1
|
Campbell GP, Amin D, Hsieh K, Hussey GS, St Leger AJ, Gross JM, Badylak SF, Kuwajima T. Immunomodulation by the combination of statin and matrix-bound nanovesicle enhances optic nerve regeneration. NPJ Regen Med 2024; 9:31. [PMID: 39461953 PMCID: PMC11513974 DOI: 10.1038/s41536-024-00374-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
Modulating inflammation is critical to enhance nerve regeneration after injury. However, clinically applicable regenerative therapies that modulate inflammation have not yet been established. Here, we demonstrate synergistic effects of the combination of an HMG-CoA reductase inhibitor, statin/fluvastatin and critical components of the extracellular matrix, Matrix-Bound Nanovesicles (MBV) to enhance axon regeneration and neuroprotection after mouse optic nerve injury. Mechanistically, co-intravitreal injections of fluvastatin and MBV robustly promote infiltration of monocytes and neutrophils, which lead to RGC protection and axon regeneration. Furthermore, monocyte infiltration is triggered by elevated expression of CCL2, a chemokine, in the superficial layer of the retina after treatment with a combination of fluvastatin and MBV or IL-33, a cytokine contained within MBV. Finally, this therapy can be further combined with AAV-based gene therapy blocking anti-regenerative pathways in RGCs to extend regenerated axons. These data highlight novel molecular insights into the development of immunomodulatory regenerative therapy.
Collapse
Affiliation(s)
- Gregory P Campbell
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- The Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Dwarkesh Amin
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- The Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Kristin Hsieh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- The Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - George S Hussey
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Anthony J St Leger
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jeffrey M Gross
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- The Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Takaaki Kuwajima
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
- The Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
2
|
Utkina-Sosunova I, Chiorazzi A, de Planell-Saguer M, Li H, Meregalli C, Pozzi E, Carozzi VA, Canta A, Monza L, Alberti P, Fumagalli G, Karan C, Moayedi Y, Przedborski S, Cavaletti G, Lotti F. Molsidomine provides neuroprotection against vincristine-induced peripheral neurotoxicity through soluble guanylyl cyclase activation. Sci Rep 2024; 14:19341. [PMID: 39164364 PMCID: PMC11336221 DOI: 10.1038/s41598-024-70294-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
Peripheral neurotoxicity is a dose-limiting adverse reaction of primary frontline chemotherapeutic agents, including vincristine. Neuropathy can be so disabling that patients drop out of potentially curative therapy, negatively impacting cancer prognosis. The hallmark of vincristine neurotoxicity is axonopathy, yet its underpinning mechanisms remain uncertain. We developed a comprehensive drug discovery platform to identify neuroprotective agents against vincristine-induced neurotoxicity. Among the hits identified, SIN-1-an active metabolite of molsidomine-prevents vincristine-induced axonopathy in both motor and sensory neurons without compromising vincristine anticancer efficacy. Mechanistically, we found that SIN-1's neuroprotective effect is mediated by activating soluble guanylyl cyclase. We modeled vincristine-induced peripheral neurotoxicity in rats to determine molsidomine therapeutic potential in vivo. Vincristine administration induced severe nerve damage and mechanical hypersensitivity that were attenuated by concomitant treatment with molsidomine. This study provides evidence of the neuroprotective properties of molsidomine and warrants further investigations of this drug as a therapy for vincristine-induced peripheral neurotoxicity.
Collapse
Affiliation(s)
- Irina Utkina-Sosunova
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Columbia University, New York, NY, 10032, USA
| | - Alessia Chiorazzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Mariangels de Planell-Saguer
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Columbia University, New York, NY, 10032, USA
| | - Hai Li
- Department of Systems Biology, Columbia University, New York, USA
- Sulzberger Columbia Genome Center, High Throughput Screening Facility, Columbia University Medical Center, New York, USA
| | - Cristina Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Eleonora Pozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Valentina Alda Carozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Annalisa Canta
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Laura Monza
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Giulia Fumagalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Charles Karan
- Department of Systems Biology, Columbia University, New York, USA
- Sulzberger Columbia Genome Center, High Throughput Screening Facility, Columbia University Medical Center, New York, USA
| | - Yalda Moayedi
- Department of Neurology, Columbia University, New York, NY, 10032, USA
- Department of Otolaryngology-Head & Neck Surgery, Columbia University, New York, NY, USA
| | - Serge Przedborski
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Columbia University, New York, NY, 10032, USA
- Department of Neuroscience, Columbia University Medical Center, New York, USA
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Francesco Lotti
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA.
- Department of Pathology & Cell Biology, Columbia University, New York, NY, 10032, USA.
- Department of Neurology, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
3
|
Auger SA, Venkatachalapathy S, Suazo KFG, Wang Y, Sarkis AW, Bernhagen K, Justyna K, Schaefer JV, Wollack JW, Plückthun A, Li L, Distefano MD. Broadening the Utility of Farnesyltransferase-Catalyzed Protein Labeling Using Norbornene-Tetrazine Click Chemistry. Bioconjug Chem 2024; 35:922-933. [PMID: 38654427 PMCID: PMC11619650 DOI: 10.1021/acs.bioconjchem.4c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Bioorthogonal chemistry has gained widespread use in the study of many biological systems of interest, including protein prenylation. Prenylation is a post-translational modification, in which one or two 15- or 20-carbon isoprenoid chains are transferred onto cysteine residues near the C-terminus of a target protein. The three main enzymes─protein farnesyltransferase (FTase), geranylgeranyl transferase I (GGTase I), and geranylgeranyl transferase II (GGTase II)─that catalyze this process have been shown to tolerate numerous structural modifications in the isoprenoid substrate. This feature has previously been exploited to transfer an array of farnesyl diphosphate analogues with a range of functionalities, including an alkyne-containing analogue for copper-catalyzed bioconjugation reactions. Reported here is the synthesis of an analogue of the isoprenoid substrate embedded with norbornene functionality (C10NorOPP) that can be used for an array of applications, ranging from metabolic labeling to selective protein modification. The probe was synthesized in seven steps with an overall yield of 7% and underwent an inverse electron demand Diels-Alder (IEDDA) reaction with tetrazine-containing tags, allowing for copper-free labeling of proteins. The use of C10NorOPP for the study of prenylation was explored in the metabolic labeling of prenylated proteins in HeLa, COS-7, and astrocyte cells. Furthermore, in HeLa cells, these modified prenylated proteins were identified and quantified using label-free quantification (LFQ) proteomics with 25 enriched prenylated proteins. Additionally, the unique chemistry of C10NorOPP was utilized for the construction of a multiprotein-polymer conjugate for the targeted labeling of cancer cells. That construct was prepared using a combination of norbornene-tetrazine conjugation and azide-alkyne cycloaddition, highlighting the utility of the additional degree of orthogonality for the facile assembly of new protein conjugates with novel structures and functions.
Collapse
Affiliation(s)
- Shelby A. Auger
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | | | | | - Yiao Wang
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Alexander W. Sarkis
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Kaitlyn Bernhagen
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Katarzyna Justyna
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jonas V. Schaefer
- Department of Biochemistry, University of Zurich, Zurich, CH-8057, Switzerland
| | - James W. Wollack
- Department of Chemistry and Biochemistry, St. Catherine University, St. Paul MN, 55105, USA
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, CH-8057, Switzerland
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mark D. Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
4
|
Suazo KF, Mishra V, Maity S, Auger SA, Justyna K, Petre AM, Ottoboni L, Ongaro J, Corti SP, Lotti F, Przedborski S, Distefano MD. Improved synthesis and application of an alkyne-functionalized isoprenoid analogue to study the prenylomes of motor neurons, astrocytes and their stem cell progenitors. Bioorg Chem 2024; 147:107365. [PMID: 38636436 DOI: 10.1016/j.bioorg.2024.107365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Protein prenylation is one example of a broad class of post-translational modifications where proteins are covalently linked to various hydrophobic moieties. To globally identify and monitor levels of all prenylated proteins in a cell simultaneously, our laboratory and others have developed chemical proteomic approaches that rely on the metabolic incorporation of isoprenoid analogues bearing bio-orthogonal functionality followed by enrichment and subsequent quantitative proteomic analysis. Here, several improvements in the synthesis of the alkyne-containing isoprenoid analogue C15AlkOPP are reported to improve synthetic efficiency. Next, metabolic labeling with C15AlkOPP was optimized to obtain useful levels of metabolic incorporation of the probe in several types of primary cells. Those conditions were then used to study the prenylomes of motor neurons (ES-MNs), astrocytes (ES-As), and their embryonic stem cell progenitors (ESCs), which allowed for the identification of 54 prenylated proteins from ESCs, 50 from ES-MNs, and 84 from ES-As, representing all types of prenylation. Bioinformatic analysis revealed specific enriched pathways, including nervous system development, chemokine signaling, Rho GTPase signaling, and adhesion. Hierarchical clustering showed that most enriched pathways in all three cell types are related to GTPase activity and vesicular transport. In contrast, STRING analysis showed significant interactions in two populations that appear to be cell type dependent. The data provided herein demonstrates that robust incorporation of C15AlkOPP can be obtained in ES-MNs and related primary cells purified via magnetic-activated cell sorting allowing the identification and quantification of numerous prenylated proteins. These results suggest that metabolic labeling with C15AlkOPP should be an effective approach for investigating the role of prenylated proteins in primary cells in both normal cells and disease pathologies, including ALS.
Collapse
Affiliation(s)
- Kiall F Suazo
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Vartika Mishra
- Center for Motor Neuron Biology and Diseases, Department of Neurology. Columbia University Irving Medical Center. New York, NY 10032, USA; Department of Pathology & Cell Biology. Columbia University Irving Medical Center. New York, NY 10032, USA.
| | - Sanjay Maity
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shelby A Auger
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Katarzyna Justyna
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Alexandru M Petre
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Linda Ottoboni
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy.
| | - Jessica Ongaro
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania P Corti
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy; Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Francesco Lotti
- Center for Motor Neuron Biology and Diseases, Department of Neurology. Columbia University Irving Medical Center. New York, NY 10032, USA; Department of Pathology & Cell Biology. Columbia University Irving Medical Center. New York, NY 10032, USA.
| | - Serge Przedborski
- Center for Motor Neuron Biology and Diseases, Department of Neurology. Columbia University Irving Medical Center. New York, NY 10032, USA; Department of Pathology & Cell Biology. Columbia University Irving Medical Center. New York, NY 10032, USA; Department of Neuroscience, Pathology, and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
5
|
Suazo KF, Mishra V, Maity S, Auger SA, Justyna K, Petre A, Ottoboni L, Ongaro J, Corti SP, Lotti F, Przedborski S, Distefano MD. Improved synthesis and application of an alkyne-functionalized isoprenoid analogue to study the prenylomes of motor neurons, astrocytes and their stem cell progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.03.583211. [PMID: 38496415 PMCID: PMC10942399 DOI: 10.1101/2024.03.03.583211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Protein prenylation is one example of a broad class of post-translational modifications where proteins are covalently linked to various hydrophobic moieties. To globally identify and monitor levels of all prenylated proteins in a cell simultaneously, our laboratory and others have developed chemical proteomic approaches that rely on the metabolic incorporation of isoprenoid analogues bearing bio-orthogonal functionality followed by enrichment and subsequent quantitative proteomic analysis. Here, several improvements in the synthesis of the alkyne-containing isoprenoid analogue C15AlkOPP are reported to improve synthetic efficiency. Next, metabolic labeling with C15AlkOPP was optimized to obtain useful levels of metabolic incorporation of the probe in several types of primary cells. Those conditions were then used to study the prenylomes of motor neurons (ES-MNs), astrocytes (ES-As), and their embryonic stem cell progenitors (ESCs), which allowed for the identification of 54 prenylated proteins from ESCs, 50 from ES-MNs and 84 from ES-As, representing all types of prenylation. Bioinformatic analysis revealed specific enriched pathways, including nervous system development, chemokine signaling, Rho GTPase signaling, and adhesion. Hierarchical clustering showed that most enriched pathways in all three cell types are related to GTPase activity and vesicular transport. In contrast, STRING analysis showed significant interactions in two populations that appear to be cell type dependent. The data provided herein demonstrates that robust incorporation of C15AlkOPP can be obtained in ES-MNs and related primary cells purified via magnetic-activated cell sorting allowing the identification and quantification of numerous prenylated proteins. These results suggest that metabolic labeling with C15AlkOPP should be an effective approach for investigating the role of prenylated proteins in primary cells in both normal cells and disease pathologies, including ALS.
Collapse
Affiliation(s)
- Kiall F Suazo
- Department of Chemistry, University of Minnesota, Minneapolis, MN USA 55455
| | - Vartika Mishra
- Center for Motor Neuron Biology and Diseases, Department of Neurology. Columbia University Irving Medical Center. New York, NY 10032
- Department of Pathology & Cell Biology. Columbia University Irving Medical Center. New York, NY 10032
| | - Sanjay Maity
- Department of Chemistry, University of Minnesota, Minneapolis, MN USA 55455
| | - Shelby A Auger
- Department of Chemistry, University of Minnesota, Minneapolis, MN USA 55455
| | - Katarzyna Justyna
- Department of Chemistry, University of Minnesota, Minneapolis, MN USA 55455
| | - Alex Petre
- Department of Chemistry, University of Minnesota, Minneapolis, MN USA 55455
| | - Linda Ottoboni
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
| | - Jessica Ongaro
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania P Corti
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Lotti
- Center for Motor Neuron Biology and Diseases, Department of Neurology. Columbia University Irving Medical Center. New York, NY 10032
- Department of Pathology & Cell Biology. Columbia University Irving Medical Center. New York, NY 10032
| | - Serge Przedborski
- Center for Motor Neuron Biology and Diseases, Department of Neurology. Columbia University Irving Medical Center. New York, NY 10032
- Department of Pathology & Cell Biology. Columbia University Irving Medical Center. New York, NY 10032
- Department of Neuroscience, Pathology, and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN USA 55455
| |
Collapse
|
6
|
Li Z, Tian M, Jia H, Li X, Liu Q, Zhou X, Li R, Dong H, Liu Y. Genetic variation in targets of lipid-lowering drugs and amyotrophic lateral sclerosis risk: a Mendelian randomization study. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:197-206. [PMID: 37688479 DOI: 10.1080/21678421.2023.2255622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND The use of lipid-lowering drugs is still highly controversial in patients with amyotrophic lateral sclerosis (ALS). We performed a drug-target Mendelian randomization (MR) analysis to investigate the effect of targeted lipid-lowering drugs on the risk of ALS. METHODS First, we evaluated the causal relationship between HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase (HMGCR) inhibitors-taking trait and ALS using a bidirectional two-sample MR study. Second, we investigated the causal relationship between lipid-lowering drugs and ALS through a drug-target MR approach. The summary data for HMGCR inhibitors-taking traits were extracted from a genome-wide association study (GWAS) of medication use and associated disease in the UK Biobank. The summary data for low-density lipoprotein cholesterol and apolipoprotein B (apoB) were extracted from a meta-analysis of GWAS in individuals of European ancestry in the UKB. The GWAS summary data of ALS were obtained from the Project MinE. RESULTS Our bidirectional two-sample MR showed that genetically determined increased HMGCR inhibitors-taking trait was an independent risk factor for ALS (odds ratio [OR] = 1.090, 95% confidence interval [CI] = 1.035-1.150, p = 0.001). The results of drug-target MR showed that the increased expression of the HMGCR gene in blood with the higher risk of ALS (OR = 1.21, 95% CI = 1.01-1.46; p = 0.042) through SMR method and the apoB level mediated by the APOB gene increased the risk of ALS (OR = 1.15; 95% CI =1.05-1.25; p = 0.001) through inverse-variance weighted MR method. CONCLUSION This present study provides genetic support for a positive causal effect of HMGCR inhibitors-taking trait and ALS. The reason for this may be due to the underlying disease condition behind the medication, rather than the medication itself. Our findings also suggested that HMGCR and apoB inhibitors may have potential protective effects on ALS.
Collapse
Affiliation(s)
- Zhiguang Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, P.R. China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, P.R. China, and
- Department of Neurology, Xingtai Third Hospital, Xingtai, P.R. China
| | - Mei Tian
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, P.R. China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, P.R. China, and
| | - Hongning Jia
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, P.R. China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, P.R. China, and
| | - Xin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, P.R. China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, P.R. China, and
| | - Qi Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, P.R. China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, P.R. China, and
| | - Xiaomeng Zhou
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, P.R. China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, P.R. China, and
| | - Rui Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, P.R. China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, P.R. China, and
| | - Hui Dong
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, P.R. China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, P.R. China, and
| | - Yaling Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, P.R. China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, P.R. China, and
| |
Collapse
|
7
|
Al-Kuraishy HM, Al-Gareeb AI, Saad HM, Batiha GES. The potential therapeutic effect of statins in multiple sclerosis: beneficial or detrimental effects. Inflammopharmacology 2023; 31:1671-1682. [PMID: 37160526 DOI: 10.1007/s10787-023-01240-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/11/2023]
Abstract
Multiple sclerosis (MS) is a chronic progressive disabling disease of the central nervous system (CNS) characterized by demyelination and neuronal injury. Dyslipidemia is observed as one of the imperative risk factors involved in MS neuropathology. Also, chronic inflammation in MS predisposes to the progress of dyslipidemia. Therefore, treatment of dyslipidemia in MS by statins may attenuate dyslipidemia-induced MS and avert MS-induced metabolic changes. Therefore, the present review aimed to elucidate the possible effects of statins on the pathogenesis and outcomes of MS. Statins adversely affect the cognitive function in MS by decreasing brain cholesterol CoQ10, which is necessary for the regulation of neuronal mitochondrial function. However, statins could be beneficial in MS by shifting the immune response from pro-inflammatory Th17 to an anti-inflammatory regulatory T cell (Treg). The protective effect of statins against MS is related to anti-inflammatory and immunomodulatory effects with modulation of fibrinogen and growth factors. In conclusion, the effects of statins on MS neuropathology seem to be conflicting, as statins seem to be protective in the acute phase of MS through anti-inflammatory and antioxidant effects. However, statins lead to detrimental effects in the chronic phase of MS by reducing brain cholesterol and inhibiting the remyelination process.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Professor in Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, M. B. Ch. B, FRCP, Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Professor in Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, M. B. Ch. B, FRCP, Box 14132, Baghdad, Iraq
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
8
|
Sekine Y, Kannan R, Wang X, Strittmatter SM. Rabphilin3A reduces integrin-dependent growth cone signaling to restrict axon regeneration after trauma. Exp Neurol 2022; 353:114070. [PMID: 35398339 PMCID: PMC9555232 DOI: 10.1016/j.expneurol.2022.114070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/09/2022] [Accepted: 04/04/2022] [Indexed: 01/03/2023]
Abstract
Neural repair after traumatic spinal cord injury depends upon the restoration of neural networks via axonal sprouting and regeneration. Our previous genome wide loss-of-function screen identified Rab GTPases as playing a prominent role in preventing successful axon sprouting and regeneration. Here, we searched for Rab27b interactors and identified Rabphilin3A as an effector within regenerating axons. Growth cone Rabphilin3a colocalized and physically associated with integrins at puncta in the proximal body of the axonal growth cone. In regenerating axons, loss of Rabphilin3a increased integrin enrichment in the growth cone periphery, enhanced focal adhesion kinase activation, increased F-actin-rich filopodial density and stimulated axon extension. Compared to wild type, mice lacking Rabphilin3a exhibited greater regeneration of retinal ganglion cell axons after optic nerve crush as well as greater corticospinal axon regeneration after complete thoracic spinal cord crush injury. After moderate spinal cord contusion injury, there was greater corticospinal regrowth in the absence of Rph3a. Thus, an endogenous Rab27b - Raphilin3a pathway limits integrin action in the growth cone, and deletion of this monomeric GTPase pathway permits reparative axon growth in the injured adult mammalian central nervous system.
Collapse
Affiliation(s)
- Yuichi Sekine
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Ramakrishnan Kannan
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Xingxing Wang
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Stephen M Strittmatter
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA.
| |
Collapse
|
9
|
Godoy-Corchuelo JM, Fernández-Beltrán LC, Ali Z, Gil-Moreno MJ, López-Carbonero JI, Guerrero-Sola A, Larrad-Sainz A, Matias-Guiu J, Matias-Guiu JA, Cunningham TJ, Corrochano S. Lipid Metabolic Alterations in the ALS-FTD Spectrum of Disorders. Biomedicines 2022; 10:1105. [PMID: 35625841 PMCID: PMC9138405 DOI: 10.3390/biomedicines10051105] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023] Open
Abstract
There is an increasing interest in the study of the relation between alterations in systemic lipid metabolism and neurodegenerative disorders, in particular in Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD). In ALS these alterations are well described and evident not only with the progression of the disease but also years before diagnosis. Still, there are some discrepancies in findings relating to the causal nature of lipid metabolic alterations, partly due to the great clinical heterogeneity in ALS. ALS presentation is within a disorder spectrum with Frontotemporal Dementia (FTD), and many patients present mixed forms of ALS and FTD, thus increasing the variability. Lipid metabolic and other systemic metabolic alterations have not been well studied in FTD, or in ALS-FTD mixed forms, as has been in pure ALS. With the recent development in lipidomics and the integration with other -omics platforms, there is now emerging data that not only facilitates the identification of biomarkers but also enables understanding of the underlying pathological mechanisms. Here, we reviewed the recent literature to compile lipid metabolic alterations in ALS, FTD, and intermediate mixed forms, with a view to appraising key commonalities or differences within the spectrum.
Collapse
Affiliation(s)
- Juan Miguel Godoy-Corchuelo
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Luis C. Fernández-Beltrán
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Zeinab Ali
- MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK; (Z.A.); (T.J.C.)
| | - María J. Gil-Moreno
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Juan I. López-Carbonero
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Antonio Guerrero-Sola
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Angélica Larrad-Sainz
- Nutrition and Endocrinology Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain;
| | - Jorge Matias-Guiu
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Jordi A. Matias-Guiu
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Thomas J. Cunningham
- MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK; (Z.A.); (T.J.C.)
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Silvia Corrochano
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| |
Collapse
|
10
|
Detection of copy number variants and genes by chromosomal microarray in an Emirati neurodevelopmental disorders cohort. Neurogenetics 2022; 23:137-149. [DOI: 10.1007/s10048-022-00689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/06/2022] [Indexed: 10/18/2022]
|
11
|
Huang L, Chen W, Wei L, Su Y, Liang J, Lian H, Wang H, Long F, Yang F, Gao S, Tan Z, Xu J, Zhao J, Liu Q. Lonafarnib Inhibits Farnesyltransferase via Suppressing ERK Signaling Pathway to Prevent Osteoclastogenesis in Titanium Particle-Induced Osteolysis. Front Pharmacol 2022; 13:848152. [PMID: 35300293 PMCID: PMC8921770 DOI: 10.3389/fphar.2022.848152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/10/2022] [Indexed: 11/30/2022] Open
Abstract
Wear debris after total joint arthroplasty can attract the recruitment of macrophages, which release pro-inflammatory substances, triggering the activation of osteoclasts, thereby leading to periprosthetic osteolysis (PPOL) and aseptic loosening. However, the development of pharmacological strategies targeting osteoclasts to prevent periprosthetic osteolysis has not been fruitful. In this study, we worked toward researching the effects and mechanisms of a farnesyltransferase (FTase) inhibitor Lonafarnib (Lon) on receptor activator of nuclear factor κB (NF-κB) ligand (RANKL)-induced osteoclastogenesis and bone resorption, as well as the impacts of Lon on titanium particle-induced osteolysis. To investigate the impacts of Lon on bone resorption and osteoclastogenesis in vitro, bone marrow macrophages were incubated and stimulated with RANKL and macrophage colony-stimulating factor (M-CSF). The influence of Lon on osteolysis prevention in vivo was examined utilizing a titanium particle-induced mouse calvarial osteolysis model. The osteoclast-relevant genes expression was explored by real-time quantitative PCR. Immunofluorescence was used to detect intracellular localization of nuclear factor of activated T cells 1 (NFATc1). SiRNA silence assay was applied to examine the influence of FTase on osteoclasts activation. Related signaling pathways, including NFATc1 signaling, NF-κB, mitogen-activated protein kinases pathways were identified by western blot assay. Lon was illustrated to suppress bone resorptive function and osteoclastogenesis in vitro, and it also reduced the production of pro-inflammatory substances and prevented titanium particle-induced osteolysis in vivo. Lon decreased the expression of osteoclast-relevant genes and suppressed NFATc1 nuclear translocation and auto-amplification. Mechanistically, Lon dampened FTase, and inhibition of FTase reduced osteoclast formation by suppressing ERK signaling. Lon is a promising treatment option for osteoclast-related osteolysis diseases including periprosthetic osteolysis by targeted inhibition of FTase through suppressing ERK signaling.
Collapse
Affiliation(s)
- Linke Huang
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Orthopaedics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Weiwei Chen
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Linhua Wei
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China.,The Affiliated Nanning Infectious Disease Hospital of Guangxi Medical University, The Fourth People's Hospital of Nanning, Nanning, China
| | - Yuangang Su
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Jiamin Liang
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Haoyu Lian
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Hui Wang
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Feng Long
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Fan Yang
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Shiyao Gao
- Department of Orthopaedics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhen Tan
- Department of Orthopaedics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Jinmin Zhao
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Qian Liu
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
12
|
Tang BL. Cholesterol synthesis inhibition or depletion in axon regeneration. Neural Regen Res 2022; 17:271-276. [PMID: 34269187 PMCID: PMC8463970 DOI: 10.4103/1673-5374.317956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/08/2021] [Accepted: 03/17/2021] [Indexed: 11/05/2022] Open
Abstract
Cholesterol is biosynthesized by all animal cells. Beyond its metabolic role in steroidogenesis, it is enriched in the plasma membrane where it has key structural and regulatory functions. Cholesterol is thus presumably important for post-injury axon regrowth, and this notion is supported by studies showing that impairment of local cholesterol reutilization impeded regeneration. However, several studies have also shown that statins, inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase, are enhancers of axon regeneration, presumably acting through an attenuation of the mevalonate isoprenoid pathway and consequent reduction in protein prenylation. Several recent reports have now shown that cholesterol depletion, as well as inhibition of cholesterol synthesis per se, enhances axon regeneration. Here, I discussed these findings and propose some possible underlying mechanisms. The latter would include possible disruptions to axon growth inhibitor signaling by lipid raft-localized receptors, as well as other yet unclear neuronal survival signaling process enhanced by cholesterol lowering or depletion.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| |
Collapse
|
13
|
Prognostic Biomarkers in Uveal Melanoma: The Status Quo, Recent Advances and Future Directions. Cancers (Basel) 2021; 14:cancers14010096. [PMID: 35008260 PMCID: PMC8749988 DOI: 10.3390/cancers14010096] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Although rare, uveal melanoma (UM) is the most common cancer that develops inside adult eyes. The prognosis is poor, since 50% of patients will develop lethal metastases in the first decade, especially to the liver. Once metastases are detected, life expectancy is limited, given that the available treatments are mostly unsuccessful. Thus, there is a need to find methods that can accurately predict UM prognosis and also effective therapeutic strategies to treat this cancer. In this manuscript, we initially compile the current knowledge on epidemiological, clinical, pathological and molecular features of UM. Then, we cover the most relevant prognostic factors currently used for the evaluation and follow-up of UM patients. Afterwards, we highlight emerging molecular markers in UM published over the last three years. Finally, we discuss the problems preventing meaningful advances in the treatment and prognostication of UM patients, as well as forecast new roadblocks and paths of UM-related research. Abstract Uveal melanoma (UM) is the most common malignant intraocular tumour in the adult population. It is a rare cancer with an incidence of nearly five cases per million inhabitants per year, which develops from the uncontrolled proliferation of melanocytes in the choroid (≈90%), ciliary body (≈6%) or iris (≈4%). Patients initially present either with symptoms like blurred vision or photopsia, or without symptoms, with the tumour being detected in routine eye exams. Over the course of the disease, metastases, which are initially dormant, develop in nearly 50% of patients, preferentially in the liver. Despite decades of intensive research, the only approach proven to mildly control disease spread are early treatments directed to ablate liver metastases, such as surgical excision or chemoembolization. However, most patients have a limited life expectancy once metastases are detected, since there are limited therapeutic approaches for the metastatic disease, including immunotherapy, which unlike in cutaneous melanoma, has been mostly ineffective for UM patients. Therefore, in order to offer the best care possible to these patients, there is an urgent need to find robust models that can accurately predict the prognosis of UM, as well as therapeutic strategies that effectively block and/or limit the spread of the metastatic disease. Here, we initially summarized the current knowledge about UM by compiling the most relevant epidemiological, clinical, pathological and molecular data. Then, we revisited the most important prognostic factors currently used for the evaluation and follow-up of primary UM cases. Afterwards, we addressed emerging prognostic biomarkers in UM, by comprehensively reviewing gene signatures, immunohistochemistry-based markers and proteomic markers resulting from research studies conducted over the past three years. Finally, we discussed the current hurdles in the field and anticipated the future challenges and novel avenues of research in UM.
Collapse
|
14
|
Postolache TT, Medoff DR, Brown CH, Fang LJ, Upadhyaya SK, Lowry CA, Miller M, Kreyenbuhl JA. Lipophilic vs. hydrophilic statins and psychiatric hospitalizations and emergency room visits in US Veterans with schizophrenia and bipolar disorder. Pteridines 2021; 32:48-69. [PMID: 34887622 PMCID: PMC8654264 DOI: 10.1515/pteridines-2020-0028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Objective – Psychiatric hospitalizations and emergency department (ED) visits are costly, stigmatizing, and often ineffective. Given the immune and kynurenine activation in bipolar disorder (BD) and schizophrenia, as well as the immune-modulatory effects of statins, we aimed to compare the relative risk (RRs) of psychiatric hospitalizations and ED visits between individuals prescribed lipophilic vs. hydrophilic statins vs. no statins. We hypothesized (a) reduced rates of hospitalization and ER utilization with statins versus no statins and (b) differences in outcomes between statins, as lipophilia increases the capability to penetrate the blood–brain barrier with potentially beneficial neuroimmune, antioxidant, neuroprotective, neurotrophic, and endothelial stabilizing effects, and, in contrast, potentially detrimental decreases in brain cholesterol concentrations leading to serotoninergic dysfunction, changes in membrane lipid composition, thus affecting ion channels and receptors. Methods – We used VA service utilization data from October 1, 2010 to September 30, 2015. The RRs for psychiatric hospitalization and ED visits, were estimated using robust Poisson regression analyses. The number of individuals analyzed was 683,129. Results – Individuals with schizophrenia and BD who received prescriptions for either lipophilic or hydrophilic statins had a lower RR of psychiatric hospitalization or ED visits relative to nonstatin controls. Hydrophilic statins were significantly associated with lower RRs of psychiatric hospitalization but not of ED visits, compared to lipophilic statins. Conclusion – The reduction in psychiatric hospitalizations in statin users (vs. nonusers) should be interpreted cautiously, as it carries a high risk of confounding by indication. While the lower RR of psychiatric hospitalizations in hydrophilic statins relative to the lipophilic statins is relatively bias free, the finding bears replication in a specifically designed study. If replicated, important clinical implications for personalizing statin treatment in patients with mental illness, investigating add-on statins for improved therapeutic control, and mechanistic exploration for identifying new treatment targets are natural next steps.
Collapse
Affiliation(s)
- Teodor T Postolache
- VISN 5 Capitol Health Care Network Mental Illness Research Education and Clinical Center (MIRECC), U.S. Department of Veterans Affairs, Baltimore, MD 21201, United States of America; Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), U.S. Department of Veterans Affairs, Aurora, CO 80045, United States of America; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America; Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), U.S. Department of Veterans Affairs, Denver, CO 80045, United States of America
| | - Deborah R Medoff
- VISN 5 Capitol Health Care Network Mental Illness Research Education and Clinical Center (MIRECC), Baltimore, MD 21201, United States of America; Department of Psychiatry, Division of Psychiatric Services Research, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Clayton H Brown
- VISN 5 Capitol Health Care Network Mental Illness Research Education and Clinical Center (MIRECC), Baltimore, MD 21201, United States of America; Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Li Juan Fang
- Department of Psychiatry, Division of Psychiatric Services Research, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Sanjaya K Upadhyaya
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Christopher A Lowry
- Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), U.S. Department of Veterans Affairs, Aurora, CO 80045, United States of America; Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), U.S. Department of Veterans Affairs, Denver, CO 80045, United States of America; Department of Integrative Physiology, Center for Neuroscience, Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, United States of America; Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Michael Miller
- Department of Medicine, VAMC Baltimore and University of Maryland School of Medicine, Baltimore, Maryland 21201, United States of America
| | - Julie A Kreyenbuhl
- VISN 5 Capitol Health Care Network Mental Illness Research Education and Clinical Center (MIRECC), Baltimore, MD 21201, United States of America; Department of Psychiatry, Division of Psychiatric Services Research, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| |
Collapse
|
15
|
Kim ML, Sung KR, Kwon J, Choi GW, Shin JA. Neuroprotective Effect of Statins in a Rat Model of Chronic Ocular Hypertension. Int J Mol Sci 2021; 22:12500. [PMID: 34830387 PMCID: PMC8621698 DOI: 10.3390/ijms222212500] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022] Open
Abstract
Glaucoma is an optic neuropathy in which the degeneration of retinal ganglion cells (RGCs) results in irreversible vison loss. Therefore, neuroprotection of RGCs from glaucomatous afflictions is crucial for glaucoma treatment. In this study, we aimed to investigate the beneficial effects of statins in the protection of RGCs using a rat model. Glaucomatous injury was induced in rats by chronic ocular hypertension (OHT) achieved after performing a circumlimbal suture. The rats were given either statins such as simvastatin and atorvastatin or a solvent weekly for 6 weeks. Retina sections underwent hematoxylin and eosin, Brn3a, or cleaved casepase-3 staining to evaluate RGC survival. In addition, modulation of glial activation was assessed. While the retinas without statin treatment exhibited increased RGC death due to chronic OHT, statins promoted the survival of RGCs and reduced apoptosis. Statins also suppressed chronic OHT-mediated glial activation in the retina. Our results demonstrate that statins exert neuroprotective effects in rat retinas exposed to chronic OHT, which may support the prospect of statins being a glaucoma treatment.
Collapse
Affiliation(s)
- Mi-Lyang Kim
- Biomedical Research Center, College of Medicine, University of Ulsan, Asan Medical Center, Seoul 05505, Korea; (M.-L.K.); (G.W.C.); (J.A.S.)
| | - Kyung Rim Sung
- Department of Ophthalmology, College of Medicine, University of Ulsan, Asan Medical Center, Seoul 05505, Korea;
| | - Junki Kwon
- Department of Ophthalmology, College of Medicine, University of Ulsan, Asan Medical Center, Seoul 05505, Korea;
| | - Go Woon Choi
- Biomedical Research Center, College of Medicine, University of Ulsan, Asan Medical Center, Seoul 05505, Korea; (M.-L.K.); (G.W.C.); (J.A.S.)
| | - Jin A Shin
- Biomedical Research Center, College of Medicine, University of Ulsan, Asan Medical Center, Seoul 05505, Korea; (M.-L.K.); (G.W.C.); (J.A.S.)
| |
Collapse
|
16
|
Kingston R, Amin D, Misra S, Gross JM, Kuwajima T. Serotonin transporter-mediated molecular axis regulates regional retinal ganglion cell vulnerability and axon regeneration after nerve injury. PLoS Genet 2021; 17:e1009885. [PMID: 34735454 PMCID: PMC8594818 DOI: 10.1371/journal.pgen.1009885] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/16/2021] [Accepted: 10/17/2021] [Indexed: 11/19/2022] Open
Abstract
Molecular insights into the selective vulnerability of retinal ganglion cells (RGCs) in optic neuropathies and after ocular trauma can lead to the development of novel therapeutic strategies aimed at preserving RGCs. However, little is known about what molecular contexts determine RGC susceptibility. In this study, we show the molecular mechanisms underlying the regional differential vulnerability of RGCs after optic nerve injury. We identified RGCs in the mouse peripheral ventrotemporal (VT) retina as the earliest population of RGCs susceptible to optic nerve injury. Mechanistically, the serotonin transporter (SERT) is upregulated on VT axons after injury. Utilizing SERT-deficient mice, loss of SERT attenuated VT RGC death and led to robust retinal axon regeneration. Integrin β3, a factor mediating SERT-induced functions in other systems, is also upregulated in RGCs and axons after injury, and loss of integrin β3 led to VT RGC protection and axon regeneration. Finally, RNA sequencing analyses revealed that loss of SERT significantly altered molecular signatures in the VT retina after optic nerve injury, including expression of the transmembrane protein, Gpnmb. GPNMB is rapidly downregulated in wild-type, but not SERT- or integrin β3-deficient VT RGCs after injury, and maintaining expression of GPNMB in RGCs via AAV2 viruses even after injury promoted VT RGC survival and axon regeneration. Taken together, our findings demonstrate that the SERT-integrin β3-GPNMB molecular axis mediates selective RGC vulnerability and axon regeneration after optic nerve injury.
Collapse
Affiliation(s)
- Rody Kingston
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, Pittsburgh, Pennsylvania, United States of America
| | - Dwarkesh Amin
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, Pittsburgh, Pennsylvania, United States of America
| | - Sneha Misra
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, Pittsburgh, Pennsylvania, United States of America
| | - Jeffrey M. Gross
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, Pittsburgh, Pennsylvania, United States of America
- Department of Developmental Biology, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Takaaki Kuwajima
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
17
|
Hansson ML, Chatterjee U, Francis J, Arndt T, Broman C, Johansson J, Sköld MK, Rising A. Artificial spider silk supports and guides neurite extension in vitro. FASEB J 2021; 35:e21896. [PMID: 34634154 DOI: 10.1096/fj.202100916r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/01/2021] [Accepted: 08/17/2021] [Indexed: 01/09/2023]
Abstract
Surgical intervention with the use of autografts is considered the gold standard to treat peripheral nerve injuries. However, a biomaterial that supports and guides nerve growth would be an attractive alternative to overcome problems with limited availability, morbidity at the site of harvest, and nerve mismatches related to autografts. Native spider silk is a promising material for construction of nerve guidance conduit (NGC), as it enables regeneration of cm-long nerve injuries in sheep, but regulatory requirements for medical devices demand synthetic materials. Here, we use a recombinant spider silk protein (NT2RepCT) and a functionalized variant carrying a peptide derived from vitronectin (VN-NT2RepCT) as substrates for nerve growth support and neurite extension, using a dorsal root ganglion cell line, ND7/23. Two-dimensional coatings were benchmarked against poly-d-lysine and recombinant laminins. Both spider silk coatings performed as the control substrates with regards to proliferation, survival, and neurite growth. Furthermore, NT2RepCT and VN-NT2RepCT spun into continuous fibers in a biomimetic spinning set-up support cell survival, neurite growth, and guidance to an even larger extent than native spider silk. Thus, artificial spider silk is a promising biomaterial for development of NGCs.
Collapse
Affiliation(s)
- Magnus L Hansson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Experimental Traumatology Unit, Department of Neuroscience, Biomedicum B8 Karolinska Institutet, Stockholm, Sweden
| | - Urmimala Chatterjee
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Juanita Francis
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Tina Arndt
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Christian Broman
- Experimental Traumatology Unit, Department of Neuroscience, Biomedicum B8 Karolinska Institutet, Stockholm, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Mattias K Sköld
- Experimental Traumatology Unit, Department of Neuroscience, Biomedicum B8 Karolinska Institutet, Stockholm, Sweden.,Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Anna Rising
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
18
|
One Raft to Guide Them All, and in Axon Regeneration Inhibit Them. Int J Mol Sci 2021; 22:ijms22095009. [PMID: 34066896 PMCID: PMC8125918 DOI: 10.3390/ijms22095009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022] Open
Abstract
Central nervous system damage caused by traumatic injuries, iatrogenicity due to surgical interventions, stroke and neurodegenerative diseases is one of the most prevalent reasons for physical disability worldwide. During development, axons must elongate from the neuronal cell body to contact their precise target cell and establish functional connections. However, the capacity of the adult nervous system to restore its functionality after injury is limited. Given the inefficacy of the nervous system to heal and regenerate after damage, new therapies are under investigation to enhance axonal regeneration. Axon guidance cues and receptors, as well as the molecular machinery activated after nervous system damage, are organized into lipid raft microdomains, a term typically used to describe nanoscale membrane domains enriched in cholesterol and glycosphingolipids that act as signaling platforms for certain transmembrane proteins. Here, we systematically review the most recent findings that link the stability of lipid rafts and their composition with the capacity of axons to regenerate and rebuild functional neural circuits after damage.
Collapse
|
19
|
Lee SJ, Zdradzinski MD, Sahoo PK, Kar AN, Patel P, Kawaguchi R, Aguilar BJ, Lantz KD, McCain CR, Coppola G, Lu Q, Twiss JL. Selective axonal translation of the mRNA isoform encoding prenylated Cdc42 supports axon growth. J Cell Sci 2021; 134:237797. [PMID: 33674450 DOI: 10.1242/jcs.251967] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
The small Rho-family GTPase Cdc42 has long been known to have a role in cell motility and axon growth. The eukaryotic Ccd42 gene is alternatively spliced to generate mRNAs with two different 3' untranslated regions (UTRs) that encode proteins with distinct C-termini. The C-termini of these Cdc42 proteins include CaaX and CCaX motifs for post-translational prenylation and palmitoylation, respectively. Palmitoyl-Cdc42 protein was previously shown to contribute to dendrite maturation, while the prenyl-Cdc42 protein contributes to axon specification and its mRNA was detected in neurites. Here, we show that the mRNA encoding prenyl-Cdc42 isoform preferentially localizes into PNS axons and this localization selectively increases in vivo during peripheral nervous system (PNS) axon regeneration. Functional studies indicate that prenyl-Cdc42 increases axon length in a manner that requires axonal targeting of its mRNA, which, in turn, needs an intact C-terminal CaaX motif that can drive prenylation of the encoded protein. In contrast, palmitoyl-Cdc42 has no effect on axon growth but selectively increases dendrite length. Together, these data show that alternative splicing of the Cdc42 gene product generates an axon growth promoting, locally synthesized prenyl-Cdc42 protein. This article has an associated First Person interview with one of the co-first authors of the paper.
Collapse
Affiliation(s)
- Seung Joon Lee
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208USA
| | - Matthew D Zdradzinski
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208USA
| | - Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208USA
| | - Amar N Kar
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208USA
| | - Priyanka Patel
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208USA
| | - Riki Kawaguchi
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA 90095-1761, USA
| | - Byron J Aguilar
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Kelsey D Lantz
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208USA
| | - Caylee R McCain
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208USA
| | - Giovanni Coppola
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA 90095-1761, USA.,Department of Neurology, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA 90095-1761, USA
| | - Qun Lu
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208USA
| |
Collapse
|
20
|
Shabanzadeh AP, Charish J, Tassew NG, Farhani N, Feng J, Qin X, Sugita S, Mothe AJ, Wälchli T, Koeberle PD, Monnier PP. Cholesterol synthesis inhibition promotes axonal regeneration in the injured central nervous system. Neurobiol Dis 2021; 150:105259. [PMID: 33434618 DOI: 10.1016/j.nbd.2021.105259] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/24/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Neuronal regeneration in the injured central nervous system is hampered by multiple extracellular proteins. These proteins exert their inhibitory action through interactions with receptors that are located in cholesterol rich compartments of the membrane termed lipid rafts. Here we show that cholesterol-synthesis inhibition prevents the association of the Neogenin receptor with lipid rafts. Furthermore, we show that cholesterol-synthesis inhibition enhances axonal growth both on inhibitory -myelin and -RGMa substrates. Following optic nerve injury, lowering cholesterol synthesis with both drugs and siRNA-strategies allows for robust axonal regeneration and promotes neuronal survival. Cholesterol inhibition also enhanced photoreceptor survival in a model of Retinitis Pigmentosa. Our data reveal that Lovastatin leads to several opposing effects on regenerating axons: cholesterol synthesis inhibition promotes regeneration whereas altered prenylation impairs regeneration. We also show that the lactone prodrug form of lovastatin has differing effects on regeneration when compared to the ring-open hydroxy-acid form. Thus the association of cell surface receptors with lipid rafts contributes to axonal regeneration inhibition, and blocking cholesterol synthesis provides a potential therapeutic approach to promote neuronal regeneration and survival in the diseased Central Nervous System. SIGNIFICANCE STATEMENT: Statins have been intensively used to treat high levels of cholesterol in humans. However, the effect of cholesterol inhibition in both the healthy and the diseased brain remains controversial. In particular, it is unclear whether cholesterol inhibition with statins can promote regeneration and survival following injuries. Here we show that late stage cholesterol inhibition promotes robust axonal regeneration following optic nerve injury. We identified distinct mechanisms of action for activated vs non-activated Lovastatin that may account for discrepancies found in the literature. We show that late stage cholesterol synthesis inhibition alters Neogenin association with lipid rafts, thereby i) neutralizing the inhibitory function of its ligand and ii) offering a novel opportunity to promote CNS regeneration and survival following injuries.
Collapse
Affiliation(s)
- Alireza P Shabanzadeh
- Krembil Research Institute, KDT 8-417, 60 Leonard St., Toronto M5T 2S8, Ontario, Canada; Department of Physiology, Donald K. Johnson Research Institute, 60 Leonard St., Toronto M5T 2S8, Ontario, Canada; Department of Anatomy, Faculty of Medicine, University of Toronto, Toronto M5S 1A8, Ontario, Canada
| | - Jason Charish
- Krembil Research Institute, KDT 8-417, 60 Leonard St., Toronto M5T 2S8, Ontario, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto M5S 1A8, Ontario, Canada
| | - Nardos G Tassew
- Krembil Research Institute, KDT 8-417, 60 Leonard St., Toronto M5T 2S8, Ontario, Canada; Department of Physiology, Donald K. Johnson Research Institute, 60 Leonard St., Toronto M5T 2S8, Ontario, Canada
| | - Nahal Farhani
- Krembil Research Institute, KDT 8-417, 60 Leonard St., Toronto M5T 2S8, Ontario, Canada
| | - Jinzhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xinjue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shuzo Sugita
- Krembil Research Institute, KDT 8-417, 60 Leonard St., Toronto M5T 2S8, Ontario, Canada
| | - Andrea J Mothe
- Krembil Research Institute, KDT 8-417, 60 Leonard St., Toronto M5T 2S8, Ontario, Canada
| | - Thomas Wälchli
- Krembil Research Institute, KDT 8-417, 60 Leonard St., Toronto M5T 2S8, Ontario, Canada
| | - Paulo D Koeberle
- Department of Anatomy, Faculty of Medicine, University of Toronto, Toronto M5S 1A8, Ontario, Canada
| | - Philippe P Monnier
- Krembil Research Institute, KDT 8-417, 60 Leonard St., Toronto M5T 2S8, Ontario, Canada; Department of Physiology, Donald K. Johnson Research Institute, 60 Leonard St., Toronto M5T 2S8, Ontario, Canada; Department of Ophthalmology, Faculty of Medicine, University of Toronto, Toronto M5S 1A8, Ontario, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto M5S 1A8, Ontario, Canada.
| |
Collapse
|
21
|
Fell CW, Nagy V. Cellular Models and High-Throughput Screening for Genetic Causality of Intellectual Disability. Trends Mol Med 2021; 27:220-230. [PMID: 33397633 DOI: 10.1016/j.molmed.2020.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022]
Abstract
Intellectual disabilities (ID) are a type of neurodevelopmental disorder (NDD). They can have a genetic cause, including an emerging class of ID centring around Rho GTPases, such as Ras-related C3 botulinum toxin substrate 1 (RAC1). Guidelines for establishing genetic causality include the use of cellular models, which often have morphological aberrations, a long-standing hallmark of ID. Disease cellular models can facilitate high-throughput screening (HTS) of chemical or genetic perturbations, which can provide translatable biological insight. Here, we discuss a class of IDs centring around RAC1. We review novel and established cellular models of ID, including mouse and human primary cells and reprogrammed or induced neurons. Finally, we review progress and remaining challenges in the adoption of HTS methodologies by the community studying neurological disorders.
Collapse
Affiliation(s)
- Christopher W Fell
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), 1090 Vienna, Austria; Research Centre for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, 1090 Vienna, Austria; Department of Neurology, Medical University of Vienna (MUW), 1090 Vienna, Austria
| | - Vanja Nagy
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), 1090 Vienna, Austria; Research Centre for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, 1090 Vienna, Austria; Department of Neurology, Medical University of Vienna (MUW), 1090 Vienna, Austria.
| |
Collapse
|
22
|
Molecular Mechanisms of Central Nervous System Axonal Regeneration and Remyelination: A Review. Int J Mol Sci 2020; 21:ijms21218116. [PMID: 33143194 PMCID: PMC7662268 DOI: 10.3390/ijms21218116] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
Central nervous system (CNS) injury, including stroke, spinal cord injury, and traumatic brain injury, causes severe neurological symptoms such as sensory and motor deficits. Currently, there is no effective therapeutic method to restore neurological function because the adult CNS has limited capacity to regenerate after injury. Many efforts have been made to understand the molecular and cellular mechanisms underlying CNS regeneration and to establish novel therapeutic methods based on these mechanisms, with a variety of strategies including cell transplantation, modulation of cell intrinsic molecular mechanisms, and therapeutic targeting of the pathological nature of the extracellular environment in CNS injury. In this review, we will focus on the mechanisms that regulate CNS regeneration, highlighting the history, recent efforts, and questions left unanswered in this field.
Collapse
|
23
|
Qu W, Suazo KF, Liu W, Cheng S, Jeong A, Hottman D, Yuan LL, Distefano MD, Li L. Neuronal Protein Farnesylation Regulates Hippocampal Synaptic Plasticity and Cognitive Function. Mol Neurobiol 2020; 58:1128-1144. [PMID: 33098528 DOI: 10.1007/s12035-020-02169-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022]
Abstract
Protein prenylation is a post-translational lipid modification that governs a variety of important cellular signaling pathways, including those regulating synaptic functions and cognition in the nervous system. Two enzymes, farnesyltransferase (FT) and geranylgeranyltransferase type I (GGT), are essential for the prenylation process. Genetic reduction of FT or GGT ameliorates neuropathology but only FT haplodeficiency rescues cognitive function in transgenic mice of Alzheimer's disease. A follow-up study showed that systemic or forebrain neuron-specific deficiency of GGT leads to synaptic and cognitive deficits under physiological conditions. Whether FT plays different roles in shaping neuronal functions and cognition remains elusive. This study shows that in contrast to the detrimental effects of GGT reduction, systemic haplodeficiency of FT has little to no impact on hippocampal synaptic plasticity and cognition. However, forebrain neuron-specific FT deletion also leads to reduced synaptic plasticity, memory retention, and hippocampal dendritic spine density. Furthermore, a novel prenylomic analysis identifies distinct pools of prenylated proteins that are affected in the brain of forebrain neuron-specific FT and GGT knockout mice, respectively. Taken together, this study uncovers that physiological levels of FT and GGT in neurons are essential for normal synaptic/cognitive functions and that the prenylation status of specific signaling molecules regulates neuronal functions.
Collapse
Affiliation(s)
- Wenhui Qu
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Kiall F Suazo
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wenfeng Liu
- Department of Experimental and Clinical Pharmacology, University of Minnesota, McGuire Translational Research Facility (MTRF) 4-208, 2001 6th Street SE, Minneapolis, MN, 55455, USA
| | - Shaowu Cheng
- Department of Experimental and Clinical Pharmacology, University of Minnesota, McGuire Translational Research Facility (MTRF) 4-208, 2001 6th Street SE, Minneapolis, MN, 55455, USA
| | - Angela Jeong
- Department of Experimental and Clinical Pharmacology, University of Minnesota, McGuire Translational Research Facility (MTRF) 4-208, 2001 6th Street SE, Minneapolis, MN, 55455, USA
| | - David Hottman
- Department of Experimental and Clinical Pharmacology, University of Minnesota, McGuire Translational Research Facility (MTRF) 4-208, 2001 6th Street SE, Minneapolis, MN, 55455, USA
| | - Li-Lian Yuan
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, 50312, USA
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ling Li
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA. .,Department of Experimental and Clinical Pharmacology, University of Minnesota, McGuire Translational Research Facility (MTRF) 4-208, 2001 6th Street SE, Minneapolis, MN, 55455, USA. .,Graduate Program in Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
24
|
Seist R, Tong M, Landegger LD, Vasilijic S, Hyakusoku H, Katsumi S, McKenna CE, Edge ASB, Stankovic KM. Regeneration of Cochlear Synapses by Systemic Administration of a Bisphosphonate. Front Mol Neurosci 2020; 13:87. [PMID: 32765216 PMCID: PMC7381223 DOI: 10.3389/fnmol.2020.00087] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Sensorineural hearing loss (SNHL) caused by noise exposure and attendant loss of glutamatergic synapses between cochlear spiral ganglion neurons (SGNs) and hair cells is the most common sensory deficit worldwide. We show here that systemic administration of a bisphosphonate to mice 24 h after synaptopathic noise exposure regenerated synapses between inner hair cells and SGNs and restored cochlear function. We further demonstrate that this effect is mediated by inhibition of the mevalonate pathway. These results are highly significant because they suggest that bisphosphonates could reverse cochlear synaptopathy for the treatment of SNHL.
Collapse
Affiliation(s)
- Richard Seist
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
- Department of Otorhinolaryngology-Head and Neck Surgery, Paracelsus Medical University, Salzburg, Austria
| | - Mingjie Tong
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Lukas D. Landegger
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
- Department of Otorhinolaryngology-Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Sasa Vasilijic
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Hiroshi Hyakusoku
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
- Department of Otorhinolaryngology, Yokosuka Kyosai Hospital, Kanagawa, Japan
| | - Sachiyo Katsumi
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Charles E. McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Albert S. B. Edge
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
- Speech and Hearing Bioscience and Technology Program, Harvard Medical School, Boston, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
| | - Konstantina M. Stankovic
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
- Speech and Hearing Bioscience and Technology Program, Harvard Medical School, Boston, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
- Program in Therapeutic Science, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
25
|
Mesenchymal subtype neuroblastomas are addicted to TGF-βR2/HMGCR-driven protein geranylgeranylation. Sci Rep 2020; 10:10748. [PMID: 32612149 PMCID: PMC7329873 DOI: 10.1038/s41598-020-67310-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 06/05/2020] [Indexed: 11/09/2022] Open
Abstract
The identification of targeted agents with high therapeutic index is a major challenge for cancer drug discovery. We found that screening chemical libraries across neuroblastoma (NBL) tumor subtypes for selectively-lethal compounds revealed metabolic dependencies that defined each subtype. Bioactive compounds were screened across cell models of mesenchymal (MESN) and MYCN-amplified (MYCNA) NBL subtypes, which revealed the mevalonate and folate biosynthetic pathways as MESN-selective dependencies. Treatment with lovastatin, a mevalonate biosynthesis inhibitor, selectively inhibited protein prenylation and induced apoptosis in MESN cells, while having little effect in MYCNA lines. Statin sensitivity was driven by HMGCR expression, the rate-limiting enzyme for cholesterol synthesis, which correlated with statin sensitivity across NBL cell lines, thus providing a drug sensitivity biomarker. Comparing expression profiles from sensitive and resistant cell lines revealed a TGFBR2 signaling axis that regulates HMGCR, defining an actionable addiction in that leads to MESN-subtype-dependent apoptotic cell death.
Collapse
|
26
|
Scott-Solomon E, Kuruvilla R. Prenylation of Axonally Translated Rac1 Controls NGF-Dependent Axon Growth. Dev Cell 2020; 53:691-705.e7. [PMID: 32533921 DOI: 10.1016/j.devcel.2020.05.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/13/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022]
Abstract
Compartmentalized signaling is critical for cellular organization and specificity of functional outcomes in neurons. Here, we report that post-translational lipidation of newly synthesized proteins in axonal compartments allows for short-term and autonomous responses to extrinsic cues. Using conditional mutant mice, we found that protein prenylation is essential for sympathetic axon innervation of target organs. We identify a localized requirement for prenylation in sympathetic axons to promote axonal growth in response to the neurotrophin, nerve growth factor (NGF). NGF triggers prenylation of proteins including the Rac1 GTPase in axons, counter to the canonical view of prenylation as constitutive, and strikingly, in a manner dependent on axonal protein synthesis. Newly prenylated proteins localize to TrkA-harboring endosomes in axons and promote receptor trafficking necessary for axonal growth. Thus, coupling of prenylation to local protein synthesis presents a mechanism for spatially segregated cellular functions during neuronal development.
Collapse
Affiliation(s)
- Emily Scott-Solomon
- Department of Biology, Johns Hopkins University, 3400 N. Charles St, 227 Mudd Hall, Baltimore, MD 21218, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, 3400 N. Charles St, 227 Mudd Hall, Baltimore, MD 21218, USA.
| |
Collapse
|
27
|
Pinner AL, Mueller TM, Alganem K, McCullumsmith R, Meador-Woodruff JH. Protein expression of prenyltransferase subunits in postmortem schizophrenia dorsolateral prefrontal cortex. Transl Psychiatry 2020; 10:3. [PMID: 32066669 PMCID: PMC7026430 DOI: 10.1038/s41398-019-0610-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 09/09/2019] [Accepted: 10/03/2019] [Indexed: 12/22/2022] Open
Abstract
The pathophysiology of schizophrenia includes altered neurotransmission, dysregulated intracellular signaling pathway activity, and abnormal dendritic morphology that contribute to deficits of synaptic plasticity in the disorder. These processes all require dynamic protein-protein interactions at cell membranes. Lipid modifications target proteins to membranes by increasing substrate hydrophobicity by the addition of a fatty acid or isoprenyl moiety, and recent evidence suggests that dysregulated posttranslational lipid modifications may play a role in multiple neuropsychiatric disorders, including schizophrenia. Consistent with these emerging findings, we have recently reported decreased protein S-palmitoylation in schizophrenia. Protein prenylation is a lipid modification that occurs upstream of S-palmitoylation on many protein substrates, facilitating membrane localization and activity of key intracellular signaling proteins. Accordingly, we hypothesized that, in addition to palmitoylation, protein prenylation may be abnormal in schizophrenia. To test this, we assayed protein expression of the five prenyltransferase subunits (FNTA, FNTB, PGGT1B, RABGGTA, and RABGGTB) in postmortem dorsolateral prefrontal cortex from patients with schizophrenia and paired comparison subjects (n = 13 pairs). We found decreased levels of FNTA (14%), PGGT1B (13%), and RABGGTB (8%) in schizophrenia. To determine whether upstream or downstream factors may be driving these changes, we also assayed protein expression of the isoprenoid synthases FDPS and GGPS1 and prenylation-dependent processing enzymes RCE and ICMT. We found these upstream and downstream enzymes to have normal protein expression. To rule out effects from chronic antipsychotic treatment, we assayed FNTA, PGGT1B, and RABGGTB in the cortex from rats treated long-term with haloperidol decanoate and found no change in the expression of these proteins. Given the role prenylation plays in localization of key signaling proteins found at the synapse, these data offer a potential mechanism underlying abnormal protein-protein interactions and protein localization in schizophrenia.
Collapse
Affiliation(s)
- Anita L Pinner
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294-0021, USA.
| | - Toni M Mueller
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294-0021, USA
| | - Khaled Alganem
- Department of Neurosciences, University of Toledo, Toledo, OH, 43614-2598, USA
| | | | - James H Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294-0021, USA
| |
Collapse
|
28
|
Barros Ribeiro da Silva V, Porcionatto M, Toledo Ribas V. The Rise of Molecules Able To Regenerate the Central Nervous System. J Med Chem 2019; 63:490-511. [PMID: 31518122 DOI: 10.1021/acs.jmedchem.9b00863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Injury to the adult central nervous system (CNS) usually leads to permanent deficits of cognitive, sensory, and/or motor functions. The failure of axonal regeneration in the damaged CNS limits functional recovery. The lack of information concerning the biological mechanism of axonal regeneration and its complexity has delayed the process of drug discovery for many years compared to other drug classes. Starting in the early 2000s, the ability of many molecules to stimulate axonal regrowth was evaluated through automated screening techniques; many hits and some new mechanisms involved in axonal regeneration were identified. In this Perspective, we discuss the rise of the CNS regenerative drugs, the main biological techniques used to test these drug candidates, some of the most important screens performed so far, and the main challenges following the identification of a drug that is able to induce axonal regeneration in vivo.
Collapse
Affiliation(s)
| | - Marimélia Porcionatto
- Universidade Federal de São Paulo , Escola Paulista de Medicina, Laboratório de Neurobiologia Molecular, Departmento de Bioquímica , Rua Pedro de Toledo, 669 - third floor, 04039-032 São Paulo , São Paolo , Brazil
| | - Vinicius Toledo Ribas
- Universidade Federal de Minas Gerais , Instituto de Ciências Biológicas, Departamento de Morfologia, Laboratório de Neurobiologia Av. Antônio Carlos, 6627, room O3-245 , - Campus Pampulha, 31270-901 , Belo Horizonte , Minas Gerais , Brazil
| |
Collapse
|
29
|
Tian R, Gachechiladze MA, Ludwig CH, Laurie MT, Hong JY, Nathaniel D, Prabhu AV, Fernandopulle MS, Patel R, Abshari M, Ward ME, Kampmann M. CRISPR Interference-Based Platform for Multimodal Genetic Screens in Human iPSC-Derived Neurons. Neuron 2019; 104:239-255.e12. [PMID: 31422865 DOI: 10.1016/j.neuron.2019.07.014] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/25/2019] [Accepted: 07/12/2019] [Indexed: 12/28/2022]
Abstract
CRISPR/Cas9-based functional genomics have transformed our ability to elucidate mammalian cell biology. However, most previous CRISPR-based screens were conducted in cancer cell lines rather than healthy, differentiated cells. Here, we describe a CRISPR interference (CRISPRi)-based platform for genetic screens in human neurons derived from induced pluripotent stem cells (iPSCs). We demonstrate robust and durable knockdown of endogenous genes in such neurons and present results from three complementary genetic screens. First, a survival-based screen revealed neuron-specific essential genes and genes that improved neuronal survival upon knockdown. Second, a screen with a single-cell transcriptomic readout uncovered several examples of genes whose knockdown had strikingly cell-type-specific consequences. Third, a longitudinal imaging screen detected distinct consequences of gene knockdown on neuronal morphology. Our results highlight the power of unbiased genetic screens in iPSC-derived differentiated cell types and provide a platform for systematic interrogation of normal and disease states of neurons. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Ruilin Tian
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Biophysics Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| | | | - Connor H Ludwig
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Matthew T Laurie
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jason Y Hong
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Diane Nathaniel
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Anika V Prabhu
- National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | | | - Rajan Patel
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Mehrnoosh Abshari
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892, USA
| | - Michael E Ward
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA.
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
30
|
Suprun EV. Protein post-translational modifications – A challenge for bioelectrochemistry. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Klochkov SG, Neganova ME, Yarla NS, Parvathaneni M, Sharma B, Tarasov VV, Barreto G, Bachurin SO, Ashraf GM, Aliev G. Implications of farnesyltransferase and its inhibitors as a promising strategy for cancer therapy. Semin Cancer Biol 2019; 56:128-134. [DOI: 10.1016/j.semcancer.2017.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/14/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022]
|
32
|
A dynamic view of the proteomic landscape during differentiation of ReNcell VM cells, an immortalized human neural progenitor line. Sci Data 2019; 6:190016. [PMID: 30778261 PMCID: PMC6380223 DOI: 10.1038/sdata.2019.16] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 12/21/2018] [Indexed: 01/25/2023] Open
Abstract
The immortalized human ReNcell VM cell line represents a reproducible and easy-to-propagate cell culture system for studying the differentiation of neural progenitors. To better characterize the starting line and its subsequent differentiation, we assessed protein and phospho-protein levels and cell morphology over a 15-day period during which ReNcell progenitors differentiated into neurons, astrocytes and oligodendrocytes. Five of the resulting datasets measured protein levels or states of phosphorylation based on tandem-mass-tag (TMT) mass spectrometry and four datasets characterized cellular phenotypes using high-content microscopy. Proteomic analysis revealed reproducible changes in pathways responsible for cytoskeletal rearrangement, cell phase transitions, neuronal migration, glial differentiation, neurotrophic signalling and extracellular matrix regulation. Proteomic and imaging data revealed accelerated differentiation in cells treated with the poly-selective CDK and GSK3 inhibitor kenpaullone or the HMG-CoA reductase inhibitor mevastatin, both of which have previously been reported to promote neural differentiation. These data provide in-depth information on the ReNcell progenitor state and on neural differentiation in the presence and absence of drugs, setting the stage for functional studies.
Collapse
|
33
|
Bader TK, Rappe TM, Veglia G, Distefano MD. Synthesis and NMR Characterization of the Prenylated Peptide, a-Factor. Methods Enzymol 2019; 614:207-238. [PMID: 30611425 DOI: 10.1016/bs.mie.2018.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Protein and peptide prenylation is an essential biological process involved in many signal transduction pathways. Hence, it plays a critical role in establishing many major human ailments, including Alzheimer's disease, amyotrophic lateral sclerosis (ALS), malaria, and Ras-related cancers. Yeast mating pheromone a-factor is a small dodecameric peptide that undergoes prenylation and subsequent processing in a manner identical to larger proteins. Due to its small size in addition to its well-characterized behavior in yeast, a-factor is an attractive model system to study the prenylation pathway. Traditionally, chemical synthesis and characterization of a-factor have been challenging, which has limited its use in prenylation studies. In this chapter, a robust method for the synthesis of a-factor is presented along with a description of the characterization of the peptide using MALDI and NMR. Finally, complete assignments of resonances from the isoprenoid moiety and a-factor from COSY, TOCSY, HSQC, and long-range HMBC NMR spectra are presented. This methodology should be useful for the synthesis and characterization of other mature prenylated peptides and proteins.
Collapse
Affiliation(s)
- Taysir K Bader
- University of Minnesota, Twin Cities, Minneapolis, MN, United States
| | - Todd M Rappe
- University of Minnesota, Twin Cities, Minneapolis, MN, United States
| | - Gianlugi Veglia
- University of Minnesota, Twin Cities, Minneapolis, MN, United States
| | - Mark D Distefano
- University of Minnesota, Twin Cities, Minneapolis, MN, United States.
| |
Collapse
|
34
|
Fracassi A, Marangoni M, Rosso P, Pallottini V, Fioramonti M, Siteni S, Segatto M. Statins and the Brain: More than Lipid Lowering Agents? Curr Neuropharmacol 2019; 17:59-83. [PMID: 28676012 PMCID: PMC6341496 DOI: 10.2174/1570159x15666170703101816] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/24/2017] [Accepted: 06/26/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Statins represent a class of medications widely prescribed to efficiently treat dyslipidemia. These drugs inhibit 3-βhydroxy 3β-methylglutaryl Coenzyme A reductase (HMGR), the rate-limiting enzyme of mevalonate (MVA) pathway. Besides cholesterol, MVA pathway leads to the production of several other compounds, which are essential in the regulation of a plethora of biological activities, including in the central nervous system. For these reasons, statins are able to induce pleiotropic actions, and acquire increased interest as potential and novel modulators in brain processes, especially during pathological conditions. OBJECTIVE The purpose of this review is to summarize and examine the current knowledge about pharmacokinetic and pharmacodynamic properties of statins in the brain. In addition, effects of statin on brain diseases are discussed providing the most up-to-date information. METHODS Relevant scientific information was identified from PubMed database using the following keywords: statins and brain, central nervous system, neurological diseases, neurodegeneration, brain tumors, mood, stroke. RESULTS 315 scientific articles were selected and analyzed for the writing of this review article. Several papers highlighted that statin treatment is effective in preventing or ameliorating the symptomatology of a number of brain pathologies. However, other studies failed to demonstrate a neuroprotective effect. CONCLUSION Even though considerable research studies suggest pivotal functional outcomes induced by statin therapy, additional investigation is required to better determine the pharmacological effectiveness of statins in the brain, and support their clinical use in the management of different neuropathologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marco Segatto
- Address correspondence to this author at the Department of Sense Organs, Sapienza University, viale del Policlinico 155, 00186 Rome, Italy; E-mail:
| |
Collapse
|
35
|
Ahmadi M, Suazo KF, Distefano MD. Optimization of Metabolic Labeling with Alkyne-Containing Isoprenoid Probes. Methods Mol Biol 2019; 2009:35-43. [PMID: 31152393 DOI: 10.1007/978-1-4939-9532-5_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Protein prenylation, found in eukaryotes, is a posttranslational modification in which one or two isoprenoid groups are added to the C terminus of selected proteins using either a farnesyl group or a geranylgeranyl group. Prenylation facilitates protein localization mainly to the plasma membrane where the prenylated proteins, including small GTPases, mediate signal transduction pathways. Changes in the level of prenylated proteins may serve a critical function in a variety of diseases. Metabolic labeling using modified isoprenoid probes followed by enrichment and proteomic analysis allows the identities and levels of prenylated proteins to be investigated. In this protocol, we illustrate how the conditions for metabolic labeling are optimized to maximize probe incorporation in HeLa cells through a combination of in-gel fluorescence and densitometric analysis.
Collapse
Affiliation(s)
- Mina Ahmadi
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | | | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
36
|
Al-Ali H, Debevec G, Santos RG, Houghten RA, Davis JC, Nefzi A, Lemmon VP, Bixby JL, Giulianotti MA. Scaffold Ranking and Positional Scanning Identify Novel Neurite Outgrowth Promoters with Nanomolar Potency. ACS Med Chem Lett 2018; 9:1057-1062. [PMID: 30344917 DOI: 10.1021/acsmedchemlett.8b00425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
Central nervous system (CNS) neurons typically fail to regrow their axons after injury. Injuries or neuropathies that damage CNS axons and disrupt neuronal circuitry often result in permanent functional deficits. Axon regeneration is therefore an intensely pursued therapeutic strategy for numerous CNS disorders. Phenotypic screens utilizing primary neurons have proven successful at identifying agents that promote axon regeneration in vivo. Here, we report the screening of mixture-based combinatorial small molecule libraries in a phenotypic assay utilizing primary CNS neurons and the discovery of neurite outgrowth promoters with low nanomolar potency.
Collapse
Affiliation(s)
| | - Ginamarie Debevec
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987, United States
| | - Radleigh G. Santos
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987, United States
| | - Richard A. Houghten
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987, United States
| | - Jennifer C. Davis
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987, United States
| | - Adel Nefzi
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987, United States
| | | | | | - Marc A. Giulianotti
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987, United States
| |
Collapse
|
37
|
HSP90 is a chaperone for DLK and is required for axon injury signaling. Proc Natl Acad Sci U S A 2018; 115:E9899-E9908. [PMID: 30275300 DOI: 10.1073/pnas.1805351115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Peripheral nerve injury induces a robust proregenerative program that drives axon regeneration. While many regeneration-associated genes are known, the mechanisms by which injury activates them are less well-understood. To identify such mechanisms, we performed a loss-of-function pharmacological screen in cultured adult mouse sensory neurons for proteins required to activate this program. Well-characterized inhibitors were present as injury signaling was induced but were removed before axon outgrowth to identify molecules that block induction of the program. Of 480 compounds, 35 prevented injury-induced neurite regrowth. The top hits were inhibitors to heat shock protein 90 (HSP90), a chaperone with no known role in axon injury. HSP90 inhibition blocks injury-induced activation of the proregenerative transcription factor cJun and several regeneration-associated genes. These phenotypes mimic loss of the proregenerative kinase, dual leucine zipper kinase (DLK), a critical neuronal stress sensor that drives axon degeneration, axon regeneration, and cell death. HSP90 is an atypical chaperone that promotes the stability of signaling molecules. HSP90 and DLK show two hallmarks of HSP90-client relationships: (i) HSP90 binds DLK, and (ii) HSP90 inhibition leads to rapid degradation of existing DLK protein. Moreover, HSP90 is required for DLK stability in vivo, where HSP90 inhibitor reduces DLK protein in the sciatic nerve. This phenomenon is evolutionarily conserved in Drosophila Genetic knockdown of Drosophila HSP90, Hsp83, decreases levels of Drosophila DLK, Wallenda, and blocks Wallenda-dependent synaptic terminal overgrowth and injury signaling. Our findings support the hypothesis that HSP90 chaperones DLK and is required for DLK functions, including proregenerative axon injury signaling.
Collapse
|
38
|
Jeong A, Suazo KF, Wood WG, Distefano MD, Li L. Isoprenoids and protein prenylation: implications in the pathogenesis and therapeutic intervention of Alzheimer's disease. Crit Rev Biochem Mol Biol 2018; 53:279-310. [PMID: 29718780 PMCID: PMC6101676 DOI: 10.1080/10409238.2018.1458070] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mevalonate-isoprenoid-cholesterol biosynthesis pathway plays a key role in human health and disease. The importance of this pathway is underscored by the discovery that two major isoprenoids, farnesyl and geranylgeranyl pyrophosphate, are required to modify an array of proteins through a process known as protein prenylation, catalyzed by prenyltransferases. The lipophilic prenyl group facilitates the anchoring of proteins in cell membranes, mediating protein-protein interactions and signal transduction. Numerous essential intracellular proteins undergo prenylation, including most members of the small GTPase superfamily as well as heterotrimeric G proteins and nuclear lamins, and are involved in regulating a plethora of cellular processes and functions. Dysregulation of isoprenoids and protein prenylation is implicated in various disorders, including cardiovascular and cerebrovascular diseases, cancers, bone diseases, infectious diseases, progeria, and neurodegenerative diseases including Alzheimer's disease (AD). Therefore, isoprenoids and/or prenyltransferases have emerged as attractive targets for developing therapeutic agents. Here, we provide a general overview of isoprenoid synthesis, the process of protein prenylation and the complexity of prenylated proteins, and pharmacological agents that regulate isoprenoids and protein prenylation. Recent findings that connect isoprenoids/protein prenylation with AD are summarized and potential applications of new prenylomic technologies for uncovering the role of prenylated proteins in the pathogenesis of AD are discussed.
Collapse
Affiliation(s)
- Angela Jeong
- Departments of Experimental and Clinical Pharmacolog,University of Minnesota, Minneapolis, MN 55455
| | | | - W. Gibson Wood
- Departments of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Mark D. Distefano
- Departments of Chemistry,University of Minnesota, Minneapolis, MN 55455
| | - Ling Li
- Departments of Experimental and Clinical Pharmacolog,University of Minnesota, Minneapolis, MN 55455
- Departments of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
39
|
Hottman D, Cheng S, Gram A, LeBlanc K, Yuan LL, Li L. Systemic or Forebrain Neuron-Specific Deficiency of Geranylgeranyltransferase-1 Impairs Synaptic Plasticity and Reduces Dendritic Spine Density. Neuroscience 2018; 373:207-217. [PMID: 29406266 DOI: 10.1016/j.neuroscience.2018.01.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 01/03/2018] [Accepted: 01/13/2018] [Indexed: 01/23/2023]
Abstract
Isoprenoids and prenylated proteins regulate a variety of cellular functions, including neurite growth and synaptic plasticity. Importantly, they are implicated in the pathogenesis of several diseases, including Alzheimer's disease (AD). Recently, we have shown that two protein prenyltransferases, farnesyltransferase (FT) and geranylgeranyltransferase-1 (GGT), have differential effects in a mouse model of AD. Haplodeficiency of either FT or GGT attenuates amyloid-β deposition and neuroinflammation but only reduction in FT rescues cognitive function. The current study aimed to elucidate the potential mechanisms that may account for the lack of cognitive benefit in GGT-haplodeficient mice, despite attenuated neuropathology. The results showed that the magnitude of long-term potentiation (LTP) was markedly suppressed in hippocampal slices from GGT-haplodeficient mice. Consistent with the synaptic dysfunction, there was a significant decrease in cortical spine density and cognitive function in GGT-haplodeficient mice. To further study the neuron-specific effects of GGT deficiency, we generated conditional forebrain neuron-specific GGT-knockout (GGTf/fCre+) mice using a Cre/LoxP system under the CAMKIIα promoter. We found that both the magnitude of hippocampal LTP and the dendritic spine density of cortical neurons were decreased in GGTf/fCre+ mice compared with GGTf/fCre- mice. Immunoblot analyses of cerebral lysate showed a significant reduction in cell membrane-associated (geranylgeranylated) Rac1 and RhoA but not (farnesylated) H-Ras, in GGTf/fCre+ mice, suggesting that insufficient geranylgeranylation of the Rho family of small GTPases may underlie the detrimental effects of GGT deficiency. These findings reinforce the critical role of GGT in maintaining spine structure and synaptic/cognitive function in development and in the mature brain.
Collapse
Affiliation(s)
- David Hottman
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Shaowu Cheng
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States; College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Yuelu District, Changsha, Hunan 410208, China
| | - Andrea Gram
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Kyle LeBlanc
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Li-Lian Yuan
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States; Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA 50312, United States
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States; Department of Pharmacology and Graduate Programs in Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
40
|
Diaz-Rodriguez V, Hsu ET, Ganusova E, Werst ER, Becker JM, Hrycyna CA, Distefano MD. a-Factor Analogues Containing Alkyne- and Azide-Functionalized Isoprenoids Are Efficiently Enzymatically Processed and Retain Wild-Type Bioactivity. Bioconjug Chem 2017; 29:316-323. [PMID: 29188996 PMCID: PMC5824361 DOI: 10.1021/acs.bioconjchem.7b00648] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Protein
prenylation is a post-translational modification that involves
the addition of one or two isoprenoid groups to the C-terminus of
selected proteins using either farnesyl diphosphate or geranylgeranyl
diphosphate. Three crucial enzymatic steps are involved in the processing
of prenylated proteins to yield the final mature product. The farnesylated
dodecapeptide, a-factor, is particularly useful for studies
of protein prenylation because it requires the identical three-step
process to generate the same C-terminal farnesylated cysteine methyl
ester substructure present in larger farnesylated proteins. Recently,
several groups have developed isoprenoid analogs bearing azide and
alkyne groups that can be used in metabolic labeling experiments.
Those compounds have proven useful for profiling prenylated proteins
and also show great promise as tools to study how the levels of prenylated
proteins vary in different disease models. Herein, we describe the
preparation and use of prenylated a-factor analogs, and
precursor peptides, to investigate two key questions. First, a-factor analogues containing modified isoprenoids were prepared
to evaluate whether the non-natural lipid group interferes with the
biological activity of the a-factor. Second, a-factor-derived precursor peptides were synthesized to evaluate whether
they can be efficiently processed by the yeast proteases Rce1 and
Ste24 as well as the yeast methyltransferase Ste14 to yield mature a-factor analogues. Taken together, the results reported here
indicate that metabolic labeling experiments with azide- and alkyne-functionalized
isoprenoids can yield prenylated products that are fully processed
and biologically functional. Overall, these observations suggest that
the isoprenoids studied here that incorporate bio-orthogonal functionality
can be used in metabolic labeling experiments without concern that
they will induce undesired physiological changes that may complicate
data interpretation.
Collapse
Affiliation(s)
- Veronica Diaz-Rodriguez
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Erh-Ting Hsu
- Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Elena Ganusova
- Department of Microbiology, University of Tennessee , Circle Park Drive, Knoxville, Tennessee 37996, United States
| | - Elena R Werst
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Jeffrey M Becker
- Department of Microbiology, University of Tennessee , Circle Park Drive, Knoxville, Tennessee 37996, United States
| | - Christine A Hrycyna
- Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
41
|
Abstract
Although much is known about the regenerative capacity of retinal ganglion cells, very significant barriers remain in our ability to restore visual function following traumatic injury or disease-induced degeneration. Here we summarize our current understanding of the factors regulating axon guidance and target engagement in regenerating axons, and review the state of the field of neural regeneration, focusing on the visual system and highlighting studies using other model systems that can inform analysis of visual system regeneration. This overview is motivated by a Society for Neuroscience Satellite meeting, "Reconnecting Neurons in the Visual System," held in October 2015 sponsored by the National Eye Institute as part of their "Audacious Goals Initiative" and co-organized by Carol Mason (Columbia University) and Michael Crair (Yale University). The collective wisdom of the conference participants pointed to important gaps in our knowledge and barriers to progress in promoting the restoration of visual system function. This article is thus a summary of our existing understanding of visual system regeneration and provides a blueprint for future progress in the field.
Collapse
|
42
|
Kaplan A, Bueno M, Hua L, Fournier AE. Maximizing functional axon repair in the injured central nervous system: Lessons from neuronal development. Dev Dyn 2017. [PMID: 28643358 DOI: 10.1002/dvdy.24536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The failure of damaged axons to regrow underlies disability in central nervous system injury and disease. Therapies that stimulate axon repair will be critical to restore function. Extensive axon regeneration can be induced by manipulation of oncogenes and tumor suppressors; however, it has been difficult to translate this into functional recovery in models of spinal cord injury. The current challenge is to maximize the functional integration of regenerating axons to recover motor and sensory behaviors. Insights into axonal growth and wiring during nervous system development are helping guide new approaches to boost regeneration and functional connectivity after injury in the mature nervous system. Here we discuss our current understanding of axonal behavior after injury and prospects for the development of drugs to optimize axon regeneration and functional recovery after CNS injury. Developmental Dynamics 247:18-23, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrew Kaplan
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Mardja Bueno
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Luyang Hua
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Alyson E Fournier
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
| |
Collapse
|
43
|
Wang J, Yao X, Huang J. New tricks for human farnesyltransferase inhibitor: cancer and beyond. MEDCHEMCOMM 2017; 8:841-854. [PMID: 30108801 PMCID: PMC6072492 DOI: 10.1039/c7md00030h] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/15/2017] [Indexed: 12/18/2022]
Abstract
Human protein farnesyltransferase (FTase) catalyzes the addition of a C15-farnesyl lipid group to the cysteine residue located in the COOH-terminal tetrapeptide motif of a variety of important substrate proteins, including well-known Ras protein superfamily. The farnesylation of Ras protein is required both for its normal physiological function, and for the transforming capacity of its oncogenic mutants. Over the last several decades, FTase inhibitors (FTIs) were developed to disrupt the farnesylation of oncogenic Ras as anti-cancer agents, and some of them have entered cancer clinical investigation. On the other hand, some substrates of FTase were demonstrated to be related with other human diseases, including Hutchinson-Gilford progeria syndrome, chronic hepatitis D, and cardiovascular diseases. In this review, we summarize the roles of FTase in malignant transformation, proliferation, apoptosis, angiogenesis, and metastasis of tumor cells, and the recently anticancer clinical research advances of FTIs. The therapeutic prospect of FTIs on several other human diseases is also discussed.
Collapse
Affiliation(s)
- Jingyuan Wang
- Shanghai Key Laboratory of New Drug Design , School of Pharmacy , East China University of Science and Technology , 130 Mei Long Road , Shanghai 200237 , China . ; Tel: (+86)21 64253681
| | - Xue Yao
- Shanghai Key Laboratory of New Drug Design , School of Pharmacy , East China University of Science and Technology , 130 Mei Long Road , Shanghai 200237 , China . ; Tel: (+86)21 64253681
| | - Jin Huang
- Shanghai Key Laboratory of New Drug Design , School of Pharmacy , East China University of Science and Technology , 130 Mei Long Road , Shanghai 200237 , China . ; Tel: (+86)21 64253681
| |
Collapse
|
44
|
Kaplan A, Fournier AE. Targeting 14-3-3 adaptor protein-protein interactions to stimulate central nervous system repair. Neural Regen Res 2017; 12:1040-1043. [PMID: 28852379 PMCID: PMC5558476 DOI: 10.4103/1673-5374.211176] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The goal of developing treatments for central nervous system (CNS) injuries is becoming more attainable with the recent identification of various drugs that can repair damaged axons. These discoveries have stemmed from screening efforts, large expression datasets and an improved understanding of the cellular and molecular biology underlying axon growth. It will be important to continue searching for new compounds that can induce axon repair. Here we describe how a family of adaptor proteins called 14-3-3s can be targeted using small molecule drugs to enhance axon outgrowth and regeneration. 14-3-3s bind to many functionally diverse client proteins to regulate their functions. We highlight the recent discovery of the axon-growth promoting activity of fusicoccin-A, a fungus-derived small molecule that stabilizes 14-3-3 interactions with their client proteins. Here we discuss how fusicoccin-A could serve as a starting point for the development of drugs to induce CNS repair.
Collapse
Affiliation(s)
- Andrew Kaplan
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Alyson E Fournier
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
| |
Collapse
|