1
|
Cark O, Katkat E, Aydogdu I, Iscan E, Oktay Y, Ozhan G. tubg1 Somatic Mutants Show Tubulinopathy-Associated Neurodevelopmental Phenotypes in a Zebrafish Model. Mol Neurobiol 2025; 62:3024-3039. [PMID: 39215931 DOI: 10.1007/s12035-024-04448-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Development of the multilayered cerebral cortex relies on precise orchestration of neurogenesis, neuronal migration, and differentiation, processes tightly regulated by microtubule dynamics. Mutations in tubulin superfamily genes have been associated with tubulinopathies, encompassing a spectrum of cortical malformations including microcephaly and lissencephaly. Here, we focus on γ-tubulin, a pivotal regulator of microtubule nucleation encoded by TUBG1. We investigate its role in brain development using a zebrafish model with somatic tubg1 mutation, recapitulating features of TUBG1-associated tubulinopathies in patients and mouse disease models. We demonstrate that γ-tubulin deficiency disrupts neurogenesis and brain development, mirroring microcephaly phenotypes. Furthermore, we uncover a novel potential regulatory link between γ-tubulin and canonical Wnt/β-catenin signaling, with γ-tubulin deficiency impairing Wnt activity. Our findings provide insights into the pathogenesis of cortical defects and suggest that γ-tubulin could be a potential target for further research in neurodevelopmental disorders, although challenges such as mode of action, specificity, and potential side effects must be addressed.
Collapse
Affiliation(s)
- Ozge Cark
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova 35340, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova 35340, Izmir, Türkiye
- Center for Regenerative Therapies at the TU Dresden, Technische Universität Dresden, 01307, Dresden, Germany
| | - Esra Katkat
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova 35340, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova 35340, Izmir, Türkiye
| | - Ipek Aydogdu
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova 35340, Izmir, Türkiye
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, 35430, Izmir, Türkiye
| | - Evin Iscan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova 35340, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova 35340, Izmir, Türkiye
| | - Yavuz Oktay
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova 35340, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova 35340, Izmir, Türkiye
- Department of Medical Biology, School of Medicine, Dokuz Eylul University, Izmir, 35340, Türkiye
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova 35340, Izmir, Türkiye.
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, 35430, Izmir, Türkiye.
| |
Collapse
|
2
|
Vidyawan V, Puspita L, Juwono VB, Deline M, Pieknell K, Chang MY, Lee SH, Shim JW. Autophagy controls neuronal differentiation by regulating the WNT-DVL signaling pathway. Autophagy 2024:1-18. [PMID: 39385328 DOI: 10.1080/15548627.2024.2407707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
Macroautophagy/autophagy dysregulation is associated with various neurological diseases, including Vici syndrome. We aimed to determine the role of autophagy in early brain development. We generated neurons from human embryonic stem cells and developed a Vici syndrome model by introducing a loss-of-function mutation in the EPG5 gene. Autophagy-related genes were upregulated at the neuronal progenitor cell stage. Inhibition of autolysosome formation with bafilomycin A1 treatment at the neuronal progenitor cell stage delayed neuronal differentiation. Notably, WNT (Wnt family member) signaling may be part of the underlying mechanism, which is negatively regulated by autophagy-mediated DVL2 (disheveled segment polarity protein 2) degradation. Disruption of autolysosome formation may lead to failure in the downregulation of WNT signaling, delaying neuronal differentiation. EPG5 mutations disturbed autolysosome formation, subsequently inducing defects in progenitor cell differentiation and cortical layer generation in organoids. Disrupted autophagy leads to smaller organoids, recapitulating Vici syndrome-associated microcephaly, and validating the disease relevance of our study.Abbreviations: BafA1: bafilomycin A1; co-IP: co-immunoprecipitation; DVL2: dishevelled segment polarity protein 2; EPG5: ectopic P-granules 5 autophagy tethering factor; gRNA, guide RNA; hESC: human embryonic stem cells; KO: knockout; mDA, midbrain dopamine; NIM: neural induction media; NPC: neuronal progenitor cell; qPCR: quantitative polymerase chain reaction; UPS: ubiquitin-proteasome system; WNT: Wnt family member; WT: wild type.
Collapse
Affiliation(s)
- Vincencius Vidyawan
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, Korea
| | - Lesly Puspita
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, Korea
| | - Virginia Blessy Juwono
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, Korea
| | - Magdalena Deline
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, Korea
| | - Kelvin Pieknell
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
- Biomedical Research Institute, Hanyang University, Seoul, Korea
| | - Mi-Yoon Chang
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
- Biomedical Research Institute, Hanyang University, Seoul, Korea
- Department of Premedicine, College of Medicine, Hanyang University, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
| | - Sang-Hun Lee
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
- Biomedical Research Institute, Hanyang University, Seoul, Korea
- Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Seoul, Korea
| | - Jae-Won Shim
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, Korea
| |
Collapse
|
3
|
Liu J, Mosti F, Zhao HT, Sotelo-Fonseca JE, Escobar-Tomlienovich CF, Lollis D, Musso CM, Mao Y, Massri AJ, Doll HM, Sousa AM, Wray GA, Schmidt E, Silver DL. A human-specific enhancer fine-tunes radial glia potency and corticogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588953. [PMID: 38645099 PMCID: PMC11030412 DOI: 10.1101/2024.04.10.588953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Humans evolved an extraordinarily expanded and complex cerebral cortex, associated with developmental and gene regulatory modifications 1-3 . Human accelerated regions (HARs) are highly conserved genomic sequences with human-specific nucleotide substitutions. Although there are thousands of annotated HARs, their functional contribution to human-specific cortical development is largely unknown 4,5 . HARE5 is a HAR transcriptional enhancer of the WNT signaling receptor Frizzled8 (FZD8) active during brain development 6 . Here, using genome-edited mouse and primate models, we demonstrate that human (Hs) HARE5 fine-tunes cortical development and connectivity by controlling the proliferative and neurogenic capacity of neural progenitor cells (NPCs). Hs-HARE5 knock-in mice have significantly enlarged neocortices containing more neurons. By measuring neural dynamics in vivo we show these anatomical features correlate with increased functional independence between cortical regions. To understand the underlying developmental mechanisms, we assess progenitor fate using live imaging, lineage analysis, and single-cell RNA sequencing. This reveals Hs-HARE5 modifies radial glial progenitor behavior, with increased self-renewal at early developmental stages followed by expanded neurogenic potential. We use genome-edited human and chimpanzee (Pt) NPCs and cortical organoids to assess the relative enhancer activity and function of Hs-HARE5 and Pt-HARE5. Using these orthogonal strategies we show four human-specific variants in HARE5 drive increased enhancer activity which promotes progenitor proliferation. These findings illustrate how small changes in regulatory DNA can directly impact critical signaling pathways and brain development. Our study uncovers new functions for HARs as key regulatory elements crucial for the expansion and complexity of the human cerebral cortex.
Collapse
|
4
|
Krimpenfort RA, van der Meulen SA, Verhagen H, Driessen M, Filonova G, Hoogenboezem M, van den Akker E, von Lindern M, Nethe M. E-cadherin/β-catenin expression is conserved in human and rat erythropoiesis and marks stress erythropoiesis. Blood Adv 2023; 7:7169-7183. [PMID: 37792794 PMCID: PMC10698263 DOI: 10.1182/bloodadvances.2023010875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/07/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
E-cadherin is a crucial regulator of epithelial cell-to-cell adhesion and an established tumor suppressor. Aside epithelia, E-cadherin expression marks the erythroid cell lineage during human but not mouse hematopoiesis. However, the role of E-cadherin in human erythropoiesis remains unknown. Because rat erythropoiesis was postulated to reflect human erythropoiesis more closely than mouse erythropoiesis, we investigated E-cadherin expression in rat erythroid progenitors. E-cadherin expression is conserved within the erythroid lineage between rat and human. In response to anemia, erythroblasts in rat bone marrow (BM) upregulate E-cadherin as well as its binding partner β-catenin. CRISPR/Cas9-mediated knock out of E-cadherin revealed that E-cadherin expression is required to stabilize β-catenin in human and rat erythroblasts. Suppression of β-catenin degradation by glycogen synthase kinase 3β (GSK3β) inhibitor CHIR99021 also enhances β-catenin stability in human erythroblasts but hampers erythroblast differentiation and survival. In contrast, direct activation of β-catenin signaling, using an inducible, stable β-catenin variant, does not perturb maturation or survival of human erythroblasts but rather enhances their differentiation. Although human erythroblasts do not respond to Wnt ligands and direct GSK3β inhibition even reduces their survival, we postulate that β-catenin stability and signaling is mostly controlled by E-cadherin in human and rat erythroblasts. In response to anemia, E-cadherin-driven upregulation and subsequent activation of β-catenin signaling may stimulate erythroblast differentiation to support stress erythropoiesis in the BM. Overall, we uncover E-cadherin/β-catenin expression to mark stress erythropoiesis in rat BM. This may provide further understanding of the underlying molecular regulation of stress erythropoiesis in the BM, which is currently poorly understood.
Collapse
Affiliation(s)
- Rosa A. Krimpenfort
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
| | - Santhe A. van der Meulen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
| | - Han Verhagen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
| | - Michel Driessen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
| | - Galina Filonova
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
| | - Mark Hoogenboezem
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
| | - Emile van den Akker
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
| | - Marieke von Lindern
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
| | - Micha Nethe
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Stoufflet J, Tielens S, Nguyen L. Shaping the cerebral cortex by cellular crosstalk. Cell 2023; 186:2733-2747. [PMID: 37352835 DOI: 10.1016/j.cell.2023.05.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/30/2023] [Accepted: 05/26/2023] [Indexed: 06/25/2023]
Abstract
The cerebral cortex is the brain's outermost layer. It is responsible for processing motor and sensory information that support high-level cognitive abilities and shape personality. Its development and functional organization strongly rely on cell communication that is established via an intricate system of diffusible signals and physical contacts during development. Interfering with this cellular crosstalk can cause neurodevelopmental disorders. Here, we review how crosstalk between migrating cells and their environment influences cerebral cortex development, ranging from neurogenesis to synaptogenesis and assembly of cortical circuits.
Collapse
Affiliation(s)
- Julie Stoufflet
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| | - Sylvia Tielens
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| | - Laurent Nguyen
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wavres, Belgium.
| |
Collapse
|
6
|
Zhang Y, Black KE, Phung TKN, Thundivalappil SR, Lin T, Wang W, Xu J, Zhang C, Hariri LP, Lapey A, Li H, Lerou PH, Ai X, Que J, Park JA, Hurley BP, Mou H. Human Airway Basal Cells Undergo Reversible Squamous Differentiation and Reshape Innate Immunity. Am J Respir Cell Mol Biol 2023; 68:664-678. [PMID: 36753317 PMCID: PMC10257070 DOI: 10.1165/rcmb.2022-0299oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/07/2023] [Indexed: 02/09/2023] Open
Abstract
Histological and lineage immunofluorescence examination revealed that healthy conducting airways of humans and animals harbor sporadic poorly differentiated epithelial patches mostly in the dorsal noncartilage regions that remarkably manifest squamous differentiation. In vitro analysis demonstrated that this squamous phenotype is not due to intrinsic functional change in underlying airway basal cells. Rather, it is a reversible physiological response to persistent Wnt signaling stimulation during de novo differentiation. Squamous epithelial cells have elevated gene signatures of glucose uptake and cellular glycolysis. Inhibition of glycolysis or a decrease in glucose availability suppresses Wnt-induced squamous epithelial differentiation. Compared with pseudostratified airway epithelial cells, a cascade of mucosal protective functions is impaired in squamous epithelial cells, featuring increased epithelial permeability, spontaneous epithelial unjamming, and enhanced inflammatory responses. Our study raises the possibility that the squamous differentiation naturally occurring in healthy airways identified herein may represent "vulnerable spots" within the airway mucosa that are sensitive to damage and inflammation when confronted by infection or injury. Squamous metaplasia and hyperplasia are hallmarks of many airway diseases, thereby expanding these areas of vulnerability with potential pathological consequences. Thus, investigation of physiological and reversible squamous differentiation from healthy airway basal cells may provide critical knowledge to understand pathogenic squamous remodeling, which is often nonreversible, progressive, and hyperinflammatory.
Collapse
Affiliation(s)
- Yihan Zhang
- The Mucosal Immunology & Biology Research Center
- Department of Pediatrics, Harvard Medical School, and
| | | | - Thien-Khoi N. Phung
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | | | - Tian Lin
- The Mucosal Immunology & Biology Research Center
- Department of Pediatrics, Harvard Medical School, and
| | - Wei Wang
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Cheng Zhang
- Center for Individualized Medicine, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Lida P. Hariri
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Allen Lapey
- Division of Pediatric Pulmonary Medicine, Massachusetts General Hospital for Children, Boston, Massachusetts
| | - Hu Li
- Center for Individualized Medicine, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Paul Hubert Lerou
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| | - Xingbin Ai
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| | - Jianwen Que
- Columbia Center for Human Development
- Division of Digestive and Liver Disease, Department of Medicine, and
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Jin-Ah Park
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Bryan P. Hurley
- The Mucosal Immunology & Biology Research Center
- Department of Pediatrics, Harvard Medical School, and
| | - Hongmei Mou
- The Mucosal Immunology & Biology Research Center
- Department of Pediatrics, Harvard Medical School, and
| |
Collapse
|
7
|
Alfadil E, Bradke F. Moving through the crowd. Where are we at understanding physiological axon growth? Semin Cell Dev Biol 2023; 140:63-71. [PMID: 35817655 DOI: 10.1016/j.semcdb.2022.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 01/28/2023]
Abstract
Axon growth enables the rapid wiring of the central nervous system. Understanding this process is a prerequisite to retriggering it under pathological conditions, such as a spinal cord injury, to elicit axon regeneration. The last decades saw progress in understanding the mechanisms underlying axon growth. Most of these studies employed cultured neurons grown on flat surfaces. Only recently studies on axon growth were performed in 3D. In these studies, physiological environments exposed more complex and dynamic aspects of axon development. Here, we describe current views on axon growth and highlight gaps in our knowledge. We discuss how axons interact with the extracellular matrix during development and the role of the growth cone and its cytoskeleton within. Finally, we propose that the time is ripe to study axon growth in a more physiological setting. This will help us uncover the physiologically relevant mechanisms underlying axon growth, and how they can be reactivated to induce axon regeneration.
Collapse
Affiliation(s)
- Eissa Alfadil
- Laboratory of Axon Growth and Regeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Venusberg-Campus 1, Building 99, 53127, Bonn, Germany.
| | - Frank Bradke
- Laboratory of Axon Growth and Regeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Venusberg-Campus 1, Building 99, 53127, Bonn, Germany
| |
Collapse
|
8
|
Gu X, Jia C, Wang J. Advances in Understanding the Molecular Mechanisms of Neuronal Polarity. Mol Neurobiol 2023; 60:2851-2870. [PMID: 36738353 DOI: 10.1007/s12035-023-03242-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/22/2023] [Indexed: 02/05/2023]
Abstract
The establishment and maintenance of neuronal polarity are important for neural development and function. Abnormal neuronal polarity establishment commonly leads to a variety of neurodevelopmental disorders. Over the past three decades, with the continuous development and improvement of biological research methods and techniques, we have made tremendous progress in the understanding of the molecular mechanisms of neuronal polarity establishment. The activity of positive and negative feedback signals and actin waves are both essential in this process. They drive the directional transport and aggregation of key molecules of neuronal polarity, promote the spatiotemporal regulation of ordered and coordinated interactions of actin filaments and microtubules, stimulate the specialization and growth of axons, and inhibit the formation of multiple axons. In this review, we focus on recent advances in these areas, in particular the important findings about neuronal polarity in two classical models, in vitro primary hippocampal/cortical neurons and in vivo cortical pyramidal neurons, and discuss our current understanding of neuronal polarity..
Collapse
Affiliation(s)
- Xi Gu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| | - Chunhong Jia
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Junhao Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
9
|
Munz M, Bharioke A, Kosche G, Moreno-Juan V, Brignall A, Rodrigues TM, Graff-Meyer A, Ulmer T, Haeuselmann S, Pavlinic D, Ledergerber N, Gross-Scherf B, Rózsa B, Krol J, Picelli S, Cowan CS, Roska B. Pyramidal neurons form active, transient, multilayered circuits perturbed by autism-associated mutations at the inception of neocortex. Cell 2023; 186:1930-1949.e31. [PMID: 37071993 PMCID: PMC10156177 DOI: 10.1016/j.cell.2023.03.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/01/2023] [Accepted: 03/22/2023] [Indexed: 04/20/2023]
Abstract
Cortical circuits are composed predominantly of pyramidal-to-pyramidal neuron connections, yet their assembly during embryonic development is not well understood. We show that mouse embryonic Rbp4-Cre cortical neurons, transcriptomically closest to layer 5 pyramidal neurons, display two phases of circuit assembly in vivo. At E14.5, they form a multi-layered circuit motif, composed of only embryonic near-projecting-type neurons. By E17.5, this transitions to a second motif involving all three embryonic types, analogous to the three adult layer 5 types. In vivo patch clamp recordings and two-photon calcium imaging of embryonic Rbp4-Cre neurons reveal active somas and neurites, tetrodotoxin-sensitive voltage-gated conductances, and functional glutamatergic synapses, from E14.5 onwards. Embryonic Rbp4-Cre neurons strongly express autism-associated genes and perturbing these genes interferes with the switch between the two motifs. Hence, pyramidal neurons form active, transient, multi-layered pyramidal-to-pyramidal circuits at the inception of neocortex, and studying these circuits could yield insights into the etiology of autism.
Collapse
Affiliation(s)
- Martin Munz
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland; Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Arjun Bharioke
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland; Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Georg Kosche
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Verónica Moreno-Juan
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Alexandra Brignall
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Tiago M Rodrigues
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Alexandra Graff-Meyer
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Talia Ulmer
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland; Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Stephanie Haeuselmann
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Dinko Pavlinic
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Nicole Ledergerber
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland; Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Brigitte Gross-Scherf
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland; Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Balázs Rózsa
- Two-Photon Imaging Center, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Jacek Krol
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland; Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Simone Picelli
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Cameron S Cowan
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Botond Roska
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland.
| |
Collapse
|
10
|
Ahmad MH, Ghosh B, Rizvi MA, Ali M, Kaur L, Mondal AC. Neural crest cells development and neuroblastoma progression: Role of Wnt signaling. J Cell Physiol 2023; 238:306-328. [PMID: 36502519 DOI: 10.1002/jcp.30931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/19/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Neuroblastoma (NB) is one of the most common heterogeneous extracranial cancers in infancy that arises from neural crest (NC) cells of the sympathetic nervous system. The Wnt signaling pathway, both canonical and noncanonical pathway, is a highly conserved signaling pathway that regulates the development and differentiation of the NC cells during embryogenesis. Reports suggest that aberrant activation of Wnt ligands/receptors in Wnt signaling pathways promote progression and relapse of NB. Wnt signaling pathways regulate NC induction and migration in a similar manner; it regulates proliferation and metastasis of NB. Inhibiting the Wnt signaling pathway or its ligands/receptors induces apoptosis and abrogates proliferation and tumorigenicity in all major types of NB cells. Here, we comprehensively discuss the Wnt signaling pathway and its mechanisms in regulating the development of NC and NB pathogenesis. This review highlights the implications of aberrant Wnt signaling in the context of etiology, progression, and relapse of NB. We have also described emerging strategies for Wnt-based therapies against the progression of NB that will provide new insights into the development of Wnt-based therapeutic strategies for NB.
Collapse
Affiliation(s)
- Mir Hilal Ahmad
- School of Life Sciences, Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.,Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Balaram Ghosh
- Department of Clinical Pharmacology, Midnapore Medical College & Hospital, West Bengal, Medinipur, India
| | - Moshahid Alam Rizvi
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Mansoor Ali
- School of Life Sciences, Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Loveleena Kaur
- Division of Cancer Pharmacology, Indian Institute of Integrative Medicine (IIIM), Srinagar, India
| | - Amal Chandra Mondal
- School of Life Sciences, Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
11
|
Stoletov K, Sanchez S, Gorroño I, Rabano M, Vivanco MDM, Kypta R, Lewis JD. Intravital imaging of Wnt/β-catenin and ATF2-dependent signalling pathways during tumour cell invasion and metastasis. J Cell Sci 2023; 136:286293. [PMID: 36621522 PMCID: PMC10022745 DOI: 10.1242/jcs.260285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/13/2022] [Indexed: 01/10/2023] Open
Abstract
Wnt signalling has been implicated as a driver of tumour cell metastasis, but less is known about which branches of Wnt signalling are involved and when they act in the metastatic cascade. Here, using a unique intravital imaging platform and fluorescent reporters, we visualised β-catenin/TCF-dependent and ATF2-dependent signalling activities during human cancer cell invasion, intravasation and metastatic lesion formation in the chick embryo host. We found that cancer cells readily shifted between states of low and high canonical Wnt activity. Cancer cells that displayed low Wnt canonical activity showed higher invasion and intravasation potential in primary tumours and in metastatic lesions. In contrast, cancer cells showing low ATF2-dependent activity were significantly less invasive both at the front of primary tumours and in metastatic lesions. Simultaneous visualisation of both these reporters using a double-reporter cell line confirmed their complementary activities in primary tumours and metastatic lesions. These findings might inform the development of therapies that target different branches of Wnt signalling at specific stages of metastasis.
Collapse
Affiliation(s)
- Konstantin Stoletov
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Saray Sanchez
- Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Irantzu Gorroño
- Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Miriam Rabano
- Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Maria D M Vivanco
- Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Robert Kypta
- Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain.,Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - John D Lewis
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
12
|
Wang J, Wang A, Tian K, Hua X, Zhang B, Zheng Y, Kong X, Li W, Xu L, Wang J, Li Z, Liu Y, Zhou Y. A Ctnnb1 enhancer regulates neocortical neurogenesis by controlling the abundance of intermediate progenitors. Cell Discov 2022; 8:74. [PMID: 35915089 PMCID: PMC9343459 DOI: 10.1038/s41421-022-00421-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/05/2022] [Indexed: 11/09/2022] Open
Abstract
β-catenin-dependent canonical Wnt signaling plays a plethora of roles in neocortex (Ncx) development, but its function in regulating the abundance of intermediate progenitors (IPs) is elusive. Here we identified neCtnnb1, an evolutionarily conserved cis-regulatory element with typical enhancer features in developing Ncx. neCtnnb1 locates 55 kilobase upstream of and spatially close to the promoter of Ctnnb1, the gene encoding β-catenin. CRISPR/Cas9-mediated activation or interference of the neCtnnb1 locus enhanced or inhibited transcription of Ctnnb1. neCtnnb1 drove transcription predominantly in the subventricular zone of developing Ncx. Knock-out of neCtnnb1 in mice resulted in compromised expression of Ctnnb1 and the Wnt reporter in developing Ncx. Importantly, knock-out of neCtnnb1 lead to reduced production and transit-amplification of IPs, which subsequently generated fewer upper-layer Ncx projection neurons (PNs). In contrast, enhancing the canonical Wnt signaling by stabilizing β-catenin in neCtnnb1-active cells promoted the production of IPs and upper-layer Ncx PNs. ASH2L was identified as the key trans-acting factor that associates with neCtnnb1 and Ctnnb1’s promoter to maintain Ctnnb1’s transcription in both mouse and human Ncx progenitors. These findings advance understanding of transcriptional regulation of Ctnnb1, and provide insights into mechanisms underlying Ncx expansion during development.
Collapse
Affiliation(s)
- Junbao Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Andi Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Kuan Tian
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Xiaojiao Hua
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Bo Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Yue Zheng
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Xiangfei Kong
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Wei Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Lichao Xu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Juan Wang
- Department of Neurology, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiqiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Ying Liu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China.
| | - Yan Zhou
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
13
|
Lee WS, Baldassari S, Stephenson SEM, Lockhart PJ, Baulac S, Leventer RJ. Cortical Dysplasia and the mTOR Pathway: How the Study of Human Brain Tissue Has Led to Insights into Epileptogenesis. Int J Mol Sci 2022; 23:1344. [PMID: 35163267 PMCID: PMC8835853 DOI: 10.3390/ijms23031344] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 02/01/2023] Open
Abstract
Type II focal cortical dysplasia (FCD) is a neuropathological entity characterised by cortical dyslamination with the presence of dysmorphic neurons only (FCDIIA) or the presence of both dysmorphic neurons and balloon cells (FCDIIB). The year 2021 marks the 50th anniversary of the recognition of FCD as a cause of drug resistant epilepsy, and it is now the most common reason for epilepsy surgery. The causes of FCD remained unknown until relatively recently. The study of resected human FCD tissue using novel genomic technologies has led to remarkable advances in understanding the genetic basis of FCD. Mechanistic parallels have emerged between these non-neoplastic lesions and neoplastic disorders of cell growth and differentiation, especially through perturbations of the mammalian target of rapamycin (mTOR) signalling pathway. This narrative review presents the advances through which the aetiology of FCDII has been elucidated in chronological order, from recognition of an association between FCD and the mTOR pathway to the identification of somatic mosaicism within FCD tissue. We discuss the role of a two-hit mechanism, highlight current challenges and future directions in detecting somatic mosaicism in brain and discuss how knowledge of FCD may inform novel precision treatments of these focal epileptogenic malformations of human cortical development.
Collapse
Affiliation(s)
- Wei Shern Lee
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Parkville 3052, Australia; (W.S.L.); (S.E.M.S.); (P.J.L.)
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
| | - Sara Baldassari
- Institut du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France;
| | - Sarah E. M. Stephenson
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Parkville 3052, Australia; (W.S.L.); (S.E.M.S.); (P.J.L.)
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
| | - Paul J. Lockhart
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Parkville 3052, Australia; (W.S.L.); (S.E.M.S.); (P.J.L.)
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
| | - Stéphanie Baulac
- Institut du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France;
| | - Richard J. Leventer
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
- Murdoch Children’s Research Institute, Parkville 3052, Australia
- Department of Neurology, The Royal Children’s Hospital, Parkville 3052, Australia
| |
Collapse
|
14
|
Han M, Yuan L, Huang Y, Wang G, Du C, Wang Q, Zhang G. Integrated co-expression network analysis uncovers novel tissue-specific genes in major depressive disorder and bipolar disorder. Front Psychiatry 2022; 13:980315. [PMID: 36081461 PMCID: PMC9445988 DOI: 10.3389/fpsyt.2022.980315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Tissue-specific gene expression has been found to be associated with multiple complex diseases including cancer, metabolic disease, aging, etc. However, few studies of brain-tissue-specific gene expression patterns have been reported, especially in psychiatric disorders. In this study, we performed joint analysis on large-scale transcriptome multi-tissue data to investigate tissue-specific expression patterns in major depressive disorder (MDD) and bipolar disorder (BP). We established the strategies of identifying tissues-specific modules, annotated pathways for elucidating biological functions of tissues, and tissue-specific genes based on weighted gene co-expression network analysis (WGCNA) and robust rank aggregation (RRA) with transcriptional profiling data from different human tissues and genome wide association study (GWAS) data, which have been expanded into overlapping tissue-specific modules and genes sharing with MDD and BP. Nine tissue-specific modules were identified and distributed across the four tissues in the MDD and six modules in the BP. In general, the annotated biological functions of differentially expressed genes (DEGs) in blood were mainly involved in MDD and BP progression through immune response, while those in the brain were in neuron and neuroendocrine response. Tissue-specific genes of the prefrontal cortex (PFC) in MDD-, such as IGFBP2 and HTR1A, were involved in disease-related functions, such as response to glucocorticoid, taste transduction, and tissue-specific genes of PFC in BP-, such as CHRM5 and LTB4R2, were involved in neuroactive ligand-receptor interaction. We also found PFC tissue-specific genes including SST and CRHBP were shared in MDD-BP, SST was enriched in neuroactive ligand-receptor interaction, and CRHBP shown was related to the regulation of hormone secretion and hormone transport.
Collapse
Affiliation(s)
- Mengyao Han
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liyun Yuan
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuwei Huang
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guiying Wang
- Shanghai Key Laboratory of Signaling and Disease Research, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Changsheng Du
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qingzhong Wang
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guoqing Zhang
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
15
|
Quader S, Tanabe S, Cabral H. Abnormal Glycosylation in Cancer Cells and Cancer Stem Cells as a Therapeutic Target. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1393:141-156. [PMID: 36587306 DOI: 10.1007/978-3-031-12974-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Tumor resistance and recurrence have been associated with the presence of cancer stem cells (CSCs) in tumors. The functions and survival of the CSCs have been associated with several intracellular and extracellular features. Particularly, the abnormal glycosylation of these signaling pathways and markers of CSCs have been correlated with maintaining survival, self-renewal and extravasation properties. Here, we highlight the importance of glycosylation in promoting the stemness character of CSCs and the current strategies for targeting abnormal glycosylation toward generating effective therapies against the CSC population.
Collapse
Affiliation(s)
- Sabina Quader
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
| | - Shihori Tanabe
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
16
|
Li Y, Baccouche B, Olayinka O, Serikbaeva A, Kazlauskas A. The Role of the Wnt Pathway in VEGF/Anti-VEGF-Dependent Control of the Endothelial Cell Barrier. Invest Ophthalmol Vis Sci 2021; 62:17. [PMID: 34542556 PMCID: PMC8458780 DOI: 10.1167/iovs.62.12.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purpose Investigate the contribution of the Wnt pathway to vascular endothelial growth factor (VEGF)/anti-VEGF-mediated control of endothelial cell permeability. Methods High glucose-treated primary human retinal endothelial cells (HRECs) were exposed to either VEGF, or VEGF and then anti-VEGF. Changes in gene expression were assayed by RNAseq and qRT-PCR. Permeability was monitored by electrical cell-substrate impedance sensing (ECIS). Approaches to activate the Wnt pathway included treatment with LiCl and overexpression of constitutively activated β-catenin. β-catenin-dependent transcriptional activity was monitored in HRECs stably expressing a TCF/LEF-driven reporter. Results VEGF/anti-VEGF altered expression of genes encoding many members of the Wnt pathway. A subset of these genes was regulated in a way that is likely to contribute to control of the endothelial cell barrier. Namely, the VEGF-induced alteration of expression of such genes was reversed by anti-VEGF, and such adjustments occurred at times corresponding to changes in barrier function. While pharmacological and molecular approaches to activate the Wnt pathway had no effect on basal permeability, they suppressed VEGF-induced relaxation. Furthermore, anti-VEGF-mediated restoration of barrier function was unaffected by activation of the Wnt pathway. Conclusions VEGF/anti-VEGF engages multiple members of the Wnt pathway, and activating this pathway enforces the endothelial barrier by attenuating VEGF-induced relaxation. These data suggest that FDA-approved agents such as LiCl may be an adjuvant to anti-VEGF therapy for patients afflicted with blinding conditions including diabetic retinopathy.
Collapse
Affiliation(s)
- Yueru Li
- University of Illinois at Chicago, Department of Ophthalmology & Visual Sciences, Chicago, IL, United States
| | - Basma Baccouche
- University of Illinois at Chicago, Department of Ophthalmology & Visual Sciences, Chicago, IL, United States
| | - Olamide Olayinka
- Department of Physiology and Biophysics, Chicago, IL, United States
| | - Anara Serikbaeva
- Department of Physiology and Biophysics, Chicago, IL, United States
| | - Andrius Kazlauskas
- University of Illinois at Chicago, Department of Ophthalmology & Visual Sciences, Chicago, IL, United States.,Department of Physiology and Biophysics, Chicago, IL, United States
| |
Collapse
|
17
|
Bedogni F, Hevner RF. Cell-Type-Specific Gene Expression in Developing Mouse Neocortex: Intermediate Progenitors Implicated in Axon Development. Front Mol Neurosci 2021; 14:686034. [PMID: 34321999 PMCID: PMC8313239 DOI: 10.3389/fnmol.2021.686034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/03/2021] [Indexed: 01/06/2023] Open
Abstract
Cerebral cortex projection neurons (PNs) are generated from intermediate progenitors (IPs), which are in turn derived from radial glial progenitors (RGPs). To investigate developmental processes in IPs, we profiled IP transcriptomes in embryonic mouse neocortex, using transgenic Tbr2-GFP mice, cell sorting, and microarrays. These data were used in combination with in situ hybridization to ascertain gene sets specific for IPs, RGPs, PNs, interneurons, and other neural and non-neural cell types. RGP-selective transcripts (n = 419) included molecules for Notch receptor signaling, proliferation, neural stem cell identity, apical junctions, necroptosis, hippo pathway, and NF-κB pathway. RGPs also expressed specific genes for critical interactions with meningeal and vascular cells. In contrast, IP-selective genes (n = 136) encoded molecules for activated Delta ligand presentation, epithelial-mesenchymal transition, core planar cell polarity (PCP), axon genesis, and intrinsic excitability. Interestingly, IPs expressed several “dependence receptors” (Unc5d, Dcc, Ntrk3, and Epha4) that induce apoptosis in the absence of ligand, suggesting a competitive mechanism for IPs and new PNs to detect key environmental cues or die. Overall, our results imply a novel role for IPs in the patterning of neuronal polarization, axon differentiation, and intrinsic excitability prior to mitosis. Significantly, IPs highly express Wnt-PCP, netrin, and semaphorin pathway molecules known to regulate axon polarization in other systems. In sum, IPs not only amplify neurogenesis quantitatively, but also molecularly “prime” new PNs for axogenesis, guidance, and excitability.
Collapse
Affiliation(s)
| | - Robert F Hevner
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
18
|
Sokpor G, Kerimoglu C, Nguyen H, Pham L, Rosenbusch J, Wagener R, Nguyen HP, Fischer A, Staiger JF, Tuoc T. Loss of BAF Complex in Developing Cortex Perturbs Radial Neuronal Migration in a WNT Signaling-Dependent Manner. Front Mol Neurosci 2021; 14:687581. [PMID: 34220450 PMCID: PMC8243374 DOI: 10.3389/fnmol.2021.687581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/20/2021] [Indexed: 12/22/2022] Open
Abstract
Radial neuronal migration is a key neurodevelopmental event indispensable for proper cortical laminar organization. Cortical neurons mainly use glial fiber guides, cell adhesion dynamics, and cytoskeletal remodeling, among other discrete processes, to radially trek from their birthplace to final layer positions. Dysregulated radial migration can engender cortical mis-lamination, leading to neurodevelopmental disorders. Epigenetic factors, including chromatin remodelers have emerged as formidable regulators of corticogenesis. Notably, the chromatin remodeler BAF complex has been shown to regulate several aspects of cortical histogenesis. Nonetheless, our understanding of how BAF complex regulates neuronal migration is limited. Here, we report that BAF complex is required for neuron migration during cortical development. Ablation of BAF complex in the developing mouse cortex caused alteration in the cortical gene expression program, leading to loss of radial migration-related factors critical for proper cortical layer formation. Of note, BAF complex inactivation in cortex caused defective neuronal polarization resulting in diminished multipolar-to-bipolar transition and eventual disruption of radial migration of cortical neurons. The abnormal radial migration and cortical mis-lamination can be partly rescued by downregulating WNT signaling hyperactivity in the BAF complex mutant cortex. By implication, the BAF complex modulates WNT signaling to establish the gene expression program required for glial fiber-dependent neuronal migration, and cortical lamination. Overall, BAF complex has been identified to be crucial for cortical morphogenesis through instructing multiple aspects of radial neuronal migration in a WNT signaling-dependent manner.
Collapse
Affiliation(s)
- Godwin Sokpor
- Institute for Neuroanatomy, University Medical Center Goettingen, Göttingen, Germany.,Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
| | - Cemil Kerimoglu
- German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Huong Nguyen
- Institute for Neuroanatomy, University Medical Center Goettingen, Göttingen, Germany.,Faculty of Biotechnology, Thai Nguyen University of Sciences, Thai Nguyen, Vietnam
| | - Linh Pham
- Institute for Neuroanatomy, University Medical Center Goettingen, Göttingen, Germany.,Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
| | - Joachim Rosenbusch
- Institute for Neuroanatomy, University Medical Center Goettingen, Göttingen, Germany
| | - Robin Wagener
- Institute for Neuroanatomy, University Medical Center Goettingen, Göttingen, Germany.,Department of Neurology, University Medical Center Heidelberg, Heidelberg, Germany.,Neurooncology Clinical Cooperation Unit, German Cancer Research Center, Heidelberg, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
| | - Andre Fischer
- German Center for Neurodegenerative Diseases, Göttingen, Germany.,Department for Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center Goettingen, Göttingen, Germany
| | - Tran Tuoc
- Institute for Neuroanatomy, University Medical Center Goettingen, Göttingen, Germany.,Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
| |
Collapse
|
19
|
Nomura T, Ohtaka-Maruyama C, Kiyonari H, Gotoh H, Ono K. Changes in Wnt-Dependent Neuronal Morphology Underlie the Anatomical Diversification of Neocortical Homologs in Amniotes. Cell Rep 2021; 31:107592. [PMID: 32375034 DOI: 10.1016/j.celrep.2020.107592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/13/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022] Open
Abstract
The six-layered neocortex is a shared characteristic of all mammals, but not of non-mammalian species, and its formation requires an inside-out pattern of neuronal migration. The extant reptilian dorsal cortex is thought to represent an ancestral form of the neocortex, although how the reptilian three-layered cortex is formed is poorly understood. Here, we show unique patterns of lamination and neuronal migration in the developing reptilian cortex. While the multipolar-to-bipolar transition of migrating neurons is essential for mammalian cortical development, the reptilian cortex lacks bipolar-shaped migrating neurons, resulting in an outside-in pattern of cortical development. Furthermore, dynamic regulation of Wnt signal strengths contributes to neuronal morphological changes, which is conserved across species. Our data preclude the idea that the six-layered mammalian neocortex emerged by simple addition to the reptilian dorsal cortex but suggest that the acquisition of a novel neuronal morphology based on conserved developmental programs contributed to neocortical evolution.
Collapse
Affiliation(s)
- Tadashi Nomura
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, INAMORI Memorial Building, 1-5 Shimogamo-Hangi cho, Sakyoku, Kyoto 606-0823, Japan.
| | - Chiaki Ohtaka-Maruyama
- Neural Network Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Hitoshi Gotoh
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, INAMORI Memorial Building, 1-5 Shimogamo-Hangi cho, Sakyoku, Kyoto 606-0823, Japan
| | - Katsuhiko Ono
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, INAMORI Memorial Building, 1-5 Shimogamo-Hangi cho, Sakyoku, Kyoto 606-0823, Japan
| |
Collapse
|
20
|
Khan T, Cabral H. Abnormal Glycosylation of Cancer Stem Cells and Targeting Strategies. Front Oncol 2021; 11:649338. [PMID: 33889547 PMCID: PMC8056457 DOI: 10.3389/fonc.2021.649338] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cell (CSCs) are deemed as one of the main reasons of tumor relapse due to their resistance to standard therapies. Numerous intracellular signaling pathways along with extracellular features are crucial in regulating CSCs properties, such as heterogeneity, plasticity and differentiation. Aberrant glycosylation of these cellular signaling pathways and markers of CSCs have been directly correlated with maintaining survival, self-renewal and extravasation properties. In this review, we highlight the importance of glycosylation in promoting stemness character of CSCs, and present strategies for targeting abnormal glycosylation to eliminate the resistant CSC population.
Collapse
Affiliation(s)
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Tang BL. Defects in early secretory pathway transport machinery components and neurodevelopmental disorders. Rev Neurosci 2021; 32:851-869. [PMID: 33781010 DOI: 10.1515/revneuro-2021-0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022]
Abstract
The early secretory pathway, provisionally comprising of vesicular traffic between the endoplasmic reticulum (ER) and the Golgi apparatus, occurs constitutively in mammalian cells. Critical for a constant supply of secretory and plasma membrane (PM) materials, the pathway is presumably essential for general cellular function and survival. Neurons exhibit a high intensity in membrane dynamics and protein/lipid trafficking, with differential and polarized trafficking towards the somatodendritic and axonal PM domains. Mutations in genes encoding early secretory pathway membrane trafficking machinery components are known to result in neurodevelopmental or neurological disorders with disease manifestation in early life. Here, such rare disorders associated with autosomal recessive mutations in coat proteins, membrane tethering complexes and membrane fusion machineries responsible for trafficking in the early secretory pathway are summarily discussed. These mutations affected genes encoding subunits of coat protein complex I and II, subunits of transport protein particle (TRAPP) complexes, members of the YIP1 domain family (YIPF) and a SNAP receptor (SNARE) family member. Why the ubiquitously present and constitutively acting early secretory pathway machinery components could specifically affect neurodevelopment is addressed, with the plausible underlying disease etiologies and neuropathological mechanisms resulting from these mutations explored.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore117597, Singapore
| |
Collapse
|
22
|
Kyun ML, Kim SO, Lee HG, Hwang JA, Hwang J, Soung NK, Cha-Molstad H, Lee S, Kwon YT, Kim BY, Lee KH. Wnt3a Stimulation Promotes Primary Ciliogenesis through β-Catenin Phosphorylation-Induced Reorganization of Centriolar Satellites. Cell Rep 2021; 30:1447-1462.e5. [PMID: 32023461 DOI: 10.1016/j.celrep.2020.01.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/22/2019] [Accepted: 01/06/2020] [Indexed: 01/10/2023] Open
Abstract
Primary cilium is an antenna-like microtubule-based cellular sensing structure. Abnormal regulation of the dynamic assembly and disassembly cycle of primary cilia is closely related to ciliopathy and cancer. The Wnt signaling pathway plays a major role in embryonic development and tissue homeostasis, and defects in Wnt signaling are associated with a variety of human diseases, including cancer. In this study, we provide direct evidence of Wnt3a-induced primary ciliogenesis, which includes a continuous pathway showing that the stimulation of Wnt3a, a canonical Wnt ligand, promotes the generation of β-catenin p-S47 epitope by CK1δ, and these events lead to the reorganization of centriolar satellites resulting in primary ciliogenesis. We have also confirmed the application of our findings in MCF-7/ADR cells, a multidrug-resistant tumor cell model. Thus, our data provide a Wnt3a-induced primary ciliogenesis pathway and may provide a clue on how to overcome multidrug resistance in cancer treatment.
Collapse
Affiliation(s)
- Mi-Lang Kyun
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang, Cheongwon, Chungbuk 28116, Republic of Korea; Department of Biomolecular Science, University of Science and Technology, Daejeon 34113, Korea
| | - Sun-Ok Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang, Cheongwon, Chungbuk 28116, Republic of Korea
| | - Hee Gu Lee
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Biomolecular Science, University of Science and Technology, Daejeon 34113, Korea
| | - Jeong-Ah Hwang
- Research Institute of Medical Sciences, Department of Physiology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Joonsung Hwang
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang, Cheongwon, Chungbuk 28116, Republic of Korea
| | - Nak-Kyun Soung
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang, Cheongwon, Chungbuk 28116, Republic of Korea
| | - Hyunjoo Cha-Molstad
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang, Cheongwon, Chungbuk 28116, Republic of Korea
| | - Sangku Lee
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang, Cheongwon, Chungbuk 28116, Republic of Korea
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Korea.
| | - Bo Yeon Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang, Cheongwon, Chungbuk 28116, Republic of Korea; Department of Biomolecular Science, University of Science and Technology, Daejeon 34113, Korea.
| | - Kyung Ho Lee
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang, Cheongwon, Chungbuk 28116, Republic of Korea.
| |
Collapse
|
23
|
Hasenpusch-Theil K, Theil T. The Multifaceted Roles of Primary Cilia in the Development of the Cerebral Cortex. Front Cell Dev Biol 2021; 9:630161. [PMID: 33604340 PMCID: PMC7884624 DOI: 10.3389/fcell.2021.630161] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
The primary cilium, a microtubule based organelle protruding from the cell surface and acting as an antenna in multiple signaling pathways, takes center stage in the formation of the cerebral cortex, the part of the brain that performs highly complex neural tasks and confers humans with their unique cognitive capabilities. These activities require dozens of different types of neurons that are interconnected in complex ways. Due to this complexity, corticogenesis has been regarded as one of the most complex developmental processes and cortical malformations underlie a number of neurodevelopmental disorders such as intellectual disability, autism spectrum disorders, and epilepsy. Cortical development involves several steps controlled by cell–cell signaling. In fact, recent findings have implicated cilia in diverse processes such as neurogenesis, neuronal migration, axon pathfinding, and circuit formation in the developing cortex. Here, we will review recent advances on the multiple roles of cilia during cortex formation and will discuss the implications for a better understanding of the disease mechanisms underlying neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kerstin Hasenpusch-Theil
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas Theil
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
24
|
Lee KH. Involvement of Wnt signaling in primary cilia assembly and disassembly. FEBS J 2020; 287:5027-5038. [PMID: 33015954 DOI: 10.1111/febs.15579] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 11/28/2022]
Abstract
The primary cilium is a nonmotile microtubule-based structure, which functions as an antenna-like cellular sensing organelle. The primary cilium is assembled from the basal body, a mother centriole-based structure, during interphase or a quiescent cell stage, and rapidly disassembles before entering mitosis in a dynamic cycle. Defects in this ciliogenesis dynamics are associated with human diseases such as ciliopathy and cancer, but the molecular mechanisms of the ciliogenesis dynamics are still largely unknown. To date, various cellular signaling pathways associated with primary cilia have been proposed, but the main signaling pathways regulating primary cilia assembly/disassembly remain enigmatic. This review describes recent findings in Wnt-induced primary cilia assembly/disassembly and potential future directions for the study of the cellular signaling related to the primary ciliogenesis dynamics.
Collapse
Affiliation(s)
- Kyung Ho Lee
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Korea
| |
Collapse
|
25
|
Constanthin PE, Contestabile A, Petrenko V, Quairiaux C, Salmon P, Hüppi PS, Kiss JZ. Endogenous erythropoietin signaling regulates migration and laminar positioning of upper-layer neurons in the developing neocortex. Development 2020; 147:dev190249. [PMID: 32764029 PMCID: PMC7561482 DOI: 10.1242/dev.190249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/24/2020] [Indexed: 01/24/2023]
Abstract
Erythropoietin (EPO), the hypoxia-inducible hematopoietic hormone, has well-established neuroprotective/neurotrophic roles in the developing central nervous system and the therapeutic potential of EPO has been widely explored in clinical studies for the treatment of perinatal hypoxic brain lesion, as well as prematurity. Here, we reveal that both EPO and Epo receptor (EPOR) are expressed in the developing rat somatosensory cortex during radial migration and laminar positioning of granular and supragranular neurons. Experimental deregulation of EPO signaling using genetic approaches results in aberrant migration, as well as permanent neuronal misplacement leading to abnormal network activity and protracted sensory behavioral deficits. We identify ERK as the downstream effector of the EPO signaling pathway for neuronal migration. These findings reveal a crucial role for endogenous EPO signaling in neuronal migration, and offer important insights for understanding how the temporary deregulation of EPO could result in migration defects that lead to abnormal behavior in the adult.
Collapse
Affiliation(s)
- Paul E Constanthin
- Department of Fundamental Neurosciences, University Medical Center, University of Geneva, 1201 Geneva, Switzerland
| | - Alessandro Contestabile
- Department of Fundamental Neurosciences, University Medical Center, University of Geneva, 1201 Geneva, Switzerland
| | - Volodymyr Petrenko
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialties, University Hospital of Geneva, 1201 Geneva, Switzerland
- Department of Cell Physiology and Metabolism; Diabetes Center, Faculty of Medicine, University of Geneva; Institute of Genetics and Genomics in Geneva (iGE3), 1201 Geneva, Switzerland
| | - Charles Quairiaux
- Department of Fundamental Neurosciences, University Medical Center, University of Geneva, 1201 Geneva, Switzerland
| | - Patrick Salmon
- Department of Fundamental Neurosciences, University Medical Center, University of Geneva, 1201 Geneva, Switzerland
| | - Petra S Hüppi
- Department of Pediatrics, Faculty of Medicine, University Hospital of Geneva, 1201 Geneva, Switzerland
| | - Jozsef Z Kiss
- Department of Fundamental Neurosciences, University Medical Center, University of Geneva, 1201 Geneva, Switzerland
| |
Collapse
|
26
|
Sharon D, Cathelin S, Mirali S, Di Trani JM, Yanofsky DJ, Keon KA, Rubinstein JL, Schimmer AD, Ketela T, Chan SM. Inhibition of mitochondrial translation overcomes venetoclax resistance in AML through activation of the integrated stress response. Sci Transl Med 2020; 11:11/516/eaax2863. [PMID: 31666400 DOI: 10.1126/scitranslmed.aax2863] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/07/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
Abstract
Venetoclax is a specific B cell lymphoma 2 (BCL-2) inhibitor with promising activity against acute myeloid leukemia (AML), but its clinical efficacy as a single agent or in combination with hypomethylating agents (HMAs), such as azacitidine, is hampered by intrinsic and acquired resistance. Here, we performed a genome-wide CRISPR knockout screen and found that inactivation of genes involved in mitochondrial translation restored sensitivity to venetoclax in resistant AML cells. Pharmacologic inhibition of mitochondrial protein synthesis with antibiotics that target the ribosome, including tedizolid and doxycycline, effectively overcame venetoclax resistance. Mechanistic studies showed that both tedizolid and venetoclax suppressed mitochondrial respiration, with the latter demonstrating inhibitory activity against complex I [nicotinamide adenine dinucleotide plus hydrogen (NADH) dehydrogenase] of the electron transport chain (ETC). The drugs cooperated to activate a heightened integrated stress response (ISR), which, in turn, suppressed glycolytic capacity, resulting in adenosine triphosphate (ATP) depletion and subsequent cell death. Combination treatment with tedizolid and venetoclax was superior to either agent alone in reducing leukemic burden in mice engrafted with treatment-resistant human AML. The addition of tedizolid to azacitidine and venetoclax further enhanced the killing of resistant AML cells in vitro and in vivo. Our findings demonstrate that inhibition of mitochondrial translation is an effective approach to overcoming venetoclax resistance and provide a rationale for combining tedizolid, azacitidine, and venetoclax as a triplet therapy for AML.
Collapse
Affiliation(s)
- David Sharon
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada
| | | | - Sara Mirali
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada
| | - Justin M Di Trani
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - David J Yanofsky
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Kristine A Keon
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Troy Ketela
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada
| | - Steven M Chan
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
27
|
Guarnieri G, Sarchielli E, Comeglio P, Herrera-Puerta E, Piaceri I, Nacmias B, Benelli M, Kelsey G, Maggi M, Gallina P, Vannelli GB, Morelli A. Tumor Necrosis Factor α Influences Phenotypic Plasticity and Promotes Epigenetic Changes in Human Basal Forebrain Cholinergic Neuroblasts. Int J Mol Sci 2020; 21:E6128. [PMID: 32854421 PMCID: PMC7504606 DOI: 10.3390/ijms21176128] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023] Open
Abstract
TNFα is the main proinflammatory cytokine implicated in the pathogenesis of neurodegenerative disorders, but it also modulates physiological functions in both the developing and adult brain. In this study, we investigated a potential direct role of TNFα in determining phenotypic changes of a recently established cellular model of human basal forebrain cholinergic neuroblasts isolated from the nucleus basalis of Meynert (hfNBMs). Exposing hfNBMs to TNFα reduced the expression of immature markers, such as nestin and β-tubulin III, and inhibited primary cilium formation. On the contrary, TNFα increased the expression of TNFα receptor TNFR2 and the mature neuron marker MAP2, also promoting neurite elongation. Moreover, TNFα affected nerve growth factor receptor expression. We also found that TNFα induced the expression of DNA-methylation enzymes and, accordingly, downregulated genes involved in neuronal development through epigenetic mechanisms, as demonstrated by methylome analysis. In summary, TNFα showed a dual role on hfNBMs phenotypic plasticity, exerting a negative influence on neurogenesis despite a positive effect on differentiation, through mechanisms that remain to be elucidated. Our results help to clarify the complexity of TNFα effects in human neurons and suggest that manipulation of TNFα signaling could provide a potential therapeutic approach against neurodegenerative disorders.
Collapse
Affiliation(s)
- Giulia Guarnieri
- Section of Human Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (E.S.); (G.B.V.)
| | - Erica Sarchielli
- Section of Human Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (E.S.); (G.B.V.)
| | - Paolo Comeglio
- Sexual Medicine and Andrology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy;
| | | | - Irene Piaceri
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50134 Florence, Italy; (I.P.); (B.N.)
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50134 Florence, Italy; (I.P.); (B.N.)
| | - Matteo Benelli
- Bioinformatics Unit, Hospital of Prato, Azienda USL Toscana Centro, 50122 Prato, Italy;
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK;
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 1TN, UK
| | - Mario Maggi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy;
| | - Pasquale Gallina
- Neurosurgical Unit, Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, 50134 Florence, Italy;
| | - Gabriella Barbara Vannelli
- Section of Human Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (E.S.); (G.B.V.)
| | - Annamaria Morelli
- Section of Human Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (E.S.); (G.B.V.)
| |
Collapse
|
28
|
Fan X, Fu Y, Zhou X, Sun L, Yang M, Wang M, Chen R, Wu Q, Yong J, Dong J, Wen L, Qiao J, Wang X, Tang F. Single-cell transcriptome analysis reveals cell lineage specification in temporal-spatial patterns in human cortical development. SCIENCE ADVANCES 2020; 6:eaaz2978. [PMID: 32923614 PMCID: PMC7450478 DOI: 10.1126/sciadv.aaz2978] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 07/09/2020] [Indexed: 05/19/2023]
Abstract
Neurogenesis processes differ in different areas of the cortex in many species, including humans. Here, we performed single-cell transcriptome profiling of the four cortical lobes and pons during human embryonic and fetal development. We identified distinct subtypes of neural progenitor cells (NPCs) and their molecular signatures, including a group of previously unidentified transient NPCs. We specified the neurogenesis path and molecular regulations of the human deep-layer, upper-layer, and mature neurons. Neurons showed clear spatial and temporal distinctions, while glial cells of different origins showed development patterns similar to those of mice, and we captured the developmental trajectory of oligodendrocyte lineage cells until the human mid-fetal stage. Additionally, we verified region-specific characteristics of neurons in the cortex, including their distinct electrophysiological features. With systematic single-cell analysis, we decoded human neuronal development in temporal and spatial dimensions from GW7 to GW28, offering deeper insights into the molecular regulations underlying human neurogenesis and cortical development.
Collapse
Affiliation(s)
- Xiaoying Fan
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China
- Biomedical Pioneering Innovation Center and Center for Reproductive Medicine, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Brain-Intelligence Science and Technology, Zhangjing Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanyuan Fu
- Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xin Zhou
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Brain-Intelligence Science and Technology, Zhangjing Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Le Sun
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Brain-Intelligence Science and Technology, Zhangjing Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Yang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Mengdi Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiguo Chen
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Brain-Intelligence Science and Technology, Zhangjing Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Wu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Brain-Intelligence Science and Technology, Zhangjing Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yong
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Ji Dong
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China
- Biomedical Pioneering Innovation Center and Center for Reproductive Medicine, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Lu Wen
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China
- Biomedical Pioneering Innovation Center and Center for Reproductive Medicine, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Jie Qiao
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Brain-Intelligence Science and Technology, Zhangjing Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Advanced Innovation Center for Human Brain Protection, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China
- Biomedical Pioneering Innovation Center and Center for Reproductive Medicine, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
29
|
ZEB1 Represses Neural Differentiation and Cooperates with CTBP2 to Dynamically Regulate Cell Migration during Neocortex Development. Cell Rep 2020; 27:2335-2353.e6. [PMID: 31116980 DOI: 10.1016/j.celrep.2019.04.081] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 02/28/2019] [Accepted: 04/16/2019] [Indexed: 01/08/2023] Open
Abstract
Zinc-finger E-box binding homeobox 1 (Zeb1) is a key regulator of epithelial-mesenchymal transition and cancer metastasis. Mutation of ZEB1 is associated with human diseases and defective brain development. Here we show that downregulation of Zeb1 expression in embryonic cortical neural progenitor cells (NPCs) is necessary for proper neuronal differentiation and migration. Overexpression of Zeb1 during neuronal differentiation, when its expression normally declines, blocks NPC lineage progression and disrupts multipolar-to-bipolar transition of differentiating neurons, leading to severe migration defects and subcortical heterotopia bands at postnatal stages. ZEB1 regulates a cohort of genes involved in cell differentiation and migration, including Neurod1 and Pard6b. The interaction between ZEB1 and CTBP2 in the embryonic cerebral cortex is required for ZEB1 to elicit its effect on the multipolar-to-bipolar transition, but not its suppression of Neurod1. These findings provide insights into understanding the complexity of transcriptional regulation during neuronal differentiation.
Collapse
|
30
|
Dohare P, Kidwai A, Kaur J, Singla P, Krishna S, Klebe D, Zhang X, Hevner R, Ballabh P. GSK3β Inhibition Restores Impaired Neurogenesis in Preterm Neonates With Intraventricular Hemorrhage. Cereb Cortex 2020; 29:3482-3495. [PMID: 30192926 DOI: 10.1093/cercor/bhy217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/30/2018] [Indexed: 01/25/2023] Open
Abstract
Intraventricular hemorrhage (IVH) is a common complication of prematurity in infants born at 23-28 weeks of gestation. Survivors exhibit impaired growth of the cerebral cortex and neurodevelopmental sequeale, but the underlying mechanism(s) are obscure. Previously, we have shown that neocortical neurogenesis continues until at least 28 gestational weeks. This renders the prematurely born infants vulnerable to impaired neurogenesis. Here, we hypothesized that neurogenesis is impaired by IVH, and that signaling through GSK3β, a critical intracellular kinase regulated by Wnt and other pathways, mediates this effect. These hypotheses were tested observationally in autopsy specimens from premature infants, and experimentally in a premature rabbit IVH model. Significantly, in premature infants with IVH, the number of neurogenic cortical progenitor cells was reduced compared with infants without IVH, indicating acutely decreased neurogenesis. This finding was corroborated in the rabbit IVH model, which further demonstrated reduction of upper layer cortical neurons after longer survival. Both the acute reduction of neurogenic progenitors, and the subsequent decrease of upper layer neurons, were rescued by treatment with AR-A014418, a specific inhibitor of GSK3β. Together, these results indicate that IVH impairs late stages of cortical neurogenesis, and suggest that treatment with GSK3β inhibitors may enhance neurodevelopment in premature infants with IVH.
Collapse
Affiliation(s)
- Preeti Dohare
- Department of Pediatrics.,Dominick P. Purpura Department of Neuroscience
| | | | | | | | | | | | | | - Robert Hevner
- Department of Pathology, 9500 Gilman Dr, UCSD, La Jolla, CA, USA
| | - Praveen Ballabh
- Department of Pediatrics.,Dominick P. Purpura Department of Neuroscience.,Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
31
|
Viale B, Song L, Petrenko V, Wenger Combremont AL, Contestabile A, Bocchi R, Salmon P, Carleton A, An L, Vutskits L, Kiss JZ. Transient Deregulation of Canonical Wnt Signaling in Developing Pyramidal Neurons Leads to Dendritic Defects and Impaired Behavior. Cell Rep 2020; 27:1487-1502.e6. [PMID: 31042475 DOI: 10.1016/j.celrep.2019.04.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/28/2019] [Accepted: 04/03/2019] [Indexed: 12/30/2022] Open
Abstract
During development, the precise implementation of molecular programs is a key determinant of proper dendritic development. Here, we demonstrate that canonical Wnt signaling is active in dendritic bundle-forming layer II pyramidal neurons of the rat retrosplenial cortex during dendritic branching and spine formation. Transient downregulation of canonical Wnt transcriptional activity during the early postnatal period irreversibly reduces dendritic arbor architecture, leading to long-lasting deficits in spatial exploration and/or navigation and spatial memory in the adult. During the late phase of dendritogenesis, canonical Wnt-dependent transcription regulates spine formation and maturation. We identify neurotrophin-3 as canonical Wnt target gene in regulating dendritogenesis. Our findings demonstrate how temporary imbalance in canonical Wnt signaling during specific time windows can result in irreversible dendritic defects, leading to abnormal behavior in the adult.
Collapse
Affiliation(s)
- Beatrice Viale
- Department of Basic Neurosciences, University of Geneva Medical School, 1211 Geneva 4, Switzerland
| | - Lin Song
- Department of Basic Neurosciences, University of Geneva Medical School, 1211 Geneva 4, Switzerland; School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Volodymyr Petrenko
- Department of Basic Neurosciences, University of Geneva Medical School, 1211 Geneva 4, Switzerland
| | | | - Alessandro Contestabile
- Department of Basic Neurosciences, University of Geneva Medical School, 1211 Geneva 4, Switzerland
| | - Riccardo Bocchi
- Department of Basic Neurosciences, University of Geneva Medical School, 1211 Geneva 4, Switzerland
| | - Patrick Salmon
- Department of Basic Neurosciences, University of Geneva Medical School, 1211 Geneva 4, Switzerland
| | - Alan Carleton
- Department of Basic Neurosciences, University of Geneva Medical School, 1211 Geneva 4, Switzerland
| | - Lijia An
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Laszlo Vutskits
- Department of Basic Neurosciences, University of Geneva Medical School, 1211 Geneva 4, Switzerland; Department of Anesthesiology, Pharmacology and Intensive Care, University Hospitals of Geneva, 1211 Geneva 4, Switzerland
| | - Jozsef Zoltan Kiss
- Department of Basic Neurosciences, University of Geneva Medical School, 1211 Geneva 4, Switzerland.
| |
Collapse
|
32
|
Mencucci MV, Lapyckyj L, Rosso M, Besso MJ, Belgorosky D, Isola M, Vanzulli S, Lodillinsky C, Eiján AM, Tejerizo JC, Gonzalez MI, Zubieta ME, Vazquez-Levin MH. Ephrin-B1 Is a Novel Biomarker of Bladder Cancer Aggressiveness. Studies in Murine Models and in Human Samples. Front Oncol 2020; 10:283. [PMID: 32292715 PMCID: PMC7119101 DOI: 10.3389/fonc.2020.00283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/18/2020] [Indexed: 01/11/2023] Open
Abstract
Bladder cancer (BC) is the ninth most common cancer worldwide, but molecular changes are still under study. During tumor progression, Epithelial cadherin (E-cadherin) expression is altered and β-catenin may be translocated to the nucleus, where it acts as co-transcription factor of tumor invasion associated genes. This investigation further characterizes E-cadherin and β-catenin associated changes in BC, by combining bioinformatics, an experimental murine cell model (MB49/MB49-I) and human BC samples. In in silico studies, a DisGeNET (gene-disease associations database) analysis identified CDH1 (E-cadherin gene) as one with highest score among 130 BC related-genes. COSMIC mutation analysis revealed CDH1 low mutations rates. Compared to MB49 control BC cells, MB49-I invasive cells showed decreased E-cadherin expression, E- to P-cadherin switch, higher β-catenin nuclear signal and lower cytoplasmic p-Ser33-β-catenin signal, higher Ephrin-B1 ligand and EphB2 receptor expression, higher Phospho-Stat3 and Urokinase-type Plasminogen Activator (UPA), and UPA receptor expression. MB49-I cells transfected with Ephrin-B1 siRNA showed lower migratory and invasive capacity than control cells (scramble siRNA). By immunohistochemistry, orthotopic MB49-I tumors had lower E-cadherin, increased nuclear β-catenin, lower pSer33-β-catenin cytoplasmic signal, and higher Ephrin-B1 expression than MB49 tumors. Similar changes were found in human BC tumors, and 83% of infiltrating tumors depicted a high Ephrin-B1 stain. An association between higher Ephrin-B1 expression and higher stage and tumor grade was found. No association was found between abnormal E-cadherin signal, Ephrin-B1 expression or clinical-pathological parameter. This study thoroughly analyzed E-cadherin and associated changes in BC, and reports Ephrin-B1 as a new marker of tumor aggressiveness.
Collapse
Affiliation(s)
- María Victoria Mencucci
- Laboratorio de Estudios de la Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME; CONICET-FIBYME), Buenos Aires, Argentina
| | - Lara Lapyckyj
- Laboratorio de Estudios de la Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME; CONICET-FIBYME), Buenos Aires, Argentina
| | - Marina Rosso
- Laboratorio de Estudios de la Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME; CONICET-FIBYME), Buenos Aires, Argentina
| | - María José Besso
- Laboratorio de Estudios de la Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME; CONICET-FIBYME), Buenos Aires, Argentina
| | - Denise Belgorosky
- Research Area, Instituto de Oncología Angel H. Roffo, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana Isola
- Departamento de Anatomía Patológica, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | | | - Catalina Lodillinsky
- Research Area, Instituto de Oncología Angel H. Roffo, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana María Eiján
- Research Area, Instituto de Oncología Angel H. Roffo, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan Carlos Tejerizo
- Departamento de Urología, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | | | - María Ercilia Zubieta
- Departamento de Urología, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Mónica Hebe Vazquez-Levin
- Laboratorio de Estudios de la Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME; CONICET-FIBYME), Buenos Aires, Argentina
| |
Collapse
|
33
|
Advances in defining signaling networks for the establishment of neuronal polarity. Curr Opin Cell Biol 2020; 63:76-87. [DOI: 10.1016/j.ceb.2019.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/22/2019] [Accepted: 12/24/2019] [Indexed: 12/18/2022]
|
34
|
Prem S, Millonig JH, DiCicco-Bloom E. Dysregulation of Neurite Outgrowth and Cell Migration in Autism and Other Neurodevelopmental Disorders. ADVANCES IN NEUROBIOLOGY 2020; 25:109-153. [PMID: 32578146 DOI: 10.1007/978-3-030-45493-7_5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite decades of study, elucidation of the underlying etiology of complex developmental disorders such as autism spectrum disorder (ASD), schizophrenia (SCZ), intellectual disability (ID), and bipolar disorder (BPD) has been hampered by the inability to study human neurons, the heterogeneity of these disorders, and the relevance of animal model systems. Moreover, a majority of these developmental disorders have multifactorial or idiopathic (unknown) causes making them difficult to model using traditional methods of genetic alteration. Examination of the brains of individuals with ASD and other developmental disorders in both post-mortem and MRI studies shows defects that are suggestive of dysregulation of embryonic and early postnatal development. For ASD, more recent genetic studies have also suggested that risk genes largely converge upon the developing human cerebral cortex between weeks 8 and 24 in utero. Yet, an overwhelming majority of studies in autism rodent models have focused on postnatal development or adult synaptic transmission defects in autism related circuits. Thus, studies looking at early developmental processes such as proliferation, cell migration, and early differentiation, which are essential to build the brain, are largely lacking. Yet, interestingly, a few studies that did assess early neurodevelopment found that alterations in brain structure and function associated with neurodevelopmental disorders (NDDs) begin as early as the initial formation and patterning of the neural tube. By the early to mid-2000s, the derivation of human embryonic stem cells (hESCs) and later induced pluripotent stem cells (iPSCs) allowed us to study living human neural cells in culture for the first time. Specifically, iPSCs gave us the unprecedented ability to study cells derived from individuals with idiopathic disorders. Studies indicate that iPSC-derived neural cells, whether precursors or "matured" neurons, largely resemble cortical cells of embryonic humans from weeks 8 to 24. Thus, these cells are an excellent model to study early human neurodevelopment, particularly in the context of genetically complex diseases. Indeed, since 2011, numerous studies have assessed developmental phenotypes in neurons derived from individuals with both genetic and idiopathic forms of ASD and other NDDs. However, while iPSC-derived neurons are fetal in nature, they are post-mitotic and thus cannot be used to study developmental processes that occur before terminal differentiation. Moreover, it is important to note that during the 8-24-week window of human neurodevelopment, neural precursor cells are actively undergoing proliferation, migration, and early differentiation to form the basic cytoarchitecture of the brain. Thus, by studying NPCs specifically, we could gain insight into how early neurodevelopmental processes contribute to the pathogenesis of NDDs. Indeed, a few studies have explored NPC phenotypes in NDDs and have uncovered dysregulations in cell proliferation. Yet, few studies have explored migration and early differentiation phenotypes of NPCs in NDDs. In this chapter, we will discuss cell migration and neurite outgrowth and the role of these processes in neurodevelopment and NDDs. We will begin by reviewing the processes that are important in early neurodevelopment and early cortical development. We will then delve into the roles of neurite outgrowth and cell migration in the formation of the brain and how errors in these processes affect brain development. We also provide review of a few key molecules that are involved in the regulation of neurite outgrowth and migration while discussing how dysregulations in these molecules can lead to abnormalities in brain structure and function thereby highlighting their contribution to pathogenesis of NDDs. Then we will discuss whether neurite outgrowth, migration, and the molecules that regulate these processes are associated with ASD. Lastly, we will review the utility of iPSCs in modeling NDDs and discuss future goals for the study of NDDs using this technology.
Collapse
Affiliation(s)
- Smrithi Prem
- Graduate Program in Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - James H Millonig
- Department of Neuroscience and Cell Biology, Center for Advanced Biotechnology and Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Emanuel DiCicco-Bloom
- Department of Neuroscience and Cell Biology/Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
35
|
Ayoub AE, Dominguez MH, Benoit J, Ortega JA, Radonjic N, Zecevic N, Rakic P. Coordination of Neuron Production in Mouse and Human Cerebral Cortex by the Homolog of Drosophila Mastermind Protein. BRAIN, BEHAVIOR AND EVOLUTION 2019; 93:152-165. [PMID: 31416089 DOI: 10.1159/000500494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/10/2019] [Indexed: 11/19/2022]
Abstract
The coordination of progenitor self-renewal, neuronal production, and migration is essential to the normal development and evolution of the cerebral cortex. Numerous studies have shown that the Notch, Wnt/beta-catenin, and Neurogenin pathways contribute separately to progenitor expansion, neurogenesis, and neuronal migration, but it is unknown how these signals are coordinated. In vitro studies suggested that the mastermind-like 1 (MAML1) gene, homologue of the Drosophila mastermind, plays a role in coordinating the aforementioned signaling pathways, yet its role during cortical development remains largely unknown. Here we show that ectopic expression of dominant-negative MAML (dnMAML) causes exuberant neuronal production in the mouse cortex without disrupting neuronal migration. Comparing the transcriptional consequences of dnMAML and Neurog2 ectopic expression revealed a complex genetic network controlling the balance of progenitor expansion versus neuronal production. Manipulation of MAML and Neurog2 in cultured human cerebral stem cells exposed interactions with the same set of signaling pathways. Thus, our data suggest that evolutionary changes that affect the timing, tempo, and density of successive neuronal layers of the small lissencephalic rodent and large convoluted primate cerebral cortex depend on similar molecular mechanisms that act from the earliest developmental stages.
Collapse
Affiliation(s)
- Albert E Ayoub
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut, USA
| | - Martin H Dominguez
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut, USA.,Medical Training Program, Yale University, New Haven, Connecticut, USA
| | - Jaime Benoit
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut, USA.,Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Juan Alberto Ortega
- UCONN Health Science Center, University of Connecticut, Farmington, Connecticut, USA.,The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nevena Radonjic
- UCONN Health Science Center, University of Connecticut, Farmington, Connecticut, USA.,Department of Psychiatry, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Nada Zecevic
- UCONN Health Science Center, University of Connecticut, Farmington, Connecticut, USA
| | - Pasko Rakic
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut, USA,
| |
Collapse
|
36
|
Hakanen J, Ruiz-Reig N, Tissir F. Linking Cell Polarity to Cortical Development and Malformations. Front Cell Neurosci 2019; 13:244. [PMID: 31213986 PMCID: PMC6558068 DOI: 10.3389/fncel.2019.00244] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/16/2019] [Indexed: 01/23/2023] Open
Abstract
Cell polarity refers to the asymmetric distribution of signaling molecules, cellular organelles, and cytoskeleton in a cell. Neural progenitors and neurons are highly polarized cells in which the cell membrane and cytoplasmic components are compartmentalized into distinct functional domains in response to internal and external cues that coordinate polarity and behavior during development and disease. In neural progenitor cells, polarity has a prominent impact on cell shape and coordinate several processes such as adhesion, division, and fate determination. Polarity also accompanies a neuron from the beginning until the end of its life. It is essential for development and later functionality of neuronal circuitries. During development, polarity governs transitions between multipolar and bipolar during migration of postmitotic neurons, and directs the specification and directional growth of axons. Once reaching final positions in cortical layers, neurons form dendrites which become compartmentalized to ensure proper establishment of neuronal connections and signaling. Changes in neuronal polarity induce signaling cascades that regulate cytoskeletal changes, as well as mRNA, protein, and vesicle trafficking, required for synapses to form and function. Hence, defects in establishing and maintaining cell polarity are associated with several neural disorders such as microcephaly, lissencephaly, schizophrenia, autism, and epilepsy. In this review we summarize the role of polarity genes in cortical development and emphasize the relationship between polarity dysfunctions and cortical malformations.
Collapse
Affiliation(s)
- Janne Hakanen
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - Nuria Ruiz-Reig
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - Fadel Tissir
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| |
Collapse
|
37
|
Deep Learning/Artificial Intelligence and Blood-Based DNA Epigenomic Prediction of Cerebral Palsy. Int J Mol Sci 2019; 20:ijms20092075. [PMID: 31035542 PMCID: PMC6539236 DOI: 10.3390/ijms20092075] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/29/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023] Open
Abstract
The etiology of cerebral palsy (CP) is complex and remains inadequately understood. Early detection of CP is an important clinical objective as this improves long term outcomes. We performed genome-wide DNA methylation analysis to identify epigenomic predictors of CP in newborns and to investigate disease pathogenesis. Methylation analysis of newborn blood DNA using an Illumina HumanMethylation450K array was performed in 23 CP cases and 21 unaffected controls. There were 230 significantly differentially-methylated CpG loci in 258 genes. Each locus had at least 2.0-fold change in methylation in CP versus controls with a FDR p-value ≤ 0.05. Methylation level for each CpG locus had an area under the receiver operating curve (AUC) ≥ 0.75 for CP detection. Using Artificial Intelligence (AI) platforms/Machine Learning (ML) analysis, CpG methylation levels in a combination of 230 significantly differentially-methylated CpG loci in 258 genes had a 95% sensitivity and 94.4% specificity for newborn prediction of CP. Using pathway analysis, multiple canonical pathways plausibly linked to neuronal function were over-represented. Altered biological processes and functions included: neuromotor damage, malformation of major brain structures, brain growth, neuroprotection, neuronal development and de-differentiation, and cranial sensory neuron development. In conclusion, blood leucocyte epigenetic changes analyzed using AI/ML techniques appeared to accurately predict CP and provided plausible mechanistic information on CP pathogenesis.
Collapse
|
38
|
Takano T, Funahashi Y, Kaibuchi K. Neuronal Polarity: Positive and Negative Feedback Signals. Front Cell Dev Biol 2019; 7:69. [PMID: 31069225 PMCID: PMC6491837 DOI: 10.3389/fcell.2019.00069] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/09/2019] [Indexed: 12/21/2022] Open
Abstract
Establishment and maintenance of neuronal polarity are critical for neuronal development and function. One of the fundamental questions in neurodevelopment is how neurons generate only one axon and several dendrites from multiple minor neurites. Over the past few decades, molecular and cell biological approaches have unveiled a large number of signaling networks regulating neuronal polarity in cultured hippocampal neurons and the developing cortex. Emerging evidence reveals that positive and negative feedback signals play a crucial role in axon and dendrite specification. Positive feedback signals are continuously activated in one of minor neurites and result in axon specification and elongation, whereas negative feedback signals are propagated from a nascent axon terminal to all minor neurites and inhibit the formation of multiple axon, thereby leading to dendrite specification, and maintaining neuronal polarity. This current insight provides a holistic picture of the signaling mechanisms underlying neuronal polarization during neuronal development. Here, our review highlights recent advancements in this fascinating field, with a focus on the positive, and negative feedback signals as key regulatory mechanisms underlying neuronal polarization.
Collapse
Affiliation(s)
- Tetsuya Takano
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Cell Biology, Duke University Medical School, Durham, NC, United States
| | - Yasuhiro Funahashi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
39
|
Farahani R, Rezaei-Lotfi S, Simonian M, Hunter N. Bi-modal reprogramming of cell cycle by MiRNA-4673 amplifies human neurogenic capacity. Cell Cycle 2019; 18:848-868. [PMID: 30907228 DOI: 10.1080/15384101.2019.1595873] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Molecular mechanisms that inform heterochronic adaptations of neurogenesis in Homo sapiens remain largely unknown. Here, we uncover a signature in the cell cycle that amplifies the proliferative capacity of human neural progenitors by input from microRNA4673 encoded in Notch-1. The miRNA instructs bimodal reprogramming of the cell cycle, leading to initial synchronization of neural precursors at the G0 phase of the cell cycle followed by accelerated progression through interphase. The key event in G0 synchronization is transient inhibition by miR4673 of cyclin-dependent kinase-18, a member of an ancient family of cyclins that license M-G1 transition. In parallel, autophagic degradation of p53/p21 and transcriptional silencing of XRCC3/BRCA2 relax G1/S cell cycle checkpoint and accelerate interphase by ≈2.8-fold. The resultant reprogrammed cell cycle amplifies the proliferative capacity and delays the differentiation of human neural progenitors.
Collapse
Affiliation(s)
- Ramin Farahani
- a IDR/Westmead Institute for Medical Research , Sydney , NSW , Australia.,b Department of Life Sciences, Faculty of Medicine and Health Sciences , University of Sydney , Sydney , NSW , Australia
| | - Saba Rezaei-Lotfi
- b Department of Life Sciences, Faculty of Medicine and Health Sciences , University of Sydney , Sydney , NSW , Australia
| | - Mary Simonian
- a IDR/Westmead Institute for Medical Research , Sydney , NSW , Australia
| | - Neil Hunter
- a IDR/Westmead Institute for Medical Research , Sydney , NSW , Australia.,b Department of Life Sciences, Faculty of Medicine and Health Sciences , University of Sydney , Sydney , NSW , Australia
| |
Collapse
|
40
|
Vitronectin is Involved in the Morphological Transition of Neurites in Retinoic Acid-Induced Neurogenesis of Neuroblastoma Cell Line Neuro2a. Neurochem Res 2019; 44:1621-1635. [PMID: 30937689 DOI: 10.1007/s11064-019-02787-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/21/2019] [Accepted: 03/23/2019] [Indexed: 01/15/2023]
Abstract
Vitronectin (Vtn), one of the extracellular matrix proteins, has been reported to result in cell cycle exit, neurite formation, and polarization of neural progenitor cells during neurogenesis. The underlying mechanism, however, has not been fully understood. In this study, we investigated the roles of Vtn and its integrin receptors, during the transition of neurites from multipolar to bipolar morphology, accompanying the cell cycle exit in neural progenitor cells. We used mouse neuroblastoma cell line Neuro2a as a model of neural progenitor cells which can induce cell cycle exit and the morphological transition of neurites by retinoic acid (RA)-stimulation. Treatment with an antibody for Vtn suppressed the RA-induced cell cycle exit and multipolar-to-bipolar transition. Furthermore, immunostaining results showed that in the cells displaying multipolar morphology Vtn was partially localized at the tips of neurites and in cells displaying bipolar morphology at both tips. This Vtn localization and multipolar-to-bipolar transition was perturbed by the transfection of a dominant negative mutant of cell polarity regulator Par6. In addition, a knockdown of β5 integrin, which is a receptor candidate for Vtn, affected the multipolar-to-bipolar transition. Taken together, these results suggest that Vtn regulates the multipolar-to-bipolar morphological transition via αvβ5 integrin.
Collapse
|
41
|
Courchesne E, Pramparo T, Gazestani VH, Lombardo MV, Pierce K, Lewis NE. The ASD Living Biology: from cell proliferation to clinical phenotype. Mol Psychiatry 2019; 24:88-107. [PMID: 29934544 PMCID: PMC6309606 DOI: 10.1038/s41380-018-0056-y] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 02/08/2018] [Accepted: 02/19/2018] [Indexed: 12/17/2022]
Abstract
Autism spectrum disorder (ASD) has captured the attention of scientists, clinicians and the lay public because of its uncertain origins and striking and unexplained clinical heterogeneity. Here we review genetic, genomic, cellular, postmortem, animal model, and cell model evidence that shows ASD begins in the womb. This evidence leads to a new theory that ASD is a multistage, progressive disorder of brain development, spanning nearly all of prenatal life. ASD can begin as early as the 1st and 2nd trimester with disruption of cell proliferation and differentiation. It continues with disruption of neural migration, laminar disorganization, altered neuron maturation and neurite outgrowth, disruption of synaptogenesis and reduced neural network functioning. Among the most commonly reported high-confidence ASD (hcASD) genes, 94% express during prenatal life and affect these fetal processes in neocortex, amygdala, hippocampus, striatum and cerebellum. A majority of hcASD genes are pleiotropic, and affect proliferation/differentiation and/or synapse development. Proliferation and subsequent fetal stages can also be disrupted by maternal immune activation in the 1st trimester. Commonly implicated pathways, PI3K/AKT and RAS/ERK, are also pleiotropic and affect multiple fetal processes from proliferation through synapse and neural functional development. In different ASD individuals, variation in how and when these pleiotropic pathways are dysregulated, will lead to different, even opposing effects, producing prenatal as well as later neural and clinical heterogeneity. Thus, the pathogenesis of ASD is not set at one point in time and does not reside in one process, but rather is a cascade of prenatal pathogenic processes in the vast majority of ASD toddlers. Despite this new knowledge and theory that ASD biology begins in the womb, current research methods have not provided individualized information: What are the fetal processes and early-age molecular and cellular differences that underlie ASD in each individual child? Without such individualized knowledge, rapid advances in biological-based diagnostic, prognostic, and precision medicine treatments cannot occur. Missing, therefore, is what we call ASD Living Biology. This is a conceptual and paradigm shift towards a focus on the abnormal prenatal processes underlying ASD within each living individual. The concept emphasizes the specific need for foundational knowledge of a living child's development from abnormal prenatal beginnings to early clinical stages. The ASD Living Biology paradigm seeks this knowledge by linking genetic and in vitro prenatal molecular, cellular and neural measurements with in vivo post-natal molecular, neural and clinical presentation and progression in each ASD child. We review the first such study, which confirms the multistage fetal nature of ASD and provides the first in vitro fetal-stage explanation for in vivo early brain overgrowth. Within-child ASD Living Biology is a novel research concept we coin here that advocates the integration of in vitro prenatal and in vivo early post-natal information to generate individualized and group-level explanations, clinically useful prognoses, and precision medicine approaches that are truly beneficial for the individual infant and toddler with ASD.
Collapse
Affiliation(s)
- Eric Courchesne
- Autism Center of Excellence, Department of Neuroscience, University of California, San Diego, 8110 La Jolla Shores Drive, Suite 201, La Jolla, CA, 92037, USA.
| | - Tiziano Pramparo
- Autism Center of Excellence, Department of Neuroscience, University of California, San Diego, 8110 La Jolla Shores Drive, Suite 201, La Jolla, CA, 92037, USA
| | - Vahid H Gazestani
- Autism Center of Excellence, Department of Neuroscience, University of California, San Diego, 8110 La Jolla Shores Drive, Suite 201, La Jolla, CA, 92037, USA
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Michael V Lombardo
- Department of Psychology, Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Karen Pierce
- Autism Center of Excellence, Department of Neuroscience, University of California, San Diego, 8110 La Jolla Shores Drive, Suite 201, La Jolla, CA, 92037, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Novo Nordisk Foundation Center for Biosustainability at University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
42
|
Vitali I, Fièvre S, Telley L, Oberst P, Bariselli S, Frangeul L, Baumann N, McMahon JJ, Klingler E, Bocchi R, Kiss JZ, Bellone C, Silver DL, Jabaudon D. Progenitor Hyperpolarization Regulates the Sequential Generation of Neuronal Subtypes in the Developing Neocortex. Cell 2018; 174:1264-1276.e15. [PMID: 30057116 DOI: 10.1016/j.cell.2018.06.036] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/20/2018] [Accepted: 06/18/2018] [Indexed: 12/29/2022]
Abstract
During corticogenesis, ventricular zone progenitors sequentially generate distinct subtypes of neurons, accounting for the diversity of neocortical cells and the circuits they form. While activity-dependent processes are critical for the differentiation and circuit assembly of postmitotic neurons, how bioelectrical processes affect nonexcitable cells, such as progenitors, remains largely unknown. Here, we reveal that, in the developing mouse neocortex, ventricular zone progenitors become more hyperpolarized as they generate successive subtypes of neurons. Experimental in vivo hyperpolarization shifted the transcriptional programs and division modes of these progenitors to a later developmental status, with precocious generation of intermediate progenitors and a forward shift in the laminar, molecular, morphological, and circuit features of their neuronal progeny. These effects occurred through inhibition of the Wnt-beta-catenin signaling pathway by hyperpolarization. Thus, during corticogenesis, bioelectric membrane properties are permissive for specific molecular pathways to coordinate the temporal progression of progenitor developmental programs and thus neocortical neuron diversity.
Collapse
Affiliation(s)
- Ilaria Vitali
- Department of Basic Neurosciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Sabine Fièvre
- Department of Basic Neurosciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Ludovic Telley
- Department of Basic Neurosciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Polina Oberst
- Department of Basic Neurosciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Sebastiano Bariselli
- Department of Basic Neurosciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Laura Frangeul
- Department of Basic Neurosciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Natalia Baumann
- Department of Basic Neurosciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - John J McMahon
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 224 Carl Building, Durham, NC 27710, USA
| | - Esther Klingler
- Department of Basic Neurosciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Riccardo Bocchi
- Department of Basic Neurosciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Jozsef Z Kiss
- Department of Basic Neurosciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Camilla Bellone
- Department of Basic Neurosciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 224 Carl Building, Durham, NC 27710, USA
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland; Department of Neurology, Geneva University Hospital, 4 Rue Gabrielle-Perret-Gentil, 1205 Geneva, Switzerland.
| |
Collapse
|
43
|
Ono M, Lai KKY, Wu K, Nguyen C, Lin DP, Murali R, Kahn M. Nuclear receptor/Wnt beta-catenin interactions are regulated via differential CBP/p300 coactivator usage. PLoS One 2018; 13:e0200714. [PMID: 30020971 PMCID: PMC6051640 DOI: 10.1371/journal.pone.0200714] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 07/02/2018] [Indexed: 12/26/2022] Open
Abstract
Over 400 million years ago, the evolution of vertebrates gave rise to a life cycle in which the organism began to live longer particularly as an adult. To accommodate such a longer lifespan, the organism underwent adaptation, developing a mechanism for long-lived cellular homeostasis. This adaptation required a population of long-lived relatively quiescent somatic stem cells (SSCs) along with a more proliferative differentiated daughter cell population, and was necessary to safeguard the genetic attributes with which SSCs were endowed. Intriguingly, cAMP response element binding protein (CREB)-binding protein (CBP) and E1A-binding protein, 300 kDa (p300), the highly homologous Kat3 coactivators had diverged, through duplication of ancestral Kat3, immediately preceding the evolution of vertebrates, given that both CBP and p300 have been detected in nearly all vertebrates versus non-vertebrates. We now demonstrate that a relatively small, highly evolutionarily conserved, amino terminal 9 amino acid deletion in CBP versus p300, plays a critical role in allowing for both robust maintenance of genomic integrity in stem cells and the initiation of a feed-forward differentiation mechanism by tightly controlling the interaction of the nuclear receptor family with the Wnt signaling cascade in either an antagonistic or synergistic manner.
Collapse
Affiliation(s)
- Masaya Ono
- Department of Clinical Proteomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Keane K. Y. Lai
- Department of Pathology, Beckman Research Institute, City of Hope, Duarte, CA, United States of America
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA, United States of America
- Department of Pathology and Southern California Research Center for ALPD and Cirrhosis, University of Southern California, Los Angeles, CA, United States of America
| | - Kaijin Wu
- Center for Molecular Pathways and Drug Discovery, University of Southern California, Los Angeles, CA, United States of America
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Cu Nguyen
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA, United States of America
- Center for Molecular Pathways and Drug Discovery, University of Southern California, Los Angeles, CA, United States of America
| | - David P. Lin
- Department of Pathology and Southern California Research Center for ALPD and Cirrhosis, University of Southern California, Los Angeles, CA, United States of America
| | - Ramachandran Murali
- Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Michael Kahn
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA, United States of America
- Center for Molecular Pathways and Drug Discovery, University of Southern California, Los Angeles, CA, United States of America
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, United States of America
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States of America
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
44
|
Park SM, Lim JS, Ramakrishina S, Kim SH, Kim WK, Lee J, Kang HC, Reiter JF, Kim DS, Kim HH, Lee JH. Brain Somatic Mutations in MTOR Disrupt Neuronal Ciliogenesis, Leading to Focal Cortical Dyslamination. Neuron 2018; 99:83-97.e7. [PMID: 29937275 DOI: 10.1016/j.neuron.2018.05.039] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/06/2018] [Accepted: 05/25/2018] [Indexed: 12/21/2022]
Abstract
Focal malformations of cortical development (FMCDs), including focal cortical dysplasia (FCD) and hemimegalencephaly (HME), are major etiologies of pediatric intractable epilepsies exhibiting cortical dyslamination. Brain somatic mutations in MTOR have recently been identified as a major genetic cause of FMCDs. However, the molecular mechanism by which these mutations lead to cortical dyslamination remains poorly understood. Here, using patient tissue, genome-edited cells, and mouse models with brain somatic mutations in MTOR, we discovered that disruption of neuronal ciliogenesis by the mutations underlies cortical dyslamination in FMCDs. We found that abnormal accumulation of OFD1 at centriolar satellites due to perturbed autophagy was responsible for the defective neuronal ciliogenesis. Additionally, we found that disrupted neuronal ciliogenesis accounted for cortical dyslamination in FMCDs by compromising Wnt signals essential for neuronal polarization. Altogether, this study describes a molecular mechanism by which brain somatic mutations in MTOR contribute to the pathogenesis of cortical dyslamination in FMCDs.
Collapse
Affiliation(s)
- Sang Min Park
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jae Seok Lim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Suresh Ramakrishina
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Woo Kyeong Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Junehawk Lee
- Biomedical HPC Technology Research Center, KISTI, Daejeon 34141, Republic of Korea
| | - Hoon-Chul Kang
- Division of Pediatric Neurology, Department of Pediatrics, Pediatric Epilepsy Clinics, Severance Children's Hospital, Epilepsy Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Dong Seok Kim
- Pediatric Neurosurgery, Severance Children's Hospital, Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyongbum Henry Kim
- Department of Pharmacology, Brain Korea 21 Plus Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jeong Ho Lee
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Republic of Korea.
| |
Collapse
|
45
|
Hertz-Picciotto I, Schmidt RJ, Krakowiak P. Understanding environmental contributions to autism: Causal concepts and the state of science. Autism Res 2018; 11:554-586. [PMID: 29573218 DOI: 10.1002/aur.1938] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/12/2017] [Accepted: 10/19/2017] [Indexed: 11/06/2022]
Abstract
The complexity of neurodevelopment, the rapidity of early neurogenesis, and over 100 years of research identifying environmental influences on neurodevelopment serve as backdrop to understanding factors that influence risk and severity of autism spectrum disorder (ASD). This Keynote Lecture, delivered at the May 2016 annual meeting of the International Society for Autism Research, describes concepts of causation, outlines the trajectory of research on nongenetic factors beginning in the 1960s, and briefly reviews the current state of this science. Causal concepts are introduced, including root causes; pitfalls in interpreting time trends as clues to etiologic factors; susceptible time windows for exposure; and implications of a multi-factorial model of ASD. An historical background presents early research into the origins of ASD. The epidemiologic literature from the last fifteen years is briefly but critically reviewed for potential roles of, for example, air pollution, pesticides, plastics, prenatal vitamins, lifestyle and family factors, and maternal obstetric and metabolic conditions during her pregnancy. Three examples from the case-control CHildhood Autism Risks from Genes and the Environment Study are probed to illustrate methodological approaches to central challenges in observational studies: capturing environmental exposure; causal inference when a randomized controlled clinical trial is either unethical or infeasible; and the integration of genetic, epigenetic, and environmental influences on development. We conclude with reflections on future directions, including exposomics, new technologies, the microbiome, gene-by-environment interaction in the era of -omics, and epigenetics as the interface of those two. As the environment is malleable, this research advances the goal of a productive and fulfilling life for all children, teen-agers and adults. Autism Res 2018, 11: 554-586. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY This Keynote Lecture, delivered at the 2016 meeting of the International Society for Autism Research, discusses evidence from human epidemiologic studies of prenatal factors contributing to autism, such as pesticides, maternal nutrition and her health. There is no single cause for autism. Examples highlight the features of a high-quality epidemiology study, and what comprises a compelling case for causation. Emergent research directions hold promise for identifying potential interventions to reduce disabilities, enhance giftedness, and improve lives of those with ASD.
Collapse
Affiliation(s)
- Irva Hertz-Picciotto
- Department of Public Health Sciences, MIND Institute (Medical Investigations of Neurodevelopmental Disorders), University of California, Davis, Davis, California
| | - Rebecca J Schmidt
- Department of Public Health Sciences, MIND Institute (Medical Investigations of Neurodevelopmental Disorders), University of California, Davis, Davis, California
| | - Paula Krakowiak
- Department of Public Health Sciences, MIND Institute (Medical Investigations of Neurodevelopmental Disorders), University of California, Davis, Davis, California
| |
Collapse
|
46
|
Mizutani KI. Physiological significance of multipolar cells generated from neural stem cells and progenitors for the establishment of neocortical cytoarchitecture. Genes Cells 2017; 23:6-15. [PMID: 29193520 DOI: 10.1111/gtc.12546] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/29/2017] [Indexed: 11/28/2022]
Abstract
Neurogenesis encompasses an entire set of events that leads to the generation of newborn neurons from neural stem cells and more committed progenitor cells, including cell division, the production of migratory precursors and their progeny, differentiation and integration into circuits. In particular, the precise control of neuronal migration and morphological changes is essential for the development of the neocortex. Postmitotic cells within the intermediate zone have been found to transiently assume a characteristic "multipolar" morphology, after which a multipolar-to-bipolar transition occurs before the cells enter the cortical plate; however, the importance of this multipolar phase in the establishment of mature cortical cytoarchitecture and the precise genetic control of this phase remains largely unknown. Thus, this review article focuses on the multipolar phase in the developing neocortex. It begins by summarizing the molecular mechanism that underlies multipolar migration for the regulation of each step in multipolar phase in intermediate zone. The physiological significance of this multipolar phase in the establishment of mature cortical lamination and neurodevelopmental disorders associated with migration defects is then described.
Collapse
Affiliation(s)
- Ken-Ichi Mizutani
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
| |
Collapse
|
47
|
Qin R, Cao S, Lyu T, Qi C, Zhang W, Wang Y. CDYL Deficiency Disrupts Neuronal Migration and Increases Susceptibility to Epilepsy. Cell Rep 2017; 18:380-390. [PMID: 28076783 DOI: 10.1016/j.celrep.2016.12.043] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/06/2016] [Accepted: 12/14/2016] [Indexed: 11/30/2022] Open
Abstract
During brain development, the correct migration of newborn neurons is one of the determinants of circuit formation, and neuronal migration defects may lead to neurological and psychiatric disorders. The molecular mechanisms underlying neuronal migration and related disorders are poorly understood. Here, we report that Chromodomain Y-like (CDYL) is critical for neuronal migration in mice. Knocking down CDYL caused neuronal migration defects and disrupted both mobility and multipolar-to-bipolar transition of migrating neurons. We find that CDYL regulates neuronal migration by transcriptionally repressing RhoA. In addition, CDYL deficiency increased the excitability of cortical pyramidal neurons and the susceptibility of mice to convulsant-induced seizures. These results demonstrate that CDYL is a regulator of neuronal migration and shed light on the pathogenesis of seizure-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Rui Qin
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Shuai Cao
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Tianjie Lyu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Cai Qi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Weiguang Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.
| |
Collapse
|
48
|
Perturbed Wnt signaling leads to neuronal migration delay, altered interhemispheric connections and impaired social behavior. Nat Commun 2017; 8:1158. [PMID: 29079819 PMCID: PMC5660087 DOI: 10.1038/s41467-017-01046-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 08/15/2017] [Indexed: 12/19/2022] Open
Abstract
Perturbed neuronal migration and circuit development have been implicated in the pathogenesis of neurodevelopmental diseases; however, the direct steps linking these developmental errors to behavior alterations remain unknown. Here we demonstrate that Wnt/C-Kit signaling is a key regulator of glia-guided radial migration in rat somatosensory cortex. Transient downregulation of Wnt signaling in migrating, callosal projection neurons results in delayed positioning in layer 2/3. Delayed neurons display reduced neuronal activity with impaired afferent connectivity causing permanent deficit in callosal projections. Animals with these defects exhibit altered somatosensory function with reduced social interactions and repetitive movements. Restoring normal migration by overexpressing the Wnt-downstream effector C-Kit or selective chemogenetic activation of callosal projection neurons during a critical postnatal period prevents abnormal interhemispheric connections as well as behavioral alterations. Our findings identify a link between defective canonical Wnt signaling, delayed neuronal migration, deficient interhemispheric connectivity and abnormal social behavior analogous to autistic characteristics in humans. Functional consequence of transient delay in neuronal migration is unclear. This study shows that Wnt/C-Kit signaling regulates radial migration in rat somatosensory cortex, and that transient delay of L2/3 neuronal migration leads to interhemispheric connectivity alteration and abnormal social behavior.
Collapse
|
49
|
Wang T, Chen Z, Zhang W. Regulation of autophagy inhibition and inflammatory response in glioma by Wnt signaling pathway. Oncol Lett 2017; 14:7197-7200. [PMID: 29344152 PMCID: PMC5754920 DOI: 10.3892/ol.2017.7103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 09/21/2017] [Indexed: 02/07/2023] Open
Abstract
The objective of this study was to investigate the mechanism of the function of Wnt signaling pathway in regulating autophagy and inflammatory response in glioma cells. Human brain glioma cells U118 were selected and divided into three groups: i) the Wnt signaling inhibitor IWR-1 group (the observation group); ii) the PBS negative control group (the PBS group) and iii) the blank control group. After 24 h culture, Wnt5a/β-catenin protein, autophagy marker, microtubule-associated-proteins-1A1B-light-chain-3C (LC-3) II and Beclin I, and inflammatory factors IL-6 and TNF-α protein expression levels were evaluated using western blotting. Compared with both control groups, Wnt5a/β-catenin, IL-6 and TNF-α protein expression levels were significantly lower, and LC-3II and Beclin I protein expression levels were significantly higher in the observation group. In conclusion, Wnt5a/β-catenin signaling pathway regulates autophagy and inflammatory response of glioma cells.
Collapse
Affiliation(s)
- Tongxin Wang
- Department of Neurosurgery, Yidu Central Hospital of Weifang, Qingzhou, Shandong 262500, P.R. China
| | - Zhixia Chen
- Department of Neurosurgery, Yidu Central Hospital of Weifang, Qingzhou, Shandong 262500, P.R. China
| | - Wei Zhang
- Department of Neurosurgery, Yidu Central Hospital of Weifang, Qingzhou, Shandong 262500, P.R. China
| |
Collapse
|
50
|
|