1
|
Hu H, Hu J, Chen Z, Yang K, Zhu Z, Hao Y, Zhang Z, Li W, Peng Z, Cao Y, Sun X, Zhang F, Chi Q, Ding G, Liang W. RBBP6-Mediated ERRα Degradation Contributes to Mitochondrial Injury in Renal Tubular Cells in Diabetic Kidney Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2405153. [PMID: 39441040 DOI: 10.1002/advs.202405153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Diabetic Kidney Disease (DKD), a major precursor to end-stage renal disease, involves mitochondrial dysfunction in proximal renal tubular cells (PTCs), contributing to its pathogenesis. Estrogen-related receptor α (ERRα) is essential for mitochondrial integrity in PTCs, yet its regulation in DKD is poorly understood. This study investigates ERRα expression and its regulatory mechanisms in DKD, assessing its therapeutic potential. Using genetic, biochemical, and cellular approaches, ERRα expression Was examined in human DKD specimens and DKD mouse models. We identified the E3 ubiquitin ligase retinoblastoma binding protein 6 (RBBP6) as a regulator of ERRα, promoting its degradation through K48-linked polyubiquitination at the K100 residue. This degradation pathway significantly contributed to mitochondrial injury in PTCs of DKD models. Notably, conditional ERRα overexpression or RBBP6 inhibition markedly reduced mitochondrial damage in diabetic mice, highlighting ERRα's protective role in maintaining mitochondrial integrity. The interaction between RBBP6 and ERRα opens new therapeutic avenues, suggesting that modulating RBBP6-ERRα interactions could be a strategy for preserving mitochondrial function and slowing DKD progression.
Collapse
Affiliation(s)
- Hongtu Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Clinical Research Center of Kidney Disease, Wuhan, 430060, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Clinical Research Center of Kidney Disease, Wuhan, 430060, China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Clinical Research Center of Kidney Disease, Wuhan, 430060, China
| | - Keju Yang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443000, China
| | - Zijing Zhu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Clinical Research Center of Kidney Disease, Wuhan, 430060, China
| | - Yiqun Hao
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Clinical Research Center of Kidney Disease, Wuhan, 430060, China
| | - Zongwei Zhang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Clinical Research Center of Kidney Disease, Wuhan, 430060, China
| | - Weiwei Li
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Clinical Research Center of Kidney Disease, Wuhan, 430060, China
| | - Zhuan Peng
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Clinical Research Center of Kidney Disease, Wuhan, 430060, China
| | - Yun Cao
- Department of Nephrology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical College), Haikou, 100053, China
| | - Xiaoling Sun
- Ultrastructural Pathology Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Fangcheng Zhang
- Ultrastructural Pathology Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qingjia Chi
- Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan, 430070, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Clinical Research Center of Kidney Disease, Wuhan, 430060, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Clinical Research Center of Kidney Disease, Wuhan, 430060, China
| |
Collapse
|
2
|
Lin P, Chen W, Long Z, Yu J, Yang J, Xia Z, Wu Q, Min X, Tang J, Cui Y, Liu F, Wang C, Zheng J, Li W, Rich JN, Li L, Xie Q. RBBP6 maintains glioblastoma stem cells through CPSF3-dependent alternative polyadenylation. Cell Discov 2024; 10:32. [PMID: 38503731 PMCID: PMC10951364 DOI: 10.1038/s41421-024-00654-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/29/2024] [Indexed: 03/21/2024] Open
Abstract
Glioblastoma is one of the most lethal malignant cancers, displaying striking intratumor heterogeneity, with glioblastoma stem cells (GSCs) contributing to tumorigenesis and therapeutic resistance. Pharmacologic modulators of ubiquitin ligases and deubiquitinases are under development for cancer and other diseases. Here, we performed parallel in vitro and in vivo CRISPR/Cas9 knockout screens targeting human ubiquitin E3 ligases and deubiquitinases, revealing the E3 ligase RBBP6 as an essential factor for GSC maintenance. Targeting RBBP6 inhibited GSC proliferation and tumor initiation. Mechanistically, RBBP6 mediated K63-linked ubiquitination of Cleavage and Polyadenylation Specific Factor 3 (CPSF3), which stabilized CPSF3 to regulate alternative polyadenylation events. RBBP6 depletion induced shortening of the 3'UTRs of MYC competing-endogenous RNAs to release miR-590-3p from shortened UTRs, thereby decreasing MYC expression. Targeting CPSF3 with a small molecular inhibitor (JTE-607) reduces GSC viability and inhibits in vivo tumor growth. Collectively, RBBP6 maintains high MYC expression in GSCs through regulation of CPSF3-dependent alternative polyadenylation, providing a potential therapeutic paradigm for glioblastoma.
Collapse
Affiliation(s)
- Peng Lin
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Wenyan Chen
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Zhilin Long
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jichuan Yu
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jiayao Yang
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Zhen Xia
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Qiulian Wu
- University of Pittsburgh Medical Center Hillman Cancer Center, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xinyu Min
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Jing Tang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Ya Cui
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Fuyi Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chun Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Jeremy N Rich
- University of Pittsburgh Medical Center Hillman Cancer Center, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Lei Li
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China.
| | - Qi Xie
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Güllülü Ö, Mayer BE, Toplek FB. Linking Gene Fusions to Bone Marrow Failure and Malignant Transformation in Dyskeratosis Congenita. Int J Mol Sci 2024; 25:1606. [PMID: 38338888 PMCID: PMC10855549 DOI: 10.3390/ijms25031606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Dyskeratosis Congenita (DC) is a multisystem disorder intrinsically associated with telomere dysfunction, leading to bone marrow failure (BMF). Although the pathology of DC is largely driven by mutations in telomere-associated genes, the implications of gene fusions, which emerge due to telomere-induced genomic instability, remain unexplored. We meticulously analyzed gene fusions in RNA-Seq data from DC patients to provide deeper insights into DC's progression. The most significant DC-specific gene fusions were subsequently put through in silico assessments to ascertain biophysical and structural attributes, including charge patterning, inherent disorder, and propensity for self-association. Selected candidates were then analyzed using deep learning-powered structural predictions and molecular dynamics simulations to gauge their potential for forming higher-order oligomers. Our exploration revealed that genes participating in fusion events play crucial roles in upholding genomic stability, facilitating hematopoiesis, and suppressing tumors. Notably, our analysis spotlighted a particularly disordered polyampholyte fusion protein that exhibits robust higher-order oligomerization dynamics. To conclude, this research underscores the potential significance of several high-confidence gene fusions in the progression of BMF in DC, particularly through the dysregulation of genomic stability, hematopoiesis, and tumor suppression. Additionally, we propose that these fusion proteins might hold a detrimental role, specifically in inducing proteotoxicity-driven hematopoietic disruptions.
Collapse
Affiliation(s)
- Ömer Güllülü
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Benjamin E. Mayer
- Computational Biology & Simulation, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Fran Bačić Toplek
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| |
Collapse
|
4
|
Schmit MM, Baxley RM, Wang L, Hinderlie P, Kaufman M, Simon E, Raju A, Miller JS, Bielinsky AK. A critical threshold of MCM10 is required to maintain genome stability during differentiation of induced pluripotent stem cells into natural killer cells. Open Biol 2024; 14:230407. [PMID: 38262603 PMCID: PMC10805602 DOI: 10.1098/rsob.230407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/23/2023] [Indexed: 01/25/2024] Open
Abstract
Natural killer (NK) cell deficiency (NKD) is a rare disease in which NK cell function is reduced, leaving affected individuals susceptible to repeated viral infections and cancer. Recently, a patient with NKD was identified carrying compound heterozygous variants of MCM10 (minichromosome maintenance protein 10), an essential gene required for DNA replication, that caused a significant decrease in the amount of functional MCM10. NKD in this patient presented as loss of functionally mature late-stage NK cells. To understand how MCM10 deficiency affects NK cell development, we generated MCM10 heterozygous (MCM10+/-) induced pluripotent stem cell (iPSC) lines. Analyses of these cell lines demonstrated that MCM10 was haploinsufficient, similar to results in other human cell lines. Reduced levels of MCM10 in mutant iPSCs was associated with impaired clonogenic survival and increased genomic instability, including micronuclei formation and telomere erosion. The severity of these phenotypes correlated with the extent of MCM10 depletion. Significantly, MCM10+/- iPSCs displayed defects in NK cell differentiation, exhibiting reduced yields of hematopoietic stem cells (HSCs). Although MCM10+/- HSCs were able to give rise to lymphoid progenitors, these did not generate mature NK cells. The lack of mature NK cells coincided with telomere erosion, suggesting that NKD caused by these MCM10 variants arose from the accumulation of genomic instability including degradation of chromosome ends.
Collapse
Affiliation(s)
- Megan M. Schmit
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Ryan M. Baxley
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Liangjun Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Peter Hinderlie
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Marissa Kaufman
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Emily Simon
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Anjali Raju
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Jeffrey S. Miller
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
5
|
Deng Y, Huang H, Shi J, Jin H. Identification of Candidate Genes in Breast Cancer Induced by Estrogen Plus Progestogens Using Bioinformatic Analysis. Int J Mol Sci 2022; 23:ijms231911892. [PMID: 36233194 PMCID: PMC9569986 DOI: 10.3390/ijms231911892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Menopausal hormone therapy (MHT) was widely used to treat menopause-related symptoms in menopausal women. However, MHT therapies were controversial with the increased risk of breast cancer because of different estrogen and progestogen combinations, and the molecular basis behind this phenomenon is currently not understood. To address this issue, we identified differentially expressed genes (DEGs) between the estrogen plus progestogens treatment (EPT) and estrogen treatment (ET) using the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) data. As a result, a total of 96 upregulated DEGs were first identified. Seven DEGs related to the cell cycle (CCNE2, CDCA5, RAD51, TCF19, KNTC1, MCM10, and NEIL3) were validated by RT-qPCR. Specifically, these seven DEGs were increased in EPT compared to ET (p < 0.05) and had higher expression levels in breast cancer than adjacent normal tissues (p < 0.05). Next, we found that estrogen receptor (ER)-positive breast cancer patients with a higher CNNE2 expression have a shorter overall survival time (p < 0.05), while this effect was not observed in the other six DEGs (p > 0.05). Interestingly, the molecular docking results showed that CCNE2 might bind to 17β-estradiol (−6.791 kcal/mol), progesterone (−6.847 kcal/mol), and medroxyprogesterone acetate (−6.314 kcal/mol) with a relatively strong binding affinity, respectively. Importantly, CNNE2 protein level could be upregulated with EPT and attenuated by estrogen receptor antagonist, acolbifene and had interactions with cancer driver genes (AKT1 and KRAS) and high mutation frequency gene (TP53 and PTEN) in breast cancer patients. In conclusion, the current study showed that CCNE2, CDCA5, RAD51, TCF19, KNTC1, MCM10, and NEIL3 might contribute to EPT-related tumorigenesis in breast cancer, with CCNE2 might be a sensitive risk indicator of breast cancer risk in women using MHT.
Collapse
Affiliation(s)
- Yu Deng
- Department of Obstetrics and Gynecology, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China
| | - He Huang
- Department of Obstetrics and Gynecology, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China
| | - Jiangcheng Shi
- School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Hongyan Jin
- Department of Obstetrics and Gynecology, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China
- Correspondence:
| |
Collapse
|
6
|
Marchal C, Defossez PA, Miotto B. Context-dependent CpG methylation directs cell-specific binding of transcription factor ZBTB38. Epigenetics 2022; 17:2122-2143. [PMID: 36000449 DOI: 10.1080/15592294.2022.2111135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
DNA methylation on CpGs regulates transcription in mammals, both by decreasing the binding of methylation-repelled factors and by increasing the binding of methylation-attracted factors. Among the latter, zinc finger proteins have the potential to bind methylated CpGs in a sequence-specific context. The protein ZBTB38 is unique in that it has two independent sets of zinc fingers, which recognize two different methylated consensus sequences in vitro. Here, we identify the binding sites of ZBTB38 in a human cell line, and show that they contain the two methylated consensus sequences identified in vitro. In addition, we show that the distribution of ZBTB38 sites is highly unusual: while 10% of the ZBTB38 sites are also bound by CTCF, the other 90% of sites reside in closed chromatin and are not bound by any of the other factors mapped in our model cell line. Finally, a third of ZBTB38 sites are found upstream of long and active CpG islands. Our work therefore validates ZBTB38 as a methyl-DNA binder in vivo and identifies its unique distribution in the genome.
Collapse
Affiliation(s)
- Claire Marchal
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | | | - Benoit Miotto
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| |
Collapse
|
7
|
Kurokawa S, Yoneda M, Ogawa Y, Honda Y, Kessoku T, Imajo K, Saito S, Nakajima A, Hotta K. Two differentially methylated region networks in nonalcoholic fatty liver disease, viral hepatitis, and hepatocellular carcinoma. BMC Gastroenterol 2022; 22:278. [PMID: 35655171 PMCID: PMC9164838 DOI: 10.1186/s12876-022-02360-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/30/2022] [Indexed: 11/23/2022] Open
Abstract
Background We previously reported that two differentially methylated region (DMR) networks identified by DMR and co-methylation analyses are strongly correlated with the fibrosis stages of nonalcoholic fatty liver disease (NAFLD). In the current study, we examined these DMR networks in viral hepatitis and hepatocellular carcinoma (HCC). Methods We performed co-methylation analysis of DMRs using a normal dataset (GSE48325), two NAFLD datasets (JGAS000059 and GSE31803), and two HCC datasets (GSE89852 and GSE56588). The dataset GSE60753 was used for validation. Results One DMR network was clearly observed in viral hepatitis and two HCC populations. Methylation levels of genes in this network were higher in viral hepatitis and cirrhosis, and lower in HCC. Fatty acid binding protein 1 (FABP1), serum/glucocorticoid regulated kinase 2 (SGK2), and hepatocyte nuclear factor 4 α (HNF4A) were potential hub genes in this network. Increased methylation levels of the FABP1 gene may be correlated with reduced protection of hepatocytes from oxidative metabolites in NAFLD and viral hepatitis. The decreased methylation levels of SGK2 may facilitate the growth and proliferation of HCC cells. Decreased methylation levels of HNF4A in HCC may be associated with tumorigenesis. The other DMR network was observed in NAFLD, but not in viral hepatitis or HCC. This second network included genes involved in transcriptional regulation, cytoskeleton organization, and cellular proliferation, which are specifically related to fibrosis and/or tumorigenesis in NAFLD. Conclusions Our results suggest that one DMR network was associated with fibrosis and tumorigenesis in both NAFLD and viral hepatitis, while the other network was specifically associated with NAFLD progression. Furthermore, FABP1, SGK2, and HNF4A are potential candidate targets for the prevention and treatment of HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-022-02360-4.
Collapse
|
8
|
Yamaguchi K, Chen X, Oji A, Hiratani I, Defossez PA. Large-Scale Chromatin Rearrangements in Cancer. Cancers (Basel) 2022; 14:cancers14102384. [PMID: 35625988 PMCID: PMC9139990 DOI: 10.3390/cancers14102384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cancers have many genetic mutations such as nucleotide changes, deletions, amplifications, and chromosome gains or losses. Some of these genetic alterations directly contribute to the initiation and progression of tumors. In parallel to these genetic changes, cancer cells acquire modifications to their chromatin landscape, i.e., to the marks that are carried by DNA and the histone proteins it is associated with. These “epimutations” have consequences for gene expression and genome stability, and also contribute to tumoral initiation and progression. Some of these chromatin changes are very local, affecting just one or a few genes. In contrast, some chromatin alterations observed in cancer are more widespread and affect a large part of the genome. In this review, we present different types of large-scale chromatin rearrangements in cancer, explain how they may occur, and why they are relevant for cancer diagnosis and treatment. Abstract Epigenetic abnormalities are extremely widespread in cancer. Some of them are mere consequences of transformation, but some actively contribute to cancer initiation and progression; they provide powerful new biological markers, as well as new targets for therapies. In this review, we examine the recent literature and focus on one particular aspect of epigenome deregulation: large-scale chromatin changes, causing global changes of DNA methylation or histone modifications. After a brief overview of the one-dimension (1D) and three-dimension (3D) epigenome in healthy cells and of its homeostasis mechanisms, we use selected examples to describe how many different events (mutations, changes in metabolism, and infections) can cause profound changes to the epigenome and fuel cancer. We then present the consequences for therapies and briefly discuss the role of single-cell approaches for the future progress of the field.
Collapse
Affiliation(s)
- Kosuke Yamaguchi
- UMR7216 Epigenetics and Cell Fate, Université Paris Cité, CNRS, F-75006 Paris, France; (K.Y.); (X.C.)
| | - Xiaoying Chen
- UMR7216 Epigenetics and Cell Fate, Université Paris Cité, CNRS, F-75006 Paris, France; (K.Y.); (X.C.)
| | - Asami Oji
- RIKEN Center for Biosystems Dynamics Research (RIKEN BDR), Kobe 650-0047, Japan; (A.O.); (I.H.)
| | - Ichiro Hiratani
- RIKEN Center for Biosystems Dynamics Research (RIKEN BDR), Kobe 650-0047, Japan; (A.O.); (I.H.)
| | - Pierre-Antoine Defossez
- UMR7216 Epigenetics and Cell Fate, Université Paris Cité, CNRS, F-75006 Paris, France; (K.Y.); (X.C.)
- Correspondence: ; Tel.: +33-157278916
| |
Collapse
|
9
|
Nakatani T, Lin J, Ji F, Ettinger A, Pontabry J, Tokoro M, Altamirano-Pacheco L, Fiorentino J, Mahammadov E, Hatano Y, Van Rechem C, Chakraborty D, Ruiz-Morales ER, Arguello Pascualli PY, Scialdone A, Yamagata K, Whetstine JR, Sadreyev RI, Torres-Padilla ME. DNA replication fork speed underlies cell fate changes and promotes reprogramming. Nat Genet 2022; 54:318-327. [PMID: 35256805 PMCID: PMC8920892 DOI: 10.1038/s41588-022-01023-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/27/2022] [Indexed: 01/29/2023]
Abstract
Totipotency emerges in early embryogenesis, but its molecular underpinnings remain poorly characterized. In the present study, we employed DNA fiber analysis to investigate how pluripotent stem cells are reprogrammed into totipotent-like 2-cell-like cells (2CLCs). We show that totipotent cells of the early mouse embryo have slow DNA replication fork speed and that 2CLCs recapitulate this feature, suggesting that fork speed underlies the transition to a totipotent-like state. 2CLCs emerge concomitant with DNA replication and display changes in replication timing (RT), particularly during the early S-phase. RT changes occur prior to 2CLC emergence, suggesting that RT may predispose to gene expression changes and consequent reprogramming of cell fate. Slowing down replication fork speed experimentally induces 2CLCs. In vivo, slowing fork speed improves the reprogramming efficiency of somatic cell nuclear transfer. Our data suggest that fork speed regulates cellular plasticity and that remodeling of replication features leads to changes in cell fate and reprogramming. Totipotent cells in mouse embryos and 2-cell-like cells have slow DNA replication fork speed. Perturbations that slow replication fork speed promote 2-cell-like cell emergence and improve somatic cell nuclear transfer reprogramming and formation of induced pluripotent stem cell colonies.
Collapse
|
10
|
Parsons S, Stevens A, Whatmore A, Clayton PE, Murray PG. Role of ZBTB38 Genotype and Expression in Growth and Response to Recombinant Human Growth Hormone Treatment. J Endocr Soc 2022; 6:bvac006. [PMID: 35178492 PMCID: PMC8845121 DOI: 10.1210/jendso/bvac006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 11/19/2022] Open
Abstract
CONTEXT Single-nucleotide polymorphisms (SNPs) in ZBTB38 have been associated with idiopathic short stature (ISS) and adult height. OBJECTIVE This study sought to (a) characterize the phenotype of ISS patients and their response to recombinant human growth hormone (rhGH) by ZBTB38 SNP genotype; (b) describe the relationship of ZBTB38 expression with normal growth; and (c) describe the in vitro effects of ZBTB38 knockdown on cell proliferation and MCM10 expression. METHODS The genotype-phenotype relationship of rs6764769 and rs724016 were explored in 261 ISS patients and effects of genotype on response to rhGH were assessed in 93 patients treated with rhGH. The relationship between age and ZBTB38 expression was assessed in 87 normal children and young adults. Knockdown of ZBTB38 in SiHA cells was achieved with siRNAs and cell proliferation assessed with a WST-8 assay. RESULTS We found that rs6764769 and rs724016 are in linkage disequilibrium. The rs724016 GG genotype was associated with lower birth length (P = 0.01) and a lower change in height SDS over the first year of treatment (P = 0.02). ZBTB38 expression was positively correlated with age (P < 0.001). siRNA-mediated knockdown of ZBTB38 resulted in increased cell proliferation at 72 and 96 hours posttransfection but did not alter expression of MCM10. CONCLUSIONS SNPs within ZBTB38 associated with ISS are linked to higher birth size within a cohort of ISS patients and a better response to rhGH therapy while ZBTB38 expression is positively related to age.
Collapse
Affiliation(s)
- Samuel Parsons
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Adam Stevens
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Andrew Whatmore
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Peter E Clayton
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9WL, UK
- Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester M13 9WL, UK
| | - Philip G Murray
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9WL, UK
- Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester M13 9WL, UK
| |
Collapse
|
11
|
Proteins That Read DNA Methylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:269-293. [DOI: 10.1007/978-3-031-11454-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Chen TH, Yang CC, Luo KH, Dai CY, Chuang YC, Chuang HY. The Mediation Effects of Aluminum in Plasma and Dipeptidyl Peptidase Like Protein 6 (DPP6) Polymorphism on Renal Function via Genome-Wide Typing Association. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10484. [PMID: 34639784 PMCID: PMC8507883 DOI: 10.3390/ijerph181910484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/03/2021] [Indexed: 11/30/2022]
Abstract
Aluminum (Al) toxicity is related to renal failure and the failure of other systems. Although there were some genome-wide association studies (GWAS) in Australia and England, there were no GWAS about Han Chinese to our knowledge. Thus, this research focused on using whole genomic genotypes from the Taiwan Biobank for exploring the association between Al concentrations in plasma and renal function. Participants, who underwent questionnaire interviews, biomarkers, and genotyping, were from the Taiwan Biobank database. Then, we measured their plasma Al concentrations with ICP-MS in the laboratory at Kaohsiung Medical University. We used this data to link genome-wide association (GWA) tests while looking for candidate genes and associated plasma Al concentration to renal function. Furthermore, we examined the path relationship between Single Nucleotide Polymorphisms (SNPs), Al concentrations, and estimated glomerular filtration rates (eGFR) through the mediation analysis with 3000 replication bootstraps. Following the principles of GWAS, we focused on three SNPs within the dipeptidyl peptidase-like protein 6 (DPP6) gene in chromosome 7, rs10224371, rs2316242, and rs10268004, respectively. The results of the mediation analysis showed that all of the selected SNPs have indirectly affected eGFR through a mediation of Al concentrations. Our analysis revealed the association between DPP6 SNPs, plasma Al concentrations, and eGFR. However, further longitudinal studies and research on mechanism are in need. Our analysis was still be the first study that explored the association between the DPP6, SNPs, and Al in plasma affecting eGFR.
Collapse
Affiliation(s)
- Ting-Hao Chen
- Department of Public Health and Environmental Medicine, Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (T.-H.C.); (K.-H.L.)
| | - Chen-Cheng Yang
- Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-C.Y.); (C.-Y.D.)
| | - Kuei-Hau Luo
- Department of Public Health and Environmental Medicine, Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (T.-H.C.); (K.-H.L.)
| | - Chia-Yen Dai
- Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-C.Y.); (C.-Y.D.)
| | - Yao-Chung Chuang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Hung-Yi Chuang
- Department of Public Health and Environmental Medicine, Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (T.-H.C.); (K.-H.L.)
- Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-C.Y.); (C.-Y.D.)
| |
Collapse
|
13
|
Ye Z, Xu S, Shi Y, Bacolla A, Syed A, Moiani D, Tsai CL, Shen Q, Peng G, Leonard PG, Jones DE, Wang B, Tainer JA, Ahmed Z. GRB2 enforces homology-directed repair initiation by MRE11. SCIENCE ADVANCES 2021; 7:7/32/eabe9254. [PMID: 34348893 PMCID: PMC8336959 DOI: 10.1126/sciadv.abe9254] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/17/2021] [Indexed: 05/10/2023]
Abstract
DNA double-strand break (DSB) repair is initiated by MRE11 nuclease for both homology-directed repair (HDR) and alternative end joining (Alt-EJ). Here, we found that GRB2, crucial to timely proliferative RAS/MAPK pathway activation, unexpectedly forms a biophysically validated GRB2-MRE11 (GM) complex for efficient HDR initiation. GRB2-SH2 domain targets the GM complex to phosphorylated H2AX at DSBs. GRB2 K109 ubiquitination by E3 ubiquitin ligase RBBP6 releases MRE11 promoting HDR. RBBP6 depletion results in prolonged GM complex and HDR defects. GRB2 knockout increased MRE11-XRCC1 complex and Alt-EJ. Reconstitution with separation-of-function GRB2 mutant caused HDR deficiency and synthetic lethality with PARP inhibitor. Cell and cancer genome analyses suggest biomarkers of low GRB2 for noncanonical HDR deficiency and high MRE11 and GRB2 expression for worse survival in HDR-proficient patients. These findings establish GRB2's role in binding, targeting, and releasing MRE11 to promote efficient HDR over Alt-EJ DSB repair, with implications for genome stability and cancer biology.
Collapse
Affiliation(s)
- Zu Ye
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shengfeng Xu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yin Shi
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, China
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Albino Bacolla
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Aleem Syed
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Davide Moiani
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chi-Lin Tsai
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qiang Shen
- Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paul G Leonard
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, TX 77054, USA
| | - Darin E Jones
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Bin Wang
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John A Tainer
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Zamal Ahmed
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
14
|
Tudor M, Gilbert A, Lepleux C, Temelie M, Hem S, Armengaud J, Brotin E, Haghdoost S, Savu D, Chevalier F. A Proteomic Study Suggests Stress Granules as New Potential Actors in Radiation-Induced Bystander Effects. Int J Mol Sci 2021; 22:ijms22157957. [PMID: 34360718 PMCID: PMC8347418 DOI: 10.3390/ijms22157957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 01/07/2023] Open
Abstract
Besides the direct effects of radiations, indirect effects are observed within the surrounding non-irradiated area; irradiated cells relay stress signals in this close proximity, inducing the so-called radiation-induced bystander effect. These signals received by neighboring unirradiated cells induce specific responses similar with those of direct irradiated cells. To understand the cellular response of bystander cells, we performed a 2D gel-based proteomic study of the chondrocytes receiving the conditioned medium of low-dose irradiated chondrosarcoma cells. The conditioned medium was directly analyzed by mass spectrometry in order to identify candidate bystander factors involved in the signal transmission. The proteomic analysis of the bystander chondrocytes highlighted 20 proteins spots that were significantly modified at low dose, implicating several cellular mechanisms, such as oxidative stress responses, cellular motility, and exosomes pathways. In addition, the secretomic analysis revealed that the abundance of 40 proteins in the conditioned medium of 0.1 Gy irradiated chondrosarcoma cells was significantly modified, as compared with the conditioned medium of non-irradiated cells. A large cluster of proteins involved in stress granules and several proteins involved in the cellular response to DNA damage stimuli were increased in the 0.1 Gy condition. Several of these candidates and cellular mechanisms were confirmed by functional analysis, such as 8-oxodG quantification, western blot, and wound-healing migration tests. Taken together, these results shed new lights on the complexity of the radiation-induced bystander effects and the large variety of the cellular and molecular mechanisms involved, including the identification of a new potential actor, namely the stress granules.
Collapse
Affiliation(s)
- Mihaela Tudor
- Department of Life and Environmental Physics, HoriaHulubei National Institute of Physics and Nuclear Engineering, 077125 Magurele, Romania; (M.T.); (M.T.); (D.S.)
- Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Antoine Gilbert
- UMR6252 CIMAP, Team Applications in Radiobiology with Accelerated Ions, CEA-CNRS-ENSICAEN-Université de Caen Normandie, 14000 Caen, France; (A.G.); (C.L.); (S.H.)
| | - Charlotte Lepleux
- UMR6252 CIMAP, Team Applications in Radiobiology with Accelerated Ions, CEA-CNRS-ENSICAEN-Université de Caen Normandie, 14000 Caen, France; (A.G.); (C.L.); (S.H.)
| | - Mihaela Temelie
- Department of Life and Environmental Physics, HoriaHulubei National Institute of Physics and Nuclear Engineering, 077125 Magurele, Romania; (M.T.); (M.T.); (D.S.)
| | - Sonia Hem
- BPMP, Montpellier University, CNRS, INRAE, Institut Agro, 34000 Montpellier, France;
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France;
| | - Emilie Brotin
- ImpedanCELL Platform, Federative Structure 4206 ICORE, NormandieUniv, UNICAEN, Inserm U1086 ANTICIPE, Biology and Innovative Therapeutics for Ovarian Cancers Group (BioTICLA), Comprehensive Cancer Center F. Baclesse, 14000 Caen, France;
| | - Siamak Haghdoost
- UMR6252 CIMAP, Team Applications in Radiobiology with Accelerated Ions, CEA-CNRS-ENSICAEN-Université de Caen Normandie, 14000 Caen, France; (A.G.); (C.L.); (S.H.)
| | - Diana Savu
- Department of Life and Environmental Physics, HoriaHulubei National Institute of Physics and Nuclear Engineering, 077125 Magurele, Romania; (M.T.); (M.T.); (D.S.)
| | - François Chevalier
- UMR6252 CIMAP, Team Applications in Radiobiology with Accelerated Ions, CEA-CNRS-ENSICAEN-Université de Caen Normandie, 14000 Caen, France; (A.G.); (C.L.); (S.H.)
- Correspondence: ; Tel.: +33-(0)231-454-564
| |
Collapse
|
15
|
Baxley RM, Leung W, Schmit MM, Matson JP, Yin L, Oram MK, Wang L, Taylor J, Hedberg J, Rogers CB, Harvey AJ, Basu D, Taylor JC, Pagnamenta AT, Dreau H, Craft J, Ormondroyd E, Watkins H, Hendrickson EA, Mace EM, Orange JS, Aihara H, Stewart GS, Blair E, Cook JG, Bielinsky AK. Bi-allelic MCM10 variants associated with immune dysfunction and cardiomyopathy cause telomere shortening. Nat Commun 2021; 12:1626. [PMID: 33712616 PMCID: PMC7955084 DOI: 10.1038/s41467-021-21878-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 02/11/2021] [Indexed: 12/22/2022] Open
Abstract
Minichromosome maintenance protein 10 (MCM10) is essential for eukaryotic DNA replication. Here, we describe compound heterozygous MCM10 variants in patients with distinctive, but overlapping, clinical phenotypes: natural killer (NK) cell deficiency (NKD) and restrictive cardiomyopathy (RCM) with hypoplasia of the spleen and thymus. To understand the mechanism of MCM10-associated disease, we modeled these variants in human cell lines. MCM10 deficiency causes chronic replication stress that reduces cell viability due to increased genomic instability and telomere erosion. Our data suggest that loss of MCM10 function constrains telomerase activity by accumulating abnormal replication fork structures enriched with single-stranded DNA. Terminally-arrested replication forks in MCM10-deficient cells require endonucleolytic processing by MUS81, as MCM10:MUS81 double mutants display decreased viability and accelerated telomere shortening. We propose that these bi-allelic variants in MCM10 predispose specific cardiac and immune cell lineages to prematurely arrest during differentiation, causing the clinical phenotypes observed in both NKD and RCM patients.
Collapse
Affiliation(s)
- Ryan M Baxley
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wendy Leung
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Megan M Schmit
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jacob Peter Matson
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Lulu Yin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Marissa K Oram
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Liangjun Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - John Taylor
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jack Hedberg
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Colette B Rogers
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Adam J Harvey
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Debashree Basu
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jenny C Taylor
- Wellcome Centre Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Oxford NIHR Biomedical Research Centre, Oxford, OX3 7BN, UK
| | - Alistair T Pagnamenta
- Wellcome Centre Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Oxford NIHR Biomedical Research Centre, Oxford, OX3 7BN, UK
| | - Helene Dreau
- Department of Haematology, University of Oxford, Oxford, OX3 7BN, UK
| | - Jude Craft
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Elizabeth Ormondroyd
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Emily M Mace
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Jordan S Orange
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Edward Blair
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jeanette Gowen Cook
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
16
|
Dar AA, Sawada K, Dybas JM, Moser EK, Lewis EL, Park E, Fazelinia H, Spruce LA, Ding H, Seeholzer SH, Oliver PM. The E3 ubiquitin ligase Cul4b promotes CD4+ T cell expansion by aiding the repair of damaged DNA. PLoS Biol 2021; 19:e3001041. [PMID: 33524014 PMCID: PMC7888682 DOI: 10.1371/journal.pbio.3001041] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 02/17/2021] [Accepted: 01/15/2021] [Indexed: 12/26/2022] Open
Abstract
The capacity for T cells to become activated and clonally expand during pathogen invasion is pivotal for protective immunity. Our understanding of how T cell receptor (TCR) signaling prepares cells for this rapid expansion remains limited. Here we provide evidence that the E3 ubiquitin ligase Cullin-4b (Cul4b) regulates this process. The abundance of total and neddylated Cul4b increased following TCR stimulation. Disruption of Cul4b resulted in impaired proliferation and survival of activated T cells. Additionally, Cul4b-deficient CD4+ T cells accumulated DNA damage. In T cells, Cul4b preferentially associated with the substrate receptor DCAF1, and Cul4b and DCAF1 were found to interact with proteins that promote the sensing or repair of damaged DNA. While Cul4b-deficient CD4+ T cells showed evidence of DNA damage sensing, downstream phosphorylation of SMC1A did not occur. These findings reveal an essential role for Cul4b in promoting the repair of damaged DNA to allow survival and expansion of activated T cells.
Collapse
Affiliation(s)
- Asif A. Dar
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Keisuke Sawada
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Joseph M. Dybas
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Biomedical Health and Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Emily K. Moser
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Emma L. Lewis
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Eddie Park
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Hossein Fazelinia
- Division of Cell Pathology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Lynn A. Spruce
- Division of Cell Pathology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Hua Ding
- Division of Cell Pathology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Steven H. Seeholzer
- Division of Cell Pathology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Paula M. Oliver
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Pathology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
17
|
Jones G, Trajanoska K, Santanasto AJ, Stringa N, Kuo CL, Atkins JL, Lewis JR, Duong T, Hong S, Biggs ML, Luan J, Sarnowski C, Lunetta KL, Tanaka T, Wojczynski MK, Cvejkus R, Nethander M, Ghasemi S, Yang J, Zillikens MC, Walter S, Sicinski K, Kague E, Ackert-Bicknell CL, Arking DE, Windham BG, Boerwinkle E, Grove ML, Graff M, Spira D, Demuth I, van der Velde N, de Groot LCPGM, Psaty BM, Odden MC, Fohner AE, Langenberg C, Wareham NJ, Bandinelli S, van Schoor NM, Huisman M, Tan Q, Zmuda J, Mellström D, Karlsson M, Bennett DA, Buchman AS, De Jager PL, Uitterlinden AG, Völker U, Kocher T, Teumer A, Rodriguéz-Mañas L, García FJ, Carnicero JA, Herd P, Bertram L, Ohlsson C, Murabito JM, Melzer D, Kuchel GA, Ferrucci L, Karasik D, Rivadeneira F, Kiel DP, Pilling LC. Genome-wide meta-analysis of muscle weakness identifies 15 susceptibility loci in older men and women. Nat Commun 2021; 12:654. [PMID: 33510174 PMCID: PMC7844411 DOI: 10.1038/s41467-021-20918-w] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Low muscle strength is an important heritable indicator of poor health linked to morbidity and mortality in older people. In a genome-wide association study meta-analysis of 256,523 Europeans aged 60 years and over from 22 cohorts we identify 15 loci associated with muscle weakness (European Working Group on Sarcopenia in Older People definition: n = 48,596 cases, 18.9% of total), including 12 loci not implicated in previous analyses of continuous measures of grip strength. Loci include genes reportedly involved in autoimmune disease (HLA-DQA1 p = 4 × 10-17), arthritis (GDF5 p = 4 × 10-13), cell cycle control and cancer protection, regulation of transcription, and others involved in the development and maintenance of the musculoskeletal system. Using Mendelian randomization we report possible overlapping causal pathways, including diabetes susceptibility, haematological parameters, and the immune system. We conclude that muscle weakness in older adults has distinct mechanisms from continuous strength, including several pathways considered to be hallmarks of ageing.
Collapse
Affiliation(s)
- Garan Jones
- Epidemiology and Public Health Group, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Katerina Trajanoska
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Adam J Santanasto
- University of Pittsburgh, Department of Epidemiology, Pittsburgh, PA, USA
| | - Najada Stringa
- Department of Epidemiology and Biostatistics, Amsterdam UMC- Vrije Universiteit, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Chia-Ling Kuo
- Biostatistics Center, Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, USA
| | - Janice L Atkins
- Epidemiology and Public Health Group, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Joshua R Lewis
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- School fo Public Health University of Sydney, Sydney, NSW, Australia
- Medical School, University of Western Australia, Crawley, WA, Australia
| | - ThuyVy Duong
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shengjun Hong
- Lübeck Interdisciplinary Plattform for Genome Analytics, Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Mary L Biggs
- Cardiovascular Health Research Unit, Department of Medicine, and Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Jian'an Luan
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Chloe Sarnowski
- Biostatistics Department, Boston University School of Public Health, Boston, MA, USA
| | - Kathryn L Lunetta
- Biostatistics Department, Boston University School of Public Health, Boston, MA, USA
| | - Toshiko Tanaka
- Longitudinal Study Section, Translational Gerontology branch, National Institute on Aging, Baltimore, MD, USA
| | - Mary K Wojczynski
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ryan Cvejkus
- University of Pittsburgh, Department of Epidemiology, Pittsburgh, PA, USA
| | - Maria Nethander
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sahar Ghasemi
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Jingyun Yang
- Rush Alzheimer's Disease Center & Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Stefan Walter
- Department of Medicine and Public Health, Rey Juan Carlos University, Madrid, Spain
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Kamil Sicinski
- Center for Demography of Health and Aging, University of Wisconsin-Madison, Madison, WI, USA
| | - Erika Kague
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | | | - Dan E Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - B Gwen Windham
- Department of Medicine/Geriatrics, University of Mississippi School of Medicine, Jackson, MS, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Megan L Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Misa Graff
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, 27516, USA
| | - Dominik Spira
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Department of Endocrinology and Metabolism, Berlin, Germany
| | - Ilja Demuth
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Department of Endocrinology and Metabolism, Berlin, Germany
- Charité - Universitätsmedizin Berlin, BCRT - Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Nathalie van der Velde
- Department of Internal Medicine, Section of Geriatric Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisette C P G M de Groot
- Wageningen University, Division of Human Nutrition, PO-box 17, 6700 AA, Wageningen, The Netherlands
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health services, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Michelle C Odden
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Alison E Fohner
- Department of Epidemiology and Institute of Public Genetics, University of Washington, Seattle, WA, USA
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | | | - Natasja M van Schoor
- Department of Epidemiology and Biostatistics, Amsterdam UMC- Vrije Universiteit, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Martijn Huisman
- Department of Epidemiology and Biostatistics, Amsterdam UMC- Vrije Universiteit, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Qihua Tan
- Epidemiology and Biostatistics, Department of Public Health, Faculty of Health Science, University of Southern Denmark, Odense, Denmark
| | - Joseph Zmuda
- University of Pittsburgh, Department of Epidemiology, Pittsburgh, PA, USA
| | - Dan Mellström
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Geriatric Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Karlsson
- Clinical and Molecular Osteoporosis Research Unit, Department of Orthopedics and Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | - David A Bennett
- Rush Alzheimer's Disease Center & Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Aron S Buchman
- Rush Alzheimer's Disease Center & Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Philip L De Jager
- Center for Translational and Systems Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Andre G Uitterlinden
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Kocher
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Leocadio Rodriguéz-Mañas
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
- Department of Geriatrics, Getafe University Hospital, Getafe, Spain
| | - Francisco J García
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
- Department of Geriatrics, Hospital Virgen del Valle, Complejo Hospitalario de Toledo, Toledo, Spain
| | | | - Pamela Herd
- Professor of Public Policy, Georgetown University, Washington, DC, USA
| | - Lars Bertram
- Lübeck Interdisciplinary Plattform for Genome Analytics, Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska University Hospital, Department of Drug Treatment, Gothenburg, Sweden
| | - Joanne M Murabito
- Section of General Internal Medicine, Boston University School of Medicine, Boston, MA, USA
| | - David Melzer
- Epidemiology and Public Health Group, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - George A Kuchel
- Center on Aging, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | | | - David Karasik
- Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Douglas P Kiel
- Marcus Institute for Aging Research, Hebrew SeniorLife and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Broad Institute of MIT & Harvard, Boston, MA, USA
| | - Luke C Pilling
- Epidemiology and Public Health Group, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.
| |
Collapse
|
18
|
RBBP6 interactome: RBBP6 isoform 3/DWNN and Nek6 interaction is critical for cell cycle regulation and may play a role in carcinogenesis. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
19
|
Li M, Du M, Cong H, Gu Y, Fang Y, Li J, Gan Y, Tu H, Gu J, Xia Q. Characterization of hepatitis B virus DNA integration patterns in intrahepatic cholangiocarcinoma. Hepatol Res 2021; 51:102-115. [PMID: 33037855 DOI: 10.1111/hepr.13580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/19/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022]
Abstract
AIM Hepatitis B virus (HBV) integration is one of the mechanisms contributing to hepatocellular carcinoma (HCC) development. However, the status of HBV integration in intrahepatic cholangiocarcinoma (ICC) is poorly understood. This study aims to characterize the viral integration in HBV-related ICC. METHODS The presence of HBV S and C gene in ICCs and the paratumor tissue was determined by polymerase chain reaction direct sequencing. Hepatitis B virus integration was detected by a high-throughput capture sequencing method. The expression analysis of the genes targeted by HBV in ICC was undertaken in The Cancer Genome Atlas dataset. RESULTS Hepatitis B virus S and/or C gene fragments were detected in 71.43% (10/14) ICCs and 57.14% (8/14) paratumor tissues. Using the high-throughput capture sequencing approach, 139 and 183 HBV integration breakpoints were identified from seven ICC and seven paired paratumor tissues, respectively. Seven genes (TERT, CEACAM20, SPATA18, TRERF1, ZNF23, LINC01449, and LINC00486) were recurrently targeted by HBV-DNA in different ICC tissues or different cell populations of the same tissue. TERT, which is the most preferential HBV target gene in HCC, was found to be repeatedly interrupted by HBV-DNA in three different ICC tissues. Based on The Cancer Genome Atlas dataset, TERT, as well as three other HBV recurrently targeted genes (SPATA18, TRERF1, and ZNF23), showed differential expression levels between ICC and para-ICC tissues. CONCLUSIONS Taken together, HBV integration is a common event in HBV-related ICC. The HBV recurrent integration genes identified from this study, such as TERT, provide new clues for further research on the causative link between HBV infection and ICC.
Collapse
Affiliation(s)
- Mengge Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Du
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Cong
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Emergency, Nanjing First Hospital, Nanjing, China
| | - Yuan Fang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jin Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Gan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Tu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinyang Gu
- Department of Transplantation, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
He L, Chang H, Qi Y, Zhang B, Shao Q. ceRNA Networks: The Backbone Role in Neoadjuvant Chemoradiotherapy Resistance/Sensitivity of Locally Advanced Rectal Cancer. Technol Cancer Res Treat 2021; 20:15330338211062313. [PMID: 34908512 PMCID: PMC8689620 DOI: 10.1177/15330338211062313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
Approximately 40% of rectal cancers during initial diagnosis are identified as locally advanced rectal cancers (LARCs), for which the standardized treatment scenario is total mesorectal excision following neoadjuvant chemoradiotherapy (nCRT). nCRT can lead to discernible reductions in local relapse rate and distant metastasis rate in LARC patients, in whom previously inoperable tumors may potentially be surgically removed. However, only 4% to 20% cases can attain pathological complete response, and the remaining patients who are unresponsive to nCRT have to suffer from the side effects plus toxicities and may encounter poor survival outcomes due to the late surgical intervention. As such, employing potential biomarkers to differentiate responders from nonresponders before nCRT implementation appears to be the overarching goal. Well-defined competing endogenous RNA (ceRNA) networks include long noncoding RNA (lncRNA)-microRNA (miRNA)-mRNA and circRNA-miRNA-mRNA networks. As ceRNAs, lncRNAs, and circRNAs sponge miRNAs to indirectly suppress miRNAs downstream of oncogenic mRNAs or tumor-suppressive mRNAs. The abnormal expression of mRNAs regulates the nCRT-induced DNA damage repair process through pluralistic carcinogenic signaling pathways, thereby bringing about alterations in the nCRT resistance/sensitivity of tumors. Moreover, many molecular mechanisms relevant to cell proliferation, metastasis, or apoptosis of cancers (eg, epithelial-mesenchymal transition and caspase-9-caspase-3 pathway) are influenced by ceRNA networks. Herein, we reviewed a large group of abnormally expressed mRNAs and noncoding RNAs that are associated with nCRT resistance/sensitivity in LARC patients and ultimately pinpointed the backbone role of ceRNA networks in the molecular mechanisms of nCRT resistance/sensitivity.
Collapse
Affiliation(s)
- Lin He
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, SAR, China
| | - Hao Chang
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
| | - Yuhong Qi
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
| | - Bing Zhang
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
| | - Qiuju Shao
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
21
|
Wong R, Bhattacharya D. ZBTB38 is dispensable for antibody responses. PLoS One 2020; 15:e0235183. [PMID: 32956421 PMCID: PMC7505459 DOI: 10.1371/journal.pone.0235183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022] Open
Abstract
Members of the broad complex, tram track, bric-a-brac and zinc finger (BTB-ZF) family of transcription factors, such as BCL-6, ZBTB20, and ZBTB32, regulate antigen-specific B cell differentiation, plasma cell longevity, and the duration of antibody production. We found that ZBTB38, a different member of the BTB-ZF family that binds methylated DNA at CpG motifs, is highly expressed by germinal center B cells and plasma cells. To define the functional role of ZBTB38 in B cell responses, we generated mice conditionally deficient in this transcription factor. Germinal center B cells lacking ZBTB38 dysregulated very few genes relative to wild-type and heterozygous littermate controls. Accordingly, mice with hematopoietic-specific deletion of Zbtb38 showed normal germinal center B cell numbers and antibody responses following immunization with hapten-protein conjugates. Memory B cells from these animals functioned normally in secondary recall responses. Despite expression of ZBTB38 in hematopoietic stem cells, progenitors and mature myeloid and lymphoid lineages were also present in normal numbers in mutant mice. These data demonstrate that ZBTB38 is dispensable for hematopoiesis and antibody responses. These conditional knockout mice may instead be useful in defining the functional importance of ZBTB38 in other cell types and contexts.
Collapse
Affiliation(s)
- Rachel Wong
- Division of Biological and Biomedical Sciences, Washington University in St. Louis, Saint Louis, MO, United States of America
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States of America
| | - Deepta Bhattacharya
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States of America
- * E-mail:
| |
Collapse
|
22
|
Li M, Shen Y, Chen Y, Gao H, Zhou J, Wang Q, Fan C, Zhang W, Li J, Cong H, Gu J, Gan Y, Tu H. Characterization of hepatitis B virus infection and viral DNA integration in non-Hodgkin lymphoma. Int J Cancer 2020; 147:2199-2209. [PMID: 32350851 DOI: 10.1002/ijc.33027] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/02/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Hepatitis B virus (HBV) infection has been reported to be associated with non-Hodgkin lymphoma (NHL). However, the evidence is limited to the seroepidemiological study. There is a lack of evidence showing the HBV infection and integration in NHL cells. Here, we reported that in the Shanghai area, the positive rates of serum HBsAg (OR: 3.11; 95% CI: 2.20-4.41) and HBeAg (OR: 3.99; 95% CI: 1.73-9.91) were significantly higher in patients with NHL. HBsAg, HBcAg and HBV DNA were detected in 34.4%, 45.2% and 47.0% of the NHL tissues, respectively. Furthermore, by using a high-throughput viral integration detection approach (HIVID), integrated HBV DNA was identified from 50% (6/12) HBV-related NHL tissues. There were a total of 313 HBV integration sites isolated from the NHL tissues, among which four protein-coding genes (FAT2, SETX, ITGA10 and CD63) were interrupted by HBV DNA in their exons. Seven HBV preferential target genes (ANKS1B, HDAC4, EGFLAM, MAN1C1, XKR6, ZBTB38 and CCDC91) showed significantly altered expression levels in NHL, suggesting a potential role of these genes in NHL development. Taken together, HBV integration is a common phenomenon in NHL. This finding opens up a new direction of research into the mechanistic link between HBV infection and NHL.
Collapse
Affiliation(s)
- Mengge Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuling Shen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Head and Neck Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiming Chen
- Department of Pathology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haifeng Gao
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiaqin Zhou
- Department of Head and Neck Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunsun Fan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of etiology, Qidong People's Hospital/Qidong Liver Cancer Institute, Qidong, China
| | - Wei Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Cong
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinyang Gu
- Department of Transplantation, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Gan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Tu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Molecular and Clinical Relevance of ZBTB38 Expression Levels in Prostate Cancer. Cancers (Basel) 2020; 12:cancers12051106. [PMID: 32365491 PMCID: PMC7281456 DOI: 10.3390/cancers12051106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/12/2020] [Accepted: 04/23/2020] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer is one of the most commonly diagnosed cancers in men. A number of genomic and clinical studies have led to a better understanding of prostate cancer biology. Still, the care of patients as well as the prediction of disease aggressiveness, recurrence and outcome remain challenging. Here, we showed that expression of the gene ZBTB38 is associated with poor prognosis in localised prostate cancer and could help discriminate aggressive localised prostate tumours from those who can benefit only from observation. Analysis of different prostate cancer cohorts indicates that low expression levels of ZBTB38 associate with increased levels of chromosomal abnormalities and more aggressive pathological features, including higher rate of biochemical recurrence of the disease. Importantly, gene expression profiling of these tumours, complemented with cellular assays on prostate cancer cell lines, unveiled that tumours with low levels of ZBTB38 expression might be targeted by doxorubicin, a compound generating reactive oxygen species. Our study shows that ZBTB38 is involved in prostate cancer pathogenesis and may represent a useful marker to identify high risk and highly rearranged localised prostate cancer susceptible to doxorubicin.
Collapse
|
24
|
Murphy MR, Kleiman FE. Connections between 3' end processing and DNA damage response: Ten years later. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1571. [PMID: 31657151 PMCID: PMC7295566 DOI: 10.1002/wrna.1571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 12/23/2022]
Abstract
Ten years ago we reviewed how the cellular DNA damage response (DDR) is controlled by changes in the functional and structural properties of nuclear proteins, resulting in a timely coordinated control of gene expression that allows DNA repair. Expression of genes that play a role in DDR is regulated not only at transcriptional level during mRNA biosynthesis but also by changing steady-state levels due to turnover of the transcripts. The 3' end processing machinery, which is important in the regulation of mRNA stability, is involved in these gene-specific responses to DNA damage. Here, we review the latest mechanistic connections described between 3' end processing and DDR, with a special emphasis on alternative polyadenylation, microRNA and RNA binding proteins-mediated deadenylation, and discuss the implications of deregulation of these steps in DDR and human disease. This article is categorized under: RNA Processing > 3' End Processing RNA-Based Catalysis > Miscellaneous RNA-Catalyzed Reactions RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Michael Robert Murphy
- Department of Chemistry, Hunter College and Biochemistry Program, The Graduate Center, City University of New York, New York, New York
| | - Frida Esther Kleiman
- Department of Chemistry, Hunter College and Biochemistry Program, The Graduate Center, City University of New York, New York, New York
| |
Collapse
|
25
|
RBBP6, a RING finger-domain E3 ubiquitin ligase, induces epithelial-mesenchymal transition and promotes metastasis of colorectal cancer. Cell Death Dis 2019; 10:833. [PMID: 31685801 PMCID: PMC6828677 DOI: 10.1038/s41419-019-2070-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022]
Abstract
RBBP6 has been implicated in tumorigenesis but its role in tumor metastasis and progression has not been evaluated. Interestingly, here we show that RBBP6 is upregulated in colorectal cancer (CRC) where its expression level is positively correlated with distant metastasis. In this study, we identified RBBP6, a RING Finger-domain E3 ubiquitin ligase, served as an independent prognostic factor and predicted poor outcome for CRC patients. RBBP6 promoted cell proliferation, migration, and invasion in CRC cells and promoted tumor growth, lung metastasis, and liver metastasis in mouse models. Mechanistically, we revealed that RBBP6 bound and ubiquitylated IκBα, an inhibitor of the NF-κB-signaling pathway. RBBP6-mediated ubiquitination and degradation of IκBα significantly enhanced p65 nuclear translocation, which triggered the activation of NF-κB pathway and then induced the epithelial–mesenchymal transition (EMT) process and cell metastasis. Furthermore, by DNA methylation results and ChIP analysis, we demonstrated that the promoter of RBBP6 was hypomethylated, and was activated by multi-oncogenic transcription factors. In conclusion, our findings suggest that RBBP6 may be a potential prognostic biomarker and therapeutic target for CRC invasion and metastasis.
Collapse
|
26
|
Hodges AJ, Hudson NO, Buck-Koehntop BA. Cys 2His 2 Zinc Finger Methyl-CpG Binding Proteins: Getting a Handle on Methylated DNA. J Mol Biol 2019:S0022-2836(19)30567-4. [PMID: 31628952 DOI: 10.1016/j.jmb.2019.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
DNA methylation is an essential epigenetic modification involved in the maintenance of genomic stability, preservation of cellular identity, and regulation of the transcriptional landscape needed to maintain cellular function. In an increasing number of disease conditions, DNA methylation patterns are inappropriately distributed in a manner that supports the disease phenotype. Methyl-CpG binding proteins (MBPs) are specialized transcription factors that read and translate methylated DNA signals into recruitment of protein assemblies that can alter local chromatin architecture and transcription. MBPs thus play a key intermediary role in gene regulation for both normal and diseased cells. Here, we highlight established and potential structure-function relationships for the best characterized members of the zinc finger (ZF) family of MBPs in propagating DNA methylation signals into downstream cellular responses. Current and future investigations aimed toward expanding our understanding of ZF MBP cellular roles will provide needed mechanistic insight into normal and disease state functions, as well as afford evaluation for the potential of these proteins as epigenetic-based therapeutic targets.
Collapse
Affiliation(s)
- Amelia J Hodges
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Nicholas O Hudson
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Bethany A Buck-Koehntop
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
27
|
Abstract
Retinoblastoma binding protein 6 (RBBP6) is a cancer-related protein that has been implicated in the regulation of cell cycle and apoptosis. RBBP6 isoform 1 has been demonstrated to interact with two tumour suppressors, p53 and pRB. Isoform 1 been shown to regulate p53 through its ubiquitin ligase activity, thus implicating in cell cycle regulation and apoptosis. Isoforms 1 and 2 are multidomain proteins containing a domain with no name (DWNN) domain, a Zinc Finger, a RING Finger, an Rb-binding domain and a p53-binding domain. The RBBP6 isoform 3 comprises the DWNN domain only. Isoform 4 lacks the Rb-binding domain but its role is less understood. RBBP6 isoform 3 has been reported as a cell cycle regulator with anticancer potential. There have been several studies that have clearly demonstrated that RBBP6 may be an important biomarker for cancer diagnosis and a potential drug target for cancer treatment. This work focused on differential expression of RBBP6 transcripts in different cancers, providing detailed analysis of their potential as diagnostic biomarkers for different cancers. These cancers include breast, liver, cervical and colon carcinomas. The expression of RBBP6 transcripts may further provide better understanding of the role of the RBBP6 in carcinogenesis and cell homeostasis.
Collapse
|
28
|
Mahmood N, Rabbani SA. DNA Methylation Readers and Cancer: Mechanistic and Therapeutic Applications. Front Oncol 2019; 9:489. [PMID: 31245293 PMCID: PMC6579900 DOI: 10.3389/fonc.2019.00489] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
DNA methylation is a major epigenetic process that regulates chromatin structure which causes transcriptional activation or repression of genes in a context-dependent manner. In general, DNA methylation takes place when methyl groups are added to the appropriate bases on the genome by the action of "writer" molecules known as DNA methyltransferases. How these methylation marks are read and interpreted into different functionalities represents one of the main mechanisms through which the genes are switched "ON" or "OFF" and typically involves different types of "reader" proteins that can recognize and bind to the methylated regions. A tightly balanced regulation exists between the "writers" and "readers" in order to mediate normal cellular functions. However, alterations in normal methylation pattern is a typical hallmark of cancer which alters the way methylation marks are written, read and interpreted in different disease states. This unique characteristic of DNA methylation "readers" has identified them as attractive therapeutic targets. In this review, we describe the current state of knowledge on the different classes of DNA methylation "readers" identified thus far along with their normal biological functions, describe how they are dysregulated in cancer, and discuss the various anti-cancer therapies that are currently being developed and evaluated for targeting these proteins.
Collapse
Affiliation(s)
- Niaz Mahmood
- Department of Medicine, McGill University Health Centre, Montréal, QC, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
29
|
Knowles EEM, Mathias SR, Mollon J, Rodrigue A, Koenis MMG, Dyer TD, Goring HHH, Curran JE, Olvera RL, Duggirala R, Almasy L, Blangero J, Glahn DC. A QTL on chromosome 3q23 influences processing speed in humans. GENES, BRAIN, AND BEHAVIOR 2019; 18:e12530. [PMID: 30379395 PMCID: PMC6458095 DOI: 10.1111/gbb.12530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/24/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022]
Abstract
Processing speed is a psychological construct that refers to the speed with which an individual can perform any cognitive operation. Processing speed correlates strongly with general cognitive ability, declines sharply with age and is impaired across a number of neurological and psychiatric disorders. Thus, identifying genes that influence processing speed will likely improve understanding of the genetics of intelligence, biological aging and the etiologies of numerous disorders. Previous genetics studies of processing speed have relied on simple phenotypes (eg, mean reaction time) derived from single tasks. This strategy assumes, erroneously, that processing speed is a unitary construct. In the present study, we aimed to characterize the genetic architecture of processing speed by using a multidimensional model applied to a battery of cognitive tasks. Linkage and QTL-specific association analyses were performed on the factors from this model. The randomly ascertained sample comprised 1291 Mexican-American individuals from extended pedigrees. We found that performance on all three distinct processing-speed factors (Psychomotor Speed; Sequencing and Shifting and Verbal Fluency) were moderately and significantly heritable. We identified a genome-wide significant quantitative trait locus (QTL) on chromosome 3q23 for Psychomotor Speed (LOD = 4.83). Within this locus, we identified a plausible and interesting candidate gene for Psychomotor Speed (Z = 2.90, P = 1.86 × 10-03 ).
Collapse
Affiliation(s)
- Emma E. M. Knowles
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Samuel R. Mathias
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Josephine Mollon
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Amanda Rodrigue
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Marinka M. G. Koenis
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Thomas D. Dyer
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas of the Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Harald H. H. Goring
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas of the Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Joanne E. Curran
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas of the Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Rene L. Olvera
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ravi Duggirala
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas of the Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Laura Almasy
- Department of Genetics at University of Pennsylvania and Department of Biomedical and Health Informatics at Children’s Hospital of Philadelphia, PA, USA
| | - John Blangero
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas of the Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - David C. Glahn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Olin Neuropsychiatric Research Center, Institute of Living, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
30
|
Batra J, Hultquist JF, Liu D, Shtanko O, Von Dollen J, Satkamp L, Jang GM, Luthra P, Schwarz TM, Small GI, Arnett E, Anantpadma M, Reyes A, Leung DW, Kaake R, Haas P, Schmidt CB, Schlesinger LS, LaCount DJ, Davey RA, Amarasinghe GK, Basler CF, Krogan NJ. Protein Interaction Mapping Identifies RBBP6 as a Negative Regulator of Ebola Virus Replication. Cell 2018; 175:1917-1930.e13. [PMID: 30550789 PMCID: PMC6366944 DOI: 10.1016/j.cell.2018.08.044] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/17/2018] [Accepted: 08/17/2018] [Indexed: 01/21/2023]
Abstract
Ebola virus (EBOV) infection often results in fatal illness in humans, yet little is known about how EBOV usurps host pathways during infection. To address this, we used affinity tag-purification mass spectrometry (AP-MS) to generate an EBOV-host protein-protein interaction (PPI) map. We uncovered 194 high-confidence EBOV-human PPIs, including one between the viral transcription regulator VP30 and the host ubiquitin ligase RBBP6. Domain mapping identified a 23 amino acid region within RBBP6 that binds to VP30. A crystal structure of the VP30-RBBP6 peptide complex revealed that RBBP6 mimics the viral nucleoprotein (NP) binding to the same interface of VP30. Knockdown of endogenous RBBP6 stimulated viral transcription and increased EBOV replication, whereas overexpression of either RBBP6 or the peptide strongly inhibited both. These results demonstrate the therapeutic potential of biologics that target this interface and identify additional PPIs that may be leveraged for novel therapeutic strategies.
Collapse
Affiliation(s)
- Jyoti Batra
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Judd F Hultquist
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Dandan Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63105, USA
| | - Olena Shtanko
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX 78245, USA
| | - John Von Dollen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Laura Satkamp
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Gwendolyn M Jang
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Priya Luthra
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Toni M Schwarz
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gabriel I Small
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63105, USA
| | - Eusondia Arnett
- Texas Biomedical Research Institute, San Antonio, TX 78245, USA
| | - Manu Anantpadma
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX 78245, USA
| | - Ann Reyes
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX 78245, USA
| | - Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63105, USA
| | - Robyn Kaake
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Paige Haas
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Carson B Schmidt
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | | | - Douglas J LaCount
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Robert A Davey
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX 78245, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63105, USA
| | - Christopher F Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA.
| |
Collapse
|
31
|
Laisné M, Gupta N, Kirsh O, Pradhan S, Defossez PA. Mechanisms of DNA Methyltransferase Recruitment in Mammals. Genes (Basel) 2018; 9:genes9120617. [PMID: 30544749 PMCID: PMC6316769 DOI: 10.3390/genes9120617] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 12/11/2022] Open
Abstract
DNA methylation is an essential epigenetic mark in mammals. The proper distribution of this mark depends on accurate deposition and maintenance mechanisms, and underpins its functional role. This, in turn, depends on the precise recruitment and activation of de novo and maintenance DNA methyltransferases (DNMTs). In this review, we discuss mechanisms of recruitment of DNMTs by transcription factors and chromatin modifiers—and by RNA—and place these mechanisms in the context of biologically meaningful epigenetic events. We present hypotheses and speculations for future research, and underline the fundamental and practical benefits of better understanding the mechanisms that govern the recruitment of DNMTs.
Collapse
Affiliation(s)
- Marthe Laisné
- Epigenetics and Cell Fate, UMR7216 CNRS, University Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| | - Nikhil Gupta
- Epigenetics and Cell Fate, UMR7216 CNRS, University Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| | - Olivier Kirsh
- Epigenetics and Cell Fate, UMR7216 CNRS, University Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| | | | - Pierre-Antoine Defossez
- Epigenetics and Cell Fate, UMR7216 CNRS, University Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| |
Collapse
|
32
|
Cui F, Hu J, Ning S, Tan J, Tang H. Overexpression of MCM10 promotes cell proliferation and predicts poor prognosis in prostate cancer. Prostate 2018; 78:1299-1310. [PMID: 30095171 PMCID: PMC6282949 DOI: 10.1002/pros.23703] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/13/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is one of the most malignant tumors of the male urogenital system. There is an urgent need to identify novel biomarkers for PCa. METHODS In this study, we evaluated the expression levels of MCM10 in prostate cancer by analyzing public datasets (including The Cancer Genome Atlas and GSE21032). Furthermore, loss of function assays was performed to evaluate the effects of MCM10 on cell proliferation, apoptosis, and colony formation. Furthermore, we performed microarray and bioinformatics analyses to explore the potential mechanisms of MCM10. RESULTS In the present study, we for the first time revealed MCM10 was significantly upregulated in PCa. Moreover, we found increased MCM10 expression was significantly associated with advanced clinical stage and high Gleason score PCa. Kaplan-Meier analysis demonstrated higher MCM10 expression was associated with a poorer patient prognosis in PCa. Furthermore, loss of function assays showed that MCM10 knockdown inhibited cell proliferation and colony formation, but promoted cell apoptosis. Additionally, we performed microarray and bioinformatics analysis and found MCM10 regulated PCa progression by regulating a series of biological processes including cancer, cell death, and apoptosis. CONCLUSIONS These results suggest that MCM10 may be a potential diagnostic and therapeutic target for PCa.
Collapse
Affiliation(s)
- Feilun Cui
- Department of UrologyThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
| | - Jianpeng Hu
- Department of UrologyThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
| | - Songyi Ning
- Medical College of Jiangsu UniversityZhenjiangJiangsuP.R. China
| | - Jian Tan
- Department of UrologyThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
| | - Huaming Tang
- Department of UrologyThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
| |
Collapse
|
33
|
de Dieuleveult M, Miotto B. DNA Methylation and Chromatin: Role(s) of Methyl-CpG-Binding Protein ZBTB38. Epigenet Insights 2018; 11:2516865718811117. [PMID: 30480223 PMCID: PMC6243405 DOI: 10.1177/2516865718811117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 12/16/2022] Open
Abstract
DNA methylation plays an essential role in the control of gene expression during early stages of development as well as in disease. Although many transcription factors are sensitive to this modification of the DNA, we still do not clearly understand how it contributes to the establishment of proper gene expression patterns. We discuss here the recent findings regarding the biological and molecular function(s) of the transcription factor ZBTB38 that binds methylated DNA sequences in vitro and in cells. We speculate how these findings may help understand the role of DNA methylation and DNA methylation–sensitive transcription factors in mammalian cells.
Collapse
Affiliation(s)
- Maud de Dieuleveult
- Institut Cochin, INSERM U1016, Paris, France.,CNRS UMR8104, Paris, France.,Department of Development, Reproduction and Cancer, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Benoit Miotto
- Institut Cochin, INSERM U1016, Paris, France.,CNRS UMR8104, Paris, France.,Department of Development, Reproduction and Cancer, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
34
|
Hudson NO, Whitby FG, Buck-Koehntop BA. Structural insights into methylated DNA recognition by the C-terminal zinc fingers of the DNA reader protein ZBTB38. J Biol Chem 2018; 293:19835-19843. [PMID: 30355731 DOI: 10.1074/jbc.ra118.005147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/16/2018] [Indexed: 02/05/2023] Open
Abstract
Methyl-CpG-binding proteins (MBPs) are selective readers of DNA methylation that play an essential role in mediating cellular transcription processes in both normal and diseased cells. This physiological function of MBPs has generated significant interest in understanding the mechanisms by which these proteins read and interpret DNA methylation signals. Zinc finger and BTB domain-containing 38 (ZBTB38) represents one member of the zinc finger (ZF) family of MBPs. We recently demonstrated that the C-terminal ZFs of ZBTB38 exhibit methyl-selective DNA binding within the ((A/G)TmCG(G/A)(mC/T)(G/A)) context both in vitro and within cells. Here we report the crystal structure of the first four C-terminal ZBTB38 ZFs (ZFs 6-9) in complex with the previously identified methylated consensus sequence at 1.75 Å resolution. From the structure, methyl-selective binding is preferentially localized at the 5' mCpG site of the bound DNA, which is facilitated through a series of base-specific interactions from residues within the α-helices of ZF7 and ZF8. ZF6 and ZF9 primarily stabilize ZF7 and ZF8 to facilitate the core base-specific interactions. Further structural and biochemical analyses, including solution NMR spectroscopy and electrophoretic mobility gel shift assays, revealed that the C-terminal ZFs of ZBTB38 utilize an alternative mode of mCpG recognition from the ZF MBPs structurally evaluated to date. Combined, these findings provide insight into the mechanism by which this ZF domain of ZBTB38 selectively recognizes methylated CpG sites and expands our understanding of how ZF-containing proteins can interpret this essential epigenetic mark.
Collapse
Affiliation(s)
| | - Frank G Whitby
- Biochemistry, University of Utah, Salt Lake City, Utah 84112
| | | |
Collapse
|
35
|
Marchal C, de Dieuleveult M, Saint-Ruf C, Guinot N, Ferry L, Olalla Saad ST, Lazarini M, Defossez PA, Miotto B. Depletion of ZBTB38 potentiates the effects of DNA demethylating agents in cancer cells via CDKN1C mRNA up-regulation. Oncogenesis 2018; 7:82. [PMID: 30310057 PMCID: PMC6182000 DOI: 10.1038/s41389-018-0092-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 08/22/2018] [Indexed: 11/09/2022] Open
Abstract
DNA methyltransferase inhibitor (DNMTi) treatments have been used for patients with myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML), and have shown promising beneficial effects in some other types of cancers. Here, we demonstrate that the transcriptional repressor ZBTB38 is a critical regulator of the cellular response to DNMTi. Treatments with 5-azacytidine, or its derivatives decitabine and zebularine, lead to down-regulation of ZBTB38 protein expression in cancer cells, in parallel with cellular damage. The depletion of ZBTB38 by RNA interference enhances the toxicity of DNMTi in cell lines from leukemia and from various solid tumor types. Further we observed that inactivation of ZBTB38 causes the up-regulation of CDKN1C mRNA, a previously described indirect target of DNMTi. We show that CDKN1C is a key actor of DNMTi toxicity in cells lacking ZBTB38. Finally, in patients with MDS a high level of CDKN1C mRNA expression before treatment correlates with a better clinical response to a drug regimen combining 5-azacytidine and histone deacetylase inhibitors. Collectively, our results suggest that the ZBTB38 protein is a target of DNMTi and that its depletion potentiates the toxicity of DNMT inhibitors in cancer cells, providing new opportunities to enhance the response to DNMT inhibitor therapies in patients with MDS and other cancers.
Collapse
Affiliation(s)
- Claire Marchal
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Department of Biological Science, Florida State University, Tallahassee, FL, 32306-4295, USA
| | - Maud de Dieuleveult
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Claude Saint-Ruf
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Nadège Guinot
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Laure Ferry
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013, Paris, France
| | - Sara T Olalla Saad
- Hematology and Blood Transfusion Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, Brazil
| | - Mariana Lazarini
- Department of Biological Sciences, Federal University of São Paulo, Diadema, Brazil
| | - Pierre-Antoine Defossez
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013, Paris, France
| | - Benoit Miotto
- INSERM, U1016, Institut Cochin, Paris, France. .,CNRS, UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
36
|
Hotta K, Kitamoto A, Kitamoto T, Ogawa Y, Honda Y, Kessoku T, Yoneda M, Imajo K, Tomeno W, Saito S, Nakajima A. Identification of differentially methylated region (DMR) networks associated with progression of nonalcoholic fatty liver disease. Sci Rep 2018; 8:13567. [PMID: 30206277 PMCID: PMC6134034 DOI: 10.1038/s41598-018-31886-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022] Open
Abstract
The progression of nonalcoholic fatty liver disease (NAFLD) is affected by epigenetics. We performed differentially methylated region (DMR) and co-methylation analyses to identify DMR networks associated with the progression of NAFLD. DMRs displaying differences in multiple consecutive differentially methylated CpGs between mild and advanced NAFLD were extracted. The average values of topological overlap measures for the CpG matrix combining two different DMRs were calculated and two DMR networks that strongly correlated with the stages of fibrosis were identified. The annotated genes of one network included genes involved in transcriptional regulation, cytoskeleton organization, and cellular proliferation. The annotated genes of the second network were primarily associated with metabolic pathways. The CpG methylation levels in these networks were strongly affected by age and fasting plasma glucose levels, which may be important co-regulatory factors. The methylation status of five DMRs in the second network was reversible following weight loss. Our results suggest that CpG methylation in DMR networks is regulated concomitantly via aging and hyperglycemia and plays important roles in hepatic metabolic dysfunction, fibrosis, and potential tumorigenesis, which occur during the progression of NAFLD. By controlling weight and blood glucose levels, the methylation of DMRs in the second network may be reduced.
Collapse
Affiliation(s)
- Kikuko Hotta
- Department of Medical Innovation, Osaka University Hospital, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Aya Kitamoto
- Advanced Research Facilities and Services, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Takuya Kitamoto
- Advanced Research Facilities and Services, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Yuji Ogawa
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Yasushi Honda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Takaomi Kessoku
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Kento Imajo
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Wataru Tomeno
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
- Department of Gastroenterology, International University of Health and Welfare Atami Hospital, 13-1 Higashi Kaigancho, Atami, Shizuoka, 413-0012, Japan
| | - Satoru Saito
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| |
Collapse
|
37
|
Motadi LR, Lekganyane MM, Moela P. RBBP6 expressional effects on cell proliferation and apoptosis in breast cancer cell lines with distinct p53 statuses. Cancer Manag Res 2018; 10:3357-3369. [PMID: 30237738 PMCID: PMC6138973 DOI: 10.2147/cmar.s169577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Introduction Breast cancer is the most common malignancy amongst women and has a higher incidence rate than lung cancer. Its tumor progression partially results from inactivation of p53 which is caused by overexpression of ubiquitous regulatory proteins possessing p53-binding domain. RBBP6 is regarded as one of the ubiquitous proteins because of its RING finger-like domain which enables it to possess E3 ligase activity. Thus, it has become a potential target in cancer treatment as it is highly expressed in various malignancies including cancer. However, it is not clearly defined whether the effect of RBBP6 on cell growth and apoptosis is cell line-dependent, more especially in breast cancer cell lines that have distinct p53 expression profiles. This study aims at evaluating the effects of RBBP6 on cell growth and apoptosis in breast cancer cell lines with different p53 expressions. Methods Following the analysis at mRNA and protein levels in breast cancer tissue, RBBP6 expression was successfully manipulated using gene silencing and protein overexpression techniques in MCF-7 and MDA-MB-231 cell lines. The cells were co-treated with siRBBP6 and anticancer agents following apoptosis detection, which was confirmed by caspase 3/7 activity and quantification of apoptotic genes. Results RBBP6 was overexpressed in breast cancer tissues that were classified as stages 3 and 4, while in stage 1, its expression was much lower. The MCF-7 cell line which expresses wild-type p53 was more sensitive to apoptosis induction than MDA-MB-231 which is a mutant p53-expressing cell line. These data suggest that RBBP6 silencing triggers significant levels of intrinsic apoptosis, and its overexpression appears to promote cell proliferation in wild-type p53-expressing MCF-7 cell line as opposed to MDA-MB-231 cells. Conclusion The effect of RBBP6 on cell proliferation and apoptosis induction in breast cancer seems to be cell line-dependent based on p53 status.
Collapse
Affiliation(s)
- Lesetja Raymond Motadi
- Department of Biochemistry, Faculty of Agriculture, Science and Technology, North-West University (Mafikeng Campus), Potchefstroom, South Africa,
| | - Mashianoke Marcia Lekganyane
- Department of Biochemistry, Faculty of Agriculture, Science and Technology, North-West University (Mafikeng Campus), Potchefstroom, South Africa,
| | - Pontsho Moela
- Department of Genetics, Faculty of Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
38
|
Murray PG, Clayton PE, Chernausek SD. A genetic approach to evaluation of short stature of undetermined cause. Lancet Diabetes Endocrinol 2018; 6:564-574. [PMID: 29397377 DOI: 10.1016/s2213-8587(18)30034-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 11/22/2017] [Accepted: 12/02/2017] [Indexed: 12/15/2022]
Abstract
Short stature is a common presentation to paediatric endocrinologists. After exclusion of major endocrine or systemic disease, most children with short stature are diagnosed based on a description of their growth pattern and the height of their parents (eg, familial short stature). Height is a polygenic trait and genome-wide association studies have identified many of the associated genetic loci. Here we review the application of genetic studies, including copy number variant analysis, targeted gene panels, and whole-exome sequencing in children with idiopathic short stature. We estimate 25-40% of children diagnosed with idiopathic short stature could receive a molecular diagnosis using these technologies. A molecular diagnosis for short stature is important for affected individuals and their families and might inform treatment decisions surrounding use of growth hormone or insulin-like growth factor 1 therapy.
Collapse
Affiliation(s)
- Philip G Murray
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK; Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Peter E Clayton
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK; Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Steven D Chernausek
- Diabetes and Endocrinology, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
39
|
Miotto B, Marchal C, Adelmant G, Guinot N, Xie P, Marto JA, Zhang L, Defossez PA. Stabilization of the methyl-CpG binding protein ZBTB38 by the deubiquitinase USP9X limits the occurrence and toxicity of oxidative stress in human cells. Nucleic Acids Res 2018; 46:4392-4404. [PMID: 29490077 PMCID: PMC5961141 DOI: 10.1093/nar/gky149] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/05/2018] [Accepted: 02/16/2018] [Indexed: 12/29/2022] Open
Abstract
Reactive oxygen species (ROS) are a byproduct of cell metabolism, and can also arise from environmental sources, such as toxins or radiation. Depending on dose and context, ROS have both beneficial and deleterious roles in mammalian development and disease, therefore it is crucial to understand how these molecules are generated, sensed, and detoxified. The question of how oxidative stress connects to the epigenome, in particular, is important yet incompletely understood. Here we show that an epigenetic regulator, the methyl-CpG-binding protein ZBTB38, limits the basal cellular production of ROS, is induced by ROS, and is required to mount a proper response to oxidative stress. Molecularly, these functions depend on a deubiquitinase, USP9X, which interacts with ZBTB38, deubiquitinates it, and stabilizes it. We find that USP9X is itself stabilized by oxidative stress, and is required together with ZBTB38 to limit the basal generation of ROS, as well as the toxicity of an acute oxidative stress. Our data uncover a new nuclear target of USP9X, show that the USP9X/ZBTB38 axis limits, senses and detoxifies ROS, and provide a molecular link between oxidative stress and the epigenome.
Collapse
Affiliation(s)
- Benoit Miotto
- Univ. Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
- Institut Cochin, Sorbonne Paris Cité, 75014 Paris, France
| | - Claire Marchal
- Univ. Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
- Institut Cochin, Sorbonne Paris Cité, 75014 Paris, France
| | - Guillaume Adelmant
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Nadège Guinot
- Institut Cochin, Sorbonne Paris Cité, 75014 Paris, France
| | - Ping Xie
- State Key Laboratory of Proteomics, National Center of Protein Science (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center of Protein Science (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Pierre-Antoine Defossez
- Univ. Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
| |
Collapse
|
40
|
Ryland GL, Jones K, Chin M, Markham J, Aydogan E, Kankanige Y, Caruso M, Guinto J, Dickinson M, Prince HM, Yong K, Blombery P. Novel genomic findings in multiple myeloma identified through routine diagnostic sequencing. J Clin Pathol 2018; 71:895-899. [PMID: 29760015 DOI: 10.1136/jclinpath-2018-205195] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 01/10/2023]
Abstract
AIMS Multiple myeloma is a genomically complex haematological malignancy with many genomic alterations recognised as important in diagnosis, prognosis and therapeutic decision making. Here, we provide a summary of genomic findings identified through routine diagnostic next-generation sequencing at our centre. METHODS A cohort of 86 patients with multiple myeloma underwent diagnostic sequencing using a custom hybridisation-based panel targeting 104 genes. Sequence variants, genome-wide copy number changes and structural rearrangements were detected using an inhouse-developed bioinformatics pipeline. RESULTS At least one mutation was found in 69 (80%) patients. Frequently mutated genes included TP53 (36%), KRAS (22.1%), NRAS (15.1%), FAM46C/DIS3 (8.1%) and TET2/FGFR3 (5.8%), including multiple mutations not previously described in myeloma. Importantly we observed TP53 mutations in the absence of a 17 p deletion in 8% of the cohort, highlighting the need for sequencing-based assessment in addition to cytogenetics to identify these high-risk patients. Multiple novel copy number changes and immunoglobulin heavy chain translocations are also discussed. CONCLUSIONS Our results demonstrate that many clinically relevant genomic findings remain in multiple myeloma which have not yet been identified through large-scale sequencing efforts, and provide important mechanistic insights into plasma cell pathobiology.
Collapse
Affiliation(s)
- Georgina L Ryland
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Kate Jones
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Melody Chin
- Department of Haematology, University College London Cancer Institute, London, UK
| | - John Markham
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Elle Aydogan
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Yamuna Kankanige
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Marisa Caruso
- Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jerick Guinto
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Michael Dickinson
- Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - H Miles Prince
- Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kwee Yong
- Department of Haematology, University College London Cancer Institute, London, UK
| | - Piers Blombery
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
41
|
Xiao C, Wang Y, Zheng M, Chen J, Song G, Zhou Z, Zhou C, Sun X, Zhong L, Ding E, Zhang Y, Yang L, Wu G, Xu S, Zhang H, Wang X. RBBP6 increases radioresistance and serves as a therapeutic target for preoperative radiotherapy in colorectal cancer. Cancer Sci 2018; 109:1075-1087. [PMID: 29369481 PMCID: PMC5891205 DOI: 10.1111/cas.13516] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 01/15/2018] [Accepted: 01/21/2018] [Indexed: 01/15/2023] Open
Abstract
Radiotherapy (RT) can be used as preoperative treatment to downstage initially unresectable locally rectal carcinoma, but radioresistance and recurrence remain significant problems. Retinoblastoma binding protein 6 (RBBP6) has been implicated in the regulation of cell cycle, apoptosis and chemoresistance both in vitro and in vivo. The present study investigated whether the inhibition of RBBP6 expression would improve radiosensitivity in human colorectal cancer cells. After SW620 and HT29 cells were exposed to radiation, the levels of RBBP6 mRNA and protein increased over time in both cells. Moreover, a significant reduction in clonogenic survival and a decrease in cell viability in parallel with an obvious increase in cell apoptosis were demonstrated in irradiated RBBP6‐knockdown cells. Transfection with RBBP6 shRNA improved the levels of G2‐M phase arrest, which blocked the cells in a more radiosensitive period of the cell cycle. These observations indicated that cell cycle and apoptosis mechanisms may be connected with tumor cell survival following radiotherapy. In vivo, the tumor growth rate of nude mice in the RBBP6‐knockdown group was significantly slower than that in other groups. These results indicated that RBBP6 overexpression could resist colorectal cancer cells against radiation by regulating cell cycle and apoptosis pathways, and inhibition of RBBP6 could enhance radiosensitivity of human colorectal cancer.
Collapse
Affiliation(s)
- Chao Xiao
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yupeng Wang
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Miao Zheng
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Chen
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guohe Song
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijie Zhou
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chongzhi Zhou
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xing Sun
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Zhong
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Erxun Ding
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Zhang
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liu Yang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Wu
- Department of General Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Shifeng Xu
- Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Hong Zhang
- School of Medicine, Örebro University, Örebro, Sweden
| | - Xiaoliang Wang
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
42
|
Hotta K, Kitamoto T, Kitamoto A, Ogawa Y, Honda Y, Kessoku T, Yoneda M, Imajo K, Tomeno W, Saito S, Nakajima A. Identification of the genomic region under epigenetic regulation during non-alcoholic fatty liver disease progression. Hepatol Res 2018; 48:E320-E334. [PMID: 29059699 DOI: 10.1111/hepr.12992] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/04/2017] [Accepted: 10/19/2017] [Indexed: 12/12/2022]
Abstract
AIM The progression of non-alcoholic fatty liver disease (NAFLD) is affected by epigenetics. We undertook co-methylation and differentially methylated region (DMR) analyses to identify the genomic region that is under epigenetic regulation during NAFLD progression. METHODS We collected liver biopsy specimens from 60 Japanese patients with NAFLD and classified these into mild (fibrosis stages 0-2) or advanced (fibrosis stages 3-4) NAFLD. We carried out a genome-wide DNA methylation analysis and identified the differentially methylated CpGs between mild and advanced NAFLD. Differentially methylated regions with multiple consecutive differentially methylated CpGs between mild and advanced NAFLD were extracted. RESULTS Co-methylation analysis showed that individual differentially methylated CpG sites were clustered into three modules. The CpG sites clustered in one module were hypomethylated in advanced NAFLD and their annotated genes were enriched for "immune system" function. The CpG sites in another module were hypermethylated and their annotated genes were enriched for "mitochondria" or "lipid particle", and "lipid metabolism" or "oxidoreductase activity". Hypomethylated DMRs included tumorigenesis-related genes (FGFR2, PTGFRN, and ZBTB38), the expressions of which are upregulated in advanced NAFLD. Tumor suppressor MGMT had two DMRs and was downregulated. Conversely, FBLIM1 and CYR61, encoding proteins that reduce cell proliferation, showed hypomethylated DMRs and were upregulated. Expression of the antioxidant gene NQO1 was upregulated, with a hypomethylated DMR. The DMR containing cancer-related MIR21 was hypomethylated in advanced NAFLD. CONCLUSIONS Co-methylation and DMR analyses suggest that the NAFLD liver undergoes mitochondrial dysfunction, decreased lipid metabolism, and impaired oxidoreductase activity, and acquires tumorigenic potential at the epigenetic level.
Collapse
Affiliation(s)
- Kikuko Hotta
- Department of Medical Innovation, Osaka University Hospital, Osaka, Japan
| | - Takuya Kitamoto
- Pharmacogenomics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Advanced Research Facilities and Services, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Aya Kitamoto
- Pharmacogenomics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Advanced Research Facilities and Services, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuji Ogawa
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yasushi Honda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takaomi Kessoku
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kento Imajo
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Wataru Tomeno
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoru Saito
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
43
|
The C-Terminal Zinc Fingers of ZBTB38 are Novel Selective Readers of DNA Methylation. J Mol Biol 2017; 430:258-271. [PMID: 29287967 DOI: 10.1016/j.jmb.2017.12.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/09/2017] [Accepted: 12/19/2017] [Indexed: 11/22/2022]
Abstract
Methyl-CpG binding proteins play an essential role in translating DNA methylation marks into a downstream transcriptional response, which has implications for both normal cell function as well as disease. Although for many of these proteins, a detailed mechanistic understanding for how this cellular process is mediated remains to be determined. ZBTB38 is an under-characterized member of the zinc finger (ZF) family of methyl-CpG binding proteins. Functional knowledge has been gained for its conserved methylated DNA binding N-terminal ZF region; however, a specific role for the C-terminal set of five ZFs remains to be elucidated. Here we demonstrate for the first time that a subset of the C-terminal ZBTB38 ZFs exhibit high-affinity DNA interactions and that preferential targeting of the consensus DNA site is methyl specific. Utilizing a hybrid approach, a model for the C-terminal ZBTB38 ZFs in complex with its cognate DNA target is proposed, providing insight into a possible novel mode of methylated DNA recognition. Furthermore, it is shown that the C-terminal ZFs of ZBTB38 can directly occupy promoters harboring the newly identified sequence motif in cell in a methyl-dependent manner and, depending on the gene context, contribute to modulating transcriptional response. Combined, these findings provide evidence for a key and novel physiological function for the C-terminal ZF domain of ZBTB38.
Collapse
|
44
|
The impact of replication stress on replication dynamics and DNA damage in vertebrate cells. Nat Rev Genet 2017; 18:535-550. [DOI: 10.1038/nrg.2017.46] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Mcm10: A Dynamic Scaffold at Eukaryotic Replication Forks. Genes (Basel) 2017; 8:genes8020073. [PMID: 28218679 PMCID: PMC5333062 DOI: 10.3390/genes8020073] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/09/2017] [Accepted: 02/09/2017] [Indexed: 12/13/2022] Open
Abstract
To complete the duplication of large genomes efficiently, mechanisms have evolved that coordinate DNA unwinding with DNA synthesis and provide quality control measures prior to cell division. Minichromosome maintenance protein 10 (Mcm10) is a conserved component of the eukaryotic replisome that contributes to this process in multiple ways. Mcm10 promotes the initiation of DNA replication through direct interactions with the cell division cycle 45 (Cdc45)-minichromosome maintenance complex proteins 2-7 (Mcm2-7)-go-ichi-ni-san GINS complex proteins, as well as single- and double-stranded DNA. After origin firing, Mcm10 controls replication fork stability to support elongation, primarily facilitating Okazaki fragment synthesis through recruitment of DNA polymerase-α and proliferating cell nuclear antigen. Based on its multivalent properties, Mcm10 serves as an essential scaffold to promote DNA replication and guard against replication stress. Under pathological conditions, Mcm10 is often dysregulated. Genetic amplification and/or overexpression of MCM10 are common in cancer, and can serve as a strong prognostic marker of poor survival. These findings are compatible with a heightened requirement for Mcm10 in transformed cells to overcome limitations for DNA replication dictated by altered cell cycle control. In this review, we highlight advances in our understanding of when, where and how Mcm10 functions within the replisome to protect against barriers that cause incomplete replication.
Collapse
|
46
|
Wang AB, Zhang YV, Tumbar T. Gata6 promotes hair follicle progenitor cell renewal by genome maintenance during proliferation. EMBO J 2016; 36:61-78. [PMID: 27908934 DOI: 10.15252/embj.201694572] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 09/30/2016] [Accepted: 10/28/2016] [Indexed: 01/29/2023] Open
Abstract
Cell proliferation is essential to rapid tissue growth and repair, but can result in replication-associated genome damage. Here, we implicate the transcription factor Gata6 in adult mouse hair follicle regeneration where it controls the renewal of rapidly proliferating epithelial (matrix) progenitors and hence the extent of production of terminally differentiated lineages. We find that Gata6 protects against DNA damage associated with proliferation, thus preventing cell cycle arrest and apoptosis. Furthermore, we show that in vivo Gata6 stimulates EDA-receptor signaling adaptor Edaradd level and NF-κB pathway activation, known to be important for DNA damage repair and stress response in general and for hair follicle growth in particular. In cultured keratinocytes, Edaradd rescues DNA damage, cell survival, and proliferation of Gata6 knockout cells and restores MCM10 expression. Our data add to recent evidence in embryonic stem and neural progenitor cells, suggesting a model whereby developmentally regulated transcription factors protect from DNA damage associated with proliferation at key stages of rapid tissue growth. Our data may add to understanding why Gata6 is a frequent target of amplification in cancers.
Collapse
Affiliation(s)
- Alex B Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Ying V Zhang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Tudorita Tumbar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
47
|
Ntwasa M. Retinoblastoma Binding Protein 6, Another p53 Monitor. Trends Cancer 2016; 2:635-637. [DOI: 10.1016/j.trecan.2016.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/28/2016] [Accepted: 10/04/2016] [Indexed: 11/25/2022]
|
48
|
Zhang T, Fultz BL, Das-Bradoo S, Bielinsky AK. Mapping ubiquitination sites of S. cerevisiae Mcm10. Biochem Biophys Rep 2016; 8:212-218. [PMID: 28497125 PMCID: PMC5421568 DOI: 10.1016/j.bbrep.2016.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Minichromosome maintenance protein (Mcm) 10 is a part of the eukaryotic replication machinery and highly conserved throughout evolution. As a multivalent DNA scaffold, Mcm10 coordinates the action of proteins that are indispensable for lagging strand synthesis, such as the replication clamp, proliferating cell nuclear antigen (PCNA). The binding between Mcm10 and PCNA serves an essential function during DNA elongation and is mediated by the ubiquitination of Mcm10. Here we map lysine 372 as the primary attachment site for ubiquitin on S. cerevisiae Mcm10. Moreover, we identify five additional lysines that can be ubiquitinated. Mutation of lysine 372 to arginine ablates ubiquitination of overexpressed protein and causes sensitivity to the replication inhibitor hydroxyurea in cells that are S-phase checkpoint compromised. Together, these findings reveal the high selectivity of the ubiquitination machinery that targets Mcm10 and that ubiquitination has a role in suppressing replication stress. S. cerevisiae Mcm10 is ubiquitinated at lysine 372. Alternative ubiquitination sites exist at five specific lysine residues. The mcm10-K372R mutation synergizes with a 9-1-1 checkpoint deficiency.
Collapse
Affiliation(s)
- Tianji Zhang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, United States of America
| | - Brandy L Fultz
- Department of Natural Sciences, College of Science and Health Professions, Northeastern State University, 3100 East New Orleans Street, Broken Arrow, OK 74014
| | - Sapna Das-Bradoo
- Department of Natural Sciences, College of Science and Health Professions, Northeastern State University, 3100 East New Orleans Street, Broken Arrow, OK 74014
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, United States of America
| |
Collapse
|
49
|
Chadha GS, Gambus A, Gillespie PJ, Blow JJ. Xenopus Mcm10 is a CDK-substrate required for replication fork stability. Cell Cycle 2016; 15:2183-2195. [PMID: 27327991 PMCID: PMC4993430 DOI: 10.1080/15384101.2016.1199305] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/01/2016] [Accepted: 06/03/2016] [Indexed: 12/17/2022] Open
Abstract
During S phase, following activation of the S phase CDKs and the DBF4-dependent kinases (DDK), double hexamers of Mcm2-7 at licensed replication origins are activated to form the core replicative helicase. Mcm10 is one of several proteins that have been implicated from work in yeasts to play a role in forming a mature replisome during the initiation process. Mcm10 has also been proposed to play a role in promoting replisome stability after initiation has taken place. The role of Mcm10 is particularly unclear in metazoans, where conflicting data has been presented. Here, we investigate the role and regulation of Mcm10 in Xenopus egg extracts. We show that Xenopus Mcm10 is recruited to chromatin late in the process of replication initiation and this requires prior action of DDKs and CDKs. We also provide evidence that Mcm10 is a CDK substrate but does not need to be phosphorylated in order to associate with chromatin. We show that in extracts depleted of more than 99% of Mcm10, the bulk of DNA replication still occurs, suggesting that Mcm10 is not required for the process of replication initiation. However, in extracts depleted of Mcm10, the replication fork elongation rate is reduced. Furthermore, the absence of Mcm10 or its phosphorylation by CDK results in instability of replisome proteins on DNA, which is particularly important under conditions of replication stress.
Collapse
Affiliation(s)
- Gaganmeet Singh Chadha
- a Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee , Dundee , UK
| | - Agnieszka Gambus
- a Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee , Dundee , UK
| | - Peter J Gillespie
- a Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee , Dundee , UK
| | - J Julian Blow
- a Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee , Dundee , UK
| |
Collapse
|
50
|
Affiliation(s)
- Anja-Katrin Bielinsky
- a Department of Biochemistry , Molecular Biology, and Biophysics, University of Minnesota , Minneapolis , MN , USA
| |
Collapse
|