encephalopathy (DE) along with other factors such as hyperglycaemia-induced oxidative and nitrosative stress. Diabetes' chronic side effect is DE, which manifests as cognitive and psychoneurological dysfunction. The HMGB1 is released outside to the extracellular medium in diabetes condition through active or passive routes, where it functions as a damage-associated molecular pattern (DAMP) molecule to activate several signaling pathways by interacting with receptors for advanced glycosylation end-products (RAGE)/toll like receptors (TLR). HMGB1 reportedly activates inflammatory pathways, disrupts the blood-brain barrier, causes glutamate toxicity and oxidative stress, and promotes neuroinflammation, contributing to the development of cognitive impairment and neuronal damage which is suggestive of the involvement of HMGB1 in the enhancement of the diabetes-induced encephalopathic condition. Additionally, HMGB1 is reported to induce insulin resistance, further exacerbating the metabolic dysfunction associated with diabetes mellitus (DM). Thus, the present review explores the possible pathways associated with DM-induced hyperactivation of HMGB1 ultimately leading to DE.
Collapse
Affiliation(s)
- Udit Kumar Dash
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Debashree Mazumdar
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Santosh Singh
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India.
| |
Collapse
|
5
|
Ngcobo NN, Sibiya NH. The role of high mobility group box-1 on the development of diabetes complications: A plausible pharmacological target. Diab Vasc Dis Res 2024; 21:14791641241271949. [PMID: 39271468 PMCID: PMC11406611 DOI: 10.1177/14791641241271949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Diabetes mellitus has emerged as a pressing global concern, with a notable increase in recent years. Despite advancements in treatment, existing medications struggle to halt the progression of diabetes and its associated complications. Increasing evidence underscores inflammation as a significant driver in the onset of diabetes mellitus. Therefore, perspectives on new therapies must consider shifting focus from metabolic stress to inflammation. High mobility group box (HMGB-1), a nuclear protein regulating gene expression, gained attention as an endogenous danger signal capable of sparking inflammatory responses upon release into the extracellular environment in the late 1990s. PURPOSE Given the parallels between inflammatory responses and type 2 diabetes (T2D) development, this review paper explores HMGB-1's potential involvement in onset and progression of diabetes complications. Specifically, we will review and update the understanding of HMGB-1 and its inflammatory pathways in insulin resistance, diabetic nephropathy, diabetic neuropathy, and diabetic retinopathy. CONCLUSIONS HMGB-1 and its receptors i.e. receptor for advanced glycation end-products (RAGE) and toll-like receptors (TLRs) present promising targets for antidiabetic interventions. Ongoing and future projects in this realm hold promise for innovative approaches targeting HMGB-1-mediated inflammation to ameliorate diabetes and its complications.
Collapse
Affiliation(s)
- Nokwanda N Ngcobo
- Discipline of Pharmaceutical Sciences, School of Health Science, University of KwaZulu-Natal, Durban, South Africa
| | - Ntethelelo H Sibiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
6
|
Wicaksono S, Nur'aeny N, Susanto H, Nugraha AP, Ernawati DS. Dampened inflammatory response in oral ulcer after topical therapy of adipose mesenchymal stem cell secretome. J Taibah Univ Med Sci 2024; 19:847-855. [PMID: 39247448 PMCID: PMC11378901 DOI: 10.1016/j.jtumed.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/30/2024] [Accepted: 07/26/2024] [Indexed: 09/10/2024] Open
Abstract
Objectives Research has demonstrated that modulating inflammation can significantly accelerate the healing of oral ulcers. Our study focused on the adipose mesenchymal stem cell secretome (AdMSCS), which is rich in immunoregulatory molecules capable of dampening the immune response and interfering with inflammatory pathways. We assessed both inflammatory pathway expression and macrophage phenotypes at the sites of oral ulcers. Methods We induced oral ulcers in the inferior fornix mucosa of 20 healthy male Wistar rats (Rattus norvegicus). These subjects were treated topically with adipose MSC metabolite (AdMSCM) oral gel three times daily, for durations of 3 and 7 days. We performed immunohistochemical analyses to evaluate the expression of Toll-like receptor 4 (TLR4) and nuclear factor kappa B (NF-κB) p65 at the ulcer sites. Additionally, we assessed macrophage polarization by examining the ratio of M2/M1 macrophages, identified through CD68+Φ (M1) and CD163+Φ (M2) cells. Data were analyzed using one-way analysis of variance, followed by post-hoc Tukey's Honestly Significantly Difference test. Results Application of AdMSCM oral gel significantly reduced the expression of TLR4 and NF-κB p65. This treatment also enhanced macrophage polarization towards the anti-inflammatory M2 phenotype at the ulcer sites (p < 0.05). Conclusion The topical application of AdMSCM oral gel effectively modulates the inflammatory response, enhancing healing processes in the oral ulcer rat model. This suggests its potential utility as a therapeutic agent in managing oral ulcers.
Collapse
Affiliation(s)
- Satutya Wicaksono
- Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Nanan Nur'aeny
- Department of Oral Medicine, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Hendri Susanto
- Department of Oral Medicine, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Alexander P Nugraha
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Diah S Ernawati
- Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
7
|
Jiang F, Lei C, Chen Y, Zhou N, Zhang M. The complement system and diabetic retinopathy. Surv Ophthalmol 2024; 69:575-584. [PMID: 38401574 DOI: 10.1016/j.survophthal.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Diabetic retinopathy (DR) is one of the common microvascular complications of diabetes mellitus and is the main cause of visual impairment in diabetic patients. The pathogenesis of DR is still unclear. The complement system, as an important component of the innate immune system in addition to defending against the invasion of foreign microorganisms, is involved in the occurrence and development of DR through 3 widely recognized complement activation pathways, the complement regulatory system, and many other pathways. Molecules such as C3a, C5a, and membrane attacking complex, as important molecules of the complement system, are involved in the pathologenesus of DR, either through direct damaging effects or by activating cells (microglia, macroglia, etc.) in the retinal microenvironment to contribute to the pathological damage of DR indirectly. We review the integral association of the complement system and DR to further understand the pathogenesis of DR and possibly provide a new strategy for itstreatment.
Collapse
Affiliation(s)
- Feipeng Jiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Macular Disease Research Laboratory, West China Hospital, Sichuan University, China
| | - Chunyan Lei
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Macular Disease Research Laboratory, West China Hospital, Sichuan University, China
| | - Yingying Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Macular Disease Research Laboratory, West China Hospital, Sichuan University, China
| | - Nenghua Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Meixia Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Macular Disease Research Laboratory, West China Hospital, Sichuan University, China.
| |
Collapse
|
8
|
Peng X, Zhang T, Liu R, Jin X. Potential in exosome-based targeted nano-drugs and delivery vehicles for posterior ocular disease treatment: from barriers to therapeutic application. Mol Cell Biochem 2024; 479:1319-1333. [PMID: 37402019 DOI: 10.1007/s11010-023-04798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
Posterior ocular disease, a disease that accounts for 55% of all ocular diseases, can contribute to permanent vision loss if left without treatment. Due to the special structure of the eye, various obstacles make it difficult for drugs to reach lesions in the posterior ocular segment. Therefore, the development of highly permeable targeted drugs and delivery systems is particularly important. Exosomes are a class of extracellular vesicles at 30-150 nm, which are secreted by various cells, tissues, and body fluids. They carry various signaling molecules, thus endowing them with certain physiological functions. In this review, we describe the ocular barriers and the biogenesis, isolation, and engineering of exosomes, as exosomes not only have pharmacological effects but also are good nanocarriers with targeted properties. Moreover, their biocompatibility and immunogenicity are better than synthetic nanocarriers. Most importantly, they may have the ability to pass through the blood-eye barrier. Thus, they may be developed as both targeted nano-drugs and nano-delivery vehicles for the treatment of posterior ocular diseases. We focus on the current status and potential application of exosomes as targeted nano-drugs and nano-delivery vehicles in posterior ocular diseases.
Collapse
Affiliation(s)
- Xingru Peng
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tingting Zhang
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Rui Liu
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xin Jin
- Department of Health Services, Logistics University of People's Armed Police Force, Tianjin, Chenlin Road, Hedong District, Tianjin, 300162, China.
| |
Collapse
|
9
|
Xian Y, Wang X, Yu Y, Chen X. The mechanism of EGFL7 regulating neovascularization in diabetic retinopathy through the PI3K/AKT/VEGFA pathway. Life Sci 2024; 340:122483. [PMID: 38307238 DOI: 10.1016/j.lfs.2024.122483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
Diabetic retinopathy (DR) is a blinding disease caused by diabetes, characterized by neovascularization of the retina. The aim of this study was to investigate the roles of epidermal growth factor-like structural domain 7 (EGFL7) on human retinal vascular endothelial cells (HRECS) and retinas from rats with DR. An in vitro model of DR was established through culturing HRECS in high glucose. The in vivo model of DR was established by injecting SD rats with streptozotocin (STZ) to induce diabetes. The differences in the expressed levels of EGFL7, PI3K, AKT, P-AKT and VEGFA in high-glucose cultured cells and retinal tissues of diabetic rats were detected in compared to those in the control group. Stable EGFL7 knockdown cell lines were generated by transfecting HRECS with lentiviral vectors and the effects of EGFL7 knockdown on angiogenesis, cell migration and proliferation were investigated. The results showed that EGFL7, PI3K, P-AKT and VEGFA was increased in cells and tissues under high glucose conditions. Knockdown of EGFL7 downregulated the proliferation, migration and angiogenesis capacity of HRECS, and blocked the PI3K/AKT/VEGFA signaling pathway. Furthermore, overexpression of PI3K reversed the effects of EGFL7 inhibition. These findings provide new ideas for the treatment of neovascularisation in DR.
Collapse
Affiliation(s)
- Yang Xian
- Department of Ophthalmology, Shengjing Hospital of China Medical University, China
| | - XingLi Wang
- Department of Ophthalmology, Shengjing Hospital of China Medical University, China
| | - Yong Yu
- Department of Ophthalmology, Shengjing Hospital of China Medical University, China
| | - XiaoLong Chen
- Department of Ophthalmology, Shengjing Hospital of China Medical University, China.
| |
Collapse
|
10
|
Zhao YZ, Zhang XN, Yin Y, Xiao PL, Gao M, Zhang LM, Zhou SH, Yu SN, Wang XL, Zhao YS. N-acetylserotonin alleviates retinal ischemia-reperfusion injury via HMGB1/RAGE/NF-κB pathway in rats. Int J Ophthalmol 2024; 17:228-238. [PMID: 38371266 PMCID: PMC10827609 DOI: 10.18240/ijo.2024.02.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/07/2023] [Indexed: 02/20/2024] Open
Abstract
AIM To observe the effects of N-acetylserotonin (NAS) administration on retinal ischemia-reperfusion (RIR) injury in rats and explore the underlying mechanisms involving the high mobility group box 1 (HMGB1)/receptor for advanced glycation end-products (RAGE)/nuclear factor-kappa B (NF-κB) signaling pathway. METHODS A rat model of RIR was developed by increasing the pressure of the anterior chamber of the eye. Eighty male Sprague Dawley were randomly divided into five groups: sham group (n=8), RIR group (n=28), RIR+NAS group (n=28), RIR+FPS-ZM1 group (n=8) and RIR+NAS+ FPS-ZM1 group (n=8). The therapeutic effects of NAS were examined by hematoxylin-eosin (H&E) staining, and retinal ganglion cells (RGCs) counting. The expression of interleukin 1 beta (IL-1β), HMGB1, RAGE, and nod-like receptor 3 (NLRP3) proteins and the phosphorylation of nuclear factor-kappa B (p-NF-κB) were analyzed by immunohistochemistry staining and Western blot analysis. The expression of HMGB1 protein was also detected by enzyme-linked immunosorbent assay (ELISA). RESULTS H&E staining results showed that NAS significantly reduced retinal edema and increased the number of RGCs in RIR rats. With NAS therapy, the HMGB1 and RAGE expression decreased significantly, and the activation of the NF-κB/NLRP3 pathway was antagonized along with the inhibition of p-NF-κB and NLRP3 protein expression. Additionally, NAS exhibited an anti-inflammatory effect by reducing IL-1β expression. The inhibitory of RAGE binding to HMGB1 by RAGE inhibitor FPS-ZM1 led to a significant decrease of p-NF-κB and NLRP3 expression, so as to the IL-1β expression and retinal edema, accompanied by an increase of RGCs in RIR rats. CONCLUSION NAS may exhibit a neuroprotective effect against RIR via the HMGB1/RAGE/NF-κB signaling pathway, which may be a useful therapeutic target for retinal disease.
Collapse
Affiliation(s)
- Yu-Ze Zhao
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Xue-Ning Zhang
- School of Medical Imaging, Weifang Medical University, Weifang 261053, Shandong Province, China
| | - Yi Yin
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Pei-Lun Xiao
- Department of Anatomy, Weifang Medical University, Weifang 261053, Shandong Province, China
| | - Meng Gao
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Lu-Ming Zhang
- School of Medical Imaging, Weifang Medical University, Weifang 261053, Shandong Province, China
| | - Shuan-Hu Zhou
- Departments of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shu-Na Yu
- Department of Anatomy, Weifang Medical University, Weifang 261053, Shandong Province, China
| | - Xiao-Li Wang
- School of Medical Imaging, Weifang Medical University, Weifang 261053, Shandong Province, China
| | - Yan-Song Zhao
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| |
Collapse
|
11
|
Lu Z, Fan B, Li Y, Zhang Y. RAGE plays key role in diabetic retinopathy: a review. Biomed Eng Online 2023; 22:128. [PMID: 38115006 PMCID: PMC10729525 DOI: 10.1186/s12938-023-01194-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023] Open
Abstract
RAGE is a multiligand receptor for the immunoglobulin superfamily of cell surface molecules and is expressed in Müller cells, vascular endothelial cells, nerve cells and RPE cells of the retina. Diabetic retinopathy (DR) is a multifactorial disease associated with retinal inflammation and vascular abnormalities and is the leading cause of vision loss or impairment in older or working-age adults worldwide. Therapies aimed at reducing the inflammatory response and unnecessary angiogenesis can help slow the progression of DR, which in turn can save patients' vision. To maximize the efficacy and minimize the side effects, treatments that target key players in the pathophysiological process of DR need to be developed. The interaction between RAGE and its ligands is involved in a variety of cytopathological alterations in the retina, including secretion of inflammatory factors, regulation of angiogenesis, oxidative stress, structural and functional changes, and neurodegeneration. In this review, we will summarize the pathologic pathways mediated by RAGE and its ligand interactions and discuss its role in the progression of diabetic retinopathy to explore potential therapeutic targets that are effective and safe for DR.
Collapse
Affiliation(s)
- ZhiWen Lu
- Department of Ophthalmology, The Second Hospital of Jilin University, Nanguan District, No. 4026, Yatai Street, Changchun, 130000, Jilin Province, China
| | - Bin Fan
- Department of Ophthalmology, The Second Hospital of Jilin University, Nanguan District, No. 4026, Yatai Street, Changchun, 130000, Jilin Province, China.
| | - YunZhi Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Nanguan District, No. 4026, Yatai Street, Changchun, 130000, Jilin Province, China
| | - YiXin Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Nanguan District, No. 4026, Yatai Street, Changchun, 130000, Jilin Province, China
| |
Collapse
|
12
|
Liu L, Jiang Y, Steinle JJ. Semaphorin 7a regulates inflammatory mediators and permeability in retinal endothelial cells. Microvasc Res 2023; 150:104587. [PMID: 37453650 PMCID: PMC10528930 DOI: 10.1016/j.mvr.2023.104587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Research supports a key role for inflammation in damaging the retinal vasculature. Current work is designed to investigate regulation of key inflammatory pathways. In this study, we hypothesized that semaphorin 7a (Sema7a) was involved in the increased inflammatory mediators and permeability changes in retinal endothelial cells (REC) grown in high glucose. For these studies, we used diabetic mouse samples and REC to investigate our hypothesis. Primary retinal endothelial cells were grown in normal (5 mM) or high glucose (25 mM glucose) for measurements. In a subset of cells grown in high glucose, cells were transfected with Sema7a siRNA or scrambled siRNA. We measured levels of key inflammatory mediators and zonula occludens-1 (ZO-1) and occludin levels by Western blot. Data suggest that high glucose increased inflammatory mediators and reduced the tight junction proteins, which follows what is often observed in cells grown in high glucose. Sema7a siRNA significantly decreased inflammatory proteins and increased levels of ZO-1 and occludin. These data suggest that Sema7a mediates the actions of high glucose in REC. Use of Sema7a siRNA may offer a new avenue for treatment.
Collapse
Affiliation(s)
- Li Liu
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Youde Jiang
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jena J Steinle
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
13
|
Wang X, Li X, Zong Y, Yu J, Chen Y, Zhao M, Wu D, Liao Y, Jiang C, Zhu H. Identification and Validation of Genes Related to RNA Methylation Modification in Diabetic Retinopathy. Curr Eye Res 2023; 48:1034-1049. [PMID: 37529844 DOI: 10.1080/02713683.2023.2238144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/13/2023] [Indexed: 08/03/2023]
Abstract
PURPOSE To identify and validate the differentially expressed genes related to RNA methylation modification in diabetic retinopathy. METHODS The data sets GSE12610 and GSE111465 related to diabetic retinopathy in the Gene Expression Omnibus were selected. The R software package was used to identify differentially expressed genes related to RNA methylation modification in diabetic retinopathy. Protein-protein interaction network was constructed to explore the interactions between proteins and predict proteins. Then, Gene Ontology annotation analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were used to analyze the potential enrichment pathways and clarify the biological functions of these genes. In addition, the correlation between them and immune cells was visualized, and receiver operating characteristic curves were drawn to evaluate the diagnostic performance of each one of them for diabetic retinopathy. To verify the differentially expressed genes, the mRNA expression of rat retinal vascular endothelial cells cultured in low and high glucose medium separately were detected by RT-qPCR. RESULTS The expression of Lrpprc, Nsun4, Nsun6 and Trdmt1 were significantly up-regulated in diabetic retinopathy samples, while the expression of Cbll1, Hnrnpc, Mettl3 and Wtap were significantly down-regulated. Differentially expressed genes were mainly enriched in the RNA-methylation-medication pathways and biological function. The results of immune infiltration analysis proved that eosinophils aggregated more in diabetic group, while T cells follicular helper aggregated more in normal samples. These genes of Cbll1 (AUC = 0.986), Hnrnpc (AUC = 0.819), Lrpprc (AUC = 0.806), Mettl3 (AUC = 0.917), Nsun4 (AUC = 0.819), Nsun6 (AUC = 0.819), Trdmt1 (AUC = 0.972) and Wtap (AUC = 0.972) were respectively used as the diagnostic basis of diabetic retinopathy. According to the RT-qPCR results, the expression of Mettl3 was significantly down-regulated (p < 0.0005) in cells cultured in high glucose, while Trdmt1 (p < 0.05), Nsun4 (p < 0.05) and Nsun6 (p < 0.05) were significantly up-regulated. CONCLUSION Differentially expressed genes such as Mettl3, Nsun4, Nsun6, and Trdmt1 should be conducted to explore, and the role of RNA methylation in the process of diabetic retinopathy would be revealed in-depth.
Collapse
Affiliation(s)
- Xue Wang
- Department of Ophthalmology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xiaomei Li
- Department of Ophthalmology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yuan Zong
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Jian Yu
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Yan Chen
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Minghui Zhao
- Department of Ophthalmology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Danping Wu
- Department of Ophthalmology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yujie Liao
- Department of Ophthalmology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Chunhui Jiang
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Haohao Zhu
- Department of Ophthalmology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Huang Z, Chu WK, Ng TK, Chen S, Liang J, Chen C, Xu Y, Xie B, Ke S, Liu Q, Chen W, Huang D. Protective effects of nattokinase against microvasculopathy and neuroinflammation in diabetic retinopathy. J Diabetes 2023; 15:866-880. [PMID: 37403338 PMCID: PMC10590680 DOI: 10.1111/1753-0407.13439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
AIMS Diabetic retinopathy (DR) is a significant global public health concern. Alternative, safe, and cost-effective pharmacologic approaches are warranted. We aimed to investigate the therapeutic potential of nattokinase (NK) for early DR and the underlying molecular mechanism. METHODS A mouse model of diabetes induced by streptozotocin was utilized and NK was administered via intravitreal injection. Microvascular abnormities were evaluated by examining the leakage from blood-retinal barrier dysfunction and loss of pericytes. Retinal neuroinflammation was examined through the assessment of glial activation and leukostasis. The level of high mobility group box 1 (HMGB1) and its downstream signaling molecules was evaluated following NK treatment. RESULTS NK administration significantly improved the blood-retinal barrier function and rescued pericyte loss in the diabetic retinas. Additionally, NK treatment inhibited diabetes-induced gliosis and inflammatory response and protected retinal neurons from diabetes-induced injury. NK also improved high glucose-induced dysfunction in cultured human retinal micrangium endothelial cells. Mechanistically, NK regulated diabetes-induced inflammation partially by modulating HMGB1 signaling in the activated microglia. CONCLUSIONS This study demonstrated the protective effects of NK against microvascular damages and neuroinflammation in the streptozotocin-induced DR model, suggesting that NK could be a potential pharmaceutical agent for the treatment of DR.
Collapse
Affiliation(s)
- Zijing Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong KongShantouChina
| | - Wai Kit Chu
- Department of Ophthalmology & Visual SciencesThe Chinese University of Hong KongHong KongChina
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong KongShantouChina
- Department of Ophthalmology & Visual SciencesThe Chinese University of Hong KongHong KongChina
- Shantou University Medical CollegeShantouChina
| | - Shaolang Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong KongShantouChina
| | - Jiajian Liang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong KongShantouChina
| | - Chong‐Bo Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong KongShantouChina
| | - Yanxuan Xu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong KongShantouChina
| | - Biyao Xie
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong KongShantouChina
- Shantou University Medical CollegeShantouChina
| | - Shuping Ke
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong KongShantouChina
- Shantou University Medical CollegeShantouChina
| | - Qingping Liu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong KongShantouChina
| | - Weiqi Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong KongShantouChina
| | - Dingguo Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong KongShantouChina
| |
Collapse
|
15
|
Lu C, Li S, Jin M. Rapamycin Inhibits Light-Induced Necrosome Activation Occurring in Wild-Type, but not RPE65-Null, Mouse Retina. Invest Ophthalmol Vis Sci 2022; 63:19. [PMID: 36534385 PMCID: PMC9769341 DOI: 10.1167/iovs.63.13.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose Both photodamage and aberrant visual cycle contribute to disease progress of many retinal degenerative disorders, whereas the signaling pathways causing photoreceptor death remain unclear. Here we investigated the effects of intense photo-stress on (1) necrosome activation in wild-type and RPE65-null mice, (2) interaction of p62/Sequestosome-1 with the necrosome proteins, and (3) the effects of rapamycin on photodamage-induced necrosome activation and retinal degeneration in wild-type mice. Methods Dark-adapted rd12 mice and 129S2/Sv mice with or without rapamycin treatment were exposed to 15,000 lux light for different times. Expression levels and subcellular localization of proteins were determined through immunoblot and immunohistochemical analyses. Cone sheaths were stained with peanut agglutinin. Correlation between photoreceptor degeneration and receptor-interacting protein kinase-1 (RIPK1) expression was assessed with Spearman's correlation analysis. Protein-protein interaction was analyzed by immunoprecipitation. Results Intense light caused rod and cone degeneration accompanied by a significant increase in RIPK1-RIPK3 expressions, mixed lineage kinase domain-like protein phosphorylation, damage-associated molecular patterns protein release, and inflammatory responses in wild-type mouse retina. The same intense light did not induce the necrosome activation in rd12 retina, but it did in rd12 mice that received 9-cis-retinal supply. RIPK1 expression levels are positively correlated with the degrees of rod and cone degeneration. Photodamage upregulated expression and interaction of the p62 autophagosome cargo protein with the necrosome proteins, whereas rapamycin treatment attenuated the light-induced necrosome activation and photoreceptor degeneration. Conclusions Necrosome activation contributed to photodamage-induced rod and cone degeneration. The visual cycle and autophagy are the important therapeutic targets to alleviate light-induced retinal necroptosis.
Collapse
Affiliation(s)
- Chunfeng Lu
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, LSU Health New Orleans, New Orleans, Louisiana, United States
| | - Songhua Li
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, LSU Health New Orleans, New Orleans, Louisiana, United States
| | - Minghao Jin
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, LSU Health New Orleans, New Orleans, Louisiana, United States,Department of Ophthalmology, Louisiana State University School of Medicine, LSU Health New Orleans, New Orleans, Louisiana, United States
| |
Collapse
|
16
|
Belmadani S, Matrougui K. Role of High Mobility Group Box 1 in Cardiovascular Diseases. Inflammation 2022; 45:1864-1874. [PMID: 35386038 PMCID: PMC11145736 DOI: 10.1007/s10753-022-01668-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/27/2022] [Accepted: 03/28/2022] [Indexed: 11/05/2022]
Abstract
High Mobility Group Box 1 (HMGB1) is a ubiquitous, highly conserved nuclear and cytosolic protein that has diverse biological roles depending on its cellular location and posttranslational modifications. The HMGB1 is localized in the nucleus but can be translocated to the cytoplasm to modulate the intracellular signaling and eventually secreted outside the cells. It is widely established that HMGB1 plays a key role in inflammation; however, the role of HMGB1 in the cardiovascular diseases is not well understood. In this review, we will discuss the latest reports on the pathophysiological link between HMGB1 and cardiovascular complications, with special emphasis on the inflammation. Thus, the understanding of the role of HMGB1 may provide new insights into developing new HMGB1-based therapies.
Collapse
Affiliation(s)
- Souad Belmadani
- Department of Physiological Sciences, EVMS, Norfolk, Virginia, 23501, USA
| | - Khalid Matrougui
- Department of Physiological Sciences, EVMS, Norfolk, Virginia, 23501, USA.
| |
Collapse
|
17
|
Lv Q, Li Z, Sui A, Yang X, Han Y, Yao R. The role and mechanisms of gut microbiota in diabetic nephropathy, diabetic retinopathy and cardiovascular diseases. Front Microbiol 2022; 13:977187. [PMID: 36060752 PMCID: PMC9433831 DOI: 10.3389/fmicb.2022.977187] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/28/2022] [Indexed: 11/26/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) and T2DM-related complications [such as retinopathy, nephropathy, and cardiovascular diseases (CVDs)] are the most prevalent metabolic diseases. Intriguingly, overwhelming findings have shown a strong association of the gut microbiome with the etiology of these diseases, including the role of aberrant gut bacterial metabolites, increased intestinal permeability, and pathogenic immune function affecting host metabolism. Thus, deciphering the specific microbiota, metabolites, and the related mechanisms to T2DM-related complications by combined analyses of metagenomics and metabolomics data can lead to an innovative strategy for the treatment of these diseases. Accordingly, this review highlights the advanced knowledge about the characteristics of the gut microbiota in T2DM-related complications and how it can be associated with the pathogenesis of these diseases. Also, recent studies providing a new perspective on microbiota-targeted therapies are included.
Collapse
Affiliation(s)
| | | | | | | | | | - Ruyong Yao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
18
|
Dong H, Zhang Y, Huang Y, Deng H. Pathophysiology of RAGE in inflammatory diseases. Front Immunol 2022; 13:931473. [PMID: 35967420 PMCID: PMC9373849 DOI: 10.3389/fimmu.2022.931473] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a non-specific multi-ligand pattern recognition receptor capable of binding to a range of structurally diverse ligands, expressed on a variety of cell types, and performing different functions. The ligand-RAGE axis can trigger a range of signaling events that are associated with diabetes and its complications, neurological disorders, cancer, inflammation and other diseases. Since RAGE is involved in the pathophysiological processes of many diseases, targeting RAGE may be an effective strategy to block RAGE signaling.
Collapse
|
19
|
Peng J, Jin J, Su W, Shao W, Li W, Li Z, Yu H, Zheng Y, Zhong L. High-Mobility Group Box 1 Inhibitor BoxA Alleviates Neuroinflammation-Induced Retinal Ganglion Cell Damage in Traumatic Optic Neuropathy. Int J Mol Sci 2022; 23:ijms23126715. [PMID: 35743157 PMCID: PMC9223527 DOI: 10.3390/ijms23126715] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
Traumatic optic neuropathy (TON) is a significant cause of vision loss and irreversible blindness worldwide. It is defined as retinal ganglion cell death and axon degeneration caused by injury. Optic nerve crush (ONC), a well-validated model of TON, activates retinal microglia and initiates neuroinflammation. High-mobility group box 1 (HMGB1), a non-histone chromosomal binding protein in the nucleus of eukaryotic cells, is an important inducer of microglial activation and pro-inflammatory cytokine release. The purpose of this study was to examine the protective effects and mechanism of the HMGB1 inhibitor BoxA to neuroinflammation-induced retinal ganglion cells (RGCs) damage in traumatic optic neuropathy. For that purpose, an optic nerve crush model was established in C57BL/6J mice at 10–12 weeks. Model mice received an intravitreal injection of PBS and the HMGB1 inhibitor BoxA. Our data demonstrated that HMGB1 expression increased after optic nerve crush. Retinal ganglion cell function and morphology were damaged, and retinal ganglion cell numbers were reduced after optic nerve crush. Intravitreal injection of BoxA after ONC can alleviate damage. Furthermore, BoxA reduced microglial activation and expression levels of nuclear factor κB (NF-kB), nucleotide-binding domain, leucine-rich repeat containing protein 3 (NLRP3), and apoptosis-associated speck-like protein containing a CARD (ASC) in experimental ONC mice. In summary, HMGB1 mediates NLRP3 inflammasome via NF-kB to participate in retinal inflammatory injury after ONC. Thus, intravitreal injection of BoxA has potential therapeutic benefits for the effective treatment of RGC death to prevent TON.
Collapse
|
20
|
Liu L, Jiang Y, Steinle JJ. TNFAIP3 may be key to TLR4-activation of the inflammasome in the retinal vasculature. Exp Eye Res 2022; 220:109108. [PMID: 35568203 DOI: 10.1016/j.exer.2022.109108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/08/2022] [Accepted: 05/06/2022] [Indexed: 11/04/2022]
Abstract
The goal of these studies were to determine whether tumor necrosis factor, alpha-induced protein 3 (TNFAIP3) regulated toll-like receptor 4 (TLR4) actions on the NOD-like receptor protein 3 (NLRP3) inflammasome. Western blotting was done on retinal lysates from TLR4 floxed and endothelial cell specific TLR4 knockout mice for TNFAIP3, TLR4, and NLRP3 pathway proteins. Retinal endothelial cells (REC) were grown in normal (5mM) and high glucose (25mM) and treated with TNFAIP3 siRNA, followed by Western blotting for TLR4 and NLRP3 pathway proteins. Loss of TLR4 in endothelial cells increased TNFAIP3 levels, while decreasing NLRP3 pathway proteins. High glucose culturing conditions increased TLR4 and NLRP3 proteins, which were also increased by TNFAIP3 siRNA. Data demonstrate that TLR4 regulates NLRP3 pathway proteins. TNFAIP3 can regulate TLR4 and the NLRP3 pathway. TNFAIP3 may offer a new target for therapeutic development against retinal inflammation.
Collapse
Affiliation(s)
- Li Liu
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Youde Jiang
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Jena J Steinle
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
21
|
Yan L, Vaghari-Tabari M, Malakoti F, Moein S, Qujeq D, Yousefi B, Asemi Z. Quercetin: an effective polyphenol in alleviating diabetes and diabetic complications. Crit Rev Food Sci Nutr 2022; 63:9163-9186. [PMID: 35468007 DOI: 10.1080/10408398.2022.2067825] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Various studies, especially in recent years, have shown that quercetin has beneficial therapeutic effects in various human diseases, including diabetes. Quercetin has significant anti-diabetic effects and may be helpful in lowering blood sugar and increasing insulin sensitivity. Quercetin appears to affect many factors and signaling pathways involved in insulin resistance and the pathogenesis of type 2 of diabetes. TNFα, NFKB, AMPK, AKT, and NRF2 are among the factors that are affected by quercetin. In addition, quercetin can be effective in preventing and ameliorating the diabetic complications, including diabetic nephropathy, cardiovascular complications, neuropathy, delayed wound healing, and retinopathy, and affects the key mechanisms involved in the pathogenesis of these complications. These positive effects of quercetin may be related to its anti-inflammatory and anti-oxidant properties. In this article, after a brief review of the pathogenesis of insulin resistance and type 2 diabetes, we will review the latest findings on the anti-diabetic effects of quercetin with a molecular perspective. Then we will review the effects of quercetin on the key mechanisms of pathogenesis of diabetes complications including nephropathy, cardiovascular complications, neuropathy, delayed wound healing, and retinopathy. Finally, clinical trials investigating the effect of quercetin on diabetes and diabetes complications will be reviewed.
Collapse
Affiliation(s)
- Lei Yan
- Clinical Experimental Centre, Xi'an International Medical Center Hospital, Xi'an, China
- Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Mostafa Vaghari-Tabari
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
22
|
High Mobility Group Box 1: Biological Functions and Relevance in Oxidative Stress Related Chronic Diseases. Cells 2022; 11:cells11050849. [PMID: 35269471 PMCID: PMC8909428 DOI: 10.3390/cells11050849] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/03/2022] [Accepted: 02/26/2022] [Indexed: 01/27/2023] Open
Abstract
In the early 1970s, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and named high-mobility group (HMG) proteins. High-mobility group box 1 (HMGB1) is the most studied HMG protein that detects and coordinates cellular stress response. The biological function of HMGB1 depends on its subcellular localization and expression. It plays a critical role in the nucleus and cytoplasm as DNA chaperone, chromosome gatekeeper, autophagy maintainer, and protector from apoptotic cell death. HMGB1 also functions as an extracellular alarmin acting as a damage-associated molecular pattern molecule (DAMP). Recent findings describe HMGB1 as a sophisticated signal of danger, with a pleiotropic function, which is useful as a clinical biomarker for several disorders. HMGB1 has emerged as a mediator in acute and chronic inflammation. Furthermore, HMGB1 targeting can induce beneficial effects on oxidative stress related diseases. This review focus on HMGB1 redox status, localization, mechanisms of release, binding with receptors, and its activities in different oxidative stress-related chronic diseases. Since a growing number of reports show the key role of HMGB1 in socially relevant pathological conditions, to our knowledge, for the first time, here we analyze the scientific literature, evaluating the number of publications focusing on HMGB1 in humans and animal models, per year, from 2006 to 2021 and the number of records published, yearly, per disease and category (studies on humans and animal models).
Collapse
|
23
|
Mahaling B, Low SWY, Beck M, Kumar D, Ahmed S, Connor TB, Ahmad B, Chaurasia SS. Damage-Associated Molecular Patterns (DAMPs) in Retinal Disorders. Int J Mol Sci 2022; 23:ijms23052591. [PMID: 35269741 PMCID: PMC8910759 DOI: 10.3390/ijms23052591] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous danger molecules released from the extracellular and intracellular space of damaged tissue or dead cells. Recent evidence indicates that DAMPs are associated with the sterile inflammation caused by aging, increased ocular pressure, high glucose, oxidative stress, ischemia, mechanical trauma, stress, or environmental conditions, in retinal diseases. DAMPs activate the innate immune system, suggesting their role to be protective, but may promote pathological inflammation and angiogenesis in response to the chronic insult or injury. DAMPs are recognized by specialized innate immune receptors, such as receptors for advanced glycation end products (RAGE), toll-like receptors (TLRs) and the NOD-like receptor family (NLRs), and purine receptor 7 (P2X7), in systemic diseases. However, studies describing the role of DAMPs in retinal disorders are meager. Here, we extensively reviewed the role of DAMPs in retinal disorders, including endophthalmitis, uveitis, glaucoma, ocular cancer, ischemic retinopathies, diabetic retinopathy, age-related macular degeneration, rhegmatogenous retinal detachment, proliferative vitreoretinopathy, and inherited retinal disorders. Finally, we discussed DAMPs as biomarkers, therapeutic targets, and therapeutic agents for retinal disorders.
Collapse
Affiliation(s)
- Binapani Mahaling
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Shermaine W. Y. Low
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Molly Beck
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Devesh Kumar
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Simrah Ahmed
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Thomas B. Connor
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
- Vitreoretinal Surgery, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Baseer Ahmad
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
- Vitreoretinal Surgery, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shyam S. Chaurasia
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: ; Tel.: +1-414-955-2050
| |
Collapse
|
24
|
Nowicka N, Szymańska K, Juranek J, Zglejc-Waszak K, Korytko A, Załęcki M, Chmielewska-Krzesińska M, Wąsowicz K, Wojtkiewicz J. The Involvement of RAGE and Its Ligands during Progression of ALS in SOD1 G93A Transgenic Mice. Int J Mol Sci 2022; 23:ijms23042184. [PMID: 35216298 PMCID: PMC8880540 DOI: 10.3390/ijms23042184] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 02/05/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by a progressive degeneration of upper and lower motor neurons that causes paralysis and muscle atrophy. The pathogenesis of the disease is still not elucidated. Receptor for Advanced Glycation End Product (RAGE) is a major component of the innate immune system and has implications in ALS pathogenesis. Multiple studies suggest the role of RAGE and its ligands in ALS. RAGE and its ligands are overexpressed in human and murine ALS motor neurons, astrocytes, and microglia. Here, we demonstrated the expression of RAGE and its ligands during the progression of the disease in the transgenic SOD1 G93A mouse lumbar spinal cord. We observed the highest expression of HMGB1 and S100b proteins at ALS onset. Our results highlight the potential role of RAGE and its ligands in ALS pathogenesis and suggest that some of the RAGE ligands might be used as biomarkers in early ALS diagnosis and potentially be useful in targeted therapeutic interventions at the early stage of this devastating disease.
Collapse
Affiliation(s)
- Natalia Nowicka
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (K.S.); (K.Z.-W.); (A.K.); (J.W.)
- Correspondence: (N.N.); (J.J.)
| | - Kamila Szymańska
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (K.S.); (K.Z.-W.); (A.K.); (J.W.)
| | - Judyta Juranek
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (K.S.); (K.Z.-W.); (A.K.); (J.W.)
- Correspondence: (N.N.); (J.J.)
| | - Kamila Zglejc-Waszak
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (K.S.); (K.Z.-W.); (A.K.); (J.W.)
| | - Agnieszka Korytko
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (K.S.); (K.Z.-W.); (A.K.); (J.W.)
| | - Michał Załęcki
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Małgorzata Chmielewska-Krzesińska
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.C.-K.); (K.W.)
| | - Krzysztof Wąsowicz
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.C.-K.); (K.W.)
| | - Joanna Wojtkiewicz
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (K.S.); (K.Z.-W.); (A.K.); (J.W.)
| |
Collapse
|
25
|
Liu L, Jiang Y, Steinle JJ. Forskolin regulates retinal endothelial cell permeability through TLR4 actions in vitro. Mol Cell Biochem 2021; 476:4487-4492. [PMID: 34499321 DOI: 10.1007/s11010-021-04252-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/20/2021] [Indexed: 01/09/2023]
Abstract
To investigate whether forskolin, a protein kinase A agonist, regulates toll-like receptor 4 actions on retinal endothelial cell permeability in vitro. We also evaluated whether PKA could regulate TLR4 signaling independent of exchange protein activated by cAMP in REC in culture. REC were grown in normal (5 mM) or high (25 mM) glucose. Cells were treated with forskolin to increase PKA levels, siRNA against TLR4, siRNA against myeloid differentiation primary response 88, siRNA against translocating chain associated membrane protein 1, siRNA against epac1, or scrambled siRNA, or a combination of these treatments. Western blotting was done for zonula occludens 1 and occludin protein levels, as well as TLR4 signaling cascade proteins. Permeability measurements were done for REC in culture following inhibition of TLR4 or its signaling cascades. Forskolin restored high glucose-associated decreases in ZO-1 and occludin, which was associated with improved in vitro permeability levels. Both forskolin and TLR4 inhibition reduced high glucose-induced increases in REC permeability, but the actions were not cooperative. Forskolin regulated both MyD88-dependent and -independent signaling pathways, independent of Epac1. Finally, blockade of MyD88 or TRAM1 reduced permeability in REC grown in high glucose. A PKA agonist regulated TLR4 signaling independent of Epac1. PKA agonism or TLR4 inhibition is effective at reducing high glucose-induced permeability in REC in vitro. These studies offer new avenues for therapeutic development.
Collapse
Affiliation(s)
- Li Liu
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Youde Jiang
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jena J Steinle
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
26
|
Zglejc-Waszak K, Mukherjee K, Juranek JK. The cross-talk between RAGE and DIAPH1 in neurological complications of diabetes: A review. Eur J Neurosci 2021; 54:5982-5999. [PMID: 34449932 DOI: 10.1111/ejn.15433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/10/2023]
Abstract
Neuropathy, or dysfunction of peripheral nerve, is one of the most common neurological manifestation in patients with diabetes mellitus (DM). DM is typically associated with a hyperglycaemic milieu, which promotes non-enzymatic glycation of proteins. Proteins with advanced glycation are known to engage a cell-surface receptor called the receptor for advanced glycation end products (RAGE). Thus, it is reasonable to assume that RAGE and its associated molecule-mediated cellular signalling may contribute to DM-induced symmetrical axonal (length-dependent) neuropathy. Of particular interest is diaphanous related formin 1 (DIAPH1), a cytoskeletal organizing molecule, which interacts with the cytosolic domain of RAGE and whose dysfunction may precipitate axonopathy/neuropathy. Indeed, it has been demonstrated that both RAGE and DIAPH1 are expressed in the motor and sensory fibres of nerve harvested from DM animal models. Although the detailed molecular role of RAGE and DIAPH1 in diabetic neurological complications remains unclear, here we will discuss available evidence of their involvement in peripheral diabetic neuropathy. Specifically, we will discuss how a hyperglycaemic environment is not only likely to elevate advanced glycation end products (ligands of RAGE) and induce a pro-inflammatory environment but also alter signalling via RAGE and DIAPH1. Further, hyperglycaemia may regulate epigenetic mechanisms that interacts with RAGE signalling. We suggest the cumulative effect of hyperglycaemia on RAGE-DIAPH1-mediated signalling may be disruptive to axonal cytoskeletal organization and transport and is therefore likely to play a key role in pathogenesis of diabetic symmetrical axonal neuropathy.
Collapse
Affiliation(s)
- Kamila Zglejc-Waszak
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Konark Mukherjee
- Fralin Biomedical Research Institute at VTC, Virginia Tech Roanoke, Roanoke, Virginia, USA
| | - Judyta Karolina Juranek
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
27
|
Armento A, Schmidt TL, Sonntag I, Merle DA, Jarboui MA, Kilger E, Clark SJ, Ueffing M. CFH Loss in Human RPE Cells Leads to Inflammation and Complement System Dysregulation via the NF-κB Pathway. Int J Mol Sci 2021; 22:ijms22168727. [PMID: 34445430 PMCID: PMC8396051 DOI: 10.3390/ijms22168727] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD), the leading cause of vision loss in the elderly, is a degenerative disease of the macula, where retinal pigment epithelium (RPE) cells are damaged in the early stages of the disease, and chronic inflammatory processes may be involved. Besides aging and lifestyle factors as drivers of AMD, a strong genetic association to AMD is found in genes of the complement system, with a single polymorphism in the complement factor H gene (CFH), accounting for the majority of AMD risk. However, the exact mechanism of CFH dysregulation confers such a great risk for AMD and its role in RPE cell homeostasis is unclear. To explore the role of endogenous CFH locally in RPE cells, we silenced CFH in human hTERT-RPE1 cells. We demonstrate that endogenously expressed CFH in RPE cells modulates inflammatory cytokine production and complement regulation, independent of external complement sources, or stressors. We show that loss of the factor H protein (FH) results in increased levels of inflammatory mediators (e.g., IL-6, IL-8, GM-CSF) and altered levels of complement proteins (e.g., C3, CFB upregulation, and C5 downregulation) that are known to play a role in AMD. Moreover, our results identify the NF-κB pathway as the major pathway involved in regulating these inflammatory and complement factors. Our findings suggest that in RPE cells, FH and the NF-κB pathway work in synergy to maintain inflammatory and complement balance, and in case either one of them is dysregulated, the RPE microenvironment changes towards a proinflammatory AMD-like phenotype.
Collapse
Affiliation(s)
- Angela Armento
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (T.L.S.); (I.S.); (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
- Correspondence: (A.A.); (M.U.); Tel.: +49-7071-29-84953 (A.A.)
| | - Tiziana L. Schmidt
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (T.L.S.); (I.S.); (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
| | - Inga Sonntag
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (T.L.S.); (I.S.); (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
| | - David A. Merle
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (T.L.S.); (I.S.); (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
- Department of Ophthalmology, Medical University of Graz, 8036 Graz, Austria
| | - Mohamed Ali Jarboui
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (T.L.S.); (I.S.); (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
| | - Ellen Kilger
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (T.L.S.); (I.S.); (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
| | - Simon J. Clark
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (T.L.S.); (I.S.); (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
- Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Marius Ueffing
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (T.L.S.); (I.S.); (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
- Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Correspondence: (A.A.); (M.U.); Tel.: +49-7071-29-84953 (A.A.)
| |
Collapse
|
28
|
Yu C, Lei Z, Li X, Huang LH, Li ZQ, Zhu HW, Han D, Huang H, Yu X. Role of HMGB1 in TNF-α Combined with Z-VAD-fmk-Induced L929 Cells Necroptosis. Biochem Genet 2021; 60:598-610. [PMID: 34327615 DOI: 10.1007/s10528-021-10107-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 07/06/2021] [Indexed: 11/26/2022]
Abstract
The present study established a necroptosis model in vitro and investigated the role of HMGB1 in cell necroptosis. A combination of tumor necrosis factor-α and z-VAD-fmk was used to induce necroptosis in L929 cells with necroptosis inhibitor necrostatin-1 applied as an intervention. Flow cytometry and transmission electron microscopy (TEM) were used to measure cell necroptosis. Western blotting assay was applied to detect the expression of receptor-interacting serine/threonine-protein kinase 3 (RIPK3), mixed lineage kinase domain-like pseudokinase (MLKL) and HMGB1. Co-immunoprecipitation (Co-IP) assay was used to confirm the interaction between HMGB1 and RIPK3. Our study demonstrated that HMGB1 migrated from the nucleus to the cytoplasm at the onset of necroptosis and was subsequently released passively to the extracellular matrix. Further experiments determined that the binding of HMGB1 with RIPK3 in the cytoplasm was loose during necroptosis. By contrast, when necroptosis was inhibited, the interaction in the cytoplasm was tight suggesting that this association between HMGB1 and RIPK3 might affect its occurrence. In conclusion, the transfer of HMGB1 from nucleus to cytoplasm, and its interaction with RIPK3 might be potentially involved in necroptosis.
Collapse
Affiliation(s)
- Can Yu
- Departments of Intensive Care Unit, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, People's Republic of China
| | - Zhao Lei
- Departments of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Xia Li
- Departments of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, People's Republic of China
| | - Li-Hua Huang
- Center for Medical Experiments, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, People's Republic of China
| | - Zhi-Qiang Li
- Departments of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Hong-Wei Zhu
- Departments of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Duo Han
- Departments of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Hui Huang
- Departments of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Xiao Yu
- Departments of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China.
| |
Collapse
|
29
|
Sánchez-Cruz A, Méndez AC, Lizasoain I, de la Villa P, de la Rosa EJ, Hernández-Sánchez C. Tlr2 Gene Deletion Delays Retinal Degeneration in Two Genetically Distinct Mouse Models of Retinitis Pigmentosa. Int J Mol Sci 2021; 22:7815. [PMID: 34360582 PMCID: PMC8435220 DOI: 10.3390/ijms22157815] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
Although considered a rare retinal dystrophy, retinitis pigmentosa (RP) is the primary cause of hereditary blindness. Given its diverse genetic etiology (>3000 mutations in >60 genes), there is an urgent need for novel treatments that target common features of the disease. TLR2 is a key activator of innate immune response. To examine its role in RP progression we characterized the expression profile of Tlr2 and its adaptor molecules and the consequences of Tlr2 deletion in two genetically distinct models of RP: Pde6brd10/rd10 (rd10) and RhoP23H/+ (P23H/+) mice. In both models, expression levels of Tlr2 and its adaptor molecules increased in parallel with those of the proinflammatory cytokine Il1b. In rd10 mice, deletion of a single Tlr2 allele had no effect on visual function, as evaluated by electroretinography. However, in both RP models, complete elimination of Tlr2 attenuated the loss of visual function and mitigated the loss of photoreceptor cell numbers. In Tlr2 null rd10 mice, we observed decreases in the total number of microglial cells, assessed by flow cytometry, and in the number of microglia infiltrating the photoreceptor layers. Together, these results point to TLR2 as a mutation-independent therapeutic target for RP.
Collapse
Affiliation(s)
- Alonso Sánchez-Cruz
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas-Margarita Salas (CSIC), 28040 Madrid, Spain; (A.S.-C.); (E.J.d.l.R.)
- Neurovascular Research Unit, Department of Pharmacology and Toxicology, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Andrea C. Méndez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain;
| | - Ignacio Lizasoain
- Neurovascular Research Unit, Department of Pharmacology and Toxicology, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Instituto de Investigación Hospital 12 de Octubre (imas12), 28040 Madrid, Spain
| | - Pedro de la Villa
- Department of System Biology, Facultad de Medicina, Universidad de Alcalá, 28805 Alcalá de Henares, Spain;
- Instituto Ramón y Cajal de Investigación Sanitaria (ISCIII), 28034 Madrid, Spain
| | - Enrique J. de la Rosa
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas-Margarita Salas (CSIC), 28040 Madrid, Spain; (A.S.-C.); (E.J.d.l.R.)
| | - Catalina Hernández-Sánchez
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas-Margarita Salas (CSIC), 28040 Madrid, Spain; (A.S.-C.); (E.J.d.l.R.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM-ISCIII), 28034 Madrid, Spain
| |
Collapse
|
30
|
Sun H, Zhao H, Yan Z, Liu X, Yin P, Zhang J. Protective role and molecular mechanism of action of Nesfatin-1 against high glucose-induced inflammation, oxidative stress and apoptosis in retinal epithelial cells. Exp Ther Med 2021; 22:833. [PMID: 34149879 PMCID: PMC8200809 DOI: 10.3892/etm.2021.10265] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetic retinopathy (DR) is a major complication of diabetes mellitus that may cause severe visual impairment. It has been reported that the levels of nesfatin-1 in the serum and vitreous humor were negatively correlated with DR; however, its role in DR has not been fully elucidated. Therefore, the present study was performed to investigate the effect of nesfatin-1 on high glucose-treated human retinal epithelial cells (ARPE-19) and explore the underlying mechanism. The effects of nesfatin-1 on cell viability, inflammation, oxidative stress and apoptosis were examined under high glucose conditions. The Cell Counting Kit-8 assay was used to determine cell viability. The levels of inflammatory cytokines were evaluated using ELISA kits. The reactive oxygen species and malondialdehyde content was estimated using commercial assay kits. Flow cytometry was performed to detect apoptotic cells and western blot analysis was employed to evaluate the expression of apoptosis-associated proteins. Moreover, the levels of NF-κB, NACHT, LRR and PYD domains-containing protein 3 (NLRP3) and high-mobility group protein B1 (HMGB1) were determined via western blot analysis. The results revealed that nesfatin-1 enhanced cell viability and suppressed inflammation, oxidative stress and apoptosis in the presence of high glucose concentration. Moreover, the activation of the NF-κB/NLRP3 inflammasome signaling and the expression of HMGB1 were inhibited by nesfatin-1. Furthermore, HMGB1 overexpression partially abrogated the inactivation of the NF-κB/NLRP3 inflammasome pathway caused by nesfatin-1. Taken together, these findings demonstrated that nesfatin-1 inhibited the activation of the NF-κB/NLRP3 inflammasome signaling via modulating HMGB1 and exerted a protective effect on ARPE-19 cells against high glucose-induced inflammation, oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Haiyan Sun
- Ophthalmology Department, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Huahui Zhao
- Ophthalmology Department, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Zhipeng Yan
- Ophthalmology Department, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Xiaokun Liu
- Ophthalmology Department, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Pengfei Yin
- Ophthalmology Department, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Jun Zhang
- Ophthalmology Department, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
31
|
Michetti F, Di Sante G, Clementi ME, Sampaolese B, Casalbore P, Volonté C, Romano Spica V, Parnigotto PP, Di Liddo R, Amadio S, Ria F. Growing role of S100B protein as a putative therapeutic target for neurological- and nonneurological-disorders. Neurosci Biobehav Rev 2021; 127:446-458. [PMID: 33971224 DOI: 10.1016/j.neubiorev.2021.04.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
S100B is a calcium-binding protein mainly expressed by astrocytes, but also localized in other definite neural and extra-neural cell types. While its presence in biological fluids is widely recognized as a reliable biomarker of active injury, growing evidence now indicates that high levels of S100B are suggestive of pathogenic processes in different neural, but also extra-neural, disorders. Indeed, modulation of S100B levels correlates with the occurrence of clinical and/or toxic parameters in experimental models of diseases such as Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, muscular dystrophy, multiple sclerosis, acute neural injury, inflammatory bowel disease, uveal and retinal disorders, obesity, diabetes and cancer, thus directly linking the levels of S100B to pathogenic mechanisms. In general, deletion/inactivation of the protein causes the improvement of the disease, whereas its over-expression/administration induces a worse clinical presentation. This scenario reasonably proposes S100B as a common therapeutic target for several different disorders, also offering new clues to individuate possible unexpected connections among these diseases.
Collapse
Affiliation(s)
- Fabrizio Michetti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; IRCCS San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
| | - Gabriele Di Sante
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1-8, 00168 Rome, Italy.
| | - Maria Elisabetta Clementi
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" SCITEC-CNR, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Beatrice Sampaolese
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" SCITEC-CNR, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Patrizia Casalbore
- Institute for Systems Analysis and Computer Science, IASI-CNR, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Cinzia Volonté
- Institute for Systems Analysis and Computer Science, IASI-CNR, Largo Francesco Vito 1, 00168 Rome, Italy; Cellular Neurobiology Unit, Preclinical Neuroscience, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 65, 00143 Rome, Italy.
| | - Vincenzo Romano Spica
- Department of Movement, Human and Health Sciences, Laboratory of Epidemiology and Biotechnologies, University of Rome "Foro Italico", Piazza Lauro De Bosis 6, 00135, Rome, Italy.
| | - Pier Paolo Parnigotto
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling (T.E.S.) Onlus, Padua, Italy.
| | - Rosa Di Liddo
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling (T.E.S.) Onlus, Padua, Italy; Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy.
| | - Susanna Amadio
- Cellular Neurobiology Unit, Preclinical Neuroscience, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 65, 00143 Rome, Italy.
| | - Francesco Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1-8, 00168 Rome, Italy.
| |
Collapse
|
32
|
Li L, Lu YQ. The Regulatory Role of High-Mobility Group Protein 1 in Sepsis-Related Immunity. Front Immunol 2021; 11:601815. [PMID: 33552058 PMCID: PMC7862754 DOI: 10.3389/fimmu.2020.601815] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
High-mobility group box 1 (HMGB1), a prototypical damage-associated molecular pattern (DAMP) molecule, participates in multiple processes of various inflammatory diseases through binding to its corresponding receptors. In the early phase, sepsis is mainly characterized as a multi-bacterial-induced complex, excessive inflammatory response accompanied by the release of pro-inflammatory mediators, which subsequently develops into immune paralysis. A growing number of in vivo and in vitro investigations reveal that HMGB1 plays a pivotal role in the processes of inflammatory response and immunosuppression of sepsis. Therefore, HMGB1 exerts an indispensable role in the immune disorder and life-threatening inflammatory syndrome of sepsis. HMGB1 mainly mediate the release of inflammatory factors via acting on immune cells, pyroptosis pathways and phosphorylating nuclear factor-κB. Moreover HMGB1 is also associated with the process of sepsis-related immunosuppression. Neutrophil dysfunction mediated by HMGB1 is also an aspect of the immunosuppressive mechanism of sepsis. Myeloid-derived suppressor cells (MDSCs), which are also one of the important cells that play an immunosuppressive effect in sepsis, may connect with HMGB1. Thence, further understanding of HMGB1-associated pathogenesis of sepsis may assist in development of promising treatment strategies. This review mainly discusses current perspectives on the roles of HMGB1 in sepsis-related inflammation and immunosuppressive process and its related internal regulatory mechanisms.
Collapse
Affiliation(s)
- Li Li
- Department of Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Department of Geriatrics, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, Hangzhou, China
| | - Yuan-Qiang Lu
- Department of Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Department of Geriatrics, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, Hangzhou, China
| |
Collapse
|
33
|
The innate immune system in diabetic retinopathy. Prog Retin Eye Res 2021; 84:100940. [PMID: 33429059 DOI: 10.1016/j.preteyeres.2021.100940] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/24/2020] [Accepted: 01/03/2021] [Indexed: 12/20/2022]
Abstract
The prevalence of diabetes has been rising steadily in the past half-century, along with the burden of its associated complications, including diabetic retinopathy (DR). DR is currently the most common cause of vision loss in working-age adults in the United States. Historically, DR has been diagnosed and classified clinically based on what is visible by fundoscopy; that is vasculature alterations. However, recent technological advances have confirmed pathology of the neuroretina prior to any detectable vascular changes. These, coupled with molecular studies, and the positive impact of anti-inflammatory therapeutics in DR patients have highlighted the central involvement of the innate immune system. Reminiscent of the systemic impact of diabetes, immune dysregulation has become increasingly identified as a key element of the pathophysiology of DR by interfering with normal homeostatic systems. This review uses the growing body of literature across various model systems to demonstrate the clear involvement of all three pillars of the immune system: immune-competent cells, mediators, and the complement system. It also demonstrates how the relative contribution of each of these requires more extensive analysis, including in human tissues over the continuum of disease progression. Finally, although this review demonstrates how the complex interactions of the immune system pose many more questions than answers, the intimately connected nature of the three pillars of the immune system may also point to possible new targets to reverse or even halt reverse retinopathy.
Collapse
|
34
|
MiR-129-5p shuttled by human synovial mesenchymal stem cell-derived exosomes relieves IL-1β induced osteoarthritis via targeting HMGB1. Life Sci 2021; 269:118987. [PMID: 33417958 DOI: 10.1016/j.lfs.2020.118987] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022]
Abstract
AIMS To explore the therapeutic effect of miR-129-5p carried by exosomes from Human Synovial Mesenchymal Stem Cell (HS-MSC) on osteoarthritis(OA). MATERIALS AND METHODS The levels of miR-129-5p and high mobility group protein -1 (HMGB1) and interleukin-1β (IL-1β) in the joint fluid of OA patients were respectively detected via real-time quantitative reverse transcription-PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). IL-1β was taken to act on chondrocytes for the establishment of OA model in vitro. Ultracentrifugation was conducted to isolate HS-MSC exosomes (HS-MSC-Exo) from the supernatant. Western blot and ELISA were carried out to measure the expression of iNOS, COX2, MMP13, Collagen 2, TLR4, NF-κB, Caspase3, Bcl-2, HMGB1 in chondrocytes. Flow cytometry was conducted to detect the apoptosis of chondrocytes. Besides, bioinformatics was employed to predict the targeted relationship between miR-129-5p and HMGB1, which was further verified via dual luciferase activity experiments. KEY FINDINGS The results illustrated that miR-129-5p was decreased in OA patients and IL-1β-induced chondrocytes, while HMGB1 was notably upregulated. HS-MSC-Exo rich in miR-129-5p remarkably declined the inflammatory response and apoptosis of chondrocytes, while HS-MSC-Exo deficient in miR-129-5p increased the IL-1β-mediated inflammatory response and apoptosis of chondrocytes. In terms of mechanism, miR-129-5p targets the 3'UTR end of HMGB1 and inhibits IL-1β-mediated upregulation of HMGB1. SIGNIFICANCE In a word, this paper proved that miR-129-5p, existing in HS-MSC-Exo, can suppress the IL-1β-mediated OA by inhibiting HMGB1 release.
Collapse
|
35
|
Liu F, Han F, Liu X, Yang L, Jiang C, Cui C, Yuan F, Zhang X, Gong L, Hou X, Liu Y, Chen L. Cross-Sectional Analysis of the Involvement of Interleukin-17A in Diabetic Retinopathy in Elderly Individuals with Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2021; 14:4199-4207. [PMID: 34675572 PMCID: PMC8517528 DOI: 10.2147/dmso.s302199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND To investigate the correlation between serum interleukin-17A (IL-17A) levels and diabetic retinopathy (DR) in elderly individuals with type 2 diabetes mellitus (T2DM). METHODS The study included 194 elderly patients (94 males and 100 females) with T2DM. Digital retinal photography as well as fundus fluorescein angiography was employed to distinguish between nonproliferative diabetic retinopathy (NPDR) and proliferative diabetic retinopathy (PDR). In addition, multiple logistic regression analysis was conducted to determine the correlation between serum IL-17A levels and DR status. RESULTS The average age of the study cohort was 69.14 ± 6.33 years, of which 52.08% were male. The study participants with the highest IL-17A (Q4) levels had higher TC, DBP, and low-density lipoprotein cholesterol (LDL-C) values than those the other groups. Analysis using unadjusted and adjusted linear regression revealed that the effect size of 1.09 for DR in the unadjusted model indicates that IL-17A is associated with an increase of 1.09 in DR (mmol/L) (β 1.09, 95% confidence interval (CI) 1.03, 1.16). Using the minimum-adjusted model (the model 2), as IL-17A increased, DR was higher by 1.11 (β 1.11, 95% CI 1.04, 1.18). With the fully adjusted model (the model 3), for each additional IL-17A increase, DR was higher by 1.15 (β 1.15, 95% CI 1.06, 1.24). CONCLUSION Serum IL-17A levels are apparently positively correlated to DR in Chinese elderly individuals with T2DM.
Collapse
Affiliation(s)
- Fuqiang Liu
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, 250012, People’s Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, People’s Republic of China
| | - Feng Han
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, People’s Republic of China
- Department of Endocrinology, Zhangqiu District People’s Hospital, Jinan, 250200, People’s Republic of China
| | - Xiaoli Liu
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, People’s Republic of China
- Department of Endocrinology, Zhangqiu District People’s Hospital, Jinan, 250200, People’s Republic of China
| | - Lina Yang
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, People’s Republic of China
- Department of Endocrinology, Zhangqiu District People’s Hospital, Jinan, 250200, People’s Republic of China
| | - Caixia Jiang
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, People’s Republic of China
- Department of Endocrinology, Zhangqiu District People’s Hospital, Jinan, 250200, People’s Republic of China
| | - Chen Cui
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, 250012, People’s Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, People’s Republic of China
| | - Fang Yuan
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, 250012, People’s Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, People’s Republic of China
| | - Xin Zhang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, 250012, People’s Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, People’s Republic of China
| | - Lei Gong
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, 250012, People’s Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, People’s Republic of China
| | - Xinguo Hou
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, 250012, People’s Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, People’s Republic of China
| | - Yuan Liu
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, 250012, People’s Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, People’s Republic of China
- Correspondence: Yuan Liu; Li Chen Email ;
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, 250012, People’s Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, People’s Republic of China
| |
Collapse
|
36
|
Ai X, Yu P, Hou Y, Song X, Luo J, Li N, Lai X, Wang X, Meng X. A review of traditional Chinese medicine on treatment of diabetic retinopathy and involved mechanisms. Biomed Pharmacother 2020; 132:110852. [DOI: 10.1016/j.biopha.2020.110852] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
|
37
|
Hou Y, Lan J, Zhang F, Wu X. Expression profiles and potential corneal epithelial wound healing regulation targets of high-mobility group box 1 in diabetic mice. Exp Eye Res 2020; 202:108364. [PMID: 33227295 DOI: 10.1016/j.exer.2020.108364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/21/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022]
Abstract
As a damage-associated molecular pattern molecule, high-mobility group box 1 protein (HMGB1) is involved in diabetes and its complications. However, the role of HMGB1 in diabetic keratopathy is not yet understood. The purpose of this study was to investigate the potential roles of HMGB1 in the development of diabetic keratopathy as well as potential strategies to block HMGB1 in order to prompt epithelial wound healing and nerve regeneration in diabetic corneas. The results demonstrated that diabetic keratopathy developed in mice over the duration of the diabetic condition with typical symptoms, including damaged ocular surfaces and corneal nerves. The diabetic corneas had significantly increased protein expression levels of HMGB1 and its receptors-the receptor for advanced glycation end products (RAGE) and toll-like receptor 4 (TLR4)-compared to the age-matched normal corneas (P < 0.05). Corneal HMGB1 levels significantly increased during the corneal wound healing process of the diabetic mice, peaking on the first day after the wound was created and then decreasing to the unwounded level on the seventh day. Exogenous HMGB1 peptide significantly retarded wound and nerve healing, while glycyrrhizin (an HMGB1 inhibitor) significantly prompted wound and nerve healing. Further, the western blot results confirmed that RAGE and TLR4 were also involved in corneal wound and nerve healing. In conclusion, these data showed that HMGB1 and its related receptors are highly involved in the development of diabetic keratopathy. This finding indicates that the blockage of HMGB1 might serve as a strategy to prompt diabetic corneal and nerve wound healing.
Collapse
Affiliation(s)
- Yuzhen Hou
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Jie Lan
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Fan Zhang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xianggen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China; Key Laboratory of Pharmaceutical Research for Metabolic Diseases, Qingdao University of Science and Technology, Qingdao, China.
| |
Collapse
|