1
|
Tessier J, Grygoryev D, Chow-Castro M, Ekstrom T, Manalo E, Lee SW, Berry M, Link JM, Keith D, Allen-Petersen BL, Sheppard B, Morgan T, Sears RC, Kim J. Protocol to purify and culture human pancreatic cancer cells from patient-derived xenografts. STAR Protoc 2025; 6:103672. [PMID: 40048424 PMCID: PMC11928851 DOI: 10.1016/j.xpro.2025.103672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/21/2024] [Accepted: 02/13/2025] [Indexed: 03/25/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) exhibits extensive inter- and intratumoral heterogeneity, along with a significant stromal component. This protocol outlines steps to generate patient-derived xenografts (PDXs), isolate and enrich human PDAC epithelial cells, and verify their identity using droplet digital PCR (ddPCR) and human-specific markers. It provides a robust approach for culturing cancer epithelial cells to develop a human PDAC model system. For complete details on the use and execution of this protocol, please refer to Grygoryev et al.1.
Collapse
Affiliation(s)
- Julien Tessier
- Cancer Early Detection Advanced Research Center at Knight Cancer Institute, Oregon Health & Science University (OHSU) School of Medicine, Portland, OR 97201, USA
| | - Dmytro Grygoryev
- Cancer Early Detection Advanced Research Center at Knight Cancer Institute, Oregon Health & Science University (OHSU) School of Medicine, Portland, OR 97201, USA; Department of Molecular and Medical Genetics, OHSU School of Medicine, Portland, OR 97201, USA
| | - Marilynn Chow-Castro
- Cancer Early Detection Advanced Research Center at Knight Cancer Institute, Oregon Health & Science University (OHSU) School of Medicine, Portland, OR 97201, USA
| | - Taelor Ekstrom
- Cancer Early Detection Advanced Research Center at Knight Cancer Institute, Oregon Health & Science University (OHSU) School of Medicine, Portland, OR 97201, USA
| | - Elise Manalo
- Cancer Early Detection Advanced Research Center at Knight Cancer Institute, Oregon Health & Science University (OHSU) School of Medicine, Portland, OR 97201, USA
| | - Seung-Won Lee
- Cancer Early Detection Advanced Research Center at Knight Cancer Institute, Oregon Health & Science University (OHSU) School of Medicine, Portland, OR 97201, USA; Department of Molecular and Medical Genetics, OHSU School of Medicine, Portland, OR 97201, USA
| | - Mark Berry
- Cancer Early Detection Advanced Research Center at Knight Cancer Institute, Oregon Health & Science University (OHSU) School of Medicine, Portland, OR 97201, USA
| | - Jason M Link
- Department of Molecular and Medical Genetics, OHSU School of Medicine, Portland, OR 97201, USA; Brenden-Colson Center for Pancreatic Care, OHSU School of Medicine, Portland, OR 97201, USA
| | - Dove Keith
- Brenden-Colson Center for Pancreatic Care, OHSU School of Medicine, Portland, OR 97201, USA
| | - Brittany L Allen-Petersen
- Department of Molecular and Medical Genetics, OHSU School of Medicine, Portland, OR 97201, USA; Brenden-Colson Center for Pancreatic Care, OHSU School of Medicine, Portland, OR 97201, USA
| | - Brett Sheppard
- Brenden-Colson Center for Pancreatic Care, OHSU School of Medicine, Portland, OR 97201, USA; Department of Surgery, OHSU School of Medicine, Portland, OR 97201, USA
| | - Terry Morgan
- Cancer Early Detection Advanced Research Center at Knight Cancer Institute, Oregon Health & Science University (OHSU) School of Medicine, Portland, OR 97201, USA; Department of Pathology, OHSU School of Medicine, Portland, OR, USA; Cancer Biology Research Program, Knight Cancer Institute, OHSU School of Medicine, Portland, OR 97201, USA
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics, OHSU School of Medicine, Portland, OR 97201, USA; Brenden-Colson Center for Pancreatic Care, OHSU School of Medicine, Portland, OR 97201, USA; Cancer Biology Research Program, Knight Cancer Institute, OHSU School of Medicine, Portland, OR 97201, USA
| | - Jungsun Kim
- Cancer Early Detection Advanced Research Center at Knight Cancer Institute, Oregon Health & Science University (OHSU) School of Medicine, Portland, OR 97201, USA; Department of Molecular and Medical Genetics, OHSU School of Medicine, Portland, OR 97201, USA; Cancer Biology Research Program, Knight Cancer Institute, OHSU School of Medicine, Portland, OR 97201, USA.
| |
Collapse
|
2
|
Weddle CJ, Blancard M, Uche N, Pongpamorn P, Cejas RB, Burridge PW. Examining patient-specific responses to PARP inhibitors in a novel, human induced pluripotent stem cell-based model of breast cancer. NPJ Precis Oncol 2025; 9:53. [PMID: 40000798 PMCID: PMC11862011 DOI: 10.1038/s41698-025-00837-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Preclinical models of breast cancer that better predict patient-specific drug responses are critical for expanding the clinical utility of targeted therapies, including for inhibitors of poly(ADP-ribose) polymerase (PARP). Reprogramming primary cancer cells into human induced pluripotent stem cells (hiPSCs) recently emerged as a powerful tool to model drug response phenotypes, but its use to date has been limited to hematopoietic malignancies. We designed an optimized reprogramming methodology to generate breast cancer-derived hiPSCs (BC-hiPSCs) from nine patients representing all major subtypes of breast cancer. BC-hiPSCs retain patient-specific oncogenic variants, including variants unique to individual tumor subclones. Additionally, we developed a protocol to differentiate BC-hiPSCs into mammary epithelial cells and mammary-like organoids for in vitro disease modeling, including drug response phenotyping. Using these tools, we demonstrated that BC-hiPSCs can be used to screen for differential sensitivity to PARP inhibitors and mechanistically investigated the causal genetic variant driving drug sensitivity in one patient.
Collapse
Affiliation(s)
- Carly J Weddle
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Malorie Blancard
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nnamdi Uche
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Praeploy Pongpamorn
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Romina B Cejas
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
3
|
Kim J, Lopes M, Pereira CF. Reprogramming Stars #20: Attenuating Cancer Cell Memory and Discovering Cancer Biomarkers with Cellular Reprogramming-An Interview with Dr. Jungsun Kim. Cell Reprogram 2025; 27:1-6. [PMID: 39876715 DOI: 10.1089/cell.2025.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Affiliation(s)
- Jungsun Kim
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Mariana Lopes
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carlos-Filipe Pereira
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
4
|
O'Dwyer MR, Azagury M, Furlong K, Alsheikh A, Hall-Ponsele E, Pinto H, Fyodorov DV, Jaber M, Papachristoforou E, Benchetrit H, Ashmore J, Makedonski K, Rahamim M, Hanzevacki M, Yassen H, Skoda S, Levy A, Pollard SM, Skoultchi AI, Buganim Y, Soufi A. Nucleosome fibre topology guides transcription factor binding to enhancers. Nature 2025; 638:251-260. [PMID: 39695228 PMCID: PMC11798873 DOI: 10.1038/s41586-024-08333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/01/2024] [Indexed: 12/20/2024]
Abstract
Cellular identity requires the concerted action of multiple transcription factors (TFs) bound together to enhancers of cell-type-specific genes. Despite TFs recognizing specific DNA motifs within accessible chromatin, this information is insufficient to explain how TFs select enhancers1. Here we compared four different TF combinations that induce different cell states, analysing TF genome occupancy, chromatin accessibility, nucleosome positioning and 3D genome organization at the nucleosome resolution. We show that motif recognition on mononucleosomes can decipher only the individual binding of TFs. When bound together, TFs act cooperatively or competitively to target nucleosome arrays with defined 3D organization, displaying motifs in particular patterns. In one combination, motif directionality funnels TF combinatorial binding along chromatin loops, before infiltrating laterally to adjacent enhancers. In other combinations, TFs assemble on motif-dense and highly interconnected loop junctions, and subsequently translocate to nearby lineage-specific sites. We propose a guided-search model in which motif grammar on nucleosome fibres acts as signpost elements, directing TF combinatorial binding to enhancers.
Collapse
Affiliation(s)
- Michael R O'Dwyer
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Meir Azagury
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Katharine Furlong
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh, UK
| | - Amani Alsheikh
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Health Sector, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Elisa Hall-Ponsele
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Hugo Pinto
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Dmitry V Fyodorov
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Mohammad Jaber
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Eleni Papachristoforou
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Hana Benchetrit
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - James Ashmore
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Kirill Makedonski
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Moran Rahamim
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Marta Hanzevacki
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Hazar Yassen
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Samuel Skoda
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Adi Levy
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Steven M Pollard
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh, UK
| | - Arthur I Skoultchi
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| | - Abdenour Soufi
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK.
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
- Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
5
|
Aksoy SA, Earl J, Grahovac J, Karakas D, Lencioni G, Sığırlı S, Bijlsma MF. Organoids, tissue slices and organotypic cultures: Advancing our understanding of pancreatic ductal adenocarcinoma through in vitro and ex vivo models. Semin Cancer Biol 2025; 109:10-24. [PMID: 39730107 DOI: 10.1016/j.semcancer.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/14/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the worst prognoses of all common solid cancers. For the large majority of PDAC patients, only systemic therapies with very limited efficacy are indicated. In addition, immunotherapies have not brought the advances seen in other cancer types. Several key characteristics of PDAC contribute to poor treatment outcomes, and in this review, we will discuss how these characteristics are best captured in currently available ex vivo or in vitro model systems. For instance, PDAC is hallmarked by a highly desmoplastic and immune-suppressed tumor microenvironment that impacts disease progression and therapy resistance. Also, large differences in tumor biology exist between and within tumors, complicating treatment decisions. Furthermore, PDAC has a very high propensity for locally invasive and metastatic growth. The use of animal models is often not desirable or feasible and several in vitro and ex vivo model systems have been developed, such as organotypic cocultures and tissue slices, among others. However, the absence of a full host organism impacts the ability of these models to accurately capture the characteristics that contribute to poor outcomes in PDAC. We will discuss the caveats and advantages of these model systems in the context of PDAC's key characteristics and provide recommendations on model choice and the possibilities for optimization. These considerations should be of use to researchers aiming to study PDAC in the in vitro setting.
Collapse
Affiliation(s)
- Secil Ak Aksoy
- Bursa Uludag University, Faculty of Medicine, Department of Medical Microbiology, Bursa, Turkey
| | - Julie Earl
- Ramón y Cajal Health Research Institute (IRYCIS), Biomodels and Biomodels Platform Hospital Ramón y Cajal-IRYCIS, Carretera Colmenar Km 9,100, Madrid 28034, Spain; The Biomedical Research Network in Cancer (CIBERONC), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid 28029, Spain
| | - Jelena Grahovac
- Experimental Oncology Department, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Didem Karakas
- Acibadem Mehmet Ali Aydinlar University, Department of Medical Biotechnology, Graduate School of Health Sciences, Istanbul, Turkey
| | - Giulia Lencioni
- Department of Biology, University of Pisa, Pisa, Italy; Fondazione Pisana per la Scienza, San Giuliano Terme, Pisa, Italy
| | - Sıla Sığırlı
- Acibadem Mehmet Ali Aydinlar University, Department of Medical Biotechnology, Graduate School of Health Sciences, Istanbul, Turkey
| | - Maarten F Bijlsma
- Amsterdam UMC Location University of Amsterdam, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Acimovic I, Gabrielová V, Martínková S, Eid M, Vlažný J, Moravčík P, Hlavsa J, Moráň L, Cakmakci RC, Staňo P, Procházka V, Kala Z, Trnka J, Vaňhara P. Ex-Vivo 3D Cellular Models of Pancreatic Ductal Adenocarcinoma: From Embryonic Development to Precision Oncology. Pancreas 2025; 54:e57-e71. [PMID: 39074056 DOI: 10.1097/mpa.0000000000002393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
ABSTRACT Pancreas is a vital gland of gastrointestinal system with exocrine and endocrine secretory functions, interweaved into essential metabolic circuitries of the human body. Pancreatic ductal adenocarcinoma (PDAC) represents one of the most lethal malignancies, with a 5-year survival rate of 11%. This poor prognosis is primarily attributed to the absence of early symptoms, rapid metastatic dissemination, and the limited efficacy of current therapeutic interventions. Despite recent advancements in understanding the etiopathogenesis and treatment of PDAC, there remains a pressing need for improved individualized models, identification of novel molecular targets, and development of unbiased predictors of disease progression. Here we aim to explore the concept of precision medicine utilizing 3-dimensional, patient-specific cellular models of pancreatic tumors and discuss their potential applications in uncovering novel druggable molecular targets and predicting clinical parameters for individual patients.
Collapse
Affiliation(s)
- Ivana Acimovic
- From the Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno
| | - Viktorie Gabrielová
- From the Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno
| | - Stanislava Martínková
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague
| | - Michal Eid
- Departments of Internal Medicine, Hematology and Oncology
| | | | - Petr Moravčík
- Surgery Clinic, University Hospital Brno, Faculty of Medicine, Masaryk University
| | - Jan Hlavsa
- Surgery Clinic, University Hospital Brno, Faculty of Medicine, Masaryk University
| | | | - Riza Can Cakmakci
- From the Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno
| | - Peter Staňo
- Departments of Internal Medicine, Hematology and Oncology
| | - Vladimír Procházka
- Surgery Clinic, University Hospital Brno, Faculty of Medicine, Masaryk University
| | - Zdeněk Kala
- Surgery Clinic, University Hospital Brno, Faculty of Medicine, Masaryk University
| | - Jan Trnka
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague
| | | |
Collapse
|
7
|
Pedrosa P, Zhang Z, Nuñez-Quintela V, Macias D, Ge J, Denholm M, Dyas A, Estevez-Souto V, Lado-Fernandez P, Gonzalez P, Gomez M, Martin JE, Da Silva-Alvarez S, Collado M, Muñoz-Espín D. Inhibition of lung tumorigenesis by transient reprogramming in cancer cells. Cell Death Dis 2024; 15:857. [PMID: 39587064 PMCID: PMC11589828 DOI: 10.1038/s41419-024-07207-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024]
Abstract
Oncogenic transformation and Oct4, Sox2, Klf4 and c-Myc (OSKM)-mediated induction of pluripotency are two independent and incompatible cellular fates. While continuous expression of OSKM can convert normal somatic cells into teratogenic pluripotent cells, it remains speculative what is the impact of transient OSKM expression in cancer cells. Here, we find that OSKM expression limits the growth of transformed lung cells by inducing apoptosis and senescence. We identify Oct4 and Klf4 as the main individual reprogramming factors responsible for this effect. Mechanistically, the induction of cell cycle inhibitor p21 downstream of the reprogramming factors acts as mediator of cell death and senescence. Using a variety of in vivo systems, including allografts, orthotopic transplantation and KRAS-driven lung cancer mouse models, we demonstrate that transient reprogramming by OSKM expression in cancer cells impairs tumor growth and reduces tumor burden. Altogether, our results show that the induction of transient reprogramming in cancer cells is antitumorigenic opening novel potential therapeutic avenues in oncology.
Collapse
Affiliation(s)
- Pablo Pedrosa
- Cell Senescence, Cancer and Aging Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Zhenguang Zhang
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Victor Nuñez-Quintela
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - David Macias
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Jianfeng Ge
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Mary Denholm
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Anna Dyas
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Valentin Estevez-Souto
- Cell Senescence, Cancer and Aging Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Patricia Lado-Fernandez
- Cell Senescence, Cancer and Aging Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Department of Physiology and Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Patricia Gonzalez
- Histopathology Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Maria Gomez
- Histopathology Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Jose Ezequiel Martin
- CMDL, Department of Oncology, SMCL, Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Sabela Da Silva-Alvarez
- Cell Senescence, Cancer and Aging Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Manuel Collado
- Cell Senescence, Cancer and Aging Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
- Department of Immunology and Oncology (DIO), Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| | - Daniel Muñoz-Espín
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK.
- CRUK Cambridge Centre Thoracic Cancer Programme, University of Cambridge, Cambridge, UK.
| |
Collapse
|
8
|
Xin M, Li Q, Wang D, Wang Z. Organoids for Cancer Research: Advances and Challenges. Adv Biol (Weinh) 2024; 8:e2400056. [PMID: 38977414 DOI: 10.1002/adbi.202400056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/04/2024] [Indexed: 07/10/2024]
Abstract
As 3D culture technology advances, new avenues have opened for the development of physiological human cancer models. These preclinical models provide efficient ways to translate basic cancer research into clinical tumor therapies. Recently, cancer organoids have emerged as a model to dissect the more complex tumor microenvironment. Incorporating cancer organoids into preclinical programs have the potential to increase the success rate of oncology drug development and recapitulate the most efficacious treatment regimens for cancer patients. In this review, four main types of cancer organoids are introduced, their applications, advantages, limitations, and prospects are discussed, as well as the recent application of single-cell RNA-sequencing (scRNA-seq) in exploring cancer organoids to advance this field.
Collapse
Affiliation(s)
- Miaomaio Xin
- Assisted Reproductive Center, Women's & Children's Hospital of Northwest, Xi'an, Shanxi Province, 710000, China
- University of South Bohemia in Ceske Budejovice, Vodnany, 38925, Czech Republic
| | - Qian Li
- Changsha Medical University, Changsha, Hunan Province, 410000, China
| | - Dongyang Wang
- Assisted Reproductive Center, Women's & Children's Hospital of Northwest, Xi'an, Shanxi Province, 710000, China
| | - Zheng Wang
- Medical Center of Hematology, the Second Affiliated Hospital, Army Medical University, Chongqing, Sichuan Province, 404100, China
| |
Collapse
|
9
|
Lee Y, Lee K. Pancreatic Diseases: Genetics and Modeling Using Human Pluripotent Stem Cells. Int J Stem Cells 2024; 17:253-269. [PMID: 38664226 PMCID: PMC11361847 DOI: 10.15283/ijsc24036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 08/31/2024] Open
Abstract
Pancreas serves endocrine and exocrine functions in the body; thus, their pathology can cause a broad range of irreparable consequences. Endocrine functions include the production of hormones such as insulin and glucagon, while exocrine functions involve the secretion of digestive enzymes. Disruption of these functions can lead to conditions like diabetes mellitus and exocrine pancreatic insufficiency. Also, the symptoms and causality of pancreatic cancer very greatly depends on their origin: pancreatic ductal adenocarcinoma is one of the most fatal cancer; however, most of tumor derived from endocrine part of pancreas are benign. Pancreatitis, an inflammation of the pancreatic tissues, is caused by excessive alcohol consumption, the bile duct obstruction by gallstones, and the premature activation of digestive enzymes in the pancreas. Hereditary pancreatic diseases, such as maturity-onset diabetes of the young and hereditary pancreatitis, can be a candidate for disease modeling using human pluripotent stem cells (hPSCs), due to their strong genetic influence. hPSC-derived pancreatic differentiation has been established for cell replacement therapy for diabetic patients and is robustly used for disease modeling. The disease modeling platform that allows interactions between immune cells and pancreatic cells is necessary to perform in-depth investigation of disease pathogenesis.
Collapse
Affiliation(s)
- Yuri Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Kihyun Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| |
Collapse
|
10
|
Hatziapostolou M, Koutsioumpa M, Zaitoun AM, Polytarchou C, Edderkaoui M, Mahurkar-Joshi S, Vadakekolathu J, D'Andrea D, Lay AR, Christodoulou N, Pham T, Yau TO, Vorvis C, Chatterji S, Pandol SJ, Poultsides GA, Dawson DW, Lobo DN, Iliopoulos D. Promoter Methylation Leads to Hepatocyte Nuclear Factor 4A Loss and Pancreatic Cancer Aggressiveness. GASTRO HEP ADVANCES 2024; 3:687-702. [PMID: 39165427 PMCID: PMC11330932 DOI: 10.1016/j.gastha.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/15/2024] [Indexed: 08/22/2024]
Abstract
Background and Aims Decoding pancreatic ductal adenocarcinoma heterogeneity and the consequent therapeutic selection remains a challenge. We aimed to characterize epigenetically regulated pathways involved in pancreatic ductal adenocarcinoma progression. Methods Global DNA methylation analysis in pancreatic cancer patient tissues and cell lines was performed to identify differentially methylated genes. Targeted bisulfite sequencing and in vitro methylation reporter assays were employed to investigate the direct link between site-specific methylation and transcriptional regulation. A series of in vitro loss-of-function and gain-of function studies and in vivo xenograft and the KPC (LSL-Kras G12D/+ ; LSL-Trp53 R172H/+ ; Pdx1-Cre) mouse models were used to assess pancreatic cancer cell properties. Gene and protein expression analyses were performed in 3 different cohorts of pancreatic cancer patients and correlated to clinicopathological parameters. Results We identify Hepatocyte Nuclear Factor 4A (HNF4A) as a novel target of hypermethylation in pancreatic cancer and demonstrate that site-specific proximal promoter methylation drives HNF4A transcriptional repression. Expression analyses in patients indicate the methylation-associated suppression of HNF4A expression in pancreatic cancer tissues. In vitro and in vivo studies reveal that HNF4A is a novel tumor suppressor in pancreatic cancer, regulating cancer growth and aggressiveness. As evidenced in both the KPC mouse model and human pancreatic cancer tissues, HNF4A expression declines significantly in the early stages of the disease. Most importantly, HNF4 loss correlates with poor overall patient survival. Conclusion HNF4A silencing, mediated by promoter DNA methylation, drives pancreatic cancer development and aggressiveness leading to poor patient survival.
Collapse
Affiliation(s)
- Maria Hatziapostolou
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Marina Koutsioumpa
- Vatche and Tamar Manoukian Division of Digestive Diseases, Center for Systems Biomedicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Abed M. Zaitoun
- Department of Cellular Pathology, Nottingham Digestive Diseases Centre and NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals and University of Nottingham, Queen’s Medical Centre, Nottingham, UK
| | - Christos Polytarchou
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Mouad Edderkaoui
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Swapna Mahurkar-Joshi
- Vatche and Tamar Manoukian Division of Digestive Diseases, Center for Systems Biomedicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Jayakumar Vadakekolathu
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Daniel D'Andrea
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Anna Rose Lay
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Niki Christodoulou
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Thuy Pham
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Tung-On Yau
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Christina Vorvis
- Vatche and Tamar Manoukian Division of Digestive Diseases, Center for Systems Biomedicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Suchit Chatterji
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Stephen J. Pandol
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - George A. Poultsides
- Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - David W. Dawson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Dileep N. Lobo
- Nottingham Digestive Diseases Centre and NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals and University of Nottingham, Queen’s Medical Centre, Nottingham, UK
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, UK
| | - Dimitrios Iliopoulos
- Vatche and Tamar Manoukian Division of Digestive Diseases, Center for Systems Biomedicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
11
|
Grygoryev D, Ekstrom T, Manalo E, Link JM, Alshaikh A, Keith D, Allen-Petersen BL, Sheppard B, Morgan T, Soufi A, Sears RC, Kim J. Sendai virus is robust and consistent in delivering genes into human pancreatic cancer cells. Heliyon 2024; 10:e27221. [PMID: 38463758 PMCID: PMC10923719 DOI: 10.1016/j.heliyon.2024.e27221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a highly intratumorally heterogeneous disease that includes several subtypes and is highly plastic. Effective gene delivery to all PDAC cells is essential for modulating gene expression and identifying potential gene-based therapeutic targets in PDAC. Most current gene delivery systems for pancreatic cells are optimized for islet or acinar cells. Lentiviral vectors are the current main gene delivery vectors for PDAC, but their transduction efficiencies vary depending on pancreatic cell type, and are especially poor for the classical subtype of PDAC cells from both primary tumors and cell lines. Methods We systemically compare transduction efficiencies of glycoprotein G of vesicular stomatitis virus (VSV-G)-pseudotyped lentiviral and Sendai viral vectors in human normal pancreatic ductal and PDAC cells. Results We find that the Sendai viral vector gives the most robust gene delivery efficiency regardless of PDAC cell type. Therefore, we propose using Sendai viral vectors to transduce ectopic genes into PDAC cells.
Collapse
Affiliation(s)
- Dmytro Grygoryev
- Cancer Early Detection Advanced Research Center at Knight Cancer Institute, Oregon Health & Science University School of Medicine, USA
| | - Taelor Ekstrom
- Cancer Early Detection Advanced Research Center at Knight Cancer Institute, Oregon Health & Science University School of Medicine, USA
| | - Elise Manalo
- Cancer Early Detection Advanced Research Center at Knight Cancer Institute, Oregon Health & Science University School of Medicine, USA
| | - Jason M. Link
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University School of Medicine, USA
| | - Amani Alshaikh
- The University of Edinburgh, Centre for Regenerative Medicine, Institute of Regeneration and Repair, Institute of Stem Cell Research, Edinburgh, UK
- King Abdulaziz City for Science and Technology, Health Sector (KACST), Riyadh, Saudi Arabia
| | - Dove Keith
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University School of Medicine, USA
| | - Brittany L. Allen-Petersen
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University School of Medicine, USA
| | - Brett Sheppard
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University School of Medicine, USA
- Department of Surgery, Oregon Health & Science University School of Medicine, USA
| | - Terry Morgan
- Cancer Early Detection Advanced Research Center at Knight Cancer Institute, Oregon Health & Science University School of Medicine, USA
- Department of Pathology, Oregon Health & Science University School of Medicine, USA
- Cancer Biology Research Program, Knight Cancer Institute, Oregon Health & Science University School of Medicine, Portland, OR, 97201, USA
| | - Abdenour Soufi
- The University of Edinburgh, Centre for Regenerative Medicine, Institute of Regeneration and Repair, Institute of Stem Cell Research, Edinburgh, UK
| | - Rosalie C. Sears
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University School of Medicine, USA
- Cancer Biology Research Program, Knight Cancer Institute, Oregon Health & Science University School of Medicine, Portland, OR, 97201, USA
| | - Jungsun Kim
- Cancer Early Detection Advanced Research Center at Knight Cancer Institute, Oregon Health & Science University School of Medicine, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, USA
- Cancer Biology Research Program, Knight Cancer Institute, Oregon Health & Science University School of Medicine, Portland, OR, 97201, USA
| |
Collapse
|
12
|
Sok CP, Polireddy K, Kooby DA. Molecular pathology and protein markers for pancreatic cancer: relevance in staging, in adjuvant therapy, in determination of minimal residual disease, and follow-up. Hepatobiliary Surg Nutr 2024; 13:56-70. [PMID: 38322203 PMCID: PMC10839718 DOI: 10.21037/hbsn-22-628] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/10/2023] [Indexed: 02/08/2024]
Abstract
The diagnosis and monitoring of disease through the detection of circulating protein biomarkers is a growing field in the practice of oncology. The search for more effective protein biomarkers to aid in the diagnosis and treatment of patients with pancreatic ductal adenocarcinoma (PDAC) remains a valuable area of study, given the aggressive and often occult nature of this malignancy. Liquid biopsies are attractive, as they offer a minimally invasive and cost-effective approach when compared to traditional biopsy methods and imaging modalities used for diagnosis and surveillance. Carbohydrate antigen (CA) 19-9 is currently the most commonly used serum protein biomarker for the diagnosis and monitoring of patients with PDAC, but due to its sensitivity and specificity, its utility remains limited. In this review, we examine how circulating protein biomarkers are used in the diagnosis, prognostication, and surveillance of PDAC. We also highlight protein biomarkers that are currently under investigation that have the potential to enhance our ability to detect early-stage malignancies, predict response to therapy, and monitor for recurrence, but these markers require larger prospective validation studies before they can be widely implemented. Continued efforts to identify and validate novel biomarkers will be crucial for improving the management and outcomes of patients with this challenging disease.
Collapse
Affiliation(s)
- Caitlin P. Sok
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Karunesh Polireddy
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
13
|
Sarker DB, Xue Y, Mahmud F, Jocelyn JA, Sang QXA. Interconversion of Cancer Cells and Induced Pluripotent Stem Cells. Cells 2024; 13:125. [PMID: 38247819 PMCID: PMC10814385 DOI: 10.3390/cells13020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Cancer cells, especially cancer stem cells (CSCs), share many molecular features with induced pluripotent stem cells (iPSCs) that enable the derivation of induced pluripotent cancer cells by reprogramming malignant cells. Conversely, normal iPSCs can be converted into cancer stem-like cells with the help of tumor microenvironment components and genetic manipulation. These CSC models can be utilized in oncogenic initiation and progression studies, understanding drug resistance, and developing novel therapeutic strategies. This review summarizes the role of pluripotency factors in the stemness, tumorigenicity, and therapeutic resistance of cancer cells. Different methods to obtain iPSC-derived CSC models are described with an emphasis on exposure-based approaches. Culture in cancer cell-conditioned media or cocultures with cancer cells can convert normal iPSCs into cancer stem-like cells, aiding the examination of processes of oncogenesis. We further explored the potential of reprogramming cancer cells into cancer-iPSCs for mechanistic studies and cancer dependencies. The contributions of genetic, epigenetic, and tumor microenvironment factors can be evaluated using these models. Overall, integrating iPSC technology into cancer stem cell research holds significant promise for advancing our knowledge of cancer biology and accelerating the development of innovative and tailored therapeutic interventions.
Collapse
Affiliation(s)
- Drishty B. Sarker
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (D.B.S.); (Y.X.); (F.M.); (J.A.J.)
| | - Yu Xue
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (D.B.S.); (Y.X.); (F.M.); (J.A.J.)
| | - Faiza Mahmud
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (D.B.S.); (Y.X.); (F.M.); (J.A.J.)
| | - Jonathan A. Jocelyn
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (D.B.S.); (Y.X.); (F.M.); (J.A.J.)
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (D.B.S.); (Y.X.); (F.M.); (J.A.J.)
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| |
Collapse
|
14
|
Feng Y, Cai L, Pook M, Liu F, Chang CH, Mouti MA, Nibhani R, Militi S, Dunford J, Philpott M, Fan Y, Fan GC, Liu Q, Qi J, Wang C, Hong W, Morgan H, Wang M, Sadayappan S, Jegga AG, Oppermann U, Wang Y, Huang W, Jiang L, Pauklin S. BRD9-SMAD2/3 Orchestrates Stemness and Tumorigenesis in Pancreatic Ductal Adenocarcinoma. Gastroenterology 2024; 166:139-154. [PMID: 37739089 PMCID: PMC11304550 DOI: 10.1053/j.gastro.2023.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND & AIMS The dismal prognosis of pancreatic ductal adenocarcinoma (PDAC) is linked to the presence of pancreatic cancer stem-like cells (CSCs) that respond poorly to current chemotherapy regimens. The epigenetic mechanisms regulating CSCs are currently insufficiently understood, which hampers the development of novel strategies for eliminating CSCs. METHODS By small molecule compound screening targeting 142 epigenetic enzymes, we identified that bromodomain-containing protein BRD9, a component of the BAF histone remodeling complex, is a key chromatin regulator to orchestrate the stemness of pancreatic CSCs via cooperating with the TGFβ/Activin-SMAD2/3 signaling pathway. RESULTS Inhibition and genetic ablation of BRD9 block the self-renewal, cell cycle entry into G0 phase and invasiveness of CSCs, and improve the sensitivity of CSCs to gemcitabine treatment. In addition, pharmacological inhibition of BRD9 significantly reduced the tumorigenesis in patient-derived xenografts mouse models and eliminated CSCs in tumors from pancreatic cancer patients. Mechanistically, inhibition of BRD9 disrupts enhancer-promoter looping and transcription of stemness genes in CSCs. CONCLUSIONS Collectively, the data suggest BRD9 as a novel therapeutic target for PDAC treatment via modulation of CSC stemness.
Collapse
Affiliation(s)
- Yuliang Feng
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Liuyang Cai
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Guangdong, China
| | - Martin Pook
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Feng Liu
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Chao-Hui Chang
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Mai Abdel Mouti
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Reshma Nibhani
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Stefania Militi
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - James Dunford
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Martin Philpott
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Yanbo Fan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio; Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Guo-Chang Fan
- Departments of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Qi Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Cheng Wang
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Wanzi Hong
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, China
| | - Hannah Morgan
- Heart, Lung and Vascular Institute, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio
| | - Mingyang Wang
- College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio
| | - Sakthivel Sadayappan
- Heart, Lung and Vascular Institute, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio
| | - Anil G Jegga
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Department of Computer Science, University of Cincinnati College of Engineering, Cincinnati, Ohio
| | - Udo Oppermann
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom; Oxford Translational Myeloma Centre, Botnar Research Centre, Oxford, United Kingdom
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Wei Huang
- Heart, Lung and Vascular Institute, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio.
| | - Lei Jiang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, China.
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
15
|
Hasanzadeh A, Ebadati A, Dastanpour L, Aref AR, Sahandi Zangabad P, Kalbasi A, Dai X, Mehta G, Ghasemi A, Fatahi Y, Joshi S, Hamblin MR, Karimi M. Applications of Innovation Technologies for Personalized Cancer Medicine: Stem Cells and Gene-Editing Tools. ACS Pharmacol Transl Sci 2023; 6:1758-1779. [PMID: 38093832 PMCID: PMC10714436 DOI: 10.1021/acsptsci.3c00102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 02/16/2024]
Abstract
Personalized medicine is a new approach toward safer and even cheaper treatments with minimal side effects and toxicity. Planning a therapy based on individual properties causes an effective result in a patient's treatment, especially in a complex disease such as cancer. The benefits of personalized medicine include not only early diagnosis with high accuracy but also a more appropriate and effective therapeutic approach based on the unique clinical, genetic, and epigenetic features and biomarker profiles of a specific patient's disease. In order to achieve personalized cancer therapy, understanding cancer biology plays an important role. One of the crucial applications of personalized medicine that has gained consideration more recently due to its capability in developing disease therapy is related to the field of stem cells. We review various applications of pluripotent, somatic, and cancer stem cells in personalized medicine, including targeted cancer therapy, cancer modeling, diagnostics, and drug screening. CRISPR-Cas gene-editing technology is then discussed as a state-of-the-art biotechnological advance with substantial impacts on medical and therapeutic applications. As part of this section, the role of CRISPR-Cas genome editing in recent cancer studies is reviewed as a further example of personalized medicine application.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Advances
Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14535, Iran
| | - Arefeh Ebadati
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Advances
Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14535, Iran
| | - Lida Dastanpour
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Advances
Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14535, Iran
| | - Amir R. Aref
- Department
of Medical Oncology and Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, Massachusetts 02115, United States
| | - Parham Sahandi Zangabad
- Monash
Institute of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical
Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
| | - Alireza Kalbasi
- Department
of Medical Oncology, Dana-Farber Cancer
Institute, Boston, Massachusetts 02115, United States
| | - Xiaofeng Dai
- School of
Biotechnology, Jiangnan University, Wuxi 214122, China
- National
Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial
Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Geeta Mehta
- Department
of Biomedical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Materials Science and Engineering, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Macromolecular
Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel Cancer
Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Precision
Health, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Amir Ghasemi
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Department
of Materials Science and Engineering, Sharif
University of Technology, Tehran 14588, Iran
| | - Yousef Fatahi
- Nanotechnology
Research Centre, Faculty of Pharmacy, Tehran
University of Medical Sciences, Tehran 14166, Iran
- Department
of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14166, Iran
- Universal
Scientific Education and Research Network (USERN), Tehran 14166, Iran
| | - Suhasini Joshi
- Chemical
Biology Program, Memorial Sloan Kettering
Cancer Center, New York, New York 10065, United States
| | - Michael R. Hamblin
- Laser Research
Centre, Faculty of Health Science, University
of Johannesburg, Doornfontein 2028, South Africa
- Radiation
Biology Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
| | - Mahdi Karimi
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Oncopathology
Research Center, Iran University of Medical
Sciences, Tehran 14535, Iran
- Research
Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran 14166, Iran
- Applied
Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran 14166, Iran
| |
Collapse
|
16
|
Chehelgerdi M, Behdarvand Dehkordi F, Chehelgerdi M, Kabiri H, Salehian-Dehkordi H, Abdolvand M, Salmanizadeh S, Rashidi M, Niazmand A, Ahmadi S, Feizbakhshan S, Kabiri S, Vatandoost N, Ranjbarnejad T. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol Cancer 2023; 22:189. [PMID: 38017433 PMCID: PMC10683363 DOI: 10.1186/s12943-023-01873-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023] Open
Abstract
The advent of iPSCs has brought about a significant transformation in stem cell research, opening up promising avenues for advancing cancer treatment. The formation of cancer is a multifaceted process influenced by genetic, epigenetic, and environmental factors. iPSCs offer a distinctive platform for investigating the origin of cancer, paving the way for novel approaches to cancer treatment, drug testing, and tailored medical interventions. This review article will provide an overview of the science behind iPSCs, the current limitations and challenges in iPSC-based cancer therapy, the ethical and social implications, and the comparative analysis with other stem cell types for cancer treatment. The article will also discuss the applications of iPSCs in tumorigenesis, the future of iPSCs in tumorigenesis research, and highlight successful case studies utilizing iPSCs in tumorigenesis research. The conclusion will summarize the advancements made in iPSC-based tumorigenesis research and the importance of continued investment in iPSC research to unlock the full potential of these cells.
Collapse
Affiliation(s)
- Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fereshteh Behdarvand Dehkordi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Hamidreza Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Mohammad Abdolvand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Sharareh Salmanizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar-Jereeb Street, Isfahan, 81746-73441, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saba Ahmadi
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Sara Feizbakhshan
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saber Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Nasimeh Vatandoost
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tayebeh Ranjbarnejad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
17
|
Lee SW, Frankston CM, Kim J. Epigenome editing in cancer: Advances and challenges for potential therapeutic options. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 383:191-230. [PMID: 38359969 DOI: 10.1016/bs.ircmb.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Cancers are diseases caused by genetic and non-genetic environmental factors. Epigenetic alterations, some attributed to non-genetic factors, can lead to cancer development. Epigenetic changes can occur in tumor suppressors or oncogenes, or they may contribute to global cell state changes, making cells abnormal. Recent advances in gene editing technology show potential for cancer treatment. Herein, we will discuss our current knowledge of epigenetic alterations occurring in cancer and epigenetic editing technologies that can be applied to developing therapeutic options.
Collapse
Affiliation(s)
- Seung-Won Lee
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Connor Mitchell Frankston
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Biomedical Engineering Graduate Program, Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Jungsun Kim
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR, United States; Cancer Biology Research Program, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
18
|
Wong J, Trinh VQ, Jyotsana N, Baig JF, Revetta F, Shi C, Means AL, DelGiorno KE, Tan M. Differential spatial distribution of HNF4α isoforms during dysplastic progression of intraductal papillary mucinous neoplasms of the pancreas. Sci Rep 2023; 13:20088. [PMID: 37974020 PMCID: PMC10654504 DOI: 10.1038/s41598-023-47238-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023] Open
Abstract
Hepatocyte Nuclear Factor 4-alpha (HNF4α) comprises a nuclear receptor superfamily of ligand-dependent transcription factors that yields twelve isoforms in humans, classified into promoters P1 or P2-associated groups with specific functions. Alterations in HNF4α isoforms have been associated with tumorigenesis. However, the distribution of its isoforms during progression from dysplasia to malignancy has not been studied, nor has it yet been studied in intraductal papillary mucinous neoplasms, where both malignant and pre-malignant forms are routinely clinically identified. We examined the expression patterns of pan-promoter, P1-specific, and P2-specific isoform groups in normal pancreatic components and IPMNs. Pan-promoter, P1 and P2 nuclear expression were weakly positive in normal pancreatic components. Nuclear expression for all isoform groups was increased in low-grade IPMN, high-grade IPMN, and well-differentiated invasive adenocarcinoma. Poorly differentiated invasive components in IPMNs showed loss of all forms of HNF4α. Pan-promoter, and P1-specific HNF4α expression showed shifts in subnuclear and sub-anatomical distribution in IPMN, whereas P2 expression was consistently nuclear. Tumor cells with high-grade dysplasia at the basal interface with the stroma showed reduced expression of P1, while P2 was equally expressed in both components. Additional functional studies are warranted to further explore the mechanisms underlying the spatial and differential distribution of HNF4α isoforms in IPMNs.
Collapse
Affiliation(s)
- Jahg Wong
- Department of Pathology, University of Montreal, Montreal, QC, Canada
| | - Vincent Q Trinh
- Department of Pathology, University of Montreal, Montreal, QC, Canada
- Institute for Research in Immunology and Cancer of the University of Montreal, Montreal, QC, Canada
- Centre Hospitalier de l'Université de Montréal Research Center, Montreal, QC, Canada
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nidhi Jyotsana
- Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Jumanah F Baig
- Department of Pathology, University of Montreal, Montreal, QC, Canada
- Institute for Research in Immunology and Cancer of the University of Montreal, Montreal, QC, Canada
| | - Frank Revetta
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chanjuan Shi
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Anna L Means
- Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Division of Surgical Oncology and Endocrine Surgery, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN, 37232, USA
- Vanderbilt Ingram Cancer Center, Nashville, TN, USA
| | - Kathleen E DelGiorno
- Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Ingram Cancer Center, Nashville, TN, USA
- Vanderbilt Digestive Disease Research Center, Nashville, TN, USA
| | - Marcus Tan
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.
- Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
- Division of Surgical Oncology and Endocrine Surgery, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN, 37232, USA.
- Vanderbilt Ingram Cancer Center, Nashville, TN, USA.
- Vanderbilt Digestive Disease Research Center, Nashville, TN, USA.
| |
Collapse
|
19
|
He R, Weng Z, Liu Y, Li B, Wang W, Meng W, Li B, Li L. Application of Induced Pluripotent Stem Cells in Malignant Solid Tumors. Stem Cell Rev Rep 2023; 19:2557-2575. [PMID: 37755647 PMCID: PMC10661832 DOI: 10.1007/s12015-023-10633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
In the past decade, induced pluripotent stem cells (iPSCs) technology has significantly progressed in studying malignant solid tumors. This technically feasible reprogramming techniques can reawaken sequestered dormant regions that regulate the fate of differentiated cells. Despite the evolving therapeutic modalities for malignant solid tumors, treatment outcomes have not been satisfactory. Recently, scientists attempted to apply induced pluripotent stem cell technology to cancer research, from modeling to treatment. Induced pluripotent stem cells derived from somatic cells, cancer cell lines, primary tumors, and individuals with an inherited propensity to develop cancer have shown great potential in cancer modeling, cell therapy, immunotherapy, and understanding tumor progression. This review summarizes the evolution of induced pluripotent stem cells technology and its applications in malignant solid tumor. Additionally, we discuss potential obstacles to induced pluripotent stem cell technology.
Collapse
Affiliation(s)
- Rong He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhijie Weng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunkun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bingzhi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenxuan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wanrong Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
Castro-Pérez E, Singh M, Sadangi S, Mela-Sánchez C, Setaluri V. Connecting the dots: Melanoma cell of origin, tumor cell plasticity, trans-differentiation, and drug resistance. Pigment Cell Melanoma Res 2023; 36:330-347. [PMID: 37132530 PMCID: PMC10524512 DOI: 10.1111/pcmr.13092] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/17/2023] [Accepted: 04/17/2023] [Indexed: 05/04/2023]
Abstract
Melanoma, a lethal malignancy that arises from melanocytes, exhibits a multiplicity of clinico-pathologically distinct subtypes in sun-exposed and non-sun-exposed areas. Melanocytes are derived from multipotent neural crest cells and are present in diverse anatomical locations, including skin, eyes, and various mucosal membranes. Tissue-resident melanocyte stem cells and melanocyte precursors contribute to melanocyte renewal. Elegant studies using mouse genetic models have shown that melanoma can arise from either melanocyte stem cells or differentiated pigment-producing melanocytes depending on a combination of tissue and anatomical site of origin and activation of oncogenic mutations (or overexpression) and/or the repression in expression or inactivating mutations in tumor suppressors. This variation raises the possibility that different subtypes of human melanomas (even subsets within each subtype) may also be a manifestation of malignancies of distinct cells of origin. Melanoma is known to exhibit phenotypic plasticity and trans-differentiation (defined as a tendency to differentiate into cell lineages other than the original lineage from which the tumor arose) along vascular and neural lineages. Additionally, stem cell-like properties such as pseudo-epithelial-to-mesenchymal (EMT-like) transition and expression of stem cell-related genes have also been associated with the development of melanoma drug resistance. Recent studies that employed reprogramming melanoma cells to induced pluripotent stem cells have uncovered potential relationships between melanoma plasticity, trans-differentiation, and drug resistance and implications for cell or origin of human cutaneous melanoma. This review provides a comprehensive summary of the current state of knowledge on melanoma cell of origin and the relationship between tumor cell plasticity and drug resistance.
Collapse
Affiliation(s)
- Edgardo Castro-Pérez
- Center for Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), City of Knowledge, Panama City, Panama
- Department of Genetics and Molecular Biology, University of Panama, Panama City, Panama
| | - Mithalesh Singh
- Department of Dermatology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, U.S.A
| | - Shreyans Sadangi
- Department of Dermatology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, U.S.A
| | - Carmen Mela-Sánchez
- Department of Genetics and Molecular Biology, University of Panama, Panama City, Panama
| | - Vijayasaradhi Setaluri
- Department of Dermatology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, U.S.A
- William S. Middleton VA Hospital, Madison, WI, U.S.A
| |
Collapse
|
21
|
Kurup JT, Kim S, Kidder BL. Identifying Cancer Type-Specific Transcriptional Programs through Network Analysis. Cancers (Basel) 2023; 15:4167. [PMID: 37627195 PMCID: PMC10453000 DOI: 10.3390/cancers15164167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Identifying cancer type-specific genes that define cell states is important to develop effective therapies for patients and methods for detection, early diagnosis, and prevention. While molecular mechanisms that drive malignancy have been identified for various cancers, the identification of cell-type defining transcription factors (TFs) that distinguish normal cells from cancer cells has not been fully elucidated. Here, we utilized a network biology framework, which assesses the fidelity of cell fate conversions, to identify cancer type-specific gene regulatory networks (GRN) for 17 types of cancer. Through an integrative analysis of a compendium of expression data, we elucidated core TFs and GRNs for multiple cancer types. Moreover, by comparing normal tissues and cells to cancer type-specific GRNs, we found that the expression of key network-influencing TFs can be utilized as a survival prognostic indicator for a diverse cohort of cancer patients. These findings offer a valuable resource for exploring cancer type-specific networks across a broad range of cancer types.
Collapse
Affiliation(s)
- Jiji T. Kurup
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (J.T.K.); (S.K.)
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Seongho Kim
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (J.T.K.); (S.K.)
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Benjamin L. Kidder
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (J.T.K.); (S.K.)
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
22
|
Guo T, Wei Q. Cell Reprogramming Techniques: Contributions to Cancer Therapy. Cell Reprogram 2023; 25:142-153. [PMID: 37530737 DOI: 10.1089/cell.2023.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
The reprogramming of terminally differentiated cells over the past few years has become important for induced pluripotent stem cells (iPSCs) in the field of regenerative medicine and disease drug modeling. At the same time, iPSCs have also played an important role in human cancer research. iPSCs derived from cancer patients can be used to simulate the early progression of cancer, for drug testing, and to study the molecular mechanism of cancer occurrence. In recent years, with the application of cellular immunotherapy in cancer therapy, patient-derived iPSC-induced immune cells (T, natural killer, and macrophage cells) solve the problem of immune rejection and have higher immunogenicity, which greatly improves the therapeutic efficiency of immune cell therapy. With the continuous progress of cancer differentiation therapy, iPSC technology can reprogram cancer cells to a more primitive pluripotent undifferentiated state, and successfully reverse cancer cells to a benign phenotype by changing the epigenetic inheritance of cancer cells. This article reviews the recent progress of cell reprogramming technology in human cancer research, focuses on the application of reprogramming technology in cancer immunotherapy and the problems solved, and summarizes the malignant phenotype changes of cancer cells in the process of reprogramming and subsequent differentiation.
Collapse
Affiliation(s)
- Tongtong Guo
- College of Life Science, Northwest University, Xi'an, China
| | - Qi Wei
- Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
23
|
Kotini AG, Carcamo S, Cruz-Rodriguez N, Olszewska M, Wang T, Demircioglu D, Chang CJ, Bernard E, Chao MP, Majeti R, Luo H, Kharas MG, Hasson D, Papapetrou EP. Patient-Derived iPSCs Faithfully Represent the Genetic Diversity and Cellular Architecture of Human Acute Myeloid Leukemia. Blood Cancer Discov 2023; 4:318-335. [PMID: 37067914 PMCID: PMC10320625 DOI: 10.1158/2643-3230.bcd-22-0167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/30/2023] [Accepted: 03/10/2023] [Indexed: 04/18/2023] Open
Abstract
The reprogramming of human acute myeloid leukemia (AML) cells into induced pluripotent stem cell (iPSC) lines could provide new faithful genetic models of AML, but is currently hindered by low success rates and uncertainty about whether iPSC-derived cells resemble their primary counterparts. Here we developed a reprogramming method tailored to cancer cells, with which we generated iPSCs from 15 patients representing all major genetic groups of AML. These AML-iPSCs retain genetic fidelity and produce transplantable hematopoietic cells with hallmark phenotypic leukemic features. Critically, single-cell transcriptomics reveal that, upon xenotransplantation, iPSC-derived leukemias faithfully mimic the primary patient-matched xenografts. Transplantation of iPSC-derived leukemias capturing a clone and subclone from the same patient allowed us to isolate the contribution of a FLT3-ITD mutation to the AML phenotype. The results and resources reported here can transform basic and preclinical cancer research of AML and other human cancers. SIGNIFICANCE We report the generation of patient-derived iPSC models of all major genetic groups of human AML. These exhibit phenotypic hallmarks of AML in vitro and in vivo, inform the clonal hierarchy and clonal dynamics of human AML, and exhibit striking similarity to patient-matched primary leukemias upon xenotransplantation. See related commentary by Doulatov, p. 252. This article is highlighted in the In This Issue feature, p. 247.
Collapse
Affiliation(s)
- Andriana G. Kotini
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Saul Carcamo
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Bioinformatics for Next-Generation Sequencing Shared Resource Facility, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nataly Cruz-Rodriguez
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Malgorzata Olszewska
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Tiansu Wang
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Deniz Demircioglu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Bioinformatics for Next-Generation Sequencing Shared Resource Facility, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Chan-Jung Chang
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Elsa Bernard
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mark P. Chao
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- Cancer Institute, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- Cancer Institute, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Hanzhi Luo
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, New York
- Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, New York
- Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael G. Kharas
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, New York
- Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, New York
- Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Bioinformatics for Next-Generation Sequencing Shared Resource Facility, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Eirini P. Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
24
|
Doulatov S. iPSC Models of Leukemia Come of Age. Blood Cancer Discov 2023; 4:252-253. [PMID: 37067903 PMCID: PMC10320630 DOI: 10.1158/2643-3230.bcd-23-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/18/2023] Open
Abstract
SUMMARY In this issue of Blood Cancer Discovery, Kotini and colleagues present a strategy for large-scale reprogramming of primary human acute myeloid leukemias (AML) to induced pluripotent stem cell (iPSC). They show that the hematopoietic differentiation of AML iPSCs gives rise to transplantable leukemias with remarkable molecular similarity to the original patients' AML, providing new models and insights into the disease. See related article by Kotini et al., p. 318 (7) .
Collapse
Affiliation(s)
- Sergei Doulatov
- Division of Hematology, Department of Medicine, University of Washington, Seattle, Washington
- Department of Genome Sciences, University of Washington, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
25
|
Feng Y, Cai L, Pook M, Liu F, Chang CH, Mouti MA, Nibhani R, Wu S, Deng S, Militi S, Dunford J, Philpott M, Fan Y, Fan GC, Liu Q, Qi J, Sadayappan S, Jegga AG, Oppermann U, Wang Y, Huang W, Jiang L, Pauklin S. BRD9-SMAD2/3 orchestrates stemness and tumorigenesis in pancreatic ductal adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.02.530770. [PMID: 36909530 PMCID: PMC10002796 DOI: 10.1101/2023.03.02.530770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The dismal prognosis of pancreatic ductal adenocarcinoma (PDAC) is linked to the presence of pancreatic cancer stem-like cells (CSCs) that respond poorly to current chemotherapy regimens. By small molecule compound screening targeting 142 epigenetic enzymes, we identified that bromodomain-containing protein BRD9, a component of the BAF histone remodelling complex, is a key chromatin regulator to orchestrate the stemness of pancreatic CSCs via cooperating with the TGFβ/Activin-SMAD2/3 signalling pathway. Inhibition and genetic ablation of BDR9 block the self-renewal, cell cycle entry into G0 phase and invasiveness of CSCs, and improve the sensitivity of CSCs to gemcitabine treatment. In addition, pharmacological inhibition of BRD9 significantly reduced the tumorigenesis in patient-derived xenografts mouse models and eliminated CSCs in tumours from pancreatic cancer patients. Mechanistically, inhibition of BRD9 disrupts enhancer-promoter looping and transcription of stemness genes in CSCs. Collectively, the data suggest BRD9 as a novel therapeutic target for PDAC treatment via modulation of CSC stemness.
Collapse
|
26
|
Tutty MA, Holmes S, Prina-Mello A. Cancer Cell Culture: The Basics and Two-Dimensional Cultures. Methods Mol Biol 2023; 2645:3-40. [PMID: 37202610 DOI: 10.1007/978-1-0716-3056-3_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Despite significant advances in investigative and therapeutic methodologies for cancer, 2D cell culture remains an essential and evolving competency in this fast-paced industry. From basic monolayer cultures and functional assays to more recent and ever-advancing cell-based cancer interventions, 2D cell culture plays a crucial role in cancer diagnosis, prognosis, and treatment. Research and development in this field call for a great deal of optimization, while the heterogenous nature of cancer itself demands personalized precision for its intervention. In this way, 2D cell culture is ideal, providing a highly adaptive and responsive platform, where skills can be honed and techniques modified. Furthermore, it is arguably the most efficient, economical, and sustainable methodology available to researchers and clinicians alike.In this chapter, we discuss the history of cell culture and the varying types of cell and cell lines used today, the techniques used to characterize and authenticate them, the applications of 2D cell culture in cancer diagnosis and prognosis, and more recent developments in the area of cell-based cancer interventions and vaccines.
Collapse
Affiliation(s)
- Melissa Anne Tutty
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland
| | - Sarah Holmes
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland.
| | - Adriele Prina-Mello
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland
- Nanomedicine and Molecular Imaging Group, Trinity Translational Medicine Institute (TTMI), School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, CRANN Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
27
|
Chen YA, Lu CY, Cheng WF, Kuo KT, Yu CW, Ho HN, Chen HF, Pan SH. An experimental model for ovarian cancer: propagation of ovarian cancer initiating cells and generation of ovarian cancer organoids. BMC Cancer 2022; 22:967. [PMID: 36085021 PMCID: PMC9463800 DOI: 10.1186/s12885-022-10042-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background Ovarian cancer (OC) is the most lethal gynecological cancer due to the recurrence of drug-resistance. Cancer initiating cells (CICs) are proposed to be responsible for the aggressiveness of OC. The rarity and difficulty of in vitro long-term cultivation of CICs challenge the development of CIC-targeting therapeutics. Reprogramming cancer cells into induced cancer initiating cell (iCICs) could be an approach to solve these. Several inducible CICs have been acquired by activating the expression of stemness genes in different cancer cells. However, few reports have demonstrated the feasibility in OC. Methods Patients with primary OC receiving surgery were enrolled. Tumor tissue were collected, and OCT4, SOX2, and NANOG expressions were assessed by immunohistochemistry (IHC) staining to investigate the association of stemness markers with overall survival (OS). An high-grade serous ovarian cancer (HGSOC) cell line, OVCAR-3 was reprogrammed by transducing Yamanaka four factors OCT4, SOX2, KLF4 and MYC (OSKM) to establish an iOCIC model, iOVCAR-3-OSKM. CIC characteristics of iOVCAR-3-OSKM were evaluated by RT-PCR, sphere formation assay and animal experiments. Drug-resistance and migration ability were accessed by dye-efflux activity assay, MTT assay and migration assay. Gene profile was presented through RNA-sequencing. Lineage differentiation ability and organoid culture were determined by in vitro differentiation assays. Results In OC patients, the co-expression of multiple stem-related transcription factors (OCT4, SOX2, and NANOG) was associated with worse OS. iOVCAR-3-OSKM cells generated by reprogramming successfully exhibited stemness characteristics with strong sphere-forming and tumorigenesis ability. iOVCAR-3-OSKM cells also showed malignant potential with higher drug resistance to chemodrug, Paclitaxel (PTX) and migration ability. iOVCAR-3-OSKM was maintainable and expandable on feeder-dependent culture condition, it also preserved ovarian lineage differentiation abilities, which could well differentiate into OC cells with CK-7 and CA125 expressions and develop into an organoid mimic poor prognostic OC histological feature. Conclusions The establishment of iOVCAR-3-OSKM not only allows us to fill the gap in the information on induced CICs in OC but also provides a potential strategy to develop personalized CICs and organoid models for treating OC in the near future. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10042-3.
Collapse
|
28
|
Cancer cells as a new source of induced pluripotent stem cells. Stem Cell Res Ther 2022; 13:459. [PMID: 36064437 PMCID: PMC9446809 DOI: 10.1186/s13287-022-03145-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022] Open
Abstract
Over the last 2 decades, induced pluripotent stem cells (iPSCs) have had various potential applications in various medical research areas, from personalized medicine to disease treatment. Different cellular resources are accessible for iPSC generation, such as keratinocytes, skin fibroblasts, and blood or urine cells. However, all these sources are somatic cells, and we must make several changes in a somatic cell's transcriptome and chromatin state to become a pluripotent cell. It has recently been revealed that cancer cells can be a new source of iPSCs production. Cancer cells show similarities with iPSCs in self-renewal capacity, reprogramming potency, and signaling pathways. Although genetic abnormalities and potential tumor formation in cancer cells pose a severe risk, reprogrammed cancer-induced pluripotent stem cells (cancer-iPSCs) indicate that pluripotency can transiently overcome the cancer phenotype. This review discusses whether cancer cells can be a preferable source to generate iPSCs.
Collapse
|
29
|
Cheng Z, Guo D, Ruzi A, Pan T, You K, Chen Y, Huang X, Zhang J, Yang F, Niu L, Xu K, Li YX. Modeling MEN1 with Patient-Origin iPSCs Reveals GLP-1R Mediated Hypersecretion of Insulin. Cells 2022; 11:2387. [PMID: 35954231 PMCID: PMC9368616 DOI: 10.3390/cells11152387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is an inherited disease caused by mutations in the MEN1 gene encoding a nuclear protein menin. Among those different endocrine tumors of MEN1, the pancreatic neuroendocrine tumors (PNETs) are life-threatening and frequently implicated. Since there are uncertainties in genotype and phenotype relationship and there are species differences between humans and mice, it is worth it to replenish the mice model with human cell resources. Here, we tested whether the patient-origin induced pluripotent stem cell (iPSC) lines could phenocopy some defects of MEN1. In vitro β-cell differentiation revealed that the percentage of insulin-positive cells and insulin secretion were increased by at least two-fold in MEN1-iPSC derived cells, which was mainly resulted from significantly higher proliferative activities in the pancreatic progenitor stage (Day 7-13). This scenario was paralleled with increased expressions of prohormone convertase1/3 (PC1/3), glucagon-like peptide-1 (GLP-1), GLP-1R, and factors in the phosphatidylinositol 3-kinase (PI3K)/AKT signal pathway, and the GLP-1R was mainly expressed in β-like cells. Blockages of either GLP-1R or PI3K significantly reduced the percentages of insulin-positive cells and hypersecretion of insulin in MEN1-derived cells. Furthermore, in transplantation of different stages of MEN1-derived cells into immune-deficient mice, only those β-like cells produced tumors that mimicked the features of the PNETs from the original patient. To the best of our knowledge, this was the first case using patient-origin iPSCs modeling most phenotypes of MEN1, and the results suggested that GLP-1R may be a potential therapeutic target for MEN1-related hyperinsulinemia.
Collapse
Affiliation(s)
- Ziqi Cheng
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (Z.C.); (D.G.); (A.R.); (T.P.); (K.Y.); (Y.C.); (X.H.); (J.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Dongsheng Guo
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (Z.C.); (D.G.); (A.R.); (T.P.); (K.Y.); (Y.C.); (X.H.); (J.Z.)
| | - Aynisahan Ruzi
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (Z.C.); (D.G.); (A.R.); (T.P.); (K.Y.); (Y.C.); (X.H.); (J.Z.)
| | - Tingcai Pan
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (Z.C.); (D.G.); (A.R.); (T.P.); (K.Y.); (Y.C.); (X.H.); (J.Z.)
| | - Kai You
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (Z.C.); (D.G.); (A.R.); (T.P.); (K.Y.); (Y.C.); (X.H.); (J.Z.)
| | - Yan Chen
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (Z.C.); (D.G.); (A.R.); (T.P.); (K.Y.); (Y.C.); (X.H.); (J.Z.)
- Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xinping Huang
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (Z.C.); (D.G.); (A.R.); (T.P.); (K.Y.); (Y.C.); (X.H.); (J.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jiaye Zhang
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (Z.C.); (D.G.); (A.R.); (T.P.); (K.Y.); (Y.C.); (X.H.); (J.Z.)
| | - Fan Yang
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China;
| | - Lizhi Niu
- Guangzhou Fuda Cancer Hospital, Guangzhou 510305, China; (L.N.); (K.X.)
| | - Kecheng Xu
- Guangzhou Fuda Cancer Hospital, Guangzhou 510305, China; (L.N.); (K.X.)
| | - Yin-Xiong Li
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (Z.C.); (D.G.); (A.R.); (T.P.); (K.Y.); (Y.C.); (X.H.); (J.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- State Key Laboratory of Respiratory Disease, Guangzhou 510000, China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou 510530, China
| |
Collapse
|
30
|
Becklin KL, Draper GM, Madden RA, Kluesner MG, Koga T, Huang M, Weiss WA, Spector LG, Largaespada DA, Moriarity BS, Webber BR. Developing Bottom-Up Induced Pluripotent Stem Cell Derived Solid Tumor Models Using Precision Genome Editing Technologies. CRISPR J 2022; 5:517-535. [PMID: 35972367 PMCID: PMC9529369 DOI: 10.1089/crispr.2022.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in genome and tissue engineering have spurred significant progress and opportunity for innovation in cancer modeling. Human induced pluripotent stem cells (iPSCs) are an established and powerful tool to study cellular processes in the context of disease-specific genetic backgrounds; however, their application to cancer has been limited by the resistance of many transformed cells to undergo successful reprogramming. Here, we review the status of human iPSC modeling of solid tumors in the context of genetic engineering, including how base and prime editing can be incorporated into "bottom-up" cancer modeling, a term we coined for iPSC-based cancer models using genetic engineering to induce transformation. This approach circumvents the need to reprogram cancer cells while allowing for dissection of the genetic mechanisms underlying transformation, progression, and metastasis with a high degree of precision and control. We also discuss the strengths and limitations of respective engineering approaches and outline experimental considerations for establishing future models.
Collapse
Affiliation(s)
- Kelsie L. Becklin
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Garrett M. Draper
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Rebecca A. Madden
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Mitchell G. Kluesner
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Tomoyuki Koga
- Ludwig Cancer Research San Diego Branch, La Jolla, California, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Miller Huang
- Department of Pediatrics, University of Southern California, Los Angeles, California, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles and The Saban Research Institute, Los Angeles, California, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - William A. Weiss
- Departments of Neurology, Pediatrics, Neurosurgery, Brain Tumor Research Center, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA; and Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Departments of Pediatrics, Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Logan G. Spector
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - David A. Largaespada
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Branden S. Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Beau R. Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
31
|
Salinas-Vera YM, Valdés J, Pérez-Navarro Y, Mandujano-Lazaro G, Marchat LA, Ramos-Payán R, Nuñez-Olvera SI, Pérez-Plascencia C, López-Camarillo C. Three-Dimensional 3D Culture Models in Gynecological and Breast Cancer Research. Front Oncol 2022; 12:826113. [PMID: 35692756 PMCID: PMC9177953 DOI: 10.3389/fonc.2022.826113] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
Traditional two-dimensional (2D) monolayer cell cultures have long been the gold standard for cancer biology research. However, their ability to accurately reflect the molecular mechanisms of tumors occurring in vivo is limited. Recent development of three-dimensional (3D) cell culture models facilitate the possibility to better recapitulate several of the biological and molecular characteristics of tumors in vivo, such as cancer cells heterogeneity, cell-extracellular matrix interactions, development of a hypoxic microenvironment, signaling pathway activities depending on contacts with extracellular matrix, differential growth kinetics, more accurate drugs response, and specific gene expression and epigenetic patterns. In this review, we discuss the utilization of different types of 3D culture models including spheroids, organotypic models and patient-derived organoids in gynecologic cancers research, as well as its potential applications in oncological research mainly for screening drugs with major physiological and clinical relevance. Moreover, microRNAs regulation of cancer hallmarks in 3D cell cultures from different types of cancers is discussed.
Collapse
Affiliation(s)
- Yarely M. Salinas-Vera
- Departamento de Bioquímica, Centro de Investigación de Estudios Avanzados (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Jesús Valdés
- Departamento de Bioquímica, Centro de Investigación de Estudios Avanzados (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Yussel Pérez-Navarro
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de Mexico, Ciudad de Mexico, Mexico
| | - Gilberto Mandujano-Lazaro
- Programa en Biomedicina Molecular y Red de Biotecnología, Instituto Politécnico Nacional, Ciudad de Mexico, Mexico
| | - Laurence A. Marchat
- Programa en Biomedicina Molecular y Red de Biotecnología, Instituto Politécnico Nacional, Ciudad de Mexico, Mexico
| | - Rosalio Ramos-Payán
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán Sinaloa, Mexico
| | - Stephanie I. Nuñez-Olvera
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de Mexico, Ciudad de Mexico, Mexico
| |
Collapse
|
32
|
Ito K, Nagata K, Ohta S, Matsuda Y, Ukai T, Yasuda I, Ota A, Kobayashi R, Kabata M, Sankoda N, Maeda T, Woltjen K, Yang L, Maruyama R, Katayama R, Yamamoto T, Yamada Y. The oncogene-dependent resistance to reprogramming unveils cancer therapeutic targets. Cell Rep 2022; 39:110721. [PMID: 35476996 DOI: 10.1016/j.celrep.2022.110721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 12/01/2021] [Accepted: 03/31/2022] [Indexed: 11/03/2022] Open
Abstract
The resistance to transcription factor-mediated reprogramming into pluripotent stem cells is one of the distinctive features of cancer cells. Here we dissect the profiles of reprogramming factor binding and the subsequent transcriptional response in cancer cells to reveal its underlying mechanisms. Using clear cell sarcomas (CCSs), we show that the driver oncogene EWS/ATF1 misdirects the reprogramming factors to cancer-specific enhancers and thereby impairs the transcriptional response toward pluripotency that is otherwise provoked. Sensitization to the reprogramming cue is observed in other cancer types when the corresponding oncogenic signals are pharmacologically inhibited. Exploiting this oncogene dependence of the transcriptional "stiffness," we identify mTOR signaling pathways downstream of EWS/ATF1 and discover that inhibiting mTOR activity substantially attenuates the propagation of CCS cells in vitro and in vivo. Our results demonstrate that the early transcriptional response to cell fate perturbations can be a faithful readout to identify effective therapeutics targets in cancer cells.
Collapse
Affiliation(s)
- Kenji Ito
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Kohei Nagata
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Third Department of Internal Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Sho Ohta
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | - Yutaka Matsuda
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa 247-8530, Japan
| | - Tomoyo Ukai
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Ichiro Yasuda
- Third Department of Internal Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Akira Ota
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Ryota Kobayashi
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Mio Kabata
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Nao Sankoda
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Tatsuya Maeda
- Department of Biology, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan
| | - Knut Woltjen
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Liying Yang
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Reo Maruyama
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Ryohei Katayama
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; AMED-CREST, AMED, Tokyo 100-0004, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan; Medical-risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan
| | - Yasuhiro Yamada
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; AMED-CREST, AMED, Tokyo 100-0004, Japan.
| |
Collapse
|
33
|
Uhlmann C, Nickel AC, Picard D, Rossi A, Li G, Hildebrandt B, Brockerhoff G, Bendt F, Hübenthal U, Hewera M, Steiger HJ, Wieczorek D, Perrakis A, Zhang W, Remke M, Koch K, Tigges J, Croner RS, Fritsche E, Kahlert UD. Progenitor cells derived from gene-engineered human induced pluripotent stem cells as synthetic cancer cell alternatives for in vitro pharmacology. Biotechnol J 2022; 17:e2100693. [PMID: 35334498 DOI: 10.1002/biot.202100693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 11/08/2022]
Abstract
Limitations in genetic stability and recapitulating accurate physiological disease properties challenge the utility of patient-derived (PD) cancer models for reproducible and translational research. We have genetically engineered a portfolio of isogenic human induced pluripotent stem cells (hiPSCs) with different pan-cancer relevant oncoprotein signatures followed by differentiation into lineage-committed progenitor cells. Characterization on molecular and biological level validated successful stable genetic alterations in pluripotency state as well as upon differentiation to prove the functionality of our approach Meanwhile proposing core molecular networks possibly involved in early dysregulation of stem cell homeostasis, the application of our cell systems in comparative substance testing indicates the potential for cancer research such as identification of augmented therapy resistance of stem cells in response to activation of distinct oncogenic signatures. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Constanze Uhlmann
- Department for Neurosurgery, Medical Faculty and University Medical Center Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ann-Christin Nickel
- Department for Neurosurgery, Medical Faculty and University Medical Center Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Daniel Picard
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany.,Department of Neuropathology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Andrea Rossi
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Guanzhang Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, P. R. China
| | - Barbara Hildebrandt
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | | | - Farina Bendt
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Ulrike Hübenthal
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Michael Hewera
- Department for Neurosurgery, Medical Faculty and University Medical Center Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hans-Jakob Steiger
- Department for Neurosurgery, Medical Faculty and University Medical Center Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Aristoteles Perrakis
- Molecular and Experimental Surgery, University Clinic for General, Visceral and Vascular Surgery, University Medical Center Magdeburg and Faculty of Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Wei Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, P. R. China
| | - Marc Remke
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany.,Department of Neuropathology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Katharina Koch
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Julia Tigges
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Roland S Croner
- Molecular and Experimental Surgery, University Clinic for General, Visceral and Vascular Surgery, University Medical Center Magdeburg and Faculty of Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Ellen Fritsche
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.,Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Ulf D Kahlert
- Molecular and Experimental Surgery, University Clinic for General, Visceral and Vascular Surgery, University Medical Center Magdeburg and Faculty of Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
34
|
Vellan CJ, Jayapalan JJ, Yoong BK, Abdul-Aziz A, Mat-Junit S, Subramanian P. Application of Proteomics in Pancreatic Ductal Adenocarcinoma Biomarker Investigations: A Review. Int J Mol Sci 2022; 23:2093. [PMID: 35216204 PMCID: PMC8879036 DOI: 10.3390/ijms23042093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a highly aggressive malignancy with a poor prognosis is usually detected at the advanced stage of the disease. The only US Food and Drug Administration-approved biomarker that is available for PDAC, CA 19-9, is most useful in monitoring treatment response among PDAC patients rather than for early detection. Moreover, when CA 19-9 is solely used for diagnostic purposes, it has only a recorded sensitivity of 79% and specificity of 82% in symptomatic individuals. Therefore, there is an urgent need to identify reliable biomarkers for diagnosis (specifically for the early diagnosis), ascertain prognosis as well as to monitor treatment response and tumour recurrence of PDAC. In recent years, proteomic technologies are growing exponentially at an accelerated rate for a wide range of applications in cancer research. In this review, we discussed the current status of biomarker research for PDAC using various proteomic technologies. This review will explore the potential perspective for understanding and identifying the unique alterations in protein expressions that could prove beneficial in discovering new robust biomarkers to detect PDAC at an early stage, ascertain prognosis of patients with the disease in addition to monitoring treatment response and tumour recurrence of patients.
Collapse
Affiliation(s)
- Christina Jane Vellan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.J.V.); (A.A.-A.); (S.M.-J.)
| | - Jaime Jacqueline Jayapalan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.J.V.); (A.A.-A.); (S.M.-J.)
- University of Malaya Centre for Proteomics Research (UMCPR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Boon-Koon Yoong
- Department of Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Azlina Abdul-Aziz
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.J.V.); (A.A.-A.); (S.M.-J.)
| | - Sarni Mat-Junit
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.J.V.); (A.A.-A.); (S.M.-J.)
| | - Perumal Subramanian
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram 608002, Tamil Nadu, India;
| |
Collapse
|
35
|
Chen Y, Capello M, Rios Perez MV, Vykoukal JV, Roife D, Kang Y, Prakash LR, Katayama H, Irajizad E, Fleury A, Ferri-Borgogno S, Baluya DL, Dennison JB, Do KA, Fiehn O, Maitra A, Wang H, Chiao PJ, Katz MHG, Fleming JB, Hanash SM, Fahrmann JF. CES2 sustains HNF4α expression to promote pancreatic adenocarcinoma progression through an epoxide hydrolase-dependent regulatory loop. Mol Metab 2022; 56:101426. [PMID: 34971802 PMCID: PMC8841288 DOI: 10.1016/j.molmet.2021.101426] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Intra-tumoral expression of the serine hydrolase carboxylesterase 2 (CES2) contributes to the activation of the pro-drug irinotecan in pancreatic ductal adenocarcinoma (PDAC). Given other potential roles of CES2, we assessed its regulation, downstream effects, and contribution to tumor development in PDAC. METHODS Association between the mRNA expression of CES2 in pancreatic tumors and overall survival was assessed using The Cancer Genome Atlas. Cell viability, clonogenic, and anchorage-independent growth assays as well as an orthotopic mouse model of PDAC were used to evaluate the biological relevance of CES2 in pancreatic cancer. CES2-driven metabolic changes were determined by untargeted and targeted metabolomic analyses. RESULTS Elevated tumoral CES2 mRNA expression was a statistically significant predictor of poor overall survival in PDAC patients. Knockdown of CES2 in PDAC cells reduced cell viability, clonogenic capacity, and anchorage-independent growth in vitro and attenuated tumor growth in an orthotopic mouse model of PDAC. Mechanistically, CES2 was found to promote the catabolism of phospholipids resulting in HNF4α activation through a soluble epoxide hydrolase (sEH)-dependent pathway. Targeting of CES2 via siRNA or small molecule inhibitors attenuated HNF4α protein expression and reduced gene expression of classical/progenitor markers and increased basal-like markers. Targeting of the CES2-sEH-HNF4α axis using small molecule inhibitors of CES2 or sEH reduced cell viability. CONCLUSIONS We establish a novel regulatory loop between CES2 and HNF4α to sustain the progenitor subtype and promote PDAC progression and highlight the potential utility of CES2 or sEH inhibitors for the treatment of PDAC as part of non-irinotecan-containing regimens.
Collapse
Affiliation(s)
- Yihui Chen
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michela Capello
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mayrim V Rios Perez
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jody V Vykoukal
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Roife
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ya'an Kang
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Laura R Prakash
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hiroyuki Katayama
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ehsan Irajizad
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alia Fleury
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sammy Ferri-Borgogno
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dodge L Baluya
- Departments of Center for Radiation Oncology Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer B Dennison
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kim-Anh Do
- Departments of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Oliver Fiehn
- UC Davis Genome Center - Metabolomics, University of California, Davis, 95616, CA, USA
| | - Anirban Maitra
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA; Departments of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huamin Wang
- Departments of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul J Chiao
- Departments of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew H G Katz
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason B Fleming
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Samir M Hanash
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Johannes F Fahrmann
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
36
|
Kapszewicz M, Małecka-Wojciesko E. Simple Serum Pancreatic Ductal Adenocarcinoma (PDAC) Protein Biomarkers-Is There Anything in Sight? J Clin Med 2021; 10:jcm10225463. [PMID: 34830745 PMCID: PMC8619303 DOI: 10.3390/jcm10225463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/07/2021] [Accepted: 11/20/2021] [Indexed: 01/04/2023] Open
Abstract
A poor PDAC prognosis is due to a lack of effective treatment and late diagnosis. The early detection of PDAC could significantly decrease mortality and save lives. Idealbiomarkers for PDAC should be cost-effective, detectable in easily accessible biological material, and present in sufficient concentration in the earliest possible phase of the disease. This review addresses newly selected, simple protein biomarkers—new ones such as thrombospondin-2, insulin-linked binding protein 2, lysophosphatidic acid, and autotaxin and conventional ones such as Ca19-9, inflammatory factors, and coagulation factors. Their possible use in the early detection of PDAC, differentiation from benign diseases, prognosis, and treatment response prediction is discussed. We also address the usefulness of possible combinations of biomarkers in diagnostic panels.
Collapse
|
37
|
Krog RT, de Miranda NFCC, Vahrmeijer AL, Kooreman NG. The Potential of Induced Pluripotent Stem Cells to Advance the Treatment of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13225789. [PMID: 34830945 PMCID: PMC8616212 DOI: 10.3390/cancers13225789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Despite improvements in the treatment of several cancer types, the extremely poor prognosis of pancreatic cancer patients has remained unchanged over the last decades. Therefore, new therapeutic regimens for pancreatic cancer are highly needed. In this review, we will discuss the potential of induced pluripotent stem cells (iPSCs) to generate representative pancreatic cancer models that can aid the development of novel diagnostics and therapeutic strategies. Furthermore, the potential of iPSCs as pancreatic cancer vaccines or as a basis for cellular therapies will be discussed. With promising preclinical results and ongoing clinical trials, the potential of iPSCs to further the treatment of pancreatic cancer is being explored and, in turn, will hopefully provide additional therapies to increase the poor survival rates of this patient population. Abstract Advances in the treatment of pancreatic ductal adenocarcinoma (PDAC) using neoadjuvant chemoradiotherapy, chemotherapy, and immunotherapy have had minimal impact on the overall survival of patients. A general lack of immunogenic features and a complex tumor microenvironment (TME) are likely culprits for therapy refractoriness in PDAC. Induced pluripotent stem cells (iPSCs) should be explored as a means to advance the treatment options for PDAC, by providing representative in vitro models of pancreatic cancer development. In addition, iPSCs could be used for tailor-made cellular immunotherapies or as a source of tumor-associated antigens in the context of vaccination.
Collapse
Affiliation(s)
- Ricki T. Krog
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.T.K.); (A.L.V.)
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | | | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.T.K.); (A.L.V.)
| | - Nigel G. Kooreman
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.T.K.); (A.L.V.)
- Correspondence:
| |
Collapse
|
38
|
Sekine K. Human Organoid and Supporting Technologies for Cancer and Toxicological Research. Front Genet 2021; 12:759366. [PMID: 34745227 PMCID: PMC8569236 DOI: 10.3389/fgene.2021.759366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Recent progress in the field of organoid-based cell culture systems has enabled the use of patient-derived cells in conditions that resemble those in cancer tissue, which are better than two-dimensional (2D) cultured cell lines. In particular, organoids allow human cancer cells to be handled in conditions that resemble those in cancer tissue, resulting in more efficient establishment of cells compared with 2D cultured cell lines, thus enabling the use of multiple patient-derived cells with cells from different genetic background, in keeping with the heterogeneity of the cells. One of the most valuable points of using organoids is that human cells from either healthy or cancerous tissue can be used. Using genome editing technology such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein, organoid genomes can be modified to, for example, cancer-prone genomes. The normal, cancer, or genome-modified organoids can be used to evaluate whether chemicals have genotoxic or non-genotoxic carcinogenic activity by evaluating the cancer incidence, cancer progression, and cancer metastasis. In this review, the organoid technology and the accompanying technologies were summarized and the advantages of organoid-based toxicology and its application to pancreatic cancer study were discussed.
Collapse
Affiliation(s)
- Keisuke Sekine
- Laboratory of Cancer Cell Systems, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
39
|
Pluripotency Stemness and Cancer: More Questions than Answers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:77-100. [PMID: 34725790 DOI: 10.1007/5584_2021_663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Embryonic stem cells and induced pluripotent stem cells provided us with fascinating new knowledge in recent years. Mechanistic insight into intricate regulatory circuitry governing pluripotency stemness and disclosing parallels between pluripotency stemness and cancer instigated numerous studies focusing on roles of pluripotency transcription factors, including Oct4, Sox2, Klf4, Nanog, Sall4 and Tfcp2L1, in cancer. Although generally well substantiated as tumour-promoting factors, oncogenic roles of pluripotency transcription factors and their clinical impacts are revealing themselves as increasingly complex. In certain tumours, both Oct4 and Sox2 behave as genuine oncogenes, and reporter genes driven by composite regulatory elements jointly recognized by both the factors can identify stem-like cells in a proportion of tumours. On the other hand, cancer stem cells seem to be biologically very heterogeneous both among different tumour types and among and even within individual tumours. Pluripotency transcription factors are certainly implicated in cancer stemness, but do not seem to encompass its entire spectrum. Certain cancer stem cells maintain their stemness by biological mechanisms completely different from pluripotency stemness, sometimes even by engaging signalling pathways that promote differentiation of pluripotent stem cells. Moreover, while these signalling pathways may well be antithetical to stemness in pluripotent stem cells, they may cooperate with pluripotency factors in cancer stem cells - a paradigmatic example is provided by the MAPK-AP-1 pathway. Unexpectedly, forced expression of pluripotency transcription factors in cancer cells frequently results in loss of their tumour-initiating ability, their phenotypic reversion and partial epigenetic normalization. Besides the very different signalling contexts operating in pluripotent and cancer stem cells, respectively, the pronounced dose dependency of reprogramming pluripotency factors may also contribute to the frequent loss of tumorigenicity observed in induced pluripotent cancer cells. Finally, contradictory cell-autonomous and non-cell-autonomous effects of various signalling molecules operate during pluripotency (cancer) reprogramming. The effects of pluripotency transcription factors in cancer are thus best explained within the concept of cancer stem cell heterogeneity.
Collapse
|
40
|
Kim J, Ekstrom T, Yang W, Donahue G, Grygoryev D, Ngo TT, Muschler JL, Morgan T, Zaret KS. Longitudinal Analysis of Human Pancreatic Adenocarcinoma Development Reveals Transient Gene Expression Signatures. Mol Cancer Res 2021; 19:1854-1867. [PMID: 34330844 PMCID: PMC9398181 DOI: 10.1158/1541-7786.mcr-21-0483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/17/2021] [Accepted: 07/26/2021] [Indexed: 01/07/2023]
Abstract
Previous transcriptome studies of human pancreatic ductal adenocarcinoma (PDAC) compare non-cancerous pancreatic intraepithelial neoplasias (PanIN) with late-stage PDAC obtained from different patients, thus have limited ability to discern network dynamics that contribute to the disease progression. We demonstrated previously that the 10-22 cell line, an induced pluripotent stem cell-like line reprogrammed from late-stage human PDAC cells, recapitulated the progression from PanINs to PDAC upon transplantation into NOD/LtSz-scid/IL2R-gammanull mice. Herein, we investigated the transition from precursor to PDAC using the isogenic model. We analyzed transcriptomes of genetically tagged 10-22 cells progressing from PanINs to PDAC in mice and validated the results using The Cancer Genome Atlas PDAC dataset, human clinical PanIN and PDAC tissues, and a well-established murine PDAC model. We functionally studied candidate proteins using human normal (H6C7) and cancerous (Miapaca2, Aspc1) pancreatic ductal epithelial cell lines. 10-22 cell-derived PDAC displayed the molecular signature of clinical human PDAC. Expression changes of many genes were transient during PDAC progression. Pathways for extracellular vesicle transport and neuronal cell differentiation were derepressed in the progression of PanINs to PDAC. HMG-box transcription factor 1 (HBP1) and BTB domain and CNC homolog 1 (BACH1) were implicated in regulating dynamically expressed genes during PDAC progression, and their expressions inversely correlated with PDAC patients' prognosis. Ectopic expression of HBP1 increased proliferation and migration of normal and cancerous pancreatic cells, indicating that HBP1 may confer the cell dissemination capacity in early PDAC progression. This unique longitudinal analysis provides insights into networks underlying human PDAC progression and pathogenesis. IMPLICATIONS: Manipulation of HBP1, BACH1, and RUN3 networks during PDAC progression can be harnessed to develop new targets for treating PDAC.
Collapse
Affiliation(s)
- Jungsun Kim
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, Portland, Oregon.,Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University School of Medicine, Portland, Oregon.,Knight Cancer Institute (Cancer Biology Research Program), Oregon Health & Science University School of Medicine, Portland, Oregon.,Corresponding Author: Jungsun Kim, Department of Molecular & Medical Genetics, Cancer Early Detection Advanced Research Center, Knight Cancer Institute. Oregon Health & Science University, Portland, OR 97239. Phone: 503-346-1967; E-mail:
| | - Taelor Ekstrom
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University School of Medicine, Portland, Oregon
| | - Wenli Yang
- Department of Medicine, Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Greg Donahue
- Institute for Regenerative Medicine, Department of Cell and Developmental Biology, Abramson Cancer Center (Tumor Biology Program), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Dmytro Grygoryev
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University School of Medicine, Portland, Oregon
| | - Thuy T.M. Ngo
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, Portland, Oregon.,Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University School of Medicine, Portland, Oregon.,Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - John L. Muschler
- Knight Cancer Institute (Cancer Biology Research Program), Oregon Health & Science University School of Medicine, Portland, Oregon.,Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Terry Morgan
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University School of Medicine, Portland, Oregon.,Department of Pathology, Oregon Health & Science University, Portland, Oregon
| | - Kenneth S. Zaret
- Institute for Regenerative Medicine, Department of Cell and Developmental Biology, Abramson Cancer Center (Tumor Biology Program), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
41
|
Gimotty PA, Till JE, Udgata S, Takenaka N, Yee SS, LaRiviere MJ, O'Hara MH, Reiss KA, O'Dwyer P, Katona BW, Herman D, Carpenter EL, Zaret KS. THSB2 as a prognostic biomarker for patients diagnosed with metastatic pancreatic ductal adenocarcinoma. Oncotarget 2021; 12:2266-2272. [PMID: 34733417 PMCID: PMC8555682 DOI: 10.18632/oncotarget.28099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/10/2021] [Indexed: 11/25/2022] Open
Abstract
Patients newly diagnosed with metastatic pancreatic ductal adenocarcinoma generally have poor survival, with heterogeneous rates of progression. Biomarkers that could predict progression and/or survival would help inform patients and providers as they make care decisions. In a previous retrospective study, we discovered that circulating thrombospondin-2 (THBS2) could, in combination with CA19-9, better distinguish patients with PDAC versus healthy controls. Here we evaluated whether THBS2 levels, previously not known to be prognostic, were associated with outcome in 68 patients at time of diagnosis of metastatic PDAC. Specifically, we interrogated the association of THBS2 level, alone or in combination with CA19-9, with progression by 90 days and/or survival to 180 days. The results indicate that elevated THBS2 levels alone, at the time of a metastatic PDAC diagnosis, can identify patients with a shorter time to death and thus help patients and providers when planning treatment.
Collapse
Affiliation(s)
- Phyllis A Gimotty
- Division of Biostatistics, Department of Biostatistics, Epidemiology, and Informatics, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,These authors contributed equally to this work
| | - Jacob E Till
- Division of Hematology-Oncology, Department of Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,These authors contributed equally to this work
| | - Shirsa Udgata
- Institute for Regenerative Medicine, Department of Cell and Developmental Biology, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Naomi Takenaka
- Institute for Regenerative Medicine, Department of Cell and Developmental Biology, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephanie S Yee
- Division of Hematology-Oncology, Department of Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael J LaRiviere
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mark H O'Hara
- Division of Hematology-Oncology, Department of Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kim A Reiss
- Division of Hematology-Oncology, Department of Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter O'Dwyer
- Division of Hematology-Oncology, Department of Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bryson W Katona
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel Herman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erica L Carpenter
- Division of Hematology-Oncology, Department of Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, Department of Cell and Developmental Biology, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
42
|
Wang Z, Zheng J, Pan R, Chen Y. Current status and future prospects of patient-derived induced pluripotent stem cells. Hum Cell 2021; 34:1601-1616. [PMID: 34378170 DOI: 10.1007/s13577-021-00592-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/06/2021] [Indexed: 12/28/2022]
Abstract
Induced pluripotent stem cells (iPSCs) are produced from adult somatic cells through reprogramming, which behave like embryonic stem cells (ESCs) but avoiding the controversial ethical issues from destruction of embryos. Since the first discovery in 2006 of four factors that are essential for maintaining the basic characteristics of ESC, global researches have rapidly improved the techniques for generating iPSCs. In this paper, we review new insights into patient-specific iPSC and summarize selected "disease-in-a-dish" examples that model the genetic and epigenetic variations of human diseases. Although more researches need to be done, studies have increasingly focused on the potential utility of iPSCs. The usability of iPSC technology is changing the fields of disease modeling and precision treatment. Aside from its potential use in regenerative cellular therapy for degenerative diseases, iPSC offers a range of new opportunities for the study of genetic human disorders, particularly, rare diseases. We believe that this rapidly moving field promises many more developments that will benefit modern medicine.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.,Department of Genetics, Institute of Genetics, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Jing Zheng
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Hangzhou, 310058, Zhejiang, China
| | - Ruolang Pan
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, 310012, Zhejiang, China.,Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Ye Chen
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China. .,Department of Genetics, Institute of Genetics, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China. .,Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
43
|
Roberts GA, Ozkan B, Gachulincová I, O'Dwyer MR, Hall-Ponsele E, Saxena M, Robinson PJ, Soufi A. Dissecting OCT4 defines the role of nucleosome binding in pluripotency. Nat Cell Biol 2021; 23:834-845. [PMID: 34354236 PMCID: PMC7611526 DOI: 10.1038/s41556-021-00727-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 07/01/2021] [Indexed: 12/19/2022]
Abstract
Pioneer transcription factors such as OCT4 can target silent genes embedded in nucleosome-dense regions. How nucleosome interaction enables transcription factors to target chromatin and determine cell identity remains elusive. Here, we systematically dissect OCT4 to show that nucleosome binding is encoded within the DNA-binding domain and yet can be uncoupled from free-DNA binding. Furthermore, accelerating the binding kinetics of OCT4 to DNA enhances nucleosome binding. In cells, uncoupling nucleosome binding diminishes the ability of OCT4 to individually access closed chromatin, while more dynamic nucleosome binding results in expansive genome scanning within closed chromatin. However, both uncoupling and enhancing nucleosome binding are detrimental to inducing pluripotency from differentiated cells. Remarkably, stable interactions between OCT4 and nucleosomes are continuously required for maintaining the accessibility of pluripotency enhancers in stem cells. Our findings reveal how the affinity and residence time of OCT4-nucleosome complexes modulate chromatin accessibility during cell fate changes and maintenance.
Collapse
Affiliation(s)
- Gareth A Roberts
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute of Stem Cell Research, University of Edinburgh, Edinburgh, UK
| | - Burak Ozkan
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute of Stem Cell Research, University of Edinburgh, Edinburgh, UK
| | - Ivana Gachulincová
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute of Stem Cell Research, University of Edinburgh, Edinburgh, UK
| | - Michael R O'Dwyer
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute of Stem Cell Research, University of Edinburgh, Edinburgh, UK
| | - Elisa Hall-Ponsele
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute of Stem Cell Research, University of Edinburgh, Edinburgh, UK
| | - Manoj Saxena
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
| | - Philip J Robinson
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
| | - Abdenour Soufi
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute of Stem Cell Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
44
|
Yao J, Yang M, Atteh L, Liu P, Mao Y, Meng W, Li X. A pancreas tumor derived organoid study: from drug screen to precision medicine. Cancer Cell Int 2021; 21:398. [PMID: 34315500 PMCID: PMC8314636 DOI: 10.1186/s12935-021-02044-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/24/2021] [Indexed: 12/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) one of the deadliest malignant tumor. Despite considerable progress in pancreatic cancer treatment in the past 10 years, PDAC mortality has shown no appreciable change, and systemic therapies for PDAC generally lack efficacy. Thus, developing biomarkers for treatment guidance is urgently required. This review focuses on pancreatic tumor organoids (PTOs), which can mimic the characteristics of the original tumor in vitro. As a powerful tool with several applications, PTOs represent a new strategy for targeted therapy in pancreatic cancer and contribute to the advancement of the field of personalized medicine.
Collapse
Affiliation(s)
- Jia Yao
- Key Laboratory of Biological Therapy and Regenerative Medicine Transformation of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Man Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Lawrence Atteh
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Pinyan Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Yongcui Mao
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Wenbo Meng
- Department of General Surgery, The First Hospital of Lanzhou University, The First Clinical Medical School of Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Xun Li
- Department of General Surgery, The First Hospital of Lanzhou University, The First Clinical Medical School of Lanzhou University, Lanzhou, 730000, Gansu, China
| |
Collapse
|
45
|
Heinrich MA, Mostafa AMRH, Morton JP, Hawinkels LJAC, Prakash J. Translating complexity and heterogeneity of pancreatic tumor: 3D in vitro to in vivo models. Adv Drug Deliv Rev 2021; 174:265-293. [PMID: 33895214 DOI: 10.1016/j.addr.2021.04.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive type of cancer with an overall survival rate of less than 7-8%, emphasizing the need for novel effective therapeutics against PDAC. However only a fraction of therapeutics which seemed promising in the laboratory environment will eventually reach the clinic. One of the main reasons behind this low success rate is the complex tumor microenvironment (TME) of PDAC, a highly fibrotic and dense stroma surrounding tumor cells, which supports tumor progression as well as increases the resistance against the treatment. In particular, the growing understanding of the PDAC TME points out a different challenge in the development of efficient therapeutics - a lack of biologically relevant in vitro and in vivo models that resemble the complexity and heterogeneity of PDAC observed in patients. The purpose and scope of this review is to provide an overview of the recent developments in different in vitro and in vivo models, which aim to recapitulate the complexity of PDAC in a laboratory environment, as well to describe how 3D in vitro models can be integrated into drug development pipelines that are already including sophisticated in vivo models. Hereby a special focus will be given on the complexity of in vivo models and the challenges in vitro models face to reach the same levels of complexity in a controllable manner. First, a brief introduction of novel developments in two dimensional (2D) models and ex vivo models is provided. Next, recent developments in three dimensional (3D) in vitro models are described ranging from spheroids, organoids, scaffold models, bioprinted models to organ-on-chip models including a discussion on advantages and limitations for each model. Furthermore, we will provide a detailed overview on the current PDAC in vivo models including chemically-induced models, syngeneic and xenogeneic models, highlighting hetero- and orthotopic, patient-derived tissues (PDX) models, and genetically engineered mouse models. Finally, we will provide a discussion on overall limitations of both, in vitro and in vivo models, and discuss necessary steps to overcome these limitations to reach an efficient drug development pipeline, as well as discuss possibilities to include novel in silico models in the process.
Collapse
Affiliation(s)
- Marcel A Heinrich
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE Enschede, the Netherlands
| | - Ahmed M R H Mostafa
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE Enschede, the Netherlands
| | - Jennifer P Morton
- Cancer Research UK, Beatson Institute, Garscube Estate, Switchback Rd, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Rd, Glasgow G61 1QH, UK
| | - Lukas J A C Hawinkels
- Department of Gastroenterology-Hepatology, Leiden University Medical Centre, PO-box 9600, 2300 RC Leiden, the Netherlands
| | - Jai Prakash
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE Enschede, the Netherlands.
| |
Collapse
|
46
|
Camolotto SA, Belova VK, Torre-Healy L, Vahrenkamp JM, Berrett KC, Conway H, Shea J, Stubben C, Moffitt R, Gertz J, Snyder EL. Reciprocal regulation of pancreatic ductal adenocarcinoma growth and molecular subtype by HNF4α and SIX1/4. Gut 2021; 70:900-914. [PMID: 32826305 PMCID: PMC7945295 DOI: 10.1136/gutjnl-2020-321316] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/17/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a 5-year survival of less than 5%. Transcriptomic analysis has identified two clinically relevant molecular subtypes of PDAC: classical and basal-like. The classical subtype is characterised by a more favourable prognosis and better response to chemotherapy than the basal-like subtype. The classical subtype also expresses higher levels of lineage specifiers that regulate endodermal differentiation, including the nuclear receptor hepatocyte nuclear factor 4 α (HNF4α). The objective of this study is to evaluate the role of HNF4α, SIX4 and SIX1 in regulating the growth and molecular subtype of PDAC. DESIGN We manipulate the expression of HNF4α, SIX4 and SIX1 in multiple in vitro and in vivo PDAC models. We determine the consequences of manipulating these genes on PDAC growth, differentiation and molecular subtype using functional assays, gene expression analysis and cross-species comparisons with human datasets. RESULTS We show that HNF4α restrains tumour growth and drives tumour cells toward an epithelial identity. Gene expression analysis of murine models and human tumours shows that HNF4α activates expression of genes associated with the classical subtype. HNF4α also directly represses SIX4 and SIX1, two mesodermal/neuronal lineage specifiers expressed in the basal-like subtype. Finally, SIX4 and SIX1 drive proliferation and regulate differentiation in HNF4α-negative PDAC. CONCLUSION Our data show that HNF4α regulates the growth and molecular subtype of PDAC by multiple mechanisms, including activation of the classical gene expression programme and repression of SIX4 and SIX1, which may represent novel dependencies of the basal-like subtype.
Collapse
Affiliation(s)
- Soledad A Camolotto
- Department of Pathology, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| | - Veronika K Belova
- Department of Pathology, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| | - Luke Torre-Healy
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, New York, USA
| | - Jeffery M Vahrenkamp
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| | - Kristofer C Berrett
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| | - Hannah Conway
- HCI Clinical Trials Operations, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| | - Jill Shea
- Department of Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Chris Stubben
- Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| | - Richard Moffitt
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, New York, USA
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| | - Eric L Snyder
- Department of Pathology, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| |
Collapse
|
47
|
Barati M, Akhondi M, Mousavi NS, Haghparast N, Ghodsi A, Baharvand H, Ebrahimi M, Hassani SN. Pluripotent Stem Cells: Cancer Study, Therapy, and Vaccination. Stem Cell Rev Rep 2021; 17:1975-1992. [PMID: 34115316 PMCID: PMC8193020 DOI: 10.1007/s12015-021-10199-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Pluripotent stem cells (PSCs) are promising tools for modern regenerative medicine applications because of their stemness properties, which include unlimited self-renewal and the ability to differentiate into all cell types in the body. Evidence suggests that a rare population of cells within a tumor, termed cancer stem cells (CSCs), exhibit stemness and phenotypic plasticity properties that are primarily responsible for resistance to chemotherapy, radiotherapy, metastasis, cancer development, and tumor relapse. Different therapeutic approaches that target CSCs have been developed for tumor eradication. RESULTS AND DISCUSSION In this review, we first provide an overview of different viewpoints about the origin of CSCs. Particular attention has been paid to views believe that CSCs are probably appeared through dysregulation of very small embryonic-like stem cells (VSELs) which reside in various tissues as the main candidate for tissue-specific stem cells. The expression of pluripotency markers in these two types of cells can strengthen the validity of this theory. In this regard, we discuss the common properties of CSCs and PSCs, and highlight the potential of PSCs in cancer studies, therapeutic applications, as well as educating the immune system against CSCs. CONCLUSION In conclusion, the resemblance of CSCs to PSCs can provide an appropriate source of CSC-specific antigens through cultivation of PSCs which brings to light promising ideas for prophylactic and therapeutic cancer vaccine development.
Collapse
Affiliation(s)
- Mojgan Barati
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Akhondi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Narges Sabahi Mousavi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Newsha Haghparast
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Asma Ghodsi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
48
|
Hassan G, Afify SM, Du J, Seno A, Seno M. Availability of Pluripotent Stem Cells from Normal Cells in Cancer Science. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Kim J. Cellular reprogramming to model and study epigenetic alterations in cancer. Stem Cell Res 2020; 49:102062. [PMID: 33202305 PMCID: PMC7768185 DOI: 10.1016/j.scr.2020.102062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
Cellular reprogramming to model human cancer. Cellular reprogramming to rewire epigenetic alterations in human cancer. Selective reactivation of malignancy in the cell lineage cancer is originated. Cellular reprogramming to recapitulate human cancer progression.
Although genetic mutations are required for cancer development, reversible non-genetic alterations also play a pivotal role in cancer progression. Failure of well-orchestrated gene regulation by chromatin states and master transcription factors can be one such non-genetic etiology for cancer development. Master transcription factor-mediated cellular reprogramming of human cancer cells allows us to model cancer progression. Here I cover the history and recent advances in reprogramming cancer cells, followed by lessons from cellular reprogramming of normal cells that may apply to cancer. Lastly, I share my perspective on cellular reprogramming for studying epigenetic alterations that have occurred in tumorigenesis, discuss the current limitations, and propose ways to overcome the obstacles in the reprogramming of cancer.
Collapse
Affiliation(s)
- Jungsun Kim
- Department of Molecular and Medical Genetics, Cancer Early Detection Advanced Research Center, Knight Cancer Institute (Cancer Biology Research Program), Oregon Health & Science University School of Medicine, KCRB 5001.51, 2720 SW Moody Ave., Portland, OR 97201, United States.
| |
Collapse
|
50
|
Granados K, Poelchen J, Novak D, Utikal J. Cellular Reprogramming-A Model for Melanoma Cellular Plasticity. Int J Mol Sci 2020; 21:E8274. [PMID: 33167306 PMCID: PMC7663830 DOI: 10.3390/ijms21218274] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 12/14/2022] Open
Abstract
Cellular plasticity of cancer cells is often associated with phenotypic heterogeneity and drug resistance and thus remains a major challenge for the treatment of melanoma and other types of cancer. Melanoma cells have the capacity to switch their phenotype during tumor progression, from a proliferative and differentiated phenotype to a more invasive and dedifferentiated phenotype. However, the molecular mechanisms driving this phenotype switch are not yet fully understood. Considering that cellular heterogeneity within the tumor contributes to the high plasticity typically observed in melanoma, it is crucial to generate suitable models to investigate this phenomenon in detail. Here, we discuss the use of complete and partial reprogramming into induced pluripotent cancer (iPC) cells as a tool to obtain new insights into melanoma cellular plasticity. We consider this a relevant topic due to the high plasticity of melanoma cells and its association with a strong resistance to standard anticancer treatments.
Collapse
Affiliation(s)
- Karol Granados
- Skin Cancer Unit, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany; (K.G.); (J.P.); (D.N.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, D-68135 Mannheim, Germany
- Department of Biochemistry, School of Medicine, University of Costa Rica (UCR), Rodrigo Facio Campus, San Pedro Montes Oca, San Jose 2060, Costa Rica
| | - Juliane Poelchen
- Skin Cancer Unit, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany; (K.G.); (J.P.); (D.N.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, D-68135 Mannheim, Germany
| | - Daniel Novak
- Skin Cancer Unit, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany; (K.G.); (J.P.); (D.N.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, D-68135 Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany; (K.G.); (J.P.); (D.N.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, D-68135 Mannheim, Germany
| |
Collapse
|