1
|
Ross G, Radtke-Schuller S, Frohlich F. Ferret as a model system for studying the anatomy and function of the prefrontal cortex: A systematic review. Neurosci Biobehav Rev 2024; 162:105701. [PMID: 38718987 PMCID: PMC11162921 DOI: 10.1016/j.neubiorev.2024.105701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/12/2024] [Accepted: 05/01/2024] [Indexed: 05/19/2024]
Abstract
There is a lack of consensus on anatomical nomenclature, standards of documentation, and functional equivalence of the frontal cortex between species. There remains a major gap between human prefrontal function and interpretation of findings in the mouse brain that appears to lack several key prefrontal areas involved in cognition and psychiatric illnesses. The ferret is an emerging model organism that has gained traction as an intermediate model species for the study of top-down cognitive control and other higher-order brain functions. However, this research has yet to benefit from synthesis. Here, we provide a summary of all published research pertaining to the frontal and/or prefrontal cortex of the ferret across research scales. The targeted location within the ferret brain is summarized visually for each experiment, and the anatomical terminology used at time of publishing is compared to what would be the appropriate term to use presently. By doing so, we hope to improve clarity in the interpretation of both previous and future publications on the comparative study of frontal cortex.
Collapse
Affiliation(s)
- Grace Ross
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Susanne Radtke-Schuller
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Flavio Frohlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Huang WA, Zhou ZC, Stitt IM, Ramasamy NS, Radtke-Schuller S, Frohlich F. Causal oscillations in the visual thalamo-cortical network in sustained attention in ferrets. Curr Biol 2024; 34:727-739.e5. [PMID: 38262418 PMCID: PMC10922762 DOI: 10.1016/j.cub.2023.12.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
Sustained visual attention allows us to process and react to unpredictable, behaviorally relevant sensory input. Sustained attention engages communication between the higher-order visual thalamus and its connected cortical regions. However, it remains unclear whether there is a causal relationship between oscillatory circuit dynamics and attentional behavior in these thalamo-cortical circuits. By using rhythmic optogenetic stimulation in the ferret, we provide causal evidence that higher-order visual thalamus coordinates thalamo-cortical and cortico-cortical functional connectivity during sustained attention via spike-field phase locking. Increasing theta but not alpha power in the thalamus improved accuracy and reduced omission rates in a sustained attention task. Further, the enhancement of effective connectivity by stimulation was correlated with improved behavioral performance. Our work demonstrates a potential circuit-level causal mechanism for how the higher-order visual thalamus modulates cortical communication through rhythmic synchronization during sustained attention.
Collapse
Affiliation(s)
- Wei A Huang
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA; Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Zhe C Zhou
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA; Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Iain M Stitt
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nivetha S Ramasamy
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA; Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Susanne Radtke-Schuller
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA; Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Flavio Frohlich
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA; Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
3
|
Mohsenian S, Kouhnavard B, Nami M, Mehdizadeh A, Seif M, Zamanian Z. Effect of temperature reduction of the prefrontal area on accuracy of visual sustained attention. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2023; 29:1368-1375. [PMID: 36177972 DOI: 10.1080/10803548.2022.2131116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Objectives. Detection of sensitive signs in many work environments with automated systems (aviation industry, flight safety tower, maritime industry, monitoring in the military industry, etc.) is essential and requires constant visual attention. Therefore, the aim of this study was to investigate the effect of forehead cooling on the accuracy of stable visual attention. Methods. This interventional study was performed on 34 male students. The sampling method was a randomized block design. Subjects were assessed by demographic questionnaire, Snellen chart, Spielberger state-trait anxiety inventory (STAI) and physiological and cognitive measurements. Results. Prefrontal cortex (PFC) cooling caused significant changes in sublingual temperature during four measurements in the intervention group. There were no significant changes in heart rate, diastolic blood pressure and saturation of peripheral oxygen (%SpO2) between the two groups. The critical flicker frequency (CFF) as an indicator of cognitive fatigue showed that cognitive improvement after PFC cooling occurred following a reduction in cognitive fatigue. Conclusions. Considering the importance of choosing non-invasive methods to improve the operator's cognitive skills while performing cognitive tasks in the field of neuroergonomics, it can be concluded that PFC cooling is an effective and safe way to improve some cognitive skills such as visual attention.
Collapse
Affiliation(s)
- Sajjad Mohsenian
- Non-Communicable Diseases Research Center, Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Nami
- Faculty of Neuroscience, Shiraz University of Medical Sciences, Iran
| | | | - Mojgan Seif
- Non-Communicable Diseases Research Center, Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Zamanian
- Non-Communicable Diseases Research Center, Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Fang Q, Frohlich F. Dissection of neuronal circuits underlying sustained attention with the five-choice serial reaction time task. Neurosci Biobehav Rev 2023; 152:105306. [PMID: 37419229 PMCID: PMC10517644 DOI: 10.1016/j.neubiorev.2023.105306] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Attention deficits are common in psychiatric and neurological disorders. The transdiagnostic nature of impaired attention suggests a common set of underlying neural circuits. Yet, there are no circuit-based treatments such as non-invasive brain stimulation currently available due to the lack of sufficiently delineated network targets. Therefore, to better treat attentional deficits, a comprehensive functional dissection of neural circuits underlying attention is imperative. This can be achieved by taking advantage of preclinical animal models and well-designed behavioral assays of attention. The resulting findings in turn can be translated to the development of novel interventions with the goal of advancing them to clinical practice. Here we show that the five-choice serial reaction time task has greatly facilitated the study of the neural circuits underlying attention in a well-controlled setting. We first introduce the task and then focus on its application in preclinical studies on sustained attention, especially in the context of state-of-the-art neuronal perturbations.
Collapse
Affiliation(s)
- Qi Fang
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Flavio Frohlich
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA; Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Bai Z, Zhang JJ, Fong KNK. Intracortical and intercortical networks in patients after stroke: a concurrent TMS-EEG study. J Neuroeng Rehabil 2023; 20:100. [PMID: 37533093 PMCID: PMC10398934 DOI: 10.1186/s12984-023-01223-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 07/21/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Concurrent transcranial magnetic stimulation and electroencephalography (TMS-EEG) recording provides information on both intracortical reorganization and networking, and that information could yield new insights into post-stroke neuroplasticity. However, a comprehensive investigation using both concurrent TMS-EEG and motor-evoked potential-based outcomes has not been carried out in patients with chronic stroke. Therefore, this study sought to investigate the intracortical and network neurophysiological features of patients with chronic stroke, using concurrent TMS-EEG and motor-evoked potential-based outcomes. METHODS A battery of motor-evoked potential-based measures and concurrent TMS-EEG recording were performed in 23 patients with chronic stroke and 21 age-matched healthy controls. RESULTS The ipsilesional primary motor cortex (M1) of the patients with stroke showed significantly higher resting motor threshold (P = 0.002), reduced active motor-evoked potential amplitudes (P = 0.001) and a prolonged cortical silent period (P = 0.007), compared with their contralesional M1. The ipsilesional stimulation also produced a reduction in N100 amplitude of TMS-evoked potentials around the stimulated M1 (P = 0.007), which was significantly correlated with the ipsilesional resting motor threshold (P = 0.011) and motor-evoked potential amplitudes (P = 0.020). In addition, TMS-related oscillatory power was significantly reduced over the ipsilesional midline-prefrontal and parietal regions. Both intra/interhemispheric connectivity and network measures in the theta band were significantly reduced in the ipsilesional hemisphere compared with those in the contralesional hemisphere. CONCLUSIONS The ipsilesional M1 demonstrated impaired GABA-B receptor-mediated intracortical inhibition characterized by reduced duration, but reduced magnitude. The N100 of TMS-evoked potentials appears to be a useful biomarker of post-stroke recovery.
Collapse
Affiliation(s)
- Zhongfei Bai
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
- Department of Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), School of Medicine, Tongji University, Shanghai, China
| | - Jack Jiaqi Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| | - Kenneth N. K. Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| |
Collapse
|
6
|
Sridhar S, Khamaj A, Asthana MK. Cognitive neuroscience perspective on memory: overview and summary. Front Hum Neurosci 2023; 17:1217093. [PMID: 37565054 PMCID: PMC10410470 DOI: 10.3389/fnhum.2023.1217093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
This paper explores memory from a cognitive neuroscience perspective and examines associated neural mechanisms. It examines the different types of memory: working, declarative, and non-declarative, and the brain regions involved in each type. The paper highlights the role of different brain regions, such as the prefrontal cortex in working memory and the hippocampus in declarative memory. The paper also examines the mechanisms that underlie the formation and consolidation of memory, including the importance of sleep in the consolidation of memory and the role of the hippocampus in linking new memories to existing cognitive schemata. The paper highlights two types of memory consolidation processes: cellular consolidation and system consolidation. Cellular consolidation is the process of stabilizing information by strengthening synaptic connections. System consolidation models suggest that memories are initially stored in the hippocampus and are gradually consolidated into the neocortex over time. The consolidation process involves a hippocampal-neocortical binding process incorporating newly acquired information into existing cognitive schemata. The paper highlights the role of the medial temporal lobe and its involvement in autobiographical memory. Further, the paper discusses the relationship between episodic and semantic memory and the role of the hippocampus. Finally, the paper underscores the need for further research into the neurobiological mechanisms underlying non-declarative memory, particularly conditioning. Overall, the paper provides a comprehensive overview from a cognitive neuroscience perspective of the different processes involved in memory consolidation of different types of memory.
Collapse
Affiliation(s)
- Sruthi Sridhar
- Department of Psychology, Mount Allison University, Sackville, NB, Canada
| | - Abdulrahman Khamaj
- Department of Industrial Engineering, College of Engineering, Jazan University, Jazan, Saudi Arabia
| | - Manish Kumar Asthana
- Department of Humanities and Social Sciences, Indian Institute of Technology Roorkee, Roorkee, India
- Department of Design, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
7
|
Liu H, Zhao X, Xue G, Chen C, Dong Q, Gao X, Yang L, Chen C. TTLL11 gene is associated with sustained attention performance and brain networks: A genome-wide association study of a healthy Chinese sample. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12835. [PMID: 36511133 PMCID: PMC9994169 DOI: 10.1111/gbb.12835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
Genetic studies on attention have mainly focused on children with attention-deficit/hyperactivity disorder (ADHD), so little systematic research has been conducted on genetic correlates of attention performance and their potential brain mechanisms among healthy individuals. The current study included a genome-wide association study (GWAS, N = 1145 healthy young adults) aimed to identify genes associated with sustained attention and an imaging genetics study (an independent sample of 483 healthy young adults) to examine any identified genes' influences on brain function. The GWAS found that TTLL11 showed genome-wide significant associations with sustained attention, with rs13298112 as the most significant SNP and the GG homozygotes showing more impulsive but also more focused responses than the A allele carriers. A retrospective examination of previously published ADHD GWAS results confirmed an un-reported, small but statistically significant effect of TTLL11 on ADHD. The imaging genetics study replicated this association and showed that the TTLL11 gene was associated with resting state activity and connectivity of the somatomoter network, and can be predicted by dorsal attention network connectivity. Specifically, the GG homozygotes showed lower brain activity, weaker brain network connectivity, and non-significant brain-attention association compared to the A allele carriers. Expression database showed that expression of this gene is enriched in the brain and that the G allele is associated with lower expression level than the A allele. These results suggest that TTLL11 may play a major role in healthy individuals' attention performance and may also contribute to the etiology of ADHD.
Collapse
Affiliation(s)
- Hejun Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiaoyu Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, California, USA
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xuping Gao
- Child and Adolescent Mental Health Centre, Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Center for Mental Disorders and NHC Key Laboratory of Mental Health (Peking University Sixth Hospital), Beijing, China
| | - Li Yang
- Child and Adolescent Mental Health Centre, Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Center for Mental Disorders and NHC Key Laboratory of Mental Health (Peking University Sixth Hospital), Beijing, China
| | - Chunhui Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| |
Collapse
|
8
|
Xie J, Yan T, Zhang J, Ma Z, Zhou H. Modulation of Neuronal Activity and Saccades at Theta Rhythm During Visual Search in Non-human Primates. Neurosci Bull 2022; 38:1183-1198. [PMID: 35608752 PMCID: PMC9554076 DOI: 10.1007/s12264-022-00884-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/18/2022] [Indexed: 10/18/2022] Open
Abstract
Active exploratory behaviors have often been associated with theta oscillations in rodents, while theta oscillations during active exploration in non-human primates are still not well understood. We recorded neural activities in the frontal eye field (FEF) and V4 simultaneously when monkeys performed a free-gaze visual search task. Saccades were strongly phase-locked to theta oscillations of V4 and FEF local field potentials, and the phase-locking was dependent on saccade direction. The spiking probability of V4 and FEF units was significantly modulated by the theta phase in addition to the time-locked modulation associated with the evoked response. V4 and FEF units showed significantly stronger responses following saccades initiated at their preferred phases. Granger causality and ridge regression analysis showed modulatory effects of theta oscillations on saccade timing. Together, our study suggests phase-locking of saccades to the theta modulation of neural activity in visual and oculomotor cortical areas, in addition to the theta phase locking caused by saccade-triggered responses.
Collapse
Affiliation(s)
- Jin Xie
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Yan
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Jie Zhang
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- The Research Center for Artificial Intelligence, Peng Cheng Laboratory, Shenzhen, 518000, China
| | - Zhengyu Ma
- The Research Center for Artificial Intelligence, Peng Cheng Laboratory, Shenzhen, 518000, China
| | - Huihui Zhou
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
- The Research Center for Artificial Intelligence, Peng Cheng Laboratory, Shenzhen, 518000, China.
| |
Collapse
|
9
|
Bagattini C, Esposito M, Ferrari C, Mazza V, Brignani D. Connectivity alterations underlying the breakdown of pseudoneglect: New insights from healthy and pathological aging. Front Aging Neurosci 2022; 14:930877. [PMID: 36118681 PMCID: PMC9475001 DOI: 10.3389/fnagi.2022.930877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
A right-hemisphere dominance for visuospatial attention has been invoked as the most prominent neural feature of pseudoneglect (i.e., the leftward visuospatial bias exhibited in neurologically healthy individuals) but the neurophysiological underpinnings of such advantage are still controversial. Previous studies investigating visuospatial bias in multiple-objects visual enumeration reported that pseudoneglect is maintained in healthy elderly and amnesic mild cognitive impairment (aMCI), but not in Alzheimer’s disease (AD). In this study, we aimed at investigating the neurophysiological correlates sustaining the rearrangements of the visuospatial bias along the progression from normal to pathological aging. To this aim, we recorded EEG activity during an enumeration task and analyzed intra-hemispheric fronto-parietal and inter-hemispheric effective connectivity adopting indexes from graph theory in patients with mild AD, patients with aMCI, and healthy elderly controls (HC). Results revealed that HC showed the leftward bias and stronger fronto-parietal effective connectivity in the right as compared to the left hemisphere. A breakdown of pseudoneglect in patients with AD was associated with both the loss of the fronto-parietal asymmetry and the reduction of inter-hemispheric parietal interactions. In aMCI, initial alterations of the attentional bias were associated with a reduction of parietal inter-hemispheric communication, but not with modulations of the right fronto-parietal connectivity advantage, which remained intact. These data provide support to the involvement of fronto-parietal and inter-parietal pathways in the leftward spatial bias, extending these notions to the complex neurophysiological alterations characterizing pathological aging.
Collapse
Affiliation(s)
- Chiara Bagattini
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- *Correspondence: Chiara Bagattini,
| | - Marco Esposito
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Clarissa Ferrari
- Unit of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Veronica Mazza
- Center for Mind/Brain Sciences CIMeC, University of Trento, Rovereto, Italy
| | - Debora Brignani
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
10
|
Assessment of Attentional Processes in Patients with Anxiety-Depressive Disorders Using Virtual Reality. J Pers Med 2021; 11:jpm11121341. [PMID: 34945813 PMCID: PMC8705703 DOI: 10.3390/jpm11121341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022] Open
Abstract
To characterize the attention deficits in one-hundred-fifteen participants, comprising two types of clinical profiles (affective and anxiety disorder), through a test of continuous VR execution. Method: Three tests (i.e., Nesplora Aquarium, BDI, and STAI) were used to obtain a standardized measure of attention, as well as the existence and severity of depression and anxiety, respectively. Results: Significant differences (CI = 95%) were found between the control group and the group with depression, in variables related to the speed of visual processing (p = 0.008) in the absence of distractors (p = 0.041) and during the first dual execution task (p = 0.011). For scores related to sustained attention, patients with depression and those with anxiety did not differ from controls. Our results suggest attentional deficits in both clinical populations when performing a continuous performance test that involved the participation of the central executive system of working memory.
Collapse
|
11
|
Fehér KD, Nakataki M, Morishima Y. Phase-Synchronized Transcranial Alternating Current Stimulation-Induced Neural Oscillations Modulate Cortico-Cortical Signaling Efficacy. Brain Connect 2021; 12:443-453. [PMID: 34210152 DOI: 10.1089/brain.2021.0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Introduction: Synchronized oscillatory brain activity is considered a basis for flexible neuronal network communication. However, the causal role of inter-regional oscillatory phase relations in modulating signaling efficacy in cortical networks has not been directly demonstrated in humans so far. Aim: The current study addresses the causal role of transcranial alternating current stimulation (tACS)-induced oscillatory cross-network phase relations in modulating signaling efficacy across human cortical networks. Methods: To this end, concurrent tACS, transcranial magnetic stimulation (TMS), and electroencephalography (EEG) were employed to measure the modulation of excitability and signaling efficacy across cortical networks during externally induced neural oscillations. Theta oscillatory activity was introduced through tACS in two nodes of the human frontoparietal network: the dorsolateral prefrontal cortex (DLPFC) and the posterior parietal cortex (PPC). Six Hertz tACS was applied to the DLPFC and PPC simultaneously in an in-phase or antiphase manner. In addition, single-pulse TMS was administered over the DLPFC at four different phases of tACS and the propagation of TMS-evoked neuronal activity was measured with EEG. Results: We show that tACS-induced theta oscillations modulate TMS-evoked potentials (TEPs) in a phase-dependent manner, and that the induced oscillatory phase relation across the frontoparietal network affects the propagation of phase-dependent TEPs within as well as beyond the frontoparietal network. Conclusion: We show that the effect of tACS-induced phase relation across the frontoparietal network on signal transmission extends beyond the frontoparietal network. The results support a causal role of inter-nodal oscillatory phase synchrony in routing cortico-cortical information flow.
Collapse
Affiliation(s)
- Kristoffer D Fehér
- Division of Systems Neuroscience of Psychopathology, Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Masahito Nakataki
- Division of Systems Neuroscience of Psychopathology, Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Yosuke Morishima
- Division of Systems Neuroscience of Psychopathology, Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland.,Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
12
|
Gilardi C, Kalebic N. The Ferret as a Model System for Neocortex Development and Evolution. Front Cell Dev Biol 2021; 9:661759. [PMID: 33996819 PMCID: PMC8118648 DOI: 10.3389/fcell.2021.661759] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022] Open
Abstract
The neocortex is the largest part of the cerebral cortex and a key structure involved in human behavior and cognition. Comparison of neocortex development across mammals reveals that the proliferative capacity of neural stem and progenitor cells and the length of the neurogenic period are essential for regulating neocortex size and complexity, which in turn are thought to be instrumental for the increased cognitive abilities in humans. The domesticated ferret, Mustela putorius furo, is an important animal model in neurodevelopment for its complex postnatal cortical folding, its long period of forebrain development and its accessibility to genetic manipulation in vivo. Here, we discuss the molecular, cellular, and histological features that make this small gyrencephalic carnivore a suitable animal model to study the physiological and pathological mechanisms for the development of an expanded neocortex. We particularly focus on the mechanisms of neural stem cell proliferation, neuronal differentiation, cortical folding, visual system development, and neurodevelopmental pathologies. We further discuss the technological advances that have enabled the genetic manipulation of the ferret in vivo. Finally, we compare the features of neocortex development in the ferret with those of other model organisms.
Collapse
|
13
|
Zhou ZC, Huang WA, Yu Y, Negahbani E, Stitt IM, Alexander ML, Hamm JP, Kato HK, Fröhlich F. Stimulus-specific regulation of visual oddball differentiation in posterior parietal cortex. Sci Rep 2020; 10:13973. [PMID: 32811878 PMCID: PMC7435179 DOI: 10.1038/s41598-020-70448-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/22/2020] [Indexed: 11/08/2022] Open
Abstract
The frequency at which a stimulus is presented determines how it is interpreted. For example, a repeated image may be of less interest than an image that violates the prior sequence. This process involves integration of sensory information and internal representations of stimulus history, functions carried out in higher-order sensory areas such as the posterior parietal cortex (PPC). Thus far, there are few detailed reports investigating the single-neuron mechanisms for processing of stimulus presentation frequency in PPC. To address this gap in knowledge, we recorded PPC activity using 2-photon calcium imaging and electrophysiology during a visual oddball paradigm. Calcium imaging results reveal differentiation at the level of single neurons for frequent versus rare conditions which varied depending on whether the stimulus was preferred or non-preferred by the recorded neural population. Such differentiation of oddball conditions was mediated primarily by stimulus-independent adaptation in the frequent condition.
Collapse
Affiliation(s)
- Zhe Charles Zhou
- Department of Psychiatry, University of North Carolina at Chapel Hill, 116 Manning Drive, 6018A, Chapel Hill, NC, 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Wei Angel Huang
- Department of Psychiatry, University of North Carolina at Chapel Hill, 116 Manning Drive, 6018A, Chapel Hill, NC, 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Yiyi Yu
- Department of Biomedical Sciences, University of California at Santa Barbara, Los Angeles, CA, 90048, USA
| | - Ehsan Negahbani
- Department of Psychiatry, University of North Carolina at Chapel Hill, 116 Manning Drive, 6018A, Chapel Hill, NC, 27599, USA
- Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Iain M Stitt
- Department of Psychiatry, University of North Carolina at Chapel Hill, 116 Manning Drive, 6018A, Chapel Hill, NC, 27599, USA
- Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Morgan L Alexander
- Department of Psychiatry, University of North Carolina at Chapel Hill, 116 Manning Drive, 6018A, Chapel Hill, NC, 27599, USA
- Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jordan P Hamm
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30302, USA
| | - Hiroyuki K Kato
- Department of Psychiatry, University of North Carolina at Chapel Hill, 116 Manning Drive, 6018A, Chapel Hill, NC, 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, 116 Manning Drive, 6018A, Chapel Hill, NC, 27599, USA.
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
14
|
Jones EJ, Poole KC, Sollini J, Town SM, Bizley JK. Seasonal weight changes in laboratory ferrets. PLoS One 2020; 15:e0232733. [PMID: 32764762 PMCID: PMC7413526 DOI: 10.1371/journal.pone.0232733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/02/2020] [Indexed: 11/18/2022] Open
Abstract
Ferrets (Mustela putorius furo) are a valuable animal model used in biomedical research. Like many animals, ferrets undergo significant variation in body weight seasonally, affected by photoperiod, and these variations complicate the use weight as an indicator of health status. To overcome this requires a better understanding of these seasonal weight changes. We provide a normative weight data set for the female ferret accounting for seasonal changes, and also investigate the effect of fluid regulation on weight change. Female ferrets (n = 39) underwent behavioural testing from May 2017 to August 2019 and were weighed daily, while housed in an animal care facility with controlled light exposure. In the winter (October to March), animals experienced 10 hours of light and 14 hours of dark, while in summer (March to October), this contingency was reversed. Individual animals varied in their body weight from approximately 700 to 1200 g. However, weights fluctuated with light cycle, with animals losing weight in summer, and gaining weight in winter such that they fluctuated between approximately 80% and 120% of their long-term average. Ferrets were weighed as part of their health assessment while experiencing water regulation for behavioural training. Water regulation superimposed additional weight changes on these seasonal fluctuations, with weight loss during the 5-day water regulation period being greater in summer than winter. Analysing the data with a Generalised Linear Model confirmed that the percentage decrease in weight per week was relatively constant throughout the summer months, while the percentage increase in body weight per week in winter decreased through the season. Finally, we noted that the timing of oestrus was reliably triggered by the increase in day length in spring. These data establish a normative benchmark for seasonal weight variation in female ferrets that can be incorporated into the health assessment of an animal's condition.
Collapse
Affiliation(s)
- Eleanor J. Jones
- The Ear Institute, University College London, London, England, United Kingdom
| | - Katarina C. Poole
- The Ear Institute, University College London, London, England, United Kingdom
| | - Joseph Sollini
- The Ear Institute, University College London, London, England, United Kingdom
| | - Stephen M. Town
- The Ear Institute, University College London, London, England, United Kingdom
| | - Jennifer K. Bizley
- The Ear Institute, University College London, London, England, United Kingdom
| |
Collapse
|
15
|
Kazemi R, Rostami R, Dehghan S, Nasiri Z, Lotfollahzadeh S, L Hadipour A, Khomami S, Ishii R, Ikeda S. Alpha frequency rTMS modulates theta lagged nonlinear connectivity in dorsal attention network. Brain Res Bull 2020; 162:271-281. [PMID: 32619694 DOI: 10.1016/j.brainresbull.2020.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/14/2020] [Accepted: 06/26/2020] [Indexed: 11/24/2022]
Abstract
Dorsolateral prefrontal cortex (DLPFC) is a key structure in dorsal attention network (DAN) that facilitates sustained attention by modulating activity in task related and unrelated regions of the brain. Alpha and theta frequency bands enhance connectivity among different parts of the attention network and these connections are facilitated by long-range nonlinear connectivity in theta and alpha frequency bands. This study is an investigation of the behavioral and electrophysiological effects of alpha and theta frequency repetitive transcranial magnetic stimulation (rTMS) over RDLPFC. 20 healthy participants were randomly assigned to two groups of theta (n = 11, f = 6 Hz) and alpha (n = 9, f = 10 Hz) rTMS. Electroencephalogram (EEG) was recorded before and after each session while resting and performing tasks. Current source density (CSD) and functional connectivity (FC) in DAN and default mode network (DMN) and their correlations with rapid visual information processing task (RVIP) scores were calculated . Alpha frequency rTMS resulted in significant changes in RVIP scores. Active theta rTMS caused an increase in CSD in Postcentral gyrus and active alpha rTMS resulted in significant CSD changes in inferior parietal lobule (IPL). Theta lagged nonlinear connectivity was mudulated by alpha rTMSand FC changes were observed in DAN and DMN. Positive correlations were observed between DAN regions and RVIP scores in the alpha rTMS group. Increased activity in theta frequency band in left aPFC and left DLPFC correlated positively with higher total hits in RVIP. This study showed for the first time that theta and alpha frequency rTMS are able to modulate FC in DAN and DMN in a way that results in better performance in a sustained attention task.
Collapse
Affiliation(s)
- Reza Kazemi
- Cognitive Lab, Department of Psychology, University of Tehran, Tehran, Iran; Atieh Clinical Neuroscience Center, Tehran, Iran.
| | - Reza Rostami
- Department of Psychology, University of Tehran, Tehran, Iran
| | | | - Zahra Nasiri
- Atieh Clinical Neuroscience Center, Tehran, Iran
| | | | - Abed L Hadipour
- Atieh Clinical Neuroscience Center, Tehran, Iran; Department of Psychology, University of Tehran, Tehran, Iran
| | | | - Ryouhei Ishii
- Smart Rehabilitation Research Center, Osaka Prefecture University, Graduate School of Comprehensive Rehabilitation, Habikino, Japan; Department of Psychiatry, Osaka University, Graduate School of Medicine, Osaka, Japan
| | - Shunichiro Ikeda
- Department of Neuropsychiatry, Kansai Medical University, Osaka, Japan
| |
Collapse
|
16
|
Dorsal prefrontal and premotor cortex of the ferret as defined by distinctive patterns of thalamo-cortical projections. Brain Struct Funct 2020; 225:1643-1667. [PMID: 32458050 PMCID: PMC7286872 DOI: 10.1007/s00429-020-02086-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/09/2020] [Indexed: 12/19/2022]
Abstract
Recent studies of the neurobiology of the dorsal frontal cortex (FC) of the ferret have illuminated its key role in the attention network, top-down cognitive control of sensory processing, and goal directed behavior. To elucidate the neuroanatomical regions of the dorsal FC, and delineate the boundary between premotor cortex (PMC) and dorsal prefrontal cortex (dPFC), we placed retrograde tracers in adult ferret dorsal FC anterior to primary motor cortex and analyzed thalamo-cortical connectivity. Cyto- and myeloarchitectural differences across dorsal FC and the distinctive projection patterns from thalamic nuclei, especially from the subnuclei of the medial dorsal (MD) nucleus and the ventral thalamic nuclear group, make it possible to clearly differentiate three separate dorsal FC fields anterior to primary motor cortex: polar dPFC (dPFCpol), dPFC, and PMC. Based on the thalamic connectivity, there is a striking similarity of the ferret's dorsal FC fields with other species. This possible homology opens up new questions for future comparative neuroanatomical and functional studies.
Collapse
|
17
|
Ren Y, Pan L, Du X, Hou Y, Li X, Song Y. Functional brain network mechanism of executive control dysfunction in temporal lobe epilepsy. BMC Neurol 2020; 20:137. [PMID: 32295523 PMCID: PMC7161158 DOI: 10.1186/s12883-020-01711-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/30/2020] [Indexed: 11/10/2022] Open
Abstract
Background Executive control dysfunction is observed in a sizable number of patients with temporal lobe epilepsy (TLE). Neural oscillations in the theta band are increasingly recognized as having a crucial role in executive control network. The purpose of this study was to investigate the alterations in the theta band in executive control network and explore the functional brain network mechanisms of executive control dysfunction in TLE patients. Methods A total of 20 TLE patients and 20 matched healthy controls (HCs) were recruited in the present study. All participants were trained to perform the executive control task by attention network test while the scalp electroencephalogram (EEG) data were recorded. The resting state signals were collected from the EEG in the subjects with quiet and closed eyes conditions. Functional connectivity among EEGs in the executive control network and resting state network were respectively calculated. Results We found the significant executive control impairment in the TLE group. Compared to the HCs, the TLE group showed significantly weaker functional connectivity among EEGs in the executive control network. Moreover, in the TLE group, we found that the functional connectivity was significantly positively correlated with accuracy and negatively correlated with EC_effect. In addition, the functional connectivity of the executive control network was significantly higher than that of the resting state network in the HCs. In the TLE group, however, there was no significant change in functional connectivity strengths between the executive control network and resting state network. Conclusion Our results indicate that the decreased functional connectivity in theta band may provide a potential mechanism for executive control deficits in TLE patients.
Collapse
Affiliation(s)
- Yanping Ren
- Department of Neurology, Tianjin Medical University General Hospital, Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and 4Tianjin Municipal Government, Tianjin Neurological Institute, Tianjin, 300052, China
| | - Liping Pan
- Department of Neurology, Tianjin Medical University General Hospital, Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and 4Tianjin Municipal Government, Tianjin Neurological Institute, Tianjin, 300052, China
| | - Xueyun Du
- Department of Neurology, Tianjin Medical University General Hospital, Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and 4Tianjin Municipal Government, Tianjin Neurological Institute, Tianjin, 300052, China
| | - Yuying Hou
- Department of Neurology, Tianjin Medical University General Hospital, Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and 4Tianjin Municipal Government, Tianjin Neurological Institute, Tianjin, 300052, China
| | - Xun Li
- Department of Neurology, Tianjin Medical University General Hospital, Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and 4Tianjin Municipal Government, Tianjin Neurological Institute, Tianjin, 300052, China
| | - Yijun Song
- Department of Neurology, Tianjin Medical University General Hospital, Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and 4Tianjin Municipal Government, Tianjin Neurological Institute, Tianjin, 300052, China.
| |
Collapse
|
18
|
Dhami P, Atluri S, Lee JC, Knyahnytska Y, Croarkin PE, Blumberger DM, Daskalakis ZJ, Farzan F. Prefrontal Cortical Reactivity and Connectivity Markers Distinguish Youth Depression from Healthy Youth. Cereb Cortex 2020; 30:3884-3894. [PMID: 32118262 DOI: 10.1093/cercor/bhaa004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 11/12/2022] Open
Abstract
Up to 50% of youth with depression do not respond to conventional first-line treatments. However, little research has been conducted on the pathophysiology of youth depression, hindering the identification of more effective treatments. Our goal was to identify neurophysiological markers that differentiate youth with depression from healthy youth and could serve as targets of novel treatments. We hypothesized that youth with depression would exhibit network-specific cortical reactivity and connectivity abnormalities compared with healthy youth. Transcranial magnetic stimulation combined with electroencephalography and magnetic resonance imaging was employed in combination with clinical and behavioral assessments to study cortical reactivity and connectivity in bilateral dorsolateral prefrontal cortex (DLPFC), motor cortex, and inferior parietal lobule, sites linked to the frontoparietal network, sensorimotor network, and default mode network, respectively. In youth depression, greater cortical reactivity was observed specific to the left and right DLPFC stimulation only, which correlated with anhedonia scores. Additionally, the connectivity of the right DLPFC was significantly higher in youth depression. Source reconstruction attributed the observed connectivity dysregulation to regions belonging to the default mode network. The neurophysiological signatures identified in this study have high potential to inform the development of more effective and targeted interventions for the youth depression population.
Collapse
Affiliation(s)
- Prabhjot Dhami
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario M6J 1A8, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Sravya Atluri
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario M6J 1A8, Canada
- Institute of Biomaterial and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Jonathan C Lee
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario M6J 1A8, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada
| | - Yuliya Knyahnytska
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario M6J 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada
| | - Paul E Croarkin
- Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, USA
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario M6J 1A8, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario M6J 1A8, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada
| | - Faranak Farzan
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario M6J 1A8, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada
- Centre for Engineering-led Brain Research (eBrain Lab), School of Mechatronic Systems Engineering, Surrey, British Columbia V3T 0A3, Canada
| |
Collapse
|
19
|
Functional Dissociation of θ Oscillations in the Frontal and Visual Cortices and Their Long-Range Network during Sustained Attention. eNeuro 2019; 6:ENEURO.0248-19.2019. [PMID: 31685677 PMCID: PMC6860984 DOI: 10.1523/eneuro.0248-19.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/21/2019] [Accepted: 10/28/2019] [Indexed: 12/17/2022] Open
Abstract
θ-Band (4–12 Hz) activities in the frontal cortex have been thought to be a key mechanism of sustained attention and goal-related behaviors, forming a phase-coherent network with task-related sensory cortices for integrated neuronal ensembles. However, recent visual task studies found that selective attention attenuates stimulus-related θ power in the visual cortex, suggesting a functional dissociation of cortical θ oscillations. To investigate this contradictory behavior of cortical θ, a visual Go/No-Go task was performed with electroencephalogram (EEG) recording in C57BL/6J mice. During the No-Go period, transient θ oscillations were observed in both the frontal and visual cortices, but θ oscillations of the two areas were prominent in different trial epochs. By separating trial epochs based on subjects’ short-term performance, we found that frontal θ was prominent in good-performance epochs, while visual θ was prominent in bad-performance epochs, exhibiting a functional dissociation of cortical θ rhythms. Furthermore, the two θ rhythms also showed a heterogeneous pattern of phase-amplitude coupling with fast oscillations, reflecting their distinct architecture in underlying neuronal circuitry. Interestingly, in good-performance epochs, where visual θ was relatively weak, stronger fronto-visual long-range synchrony and shorter posterior-to-anterior temporal delay were found. These findings highlight a previously overlooked aspect of long-range synchrony between distinct oscillatory entities in the cerebral cortex and provide empirical evidence of a functional dissociation of cortical θ rhythms.
Collapse
|
20
|
Maksimenko VA, Frolov NS, Hramov AE, Runnova AE, Grubov VV, Kurths J, Pisarchik AN. Neural Interactions in a Spatially-Distributed Cortical Network During Perceptual Decision-Making. Front Behav Neurosci 2019; 13:220. [PMID: 31607873 PMCID: PMC6769171 DOI: 10.3389/fnbeh.2019.00220] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/05/2019] [Indexed: 01/11/2023] Open
Abstract
Behavioral experiments evidence that attention is not maintained at a constant level, but fluctuates with time. Recent studies associate such fluctuations with dynamics of attention-related cortical networks, however the exact mechanism remains unclear. To address this issue, we consider functional neuronal interactions during the accomplishment of a reaction time (RT) task which requires sustained attention. The participants are subjected to a binary classification of a large number of presented ambiguous visual stimuli with different degrees of ambiguity. Generally, high ambiguity causes high RT and vice versa. However, we demonstrate that RT fluctuates even when the stimulus ambiguity remains unchanged. The analysis of neuronal activity reveals that the subject's behavioral response is preceded by the formation of a distributed functional network in the β-frequency band. This network is characterized by high connectivity in the frontal cortex and supposed to subserve a decision-making process. We show that neither the network structure nor the duration of its formation depend on RT and stimulus ambiguity. In turn, RT is related to the moment of time when the β-band functional network emerges. We hypothesize that RT is affected by the processes preceding the decision-making stage, e.g., encoding visual sensory information and extracting decision-relevant features from raw sensory information.
Collapse
Affiliation(s)
- Vladimir A Maksimenko
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Innopolis, Russia
| | - Nikita S Frolov
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Innopolis, Russia
| | - Alexander E Hramov
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Innopolis, Russia
| | - Anastasia E Runnova
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Innopolis, Russia
| | - Vadim V Grubov
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Innopolis, Russia
| | - Jürgen Kurths
- Research Domain IV "Complexity Science", Potsdam Institute for Climate Impact Research, Potsdam, Germany.,Department of Physics, Humboldt University, Berlin, Germany.,Faculty of Biology, Saratov State University, Saratov, Russia
| | - Alexander N Pisarchik
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Innopolis, Russia.,Center for Biomedical Technology, Technical University of Madrid, Madrid, Spain
| |
Collapse
|
21
|
Fiebelkorn IC, Pinsk MA, Kastner S. A Dynamic Interplay within the Frontoparietal Network Underlies Rhythmic Spatial Attention. Neuron 2019; 99:842-853.e8. [PMID: 30138590 DOI: 10.1016/j.neuron.2018.07.038] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/28/2018] [Accepted: 07/20/2018] [Indexed: 10/28/2022]
Abstract
Classic studies of spatial attention assumed that its neural and behavioral effects were continuous over time. Recent behavioral studies have instead revealed that spatial attention leads to alternating periods of heightened or diminished perceptual sensitivity. Yet, the neural basis of these rhythmic fluctuations has remained largely unknown. We show that a dynamic interplay within the macaque frontoparietal network accounts for the rhythmic properties of spatial attention. Neural oscillations characterize functional interactions between the frontal eye fields (FEF) and the lateral intraparietal area (LIP), with theta phase (3-8 Hz) coordinating two rhythmically alternating states. The first is defined by FEF-dominated beta-band activity, associated with suppressed attentional shifts, and LIP-dominated gamma-band activity, associated with enhanced visual processing and better behavioral performance. The second is defined by LIP-specific alpha-band activity, associated with attenuated visual processing and worse behavioral performance. Our findings reveal how network-level interactions organize environmental sampling into rhythmic cycles.
Collapse
Affiliation(s)
- Ian C Fiebelkorn
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Mark A Pinsk
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Sabine Kastner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Psychology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
22
|
Helfrich RF, Breska A, Knight RT. Neural entrainment and network resonance in support of top-down guided attention. Curr Opin Psychol 2019; 29:82-89. [PMID: 30690228 DOI: 10.1016/j.copsyc.2018.12.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 01/17/2023]
Abstract
Which neural mechanisms provide the functional basis of top-down guided cognitive control? Here, we review recent evidence that suggest that the neural basis of attention is inherently rhythmic. In particular, we discuss two physical properties of self-sustained networks, namely entrainment and resonance, and how these shape the timescale of attentional control. Several recent findings revealed theta-band (3-8 Hz) dynamics in top-down guided behavior. These reports were paralleled by intracranial recordings, which implicated theta oscillations in the organization of functional attention networks. We discuss how the intrinsic network architecture shapes covert attentional sampling as well as overt behavior. Taken together, we posit that theta rhythmicity is an inherent feature of the attention network in support of top-down guided goal-directed behavior.
Collapse
Affiliation(s)
- Randolph F Helfrich
- Helen Wills Neuroscience Institute, UC Berkeley, 132 Barker Hall, Berkeley, CA 94720, USA.
| | - Assaf Breska
- Helen Wills Neuroscience Institute, UC Berkeley, 132 Barker Hall, Berkeley, CA 94720, USA; Dept. of Psychology, UC Berkeley, 2121 Berkeley Way, Berkeley, CA 94720, USA
| | - Robert T Knight
- Helen Wills Neuroscience Institute, UC Berkeley, 132 Barker Hall, Berkeley, CA 94720, USA; Dept. of Psychology, UC Berkeley, 2121 Berkeley Way, Berkeley, CA 94720, USA
| |
Collapse
|
23
|
Abstract
Rhythmicity and oscillations are common features in nature, and can be seen in phenomena such as seasons, breathing, and brain activity. Despite the fact that a single neuron transmits its activity to its neighbor through a transient pulse, rhythmic activity emerges from large population-wide activity in the brain, and such rhythms are strongly coupled with the state and cognitive functions of the brain. However, it is still debated whether the oscillations of brain activity actually carry information. Here, we briefly introduce the biological findings of brain oscillations, and summarize the recent progress in understanding how oscillations mediate brain function. Finally, we examine the possible relationship between brain cognitive function and oscillation, focusing on how oscillation is related to memory, particularly with respect to state-dependent memory formation and memory retrieval under specific brain waves. We propose that oscillatory waves in the neocortex contribute to the synchronization and activation of specific memory trace ensembles in the neocortex by promoting long-range neural communication.
Collapse
Affiliation(s)
- Wenhan Luo
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ji-Song Guan
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
24
|
Walker BL, Newhall KA. Inferring information flow in spike-train data sets using a trial-shuffle method. PLoS One 2018; 13:e0206977. [PMID: 30403739 PMCID: PMC6221339 DOI: 10.1371/journal.pone.0206977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/23/2018] [Indexed: 11/18/2022] Open
Abstract
Understanding information processing in the brain requires the ability to determine the functional connectivity between the different regions of the brain. We present a method using transfer entropy to extract this flow of information between brain regions from spike-train data commonly obtained in neurological experiments. Transfer entropy is a statistical measure based in information theory that attempts to quantify the information flow from one process to another, and has been applied to find connectivity in simulated spike-train data. Due to statistical error in the estimator, inferring functional connectivity requires a method for determining significance in the transfer entropy values. We discuss the issues with numerical estimation of transfer entropy and resulting challenges in determining significance before presenting the trial-shuffle method as a viable option. The trial-shuffle method, for spike-train data that is split into multiple trials, determines significant transfer entropy values independently for each individual pair of neurons by comparing to a created baseline distribution using a rigorous statistical test. This is in contrast to either globally comparing all neuron transfer entropy values or comparing pairwise values to a single baseline value. In establishing the viability of this method by comparison to several alternative approaches in the literature, we find evidence that preserving the inter-spike-interval timing is important. We then use the trial-shuffle method to investigate information flow within a model network as we vary model parameters. This includes investigating the global flow of information within a connectivity network divided into two well-connected subnetworks, going beyond local transfer of information between pairs of neurons.
Collapse
Affiliation(s)
- Benjamin L. Walker
- Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Katherine A. Newhall
- Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- * E-mail:
| |
Collapse
|
25
|
Laminar profile of task-related plasticity in ferret primary auditory cortex. Sci Rep 2018; 8:16375. [PMID: 30401927 PMCID: PMC6219524 DOI: 10.1038/s41598-018-34739-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/22/2018] [Indexed: 11/23/2022] Open
Abstract
Rapid task-related plasticity is a neural correlate of selective attention in primary auditory cortex (A1). Top-down feedback from higher-order cortex may drive task-related plasticity in A1, characterized by enhanced neural representation of behaviorally meaningful sounds during auditory task performance. Since intracortical connectivity is greater within A1 layers 2/3 (L2/3) than in layers 4–6 (L4–6), we hypothesized that enhanced representation of behaviorally meaningful sounds might be greater in A1 L2/3 than L4–6. To test this hypothesis and study the laminar profile of task-related plasticity, we trained 2 ferrets to detect pure tones while we recorded laminar activity across a 1.8 mm depth in A1. In each experiment we analyzed high-gamma local field potentials (LFPs) and multi-unit spiking in response to identical acoustic stimuli during both passive listening and active task performance. We found that neural responses to auditory targets were enhanced during task performance, and target enhancement was greater in L2/3 than in L4–6. Spectrotemporal receptive fields (STRFs) computed from both high-gamma LFPs and multi-unit spiking showed similar increases in auditory target selectivity, also greatest in L2/3. Our results suggest that activity within intracortical networks plays a key role in the underlying neural mechanisms of selective attention.
Collapse
|
26
|
Helfrich RF, Fiebelkorn IC, Szczepanski SM, Lin JJ, Parvizi J, Knight RT, Kastner S. Neural Mechanisms of Sustained Attention Are Rhythmic. Neuron 2018; 99:854-865.e5. [PMID: 30138591 PMCID: PMC6286091 DOI: 10.1016/j.neuron.2018.07.032] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/30/2018] [Accepted: 07/19/2018] [Indexed: 11/18/2022]
Abstract
Classic models of attention suggest that sustained neural firing constitutes a neural correlate of sustained attention. However, recent evidence indicates that behavioral performance fluctuates over time, exhibiting temporal dynamics that closely resemble the spectral features of ongoing, oscillatory brain activity. Therefore, it has been proposed that periodic neuronal excitability fluctuations might shape attentional allocation and overt behavior. However, empirical evidence to support this notion is sparse. Here, we address this issue by examining data from large-scale subdural recordings, using two different attention tasks that track perceptual ability at high temporal resolution. Our results reveal that perceptual outcome varies as a function of the theta phase even in states of sustained spatial attention. These effects were robust at the single-subject level, suggesting that rhythmic perceptual sampling is an inherent property of the frontoparietal attention network. Collectively, these findings support the notion that the functional architecture of top-down attention is intrinsically rhythmic.
Collapse
Affiliation(s)
- Randolph F Helfrich
- Helen Wills Neuroscience Institute, UC Berkeley, 132 Barker Hall, Berkeley, CA 94720, USA; Department of Psychology, University of Oslo, Forskningsveien 3A, 0373 Oslo, Norway.
| | - Ian C Fiebelkorn
- Princeton Neuroscience Institute, Washington Rd., Princeton, NJ 08544, USA
| | - Sara M Szczepanski
- Helen Wills Neuroscience Institute, UC Berkeley, 132 Barker Hall, Berkeley, CA 94720, USA
| | - Jack J Lin
- Department of Neurology, UC Irvine, 101 The City Dr., Orange, CA 92868, USA; Department of Biomedical Engineering, Henry Samueli School of Engineering, 402 E. Peltason Dr., Irvine, CA 92617, USA
| | - Josef Parvizi
- Department of Neurology and Neurological Sciences, Stanford University, 300 Pasteur Dr., Stanford, CA 94305, USA
| | - Robert T Knight
- Helen Wills Neuroscience Institute, UC Berkeley, 132 Barker Hall, Berkeley, CA 94720, USA; Department of Psychology, UC Berkeley, 130 Barker Hall, Berkeley, CA 94720, USA
| | - Sabine Kastner
- Princeton Neuroscience Institute, Washington Rd., Princeton, NJ 08544, USA; Department of Psychology, Princeton University, South Drive, Princeton, NJ 08540, USA
| |
Collapse
|
27
|
Stitt I, Zhou ZC, Radtke-Schuller S, Fröhlich F. Arousal dependent modulation of thalamo-cortical functional interaction. Nat Commun 2018; 9:2455. [PMID: 29941957 PMCID: PMC6018110 DOI: 10.1038/s41467-018-04785-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 04/27/2018] [Indexed: 01/20/2023] Open
Abstract
Ongoing changes in arousal influence sensory processing and behavioral performance. Yet the circuit-level correlates for this influence remain poorly understood. Here, we investigate how functional interaction between posterior parietal cortex (PPC) and lateral posterior (LP)/Pulvinar is influenced by ongoing fluctuations in pupil-linked arousal, which is a non-invasive measure of neuromodulatory tone in the brain. We find that fluctuations in pupil-linked arousal correlate with changes to PPC to LP/Pulvinar oscillatory interaction, with cortical alpha oscillations driving activity during low arousal states, and LP/Pulvinar driving PPC in the theta frequency band during higher arousal states. Active visual exploration by saccadic eye movements elicits similar transitions in thalamo-cortical interaction. Furthermore, the presentation of naturalistic video stimuli induces thalamo-cortical network states closely resembling epochs of high arousal in the absence of visual input. Thus, neuromodulators may play a role in dynamically sculpting the patterns of thalamo-cortical functional interaction that underlie visual processing.
Collapse
Affiliation(s)
- Iain Stitt
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Zhe Charles Zhou
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Susanne Radtke-Schuller
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
28
|
Harris Bozer AL, Uhelski ML, Li AL. Extrapolating meaning from local field potential recordings. J Integr Neurosci 2018; 16:107-126. [PMID: 28891502 DOI: 10.3233/jin-170011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Local field potentials (LFP) reflect the spatially weighted low-frequency activity nearest to a recording electrode. LFP recording is a window to a wide range of cellular activities and has gained increasing attention over recent years. We here review major conceptual issues related to LFP with the goal of creating a resource for non-experts considering implementing LFP into their research. We discuss the cellular activity that constitutes the local field potential; recording techniques, including recommendations and limitations; approaches to analysis of LFP data (with focus on power-banded analyses); and finally we discuss reports of the successful use of LFP in clinical applications.
Collapse
Affiliation(s)
- Amber L Harris Bozer
- Department of Psychological Sciences, Tarleton State University, Stephenville, Texas 76402, USA
| | - Megan L Uhelski
- Department of Diagnostic & Biological Sciences, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Ai-Ling Li
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, Indiana, 47405, USA
| |
Collapse
|
29
|
Theta Oscillations Organize Spiking Activity in Higher-Order Visual Thalamus during Sustained Attention. eNeuro 2018; 5:eN-NWR-0384-17. [PMID: 29619407 PMCID: PMC5881415 DOI: 10.1523/eneuro.0384-17.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 12/13/2022] Open
Abstract
Higher-order visual thalamus plays a fundamental but poorly understood role in attention-demanding tasks. To investigate how neuronal dynamics in higher-order visual thalamus are modulated by sustained attention, we performed multichannel electrophysiological recordings in the lateral posterior-pulvinar complex (LP/pulvinar) in the ferret (Mustela putorius furo). We recorded single unit activity and local field potential (LFP) during the performance of the five-choice serial reaction time task (5-CSRTT), which is used in both humans and animals as an assay of sustained attention. We found that half of the units exhibited an increasing firing rate during the delay period before stimulus onset (attention-modulated units). In contrast, the non-attention-modulated units responded to the stimulus, but not during the delay period. Spike-field coherence (SFC) of only the attention-modulated neurons significantly increased from the start of the delay period until screen touch, predominantly in the θ frequency band. In addition, θ power and θ/γ phase amplitude coupling (PAC) were elevated throughout the delay period. Our findings suggest that the θ oscillation plays a central role in orchestrating thalamic signaling during sustained attention.
Collapse
|
30
|
Li X, Hou Y, Ren Y, Tian X, Song Y. Alterations of theta oscillation in executive control in temporal lobe epilepsy patients. Epilepsy Res 2018; 140:148-154. [DOI: 10.1016/j.eplepsyres.2017.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 12/06/2017] [Accepted: 12/30/2017] [Indexed: 10/18/2022]
|
31
|
Miki Stein A, Munive V, Fernandez AM, Nuñez A, Torres Aleman I. Acute exercise does not modify brain activity and memory performance in APP/PS1 mice. PLoS One 2017; 12:e0178247. [PMID: 28542392 PMCID: PMC5440045 DOI: 10.1371/journal.pone.0178247] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/10/2017] [Indexed: 01/29/2023] Open
Abstract
Age is the main risk factor for Alzheimer´s disease (AD). With an increasingly aging population, development of affordable screening techniques to determine cognitive status will help identify population-at-risk for further follow-up. Because physical exercise is known to modulate cognitive performance, we used it as a functional test of cognitive health. Mice were submitted to treadmill running at moderate speed for 30 min, and their brain activity was monitored before and after exercise using electrocorticogram (ECG) recordings. After exercise, normal, but not APP/PS1 mice, a well established AD model, showed significantly increased ECG theta rhythm. At the same time normal, but not AD mice, showed significantly enhanced performance in a spatial memory test after exercise. Therefore, we postulate that a running bout coupled to pre- and post-exercise brain activity recordings will help identify individuals with cognitive alterations, by determining the presence or absence of exercise-specific changes in brain activity. Work in humans using a bout of moderate exercise plus electroencephalography, a clinically affordable procedure, is warranted.
Collapse
Affiliation(s)
- Angelica Miki Stein
- Cajal Institute, Madrid, Spain.,Ciberned, Madrid, Spain.,Universidade Estadual Paulista, São Paulo, Brazil
| | - Victor Munive
- Cajal Institute, Madrid, Spain.,Ciberned, Madrid, Spain
| | | | - Angel Nuñez
- School of Medicine, Autonoma University of Madrid. Madrid, Spain
| | | |
Collapse
|