1
|
Wang B, Bian Q. SATB1 prevents immune cell infiltration by regulating chromatin organization and gene expression of a chemokine gene cluster in T cells. Commun Biol 2024; 7:1304. [PMID: 39394451 PMCID: PMC11470149 DOI: 10.1038/s42003-024-07021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024] Open
Abstract
SATB1, a key regulator of T cell development, governs lineage-specific transcriptional programs upon T cell activation. The absence of SATB1 has been linked to the initiation and progression of autoimmunity. However, its precise roles in this process remain incompletely understood. Here we show that conditional knockout of Satb1 in CD4+ T cells in mice led to T cell hyperactivation and inflammatory cell infiltration across multiple organs. Transcriptional profiling on activated T cells revealed that the loss of SATB1 led to aberrant upregulation of CC chemokines. Treating Satb1 conditional knockout mice with CC chemokine receptor inhibitor alleviated inflammatory cell infiltration. Intriguingly, SATB1's transcriptional regulation of chemokine genes could not be attributed to its direct binding to chemokine promoters. Instead, SATB1 exerted its regulatory effects by controlling higher-order chromatin organization at a CC chemokine locus. The loss of SATB1 led to the emergence of a new chromatin domain encompassing the Ccl3, Ccl4, Ccl5, Ccl6, and Ccl9 genes and a distal enhancer, resulting in increased contacts between the enhancer and all five chemokine genes, thus inducing their upregulation. Collectively, these results demonstrate that SATB1 protects organs from immune cell infiltration by regulating chemokine expression, providing valuable insights into the development of autoimmunity-related phenotypes.
Collapse
Affiliation(s)
- Bao Wang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Bian
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Bido S, Nannoni M, Muggeo S, Gambarè D, Ruffini G, Bellini E, Passeri L, Iaia S, Luoni M, Provinciali M, Giannelli SG, Giannese F, Lazarevic D, Gregori S, Broccoli V. Microglia-specific IL-10 gene delivery inhibits neuroinflammation and neurodegeneration in a mouse model of Parkinson's disease. Sci Transl Med 2024; 16:eadm8563. [PMID: 39167665 DOI: 10.1126/scitranslmed.adm8563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/23/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
Neuroinflammation plays a key role in exacerbating dopaminergic neuron (DAN) loss in Parkinson's disease (PD). However, it remains unresolved how to effectively normalize this immune response given the complex interplay between the innate and adaptive immune responses occurring within a scarcely accessible organ like the brain. In this study, we uncovered a consistent correlation between neuroinflammation, brain parenchymal lymphocytes, and DAN loss among several commonly used mouse models of PD generated by a variety of pathological triggers. We validated a viral therapeutic approach for the microglia-specific expression of interleukin 10 (IL-10) to selectively mitigate the excessive inflammatory response. We found that this approach induced a local nigral IL-10 release that alleviated DAN loss in mice overexpressing the human SNCA gene in the substantia nigra. Single-cell transcriptomics revealed that IL-10 induced the emergence of a molecularly distinct microglial cell state, enriched in markers of cell activation with enhanced expression of prophagocytic pathways. IL-10 promoted microglial phagocytotic and clearance activities in vitro and reduced αSYN aggregate burden in the nigral area in mice overexpressing SNCA. Furthermore, IL-10 stimulated the differentiation of CD4+ T lymphocytes into active T regulatory cells and promoted inhibitory characteristics in CD8+ T cells. In summary, our results show that local and microglia-specific IL-10 transduction elicited strong immunomodulation in the nigral tissue with enhanced suppression of lymphocyte toxicity that was associated with DAN survival. These results offer insights into the therapeutic benefits of IL-10 and showcase a promising gene delivery approach that could minimize undesired side effects.
Collapse
Affiliation(s)
- Simone Bido
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Melania Nannoni
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sharon Muggeo
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Diana Gambarè
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giorgia Ruffini
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Edoardo Bellini
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Laura Passeri
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Silvia Iaia
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Mirko Luoni
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- CNR Institute of Neuroscience, 20129 Milan, Italy
| | - Martino Provinciali
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Serena Gea Giannelli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francesca Giannese
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Dejan Lazarevic
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- CNR Institute of Neuroscience, 20129 Milan, Italy
| |
Collapse
|
3
|
Qi W, Bai J, Wang R, Zeng X, Zhang L. SATB1, senescence and senescence-related diseases. J Cell Physiol 2024; 239:e31327. [PMID: 38801120 DOI: 10.1002/jcp.31327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Aging leads to an accumulation of cellular mutations and damage, increasing the risk of senescence, apoptosis, and malignant transformation. Cellular senescence, which is pivotal in aging, acts as both a guard against cellular transformation and as a check against cancer progression. It is marked by stable cell cycle arrest, widespread macromolecular changes, a pro-inflammatory profile, and altered gene expression. However, it remains to be determined whether these differing subsets of senescent cells result from unique intrinsic programs or are influenced by their environmental contexts. Multiple transcription regulators and chromatin modifiers contribute to these alterations. Special AT-rich sequence-binding protein 1 (SATB1) stands out as a crucial regulator in this process, orchestrating gene expression by structuring chromatin into loop domains and anchoring DNA elements. This review provides an overview of cellular senescence and delves into the role of SATB1 in senescence-related diseases. It highlights SATB1's potential in developing antiaging and anticancer strategies, potentially contributing to improved quality of life and addressing aging-related diseases.
Collapse
Affiliation(s)
- Wenjing Qi
- Department of Bioscience, Changchun Normal University, Changchun, Jilin, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Jinping Bai
- Department of Bioscience, Changchun Normal University, Changchun, Jilin, China
| | - Ruoxi Wang
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Xianlu Zeng
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Lihui Zhang
- Department of Bioscience, Changchun Normal University, Changchun, Jilin, China
| |
Collapse
|
4
|
Wang B, Bian Q. Regulation of 3D genome organization during T cell activation. FEBS J 2024. [PMID: 38944686 DOI: 10.1111/febs.17211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/23/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024]
Abstract
Within the three-dimensional (3D) nuclear space, the genome organizes into a series of orderly structures that impose important influences on gene regulation. T lymphocytes, crucial players in adaptive immune responses, undergo intricate transcriptional remodeling upon activation, leading to differentiation into specific effector and memory T cell subsets. Recent evidence suggests that T cell activation is accompanied by dynamic changes in genome architecture at multiple levels, providing a unique biological context to explore the functional relevance and molecular mechanisms of 3D genome organization. Here, we summarize recent advances that link the reorganization of genome architecture to the remodeling of transcriptional programs and conversion of cell fates during T cell activation and differentiation. We further discuss how various chromatin architecture regulators, including CCCTC-binding factor and several transcription factors, collectively modulate the genome architecture during this process.
Collapse
Affiliation(s)
- Bao Wang
- Shanghai lnstitute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Qian Bian
- Shanghai lnstitute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
5
|
Steier Z, Kim EJY, Aylard DA, Robey EA. The CD4 Versus CD8 T Cell Fate Decision: A Multiomics-Informed Perspective. Annu Rev Immunol 2024; 42:235-258. [PMID: 38271641 DOI: 10.1146/annurev-immunol-083122-040929] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The choice of developing thymocytes to become CD8+ cytotoxic or CD4+ helper T cells has been intensely studied, but many of the underlying mechanisms remain to be elucidated. Recent multiomics approaches have provided much higher resolution analysis of gene expression in developing thymocytes than was previously achievable, thereby offering a fresh perspective on this question. Focusing on our recent studies using CITE-seq (cellular indexing of transcriptomes and epitopes) analyses of mouse thymocytes, we present a detailed timeline of RNA and protein expression changes during CD8 versus CD4 T cell differentiation. We also revisit our current understanding of the links between T cell receptor signaling and expression of the lineage-defining transcription factors ThPOK and RUNX3. Finally, we propose a sequential selection model to explain the tight linkage between MHC-I versus MHC-II recognition and T cell lineage choice. This model incorporates key aspects of previously proposed kinetic signaling, instructive, and stochastic/selection models.
Collapse
Affiliation(s)
- Zoë Steier
- Department of Bioengineering and Center for Computational Biology, University of California, Berkeley, California, USA
- Graduate Program in Bioengineering, University of California, Berkeley, and University of California, San Francisco, Berkeley and San Francisco, California, USA
- Current affiliation: Institute for Medical Engineering and Science, Massachusetts Institute of Technology; Broad Institute of MIT and Harvard; and Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Esther Jeong Yoon Kim
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| | - Dominik A Aylard
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| | - Ellen A Robey
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| |
Collapse
|
6
|
Zhu H, Ruan X, Zhao K, Kuang W, Liu S, Yan W, Fu X, Cheng Z, Li R, Peng H. The miR-641-STIM1 and SATB1 axes play important roles in the regulation of the Th17/Treg balance in ITP. Sci Rep 2024; 14:11243. [PMID: 38755179 PMCID: PMC11098809 DOI: 10.1038/s41598-024-61660-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 05/08/2024] [Indexed: 05/18/2024] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease caused by T-cell dysfunction. Recently, several studies have shown that a disturbed Th17/Treg balance contributes to the development of ITP. MicroRNAs (miRNAs) are small noncoding RNA moleculesthat posttranscriptionally regulate gene expression. Emerging evidences have demonstrated that miRNAs play an important role in regulating the Th17/Treg balance. In the present study, we found that miR-641 was upregulated in ITP patients. In primary T cells, overexpression of miR-641 could cause downregulation of its target genes STIM1 and SATB1, thus inducing a Th17 (upregulated)/Treg (downregulated) imbalance. Inhibition of miR-641 by a miR-641 sponge in primary T cells of ITP patients or by antagomiR-641 in an ITP murine model could cause upregulation of STIM1 and SATB1, thus restoring Th17/Treg homeostasis. These results suggested that the miR-641-STIM/SATB1 axis plays an important role in regulating the Th17/Treg balance in ITP.
Collapse
Affiliation(s)
- Hongkai Zhu
- Department of Hematology, The Second Xiangya Hospital, Central South University, No. 139# Renmin Road, Changsha, 410011, Hunan, China
| | - Xueqin Ruan
- Department of Hematology, The Second Xiangya Hospital, Central South University, No. 139# Renmin Road, Changsha, 410011, Hunan, China
- Department of Hematology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, P.R. China, Nanning, China
| | - Kexin Zhao
- Department of Hematology, The Second Xiangya Hospital, Central South University, No. 139# Renmin Road, Changsha, 410011, Hunan, China
| | - Wenyong Kuang
- Department of Hematology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Sufang Liu
- Department of Hematology, The Second Xiangya Hospital, Central South University, No. 139# Renmin Road, Changsha, 410011, Hunan, China
| | - Wenzhe Yan
- Department of Hematology, The Second Xiangya Hospital, Central South University, No. 139# Renmin Road, Changsha, 410011, Hunan, China
| | - Xianming Fu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhao Cheng
- Department of Hematology, The Second Xiangya Hospital, Central South University, No. 139# Renmin Road, Changsha, 410011, Hunan, China.
| | - Ruijuan Li
- Department of Hematology, The Second Xiangya Hospital, Central South University, No. 139# Renmin Road, Changsha, 410011, Hunan, China.
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, No. 139# Renmin Road, Changsha, 410011, Hunan, China
| |
Collapse
|
7
|
Liukang C, Zhao J, Tian J, Huang M, Liang R, Zhao Y, Zhang G. Deciphering infected cell types, hub gene networks and cell-cell communication in infectious bronchitis virus via single-cell RNA sequencing. PLoS Pathog 2024; 20:e1012232. [PMID: 38743760 PMCID: PMC11125504 DOI: 10.1371/journal.ppat.1012232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/24/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Infectious bronchitis virus (IBV) is a coronavirus that infects chickens, which exhibits a broad tropism for epithelial cells, infecting the tracheal mucosal epithelium, intestinal mucosal epithelium, and renal tubular epithelial cells. Utilizing single-cell RNA sequencing (scRNA-seq), we systematically examined cells in renal, bursal, and tracheal tissues following IBV infection and identified tissue-specific molecular markers expressed in distinct cell types. We evaluated the expression of viral RNA in diverse cellular populations and subsequently ascertained that distal tubules and collecting ducts within the kidney, bursal mucosal epithelial cells, and follicle-associated epithelial cells exhibit susceptibility to IBV infection through immunofluorescence. Furthermore, our findings revealed an upregulation in the transcription of proinflammatory cytokines IL18 and IL1B in renal macrophages as well as increased expression of apoptosis-related gene STAT in distal tubules and collecting duct cells upon IBV infection leading to renal damage. Cell-to-cell communication unveiled potential interactions between diverse cell types, as well as upregulated signaling pathways and key sender-receiver cell populations after IBV infection. Integrating single-cell data from all tissues, we applied weighted gene co-expression network analysis (WGCNA) to identify gene modules that are specifically expressed in different cell populations. Based on the WGCNA results, we identified seven immune-related gene modules and determined the differential expression pattern of module genes, as well as the hub genes within these modules. Our comprehensive data provides valuable insights into the pathogenesis of IBV as well as avian antiviral immunology.
Collapse
Affiliation(s)
- Chengyin Liukang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiaxin Tian
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Min Huang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Rong Liang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Ye Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guozhong Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Lee S, Song SG, Kim G, Kim S, Yoo HJ, Koh J, Kim YJ, Tian J, Cho E, Choi YS, Chang S, Shin HM, Jung KC, Kim JH, Kim TM, Jeon YK, Kim HY, Shong M, Kim JH, Chung DH. CRIF1 deficiency induces FOXP3 LOW inflammatory non-suppressive regulatory T cells, thereby promoting antitumor immunity. SCIENCE ADVANCES 2024; 10:eadj9600. [PMID: 38536932 PMCID: PMC10971410 DOI: 10.1126/sciadv.adj9600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/22/2024] [Indexed: 04/05/2024]
Abstract
Recently identified human FOXP3lowCD45RA- inflammatory non-suppressive (INS) cells produce proinflammatory cytokines, exhibit reduced suppressiveness, and promote antitumor immunity unlike conventional regulatory T cells (Tregs). In spite of their implication in tumors, the mechanism for generation of FOXP3lowCD45RA- INS cells in vivo is unclear. We showed that the FOXP3lowCD45RA- cells in human tumors demonstrate attenuated expression of CRIF1, a vital mitochondrial regulator. Mice with CRIF1 deficiency in Tregs bore Foxp3lowINS-Tregs with mitochondrial dysfunction and metabolic reprograming. The enhanced glutaminolysis activated α-ketoglutarate-mTORC1 axis, which promoted proinflammatory cytokine expression by inducing EOMES and SATB1 expression. Moreover, chromatin openness of the regulatory regions of the Ifng and Il4 genes was increased, which facilitated EOMES/SATB1 binding. The increased α-ketoglutarate-derived 2-hydroxyglutarate down-regulated Foxp3 expression by methylating the Foxp3 gene regulatory regions. Furthermore, CRIF1 deficiency-induced Foxp3lowINS-Tregs suppressed tumor growth in an IFN-γ-dependent manner. Thus, CRIF1 deficiency-mediated mitochondrial dysfunction results in the induction of Foxp3lowINS-Tregs including FOXP3lowCD45RA- cells that promote antitumor immunity.
Collapse
Affiliation(s)
- Sangsin Lee
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Geun Song
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Gwanghun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
| | - Sehui Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Jung Yoo
- Laboratory of Immunology and Vaccine Innovation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Jaemoon Koh
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Ye-Ji Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jingwen Tian
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Eunji Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Youn Soo Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Sunghoe Chang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Mu Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
| | - Kyeong Cheon Jung
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Hoon Kim
- Department of Pathology, Asan Medical Center (AMC), Ulsan University College of Medicine, Seoul, Korea
| | - Tae Min Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Young Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Minho Shong
- Graduate School of Medical Science and Engineering, Korean Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Ji Hyung Kim
- Laboratory of Immunology and Vaccine Innovation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Doo Hyun Chung
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Liu R, Xu R, Yan S, Li P, Jia C, Sun H, Sheng K, Wang Y, Zhang Q, Guo J, Xin X, Li X, Guo D. Hi-C, a chromatin 3D structure technique advancing the functional genomics of immune cells. Front Genet 2024; 15:1377238. [PMID: 38586584 PMCID: PMC10995239 DOI: 10.3389/fgene.2024.1377238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024] Open
Abstract
The functional performance of immune cells relies on a complex transcriptional regulatory network. The three-dimensional structure of chromatin can affect chromatin status and gene expression patterns, and plays an important regulatory role in gene transcription. Currently available techniques for studying chromatin spatial structure include chromatin conformation capture techniques and their derivatives, chromatin accessibility sequencing techniques, and others. Additionally, the recently emerged deep learning technology can be utilized as a tool to enhance the analysis of data. In this review, we elucidate the definition and significance of the three-dimensional chromatin structure, summarize the technologies available for studying it, and describe the research progress on the chromatin spatial structure of dendritic cells, macrophages, T cells, B cells, and neutrophils.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Dianhao Guo
- School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
10
|
Singh V, Nandi S, Ghosh A, Adhikary S, Mukherjee S, Roy S, Das C. Epigenetic reprogramming of T cells: unlocking new avenues for cancer immunotherapy. Cancer Metastasis Rev 2024; 43:175-195. [PMID: 38233727 DOI: 10.1007/s10555-024-10167-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
T cells, a key component of cancer immunotherapy, undergo a variety of histone modifications and DNA methylation changes since their bone marrow progenitor stages before developing into CD8+ and CD4+ T cells. These T cell types can be categorized into distinct subtypes based on their functionality and properties, such as cytotoxic T cells (Tc), helper T cells (Th), and regulatory T cells (Treg) as subtypes for CD8+ and CD4+ T cells. Among these, the CD4+ CD25+ Tregs potentially contribute to cancer development and progression by lowering T effector (Teff) cell activity under the influence of the tumor microenvironment (TME). This contributes to the development of therapeutic resistance in patients with cancer. Subsequently, these individuals become resistant to monoclonal antibody therapy as well as clinically established immunotherapies. In this review, we delineate the different epigenetic mechanisms in cancer immune response and its involvement in therapeutic resistance. Furthermore, the possibility of epi-immunotherapeutic methods based on histone deacetylase inhibitors and histone methyltransferase inhibitors are under investigation. In this review we highlight EZH2 as the principal driver of cancer cell immunoediting and an immune escape regulator. We have addressed in detail how understanding T cell epigenetic regulation might bring unique inventive strategies to overcome drug resistance and increase the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Vipin Singh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Sandhik Nandi
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Aritra Ghosh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Indian Institute of Science Education and Research, Kolkata, India
| | - Santanu Adhikary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Shravanti Mukherjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Siddhartha Roy
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India.
- Homi Bhabha National Institute, Mumbai, 400094, India.
| |
Collapse
|
11
|
Orozco RC, Marquardt K, Pratumchai I, Shaikh AF, Mowen K, Domissy A, Teijaro JR, Sherman LA. Autoimmunity-associated allele of tyrosine phosphatase gene PTPN22 enhances anti-viral immunity. PLoS Pathog 2024; 20:e1012095. [PMID: 38512979 PMCID: PMC10987006 DOI: 10.1371/journal.ppat.1012095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 04/02/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
The 1858C>T allele of the tyrosine phosphatase PTPN22 is present in 5-10% of the North American population and is strongly associated with numerous autoimmune diseases. Although research has been done to define how this allele potentiates autoimmunity, the influence PTPN22 and its pro-autoimmune allele has in anti-viral immunity remains poorly defined. Here, we use single cell RNA-sequencing and functional studies to interrogate the impact of this pro-autoimmune allele on anti-viral immunity during Lymphocytic Choriomeningitis Virus clone 13 (LCMV-cl13) infection. Mice homozygous for this allele (PEP-619WW) clear the LCMV-cl13 virus whereas wildtype (PEP-WT) mice cannot. This is associated with enhanced anti-viral CD4 T cell responses and a more immunostimulatory CD8α- cDC phenotype. Adoptive transfer studies demonstrated that PEP-619WW enhanced anti-viral CD4 T cell function through virus-specific CD4 T cell intrinsic and extrinsic mechanisms. Taken together, our data show that the pro-autoimmune allele of Ptpn22 drives a beneficial anti-viral immune response thereby preventing what is normally a chronic virus infection.
Collapse
Affiliation(s)
- Robin C. Orozco
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Kristi Marquardt
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| | - Isaraphorn Pratumchai
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| | - Anam Fatima Shaikh
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Kerri Mowen
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| | - Alain Domissy
- Genomics Core, Scripps Research, La Jolla, California, United States of America
| | - John R. Teijaro
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| | - Linda A. Sherman
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| |
Collapse
|
12
|
Maas-Bauer K, Köhler N, Stell AV, Zwick M, Acharya S, Rensing-Ehl A, König C, Kroll J, Baker J, Koßmann S, Pradier A, Wang S, Docquier M, Lewis DB, Negrin RS, Simonetta F. Single-cell transcriptomics reveal different maturation stages and sublineage commitment of human thymic invariant natural killer T cells. J Leukoc Biol 2024; 115:401-409. [PMID: 37742056 PMCID: PMC10799303 DOI: 10.1093/jleuko/qiad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/08/2023] [Accepted: 08/29/2023] [Indexed: 09/25/2023] Open
Abstract
Invariant natural killer T cells are a rare, heterogeneous T-cell subset with cytotoxic and immunomodulatory properties. During thymic development, murine invariant natural killer T cells go through different maturation stages differentiating into distinct sublineages, namely, invariant natural killer T1, 2, and 17 cells. Recent reports indicate that invariant natural killer T2 cells display immature properties and give rise to other subsets, whereas invariant natural killer T1 cells seem to be terminally differentiated. Whether human invariant natural killer T cells follow a similar differentiation model is still unknown. To define the maturation stages and assess the sublineage commitment of human invariant natural killer T cells during thymic development, in this study, we performed single-cell RNA sequencing analysis on human Vα24+Vβ11+ invariant natural killer T cells isolated from thymocytes. We show that these invariant natural killer T cells displayed heterogeneity, and our unsupervised analysis identified 5 clusters representing different maturation stages, from an immature profile with high expression of genes important for invariant natural killer T cell development and proliferation to a mature, fully differentiated profile with high levels of cytotoxic effector molecules. Evaluation of expression of sublineage-defining gene sets revealed mainly cells with an invariant natural killer T2 signature in the most immature cluster, whereas the more differentiated ones displayed an invariant natural killer T1 signature. Combined analysis with a publicly available single-cell RNA sequencing data set of human invariant natural killer T cells from peripheral blood suggested that the 2 main subsets exist both in thymus and in the periphery, while a third more immature one was restricted to the thymus. Our data point to the existence of different maturation stages of human thymic invariant natural killer T cells and provide evidence for sublineage commitment of invariant natural killer T cells in the human thymus.
Collapse
Affiliation(s)
- Kristina Maas-Bauer
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University, Center for Clinical Sciences Research Building, 269 W. Campus Drive, Stanford, CA 94305, United States
- Department of Hematology, Oncology, and Stem Cell Transplantation, Medical Center—University of Freiburg, Faculty of Medicine, Hugstetter Str. 55, Freiburg 79106, Germany
| | - Natalie Köhler
- Department of Hematology, Oncology, and Stem Cell Transplantation, Medical Center—University of Freiburg, Faculty of Medicine, Hugstetter Str. 55, Freiburg 79106, Germany
- CIBSS—Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestr. 18, Freiburg 79104, Germany
| | - Anna-Verena Stell
- Department of Hematology, Oncology, and Stem Cell Transplantation, Medical Center—University of Freiburg, Faculty of Medicine, Hugstetter Str. 55, Freiburg 79106, Germany
| | - Melissa Zwick
- Department of Hematology, Oncology, and Stem Cell Transplantation, Medical Center—University of Freiburg, Faculty of Medicine, Hugstetter Str. 55, Freiburg 79106, Germany
| | - Swati Acharya
- Sean N. Parker Center for Asthma and Allergy Research, Department of Medicine, Stanford University, 240 Pasteur Dr, Stanford, CA 94304, United States
| | - Anne Rensing-Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, Breisacher Str. 115, Freiburg 79106, Germany
| | - Christoph König
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, Breisacher Str. 115, Freiburg 79106, Germany
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg 79104, Germany
| | - Johannes Kroll
- Department of Cardiovascular Surgery, Heart Center Freiburg University, Hugstetter Straße 55, Freiburg 79106, Germany
| | - Jeanette Baker
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University, Center for Clinical Sciences Research Building, 269 W. Campus Drive, Stanford, CA 94305, United States
| | - Stefanie Koßmann
- Department of Hematology, Oncology, and Stem Cell Transplantation, Medical Center—University of Freiburg, Faculty of Medicine, Hugstetter Str. 55, Freiburg 79106, Germany
| | - Amandine Pradier
- Division of Hematology, Department of Oncology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, Geneva 1205, Switzerland
- Translational Research Center for Oncohematology, Department of Medicine, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, Geneva 1211, Switzerland
| | - Sisi Wang
- Translational Research Center for Oncohematology, Department of Medicine, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, Geneva 1211, Switzerland
| | - Mylène Docquier
- iGE3 Genomics Platform, University of Geneva, Rue Michel-Servet 1, Geneva 1211, Switzerland
- Department of Genetics & Evolution, University of Geneva, Rue Michel-Servet 1, Geneva 1211, Switzerland
| | - David B Lewis
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, United States
| | - Robert S Negrin
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University, Center for Clinical Sciences Research Building, 269 W. Campus Drive, Stanford, CA 94305, United States
| | - Federico Simonetta
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University, Center for Clinical Sciences Research Building, 269 W. Campus Drive, Stanford, CA 94305, United States
- Division of Hematology, Department of Oncology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, Geneva 1205, Switzerland
- Translational Research Center for Oncohematology, Department of Medicine, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, Geneva 1211, Switzerland
| |
Collapse
|
13
|
Ishiguro Y, Iriguchi S, Asano S, Shinohara T, Shiina S, Arima S, Kassai Y, Sakai Y, Obama K, Kaneko S. Lineage tracing of T cell differentiation from T-iPSC by 2D feeder-free culture and 3D organoid culture. Front Immunol 2023; 14:1303713. [PMID: 38162650 PMCID: PMC10757342 DOI: 10.3389/fimmu.2023.1303713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction T cells induced from induced pluripotent stem cells(iPSCs) derived from antigen-specific T cells (T-iPS-T cells) are an attractive tool for T cell immunotherapy. The induction of cytotoxic T-iPS-T cells is well established in feeder-free condition for the aim of off-the-shelf production, however, the induction of helper T-iPS-T cells remains challenging. Methods We analyzed T-iPS-T cells matured in 3D organoid culture at different steps in the culture process at the single-cell level. T-iPS-T cell datasets were merged with an available human thymocyte dataset based in single-cell RNA sequencing (scRNA-seq). Particularly, we searched for genes crucial for generation CD4+ T-iPS-T cells by comparing T-iPS-T cells established in 2D feeder-free or 3D organoid culture. Results The scRNA-seq data indicated that T-iPS-T cells are similar to T cells transitioning to human thymocytes, with SELENOW, GIMAP4, 7, SATB1, SALMF1, IL7R, SYTL2, S100A11, STAT1, IFITM1, LZTFL1 and SOX4 identified as candidate genes for the 2D feeder-free induction of CD4+ T-iPS-T cells. Discussion This study provides single cell transcriptome datasets of iPS-T cells and leads to further analysis for CD4+ T cell generation from T-iPSCs.
Collapse
Affiliation(s)
- Yoshitaka Ishiguro
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Japan
- Department of Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Shoichi Iriguchi
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Japan
| | - Shinya Asano
- Axcelead Drug Discovery Partners, Inc., Fujisawa, Japan
| | - Tokuyuki Shinohara
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Japan
- T-CiRA Discovery and Innovation, Takeda Pharmaceutical Company, Fujisawa, Japan
| | - Sara Shiina
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Japan
| | - Suguru Arima
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Japan
- T-CiRA Discovery and Innovation, Takeda Pharmaceutical Company, Fujisawa, Japan
| | - Yoshiaki Kassai
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Japan
- T-CiRA Discovery and Innovation, Takeda Pharmaceutical Company, Fujisawa, Japan
| | - Yoshiharu Sakai
- Department of Surgery, Osaka Red Cross Hospital, Fudegasaki-cho, Tennoji-ku, Osaka, Japan
| | - Kazutaka Obama
- Department of Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Shin Kaneko
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Japan
| |
Collapse
|
14
|
Wang Z, Ma C, Teng Q, Man J, Zhang X, Liu X, Zhang T, Chong W, Chen H, Lu M. Identification of a ferroptosis-related gene signature predicting recurrence in stage II/III colorectal cancer based on machine learning algorithms. Front Pharmacol 2023; 14:1260697. [PMID: 37711170 PMCID: PMC10498388 DOI: 10.3389/fphar.2023.1260697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Background: Colorectal cancer (CRC) is one of the most prevalent cancer types globally. A survival paradox exists due to the inherent heterogeneity in stage II/III CRC tumor biology. Ferroptosis is closely related to the progression of tumors, and ferroptosis-related genes can be used as a novel biomarker in predicting cancer prognosis. Methods: Ferroptosis-related genes were retrieved from the FerrDb and KEGG databases. A total of 1,397 samples were enrolled in our study from nine independent datasets, four of which were integrated as the training dataset to train and construct the model, and validated in the remaining datasets. We developed a machine learning framework with 83 combinations of 10 algorithms based on 10-fold cross-validation (CV) or bootstrap resampling algorithm to identify the most robust and stable model. C-indice and ROC analysis were performed to gauge its predictive accuracy and discrimination capabilities. Survival analysis was conducted followed by univariate and multivariate Cox regression analyses to evaluate the performance of identified signature. Results: The ferroptosis-related gene (FRG) signature was identified by the combination of Lasso and plsRcox and composed of 23 genes. The FRG signature presented better performance than common clinicopathological features (e.g., age and stage), molecular characteristics (e.g., BRAF mutation and microsatellite instability) and several published signatures in predicting the prognosis of the CRC. The signature was further stratified into a high-risk group and low-risk subgroup, where a high FRG signature indicated poor prognosis among all collected datasets. Sensitivity analysis showed the FRG signature remained a significant prognostic factor. Finally, we have developed a nomogram and a decision tree to enhance prognosis evaluation. Conclusion: The FRG signature enabled the accurate selection of high-risk stage II/III CRC population and helped optimize precision treatment to improve their clinical outcomes.
Collapse
Affiliation(s)
- Ze Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China
| | - Chenghao Ma
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Qiong Teng
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Jinyu Man
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China
| | - Xuening Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China
| | - Xinjie Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China
| | - Tongchao Zhang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center of Shandong University, Jinan, China
| | - Wei Chong
- Department of Gastrointestinal Surgery, Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Hao Chen
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center of Shandong University, Jinan, China
| | - Ming Lu
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center of Shandong University, Jinan, China
| |
Collapse
|
15
|
Zelenka T, Papamatheakis DA, Tzerpos P, Panagopoulos G, Tsolis KC, Papadakis VM, Mariatos Metaxas D, Papadogkonas G, Mores E, Kapsetaki M, Papamatheakis J, Stanek D, Spilianakis C. A novel SATB1 protein isoform with different biophysical properties. Front Cell Dev Biol 2023; 11:1242481. [PMID: 37635874 PMCID: PMC10457122 DOI: 10.3389/fcell.2023.1242481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Intra-thymic T cell development is coordinated by the regulatory actions of SATB1 genome organizer. In this report, we show that SATB1 is involved in the regulation of transcription and splicing, both of which displayed deregulation in Satb1 knockout murine thymocytes. More importantly, we characterized a novel SATB1 protein isoform and described its distinct biophysical behavior, implicating potential functional differences compared to the commonly studied isoform. SATB1 utilized its prion-like domains to transition through liquid-like states to aggregated structures. This behavior was dependent on protein concentration as well as phosphorylation and interaction with nuclear RNA. Notably, the long SATB1 isoform was more prone to aggregate following phase separation. Thus, the tight regulation of SATB1 isoforms expression levels alongside with protein post-translational modifications, are imperative for SATB1's mode of action in T cell development. Our data indicate that deregulation of these processes may also be linked to disorders such as cancer.
Collapse
Affiliation(s)
- Tomas Zelenka
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology—Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Dionysios-Alexandros Papamatheakis
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology—Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Petros Tzerpos
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | | | - Konstantinos C. Tsolis
- Institute of Molecular Biology and Biotechnology—Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Vassilis M. Papadakis
- Institute of Molecular Biology and Biotechnology—Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | | | - George Papadogkonas
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology—Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Eleftherios Mores
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Manouela Kapsetaki
- Institute of Molecular Biology and Biotechnology—Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Joseph Papamatheakis
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology—Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - David Stanek
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Charalampos Spilianakis
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology—Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| |
Collapse
|
16
|
Nomura A, Kobayashi T, Seo W, Ohno-Oishi M, Kakugawa K, Muroi S, Yoshida H, Endo TA, Moro K, Taniuchi I. Identification of a novel enhancer essential for Satb1 expression in T H2 cells and activated ILC2s. Life Sci Alliance 2023; 6:e202301897. [PMID: 37193606 PMCID: PMC10189277 DOI: 10.26508/lsa.202301897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023] Open
Abstract
The genome organizer, special AT-rich binding protein-1 (SATB1), functions to globally regulate gene networks during primary T cell development and plays a pivotal role in lineage specification in CD4+ helper-, CD8+ cytotoxic-, and FOXP3+ regulatory-T cell subsets. However, it remains unclear how Satb1 gene expression is controlled, particularly in effector T cell function. Here, by using a novel reporter mouse strain expressing SATB1-Venus and genome editing, we have identified a cis-regulatory enhancer, essential for maintaining Satb1 expression specifically in TH2 cells. This enhancer is occupied by STAT6 and interacts with Satb1 promoters through chromatin looping in TH2 cells. Reduction of Satb1 expression, by the lack of this enhancer, resulted in elevated IL-5 expression in TH2 cells. In addition, we found that Satb1 is induced in activated group 2 innate lymphoid cells (ILC2s) through this enhancer. Collectively, these results provide novel insights into how Satb1 expression is regulated in TH2 cells and ILC2s during type 2 immune responses.
Collapse
Affiliation(s)
- Aneela Nomura
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
| | - Tetsuro Kobayashi
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
| | - Wooseok Seo
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
| | - Michiko Ohno-Oishi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
| | - Kiyokazu Kakugawa
- Laboratory for Immune Crosstalk, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
| | - Sawako Muroi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
| | - Hideyuki Yoshida
- Laboratory for YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
| | - Takaho A Endo
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
| | - Kazuyo Moro
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
- Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School for Medicine, Osaka University, Osaka, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
| |
Collapse
|
17
|
Wang B, Ji L, Bian Q. SATB1 regulates 3D genome architecture in T cells by constraining chromatin interactions surrounding CTCF-binding sites. Cell Rep 2023; 42:112323. [PMID: 37000624 DOI: 10.1016/j.celrep.2023.112323] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/20/2023] [Accepted: 03/16/2023] [Indexed: 04/01/2023] Open
Abstract
Special AT-rich sequence binding protein 1 (SATB1) has long been proposed to act as a global chromatin loop organizer in T cells. However, the exact functions of SATB1 in spatial genome organization remain elusive. Here we show that the depletion of SATB1 in human and murine T cells leads to transcriptional dysregulation for genes involved in T cell activation, as well as alterations of 3D genome architecture at multiple levels, including compartments, topologically associating domains, and loops. Importantly, SATB1 extensively colocalizes with CTCF throughout the genome. Depletion of SATB1 leads to increased chromatin contacts among and across the SATB1/CTCF co-occupied sites, thereby affecting the transcription of critical regulators of T cell activation. The loss of SATB1 does not affect CTCF occupancy but significantly reduces the retention of CTCF in the nuclear matrix. Collectively, our data show that SATB1 contributes to 3D genome organization by constraining chromatin topology surrounding CTCF-binding sites.
Collapse
Affiliation(s)
- Bao Wang
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Luzhang Ji
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Qian Bian
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; Shanghai Institute of Precision Medicine, Shanghai 200125, China; Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
18
|
Zagorulya M, Yim L, Morgan DM, Edwards A, Torres-Mejia E, Momin N, McCreery CV, Zamora IL, Horton BL, Fox JG, Wittrup KD, Love JC, Spranger S. Tissue-specific abundance of interferon-gamma drives regulatory T cells to restrain DC1-mediated priming of cytotoxic T cells against lung cancer. Immunity 2023; 56:386-405.e10. [PMID: 36736322 PMCID: PMC10880816 DOI: 10.1016/j.immuni.2023.01.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023]
Abstract
Local environmental factors influence CD8+ T cell priming in lymph nodes (LNs). Here, we sought to understand how factors unique to the tumor-draining mediastinal LN (mLN) impact CD8+ T cell responses toward lung cancer. Type 1 conventional dendritic cells (DC1s) showed a mLN-specific failure to induce robust cytotoxic T cells responses. Using regulatory T (Treg) cell depletion strategies, we found that Treg cells suppressed DC1s in a spatially coordinated manner within tissue-specific microniches within the mLN. Treg cell suppression required MHC II-dependent contact between DC1s and Treg cells. Elevated levels of IFN-γ drove differentiation Treg cells into Th1-like effector Treg cells in the mLN. In patients with cancer, Treg cell Th1 polarization, but not CD8+/Treg cell ratios, correlated with poor responses to checkpoint blockade immunotherapy. Thus, IFN-γ in the mLN skews Treg cells to be Th1-like effector Treg cells, driving their close interaction with DC1s and subsequent suppression of cytotoxic T cell responses.
Collapse
Affiliation(s)
- Maria Zagorulya
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Leon Yim
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Duncan M Morgan
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
| | - Austin Edwards
- Biological Imaging Development CoLab, UCSF, San Francisco, CA 94143, USA
| | - Elen Torres-Mejia
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Noor Momin
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
| | - Chloe V McCreery
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
| | - Izabella L Zamora
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA
| | - Brendan L Horton
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - James G Fox
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Division of Comparative Medicine, MIT, Cambridge, MA 02139, USA
| | - K Dane Wittrup
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
| | - J Christopher Love
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Department of Biology, MIT, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
19
|
Jawale D, Khandibharad S, Singh S. Decoding systems immunological model of sphingolipids with IL-6/IL-17/IL-23 axes in L. major infection. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159261. [PMID: 36494028 DOI: 10.1016/j.bbalip.2022.159261] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
IL-6, IL-17, IL-23 and IL-1β are the crucial cytokines controlling inflammatory and immune response during L. major infection. During cutaneous leishmaniasis, an important T helper cell type CD4+ Th17 subset plays a deterministic role in lesion formation through channelling infected macrophages and production of IL-1β, IL-6, IL-23 and IFN-γ. Ceramide derived sphingosine precursors may assist in pro-inflammatory cytokine response. However, the role of these metabolites in inflammation with pleiotropic pro-inflammatory cytokines in L. major infection is unknown. The present study indicates IL-6/IL-17/IL-23 and SPHK1-S1P-S1PRs signaling axes with the overexpression of SATB1 aiding in disease progression. Targeting SATB1 might modulate the secretion of pro-inflammatory cytokines and abnormal immune functioning, thereby killing the intracellular parasite. Systems immunological methods assisted in a step towards identifying the key to the mystery of crucial components and serving as an approach for therapeutic intervention in L. major infection.
Collapse
Affiliation(s)
- Diksha Jawale
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India
| | - Shweta Khandibharad
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India
| | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India.
| |
Collapse
|
20
|
Bosselut R. A Beginner's Guide to T Cell Development. Methods Mol Biol 2023; 2580:3-24. [PMID: 36374448 DOI: 10.1007/978-1-0716-2740-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
T lymphocytes (T cells) are essential components of the adaptive immune system; they serve multiple functions in responses to pathogens and to ensure immune homeostasis. Written for readers first entering this field of study, this chapter is a brief overview of the development of T cells in the thymus, from the entry of thymus-settling bone marrow-derived precursors to the egress of mature T cells. Surveyed topics include the differentiation and expansion of early precursors, the generation of the T cell antigen receptor repertoire, the selection of αβ T cell precursors, and their acquisition of functional competency.
Collapse
Affiliation(s)
- Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
21
|
Zelenka T, Klonizakis A, Tsoukatou D, Papamatheakis DA, Franzenburg S, Tzerpos P, Tzonevrakis IR, Papadogkonas G, Kapsetaki M, Nikolaou C, Plewczynski D, Spilianakis C. The 3D enhancer network of the developing T cell genome is shaped by SATB1. Nat Commun 2022; 13:6954. [PMID: 36376298 PMCID: PMC9663569 DOI: 10.1038/s41467-022-34345-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Mechanisms of tissue-specific gene expression regulation via 3D genome organization are poorly understood. Here we uncover the regulatory chromatin network of developing T cells and identify SATB1, a tissue-specific genome organizer, enriched at the anchors of promoter-enhancer loops. We have generated a T-cell specific Satb1 conditional knockout mouse which allows us to infer the molecular mechanisms responsible for the deregulation of its immune system. H3K27ac HiChIP and Hi-C experiments indicate that SATB1-dependent promoter-enhancer loops regulate expression of master regulator genes (such as Bcl6), the T cell receptor locus and adhesion molecule genes, collectively being critical for cell lineage specification and immune system homeostasis. SATB1-dependent regulatory chromatin loops represent a more refined layer of genome organization built upon a high-order scaffold provided by CTCF and other factors. Overall, our findings unravel the function of a tissue-specific factor that controls transcription programs, via spatial chromatin arrangements complementary to the chromatin structure imposed by ubiquitously expressed genome organizers.
Collapse
Affiliation(s)
- Tomas Zelenka
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - Despina Tsoukatou
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Dionysios-Alexandros Papamatheakis
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | | | - Petros Tzerpos
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, HU-4032, Hungary
| | | | - George Papadogkonas
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Manouela Kapsetaki
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Christoforos Nikolaou
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
- Institute for Bioinnovation, Biomedical Sciences Research Centre "Alexander Fleming", 16672, Vari, Greece
| | - Dariusz Plewczynski
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Charalampos Spilianakis
- Department of Biology, University of Crete, Heraklion, Crete, Greece.
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece.
| |
Collapse
|
22
|
Gupta PK, Allocco JB, Fraipont JM, McKeague ML, Wang P, Andrade MS, McIntosh C, Chen L, Wang Y, Li Y, Andrade J, Conejo-Garcia JR, Chong AS, Alegre ML. Reduced Satb1 expression predisposes CD4 + T conventional cells to Treg suppression and promotes transplant survival. Proc Natl Acad Sci U S A 2022; 119:e2205062119. [PMID: 36161903 PMCID: PMC9546564 DOI: 10.1073/pnas.2205062119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Limiting CD4+ T cell responses is important to prevent solid organ transplant rejection. In a mouse model of costimulation blockade-dependent cardiac allograft tolerance, we previously reported that alloreactive CD4+ conventional T cells (Tconvs) develop dysfunction, losing proliferative capacity. In parallel, induction of transplantation tolerance is dependent on the presence of regulatory T cells (Tregs). Whether susceptibility of CD4+ Tconvs to Treg suppression is modulated during tolerance induction is unknown. We found that alloreactive Tconvs from transplant tolerant mice had augmented sensitivity to Treg suppression when compared with memory T cells from rejector mice and expressed a transcriptional profile distinct from these memory T cells, including down-regulated expression of the transcription factor Special AT-rich sequence-binding protein 1 (Satb1). Mechanistically, Satb1 deficiency in CD4+ T cells limited their expression of CD25 and IL-2, and addition of Tregs, which express higher levels of CD25 than Satb1-deficient Tconvs and successfully competed for IL-2, resulted in greater suppression of Satb1-deficient than wild-type Tconvs in vitro. In vivo, Satb1-deficient Tconvs were more susceptible to Treg suppression, resulting in significantly prolonged skin allograft survival. Overall, our study reveals that transplantation tolerance is associated with Tconvs' susceptibility to Treg suppression, via modulated expression of Tconv-intrinsic Satb1. Targeting Satb1 in the context of Treg-sparing immunosuppressive therapies might be exploited to improve transplant outcomes.
Collapse
Affiliation(s)
- Pawan K. Gupta
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Jennifer B. Allocco
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Jane M. Fraipont
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Michelle L. McKeague
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Peter Wang
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Michael S. Andrade
- Section of Transplantation, Department of Surgery, University of Chicago, Chicago, IL 60637
| | - Christine McIntosh
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Luqiu Chen
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Ying Wang
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Yan Li
- Center for Research Informatics, University of Chicago, Chicago, IL 60637
| | - Jorge Andrade
- Center for Research Informatics, University of Chicago, Chicago, IL 60637
| | - José R. Conejo-Garcia
- Department of Immunology, Moffitt Cancer Center & Research Institute, University of South Florida, Tampa, FL 33612
| | - Anita S. Chong
- Section of Transplantation, Department of Surgery, University of Chicago, Chicago, IL 60637
| | - Maria-Luisa Alegre
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637
| |
Collapse
|
23
|
Chromatin organizer SATB1 controls the cell identity of CD4 + CD8 + double-positive thymocytes by regulating the activity of super-enhancers. Nat Commun 2022; 13:5554. [PMID: 36138028 PMCID: PMC9500044 DOI: 10.1038/s41467-022-33333-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 09/14/2022] [Indexed: 11/19/2022] Open
Abstract
CD4+ and CD8+ double-positive (DP) thymocytes play a crucial role in T cell development in the thymus. DP cells rearrange the T cell receptor gene Tcra to generate T cell receptors with TCRβ. DP cells differentiate into CD4 or CD8 single-positive (SP) thymocytes, regulatory T cells, or invariant nature kill T cells (iNKT) in response to TCR signaling. Chromatin organizer SATB1 is highly expressed in DP cells and is essential in regulating Tcra rearrangement and differentiation of DP cells. Here we explored the mechanism of SATB1 orchestrating gene expression in DP cells. Single-cell RNA sequencing shows that Satb1 deletion changes the cell identity of DP thymocytes and down-regulates genes specifically and highly expressed in DP cells. Super-enhancers regulate the expressions of DP-specific genes, and our Hi-C data show that SATB1 deficiency in thymocytes reduces super-enhancer activity by specifically decreasing interactions among super-enhancers and between super-enhancers and promoters. Our results reveal that SATB1 plays a critical role in thymocyte development to promote the establishment of DP cell identity by globally regulating super-enhancers of DP cells at the chromatin architectural level.
Collapse
|
24
|
Nüssing S, Miosge LA, Lee K, Olshansky M, Barugahare A, Roots CM, Sontani Y, Day EB, Koutsakos M, Kedzierska K, Goodnow CC, Russ BE, Daley SR, Turner SJ. SATB1 ensures appropriate transcriptional programs within naïve CD8
+
T cells. Immunol Cell Biol 2022; 100:636-652. [PMID: 35713361 PMCID: PMC9542893 DOI: 10.1111/imcb.12566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Simone Nüssing
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity University of Melbourne Parkville VIC Australia
| | - Lisa A Miosge
- John Curtin School of Medical Research Australian National University Canberra ACT Australia
| | - Kah Lee
- Department of Microbiology, Immunity Theme, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Moshe Olshansky
- Department of Microbiology, Immunity Theme, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | | | - Carla M Roots
- John Curtin School of Medical Research Australian National University Canberra ACT Australia
| | - Yovina Sontani
- John Curtin School of Medical Research Australian National University Canberra ACT Australia
| | - E Bridie Day
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity University of Melbourne Parkville VIC Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity University of Melbourne Parkville VIC Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity University of Melbourne Parkville VIC Australia
| | - Christopher C Goodnow
- John Curtin School of Medical Research Australian National University Canberra ACT Australia
- Garvan Institute of Medical Research & Cellular Genomics Futures Institute University of New South Wales Darlinghurst NSW Australia
| | - Brendan E Russ
- Department of Microbiology, Immunity Theme, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Stephen R Daley
- John Curtin School of Medical Research Australian National University Canberra ACT Australia
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health Queensland University of Technology Brisbane QLD Australia
| | - Stephen J Turner
- Department of Microbiology, Immunity Theme, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| |
Collapse
|
25
|
Nova A, Baldrighi GN, Fazia T, Graziano F, Saddi V, Piras M, Beecham A, McCauley JL, Bernardinelli L. Heritability Estimation of Multiple Sclerosis Related Plasma Protein Levels in Sardinian Families with Immunochip Genotyping Data. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071101. [PMID: 35888189 PMCID: PMC9317284 DOI: 10.3390/life12071101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/25/2022]
Abstract
This work aimed at estimating narrow-sense heritability, defined as the proportion of the phenotypic variance explained by the sum of additive genetic effects, via Haseman–Elston regression for a subset of 56 plasma protein levels related to Multiple Sclerosis (MS). These were measured in 212 related individuals (with 69 MS cases and 143 healthy controls) obtained from 20 Sardinian families with MS history. Using pedigree information, we found seven statistically significant heritable plasma protein levels (after multiple testing correction), i.e., Gc (h2 = 0.77; 95%CI: 0.36, 1.00), Plat (h2 = 0.70; 95%CI: 0.27, 0.95), Anxa1 (h2 = 0.68; 95%CI: 0.27, 1.00), Sod1 (h2 = 0.58; 95%CI: 0.18, 0.96), Irf8 (h2 = 0.56; 95%CI: 0.19, 0.99), Ptger4 (h2 = 0.45; 95%CI: 0.10, 0.96), and Fadd (h2 = 0.41; 95%CI: 0.06, 0.84). A subsequent analysis was performed on these statistically significant heritable plasma protein levels employing Immunochip genotyping data obtained in 155 healthy controls (92 related and 63 unrelated); we found a meaningful proportion of heritable plasma protein levels’ variability explained by a small set of SNPs. Overall, the results obtained, for these seven MS-related proteins, emphasized a high additive genetic variance component explaining plasma levels’ variability.
Collapse
Affiliation(s)
- Andrea Nova
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (G.N.B.); (T.F.); (L.B.)
- Correspondence:
| | - Giulia Nicole Baldrighi
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (G.N.B.); (T.F.); (L.B.)
| | - Teresa Fazia
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (G.N.B.); (T.F.); (L.B.)
| | - Francesca Graziano
- Centre of Biostatistics for Clinical Epidemiology, University of Milano-Bicocca, 20900 Monza, Italy;
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Valeria Saddi
- Divisione di Neurologia, Presidio Ospedaliero S. Francesco, ASL Numero 3 Nuoro, 08100 Nuoro, Italy; (V.S.); (M.P.)
| | - Marialuisa Piras
- Divisione di Neurologia, Presidio Ospedaliero S. Francesco, ASL Numero 3 Nuoro, 08100 Nuoro, Italy; (V.S.); (M.P.)
| | - Ashley Beecham
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (A.B.); (J.L.M.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jacob L. McCauley
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (A.B.); (J.L.M.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Luisa Bernardinelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (G.N.B.); (T.F.); (L.B.)
| |
Collapse
|
26
|
Papadogkonas G, Papamatheakis DA, Spilianakis C. 3D Genome Organization as an Epigenetic Determinant of Transcription Regulation in T Cells. Front Immunol 2022; 13:921375. [PMID: 35812421 PMCID: PMC9257000 DOI: 10.3389/fimmu.2022.921375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022] Open
Abstract
In the heart of innate and adaptive immunity lies the proper spatiotemporal development of several immune cell lineages. Multiple studies have highlighted the necessity of epigenetic and transcriptional regulation in cell lineage specification. This mode of regulation is mediated by transcription factors and chromatin remodelers, controlling developmentally essential gene sets. The core of transcription and epigenetic regulation is formulated by different epigenetic modifications determining gene expression. Apart from “classic” epigenetic modifications, 3D chromatin architecture is also purported to exert fundamental roles in gene regulation. Chromatin conformation both facilitates cell-specific factor binding at specified regions and is in turn modified as such, acting synergistically. The interplay between global and tissue-specific protein factors dictates the epigenetic landscape of T and innate lymphoid cell (ILC) lineages. The expression of global genome organizers such as CTCF, YY1, and the cohesin complexes, closely cooperate with tissue-specific factors to exert cell type-specific gene regulation. Special AT-rich binding protein 1 (SATB1) is an important tissue-specific genome organizer and regulator controlling both long- and short-range chromatin interactions. Recent indications point to SATB1’s cooperation with the aforementioned factors, linking global to tissue-specific gene regulation. Changes in 3D genome organization are of vital importance for proper cell development and function, while disruption of this mechanism can lead to severe immuno-developmental defects. Newly emerging data have inextricably linked chromatin architecture deregulation to tissue-specific pathophysiological phenotypes. The combination of these findings may shed light on the mechanisms behind pathological conditions.
Collapse
Affiliation(s)
- George Papadogkonas
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| | - Dionysios-Alexandros Papamatheakis
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| | - Charalampos Spilianakis
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
- *Correspondence: Charalampos Spilianakis,
| |
Collapse
|
27
|
Chaurio RA, Anadon CM, Costich TL, Payne KK, Biswas S, Harro CM, Moran C, Ortiz AC, Cortina C, Rigolizzo KE, Sprenger KB, Mine JA, Innamarato PP, Mandal G, Powers JJ, Martin A, Wang Z, Mehta S, Perez BA, Li R, Robinson J, Kroeger JL, Curiel TJ, Yu X, Rodriguez PC, Conejo-Garcia JR. TGF-β-mediated silencing of genomic organizer SATB1 promotes Tfh cell differentiation and formation of intra-tumoral tertiary lymphoid structures. Immunity 2022; 55:115-128.e9. [PMID: 35021053 PMCID: PMC8852221 DOI: 10.1016/j.immuni.2021.12.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/17/2021] [Accepted: 12/08/2021] [Indexed: 01/13/2023]
Abstract
The immune checkpoint receptor PD-1 on T follicular helper (Tfh) cells promotes Tfh:B cell interactions and appropriate positioning within tissues. Here, we examined the impact of regulation of PD-1 expression by the genomic organizer SATB1 on Tfh cell differentiation. Vaccination of CD4CreSatb1f/f mice enriched for antigen-specific Tfh cells, and TGF-β-mediated repression of SATB1 enhanced Tfh differentiation of human T cells. Mechanistically, high Icos expression in Satb1-/- CD4+ T cells promoted Tfh cell differentiation by preventing T follicular regulatory cell skewing and resulted in increased isotype-switched B cell responses in vivo. Ovarian tumors in CD4CreSatb1f/f mice accumulated tumor antigen-specific, LIGHT+CXCL13+IL-21+ Tfh cells and tertiary lymphoid structures (TLS). TLS formation decreased tumor growth in a CD4+ T cell and CXCL13-dependent manner. The transfer of Tfh cells, but not naive CD4+ T cells, induced TLS at tumor beds and decreased tumor growth. Thus, TGF-β-mediated silencing of Satb1 licenses Tfh cell differentiation, providing insight into the genesis of TLS within tumors.
Collapse
Affiliation(s)
- Ricardo A Chaurio
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Carmen M Anadon
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Tara Lee Costich
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Kyle K Payne
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Subir Biswas
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Carly M Harro
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Carlos Moran
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Antonio C Ortiz
- Department of Analytic Microscopy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Carla Cortina
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Kristen E Rigolizzo
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Kimberly B Sprenger
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Jessica A Mine
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Pasquale P Innamarato
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Gunjan Mandal
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - John J Powers
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Alexandra Martin
- Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Zhitao Wang
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Sumit Mehta
- Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Bradford A. Perez
- Department of Radiation Therapy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Roger Li
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - John Robinson
- Department of Flow Cytometry Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Jodi L Kroeger
- Department of Flow Cytometry Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Tyler J Curiel
- Mays Cancer Center, University of Texas Health, San Antonio, TX 78229
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Paulo C. Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Jose R Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.,Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.,Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.,CORRESPONDENCE: Jose R Conejo-Garcia, MD, PhD (LEAD CONTACT), H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, , Phone: (813) 745-8282, Fax: (813) 745-5580
| |
Collapse
|
28
|
Duurland CL, Santegoets SJ, Abdulrahman Z, Loof NM, Sturm G, Wesselink TH, Arens R, Boekestijn S, Ehsan I, van Poelgeest MIE, Finotello F, Hackl H, Trajanoski Z, Ten Dijke P, Braud VM, Welters MJP, van der Burg SH. CD161 expression and regulation defines rapidly responding effector CD4+ T cells associated with improved survival in HPV16-associated tumors. J Immunother Cancer 2022; 10:e003995. [PMID: 35039463 PMCID: PMC8765066 DOI: 10.1136/jitc-2021-003995] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Expression of killer cell lectin-like receptor B1 (KLRB1), the gene encoding the cell surface molecule CD161, is associated with favorable prognosis in many cancers. CD161 is expressed by several lymphocyte populations, but its role and regulation on tumor-specific CD4+ T cells is unknown. METHODS We examined the clinical impact of CD4+CD161+ T cells in human papillomavirus (HPV)16+ oropharyngeal squamous cell carcinoma (OPSCC), analyzed their contribution in a cohort of therapeutically vaccinated patients and used HPV16-specific CD4+CD161+ tumor-infiltrating lymphocytes and T cell clones for in-depth mechanistic studies. RESULTS Central and effector memory CD4+ T cells express CD161, but only CD4+CD161+ effector memory T cells (Tem) are associated with improved survival in OPSCC. Therapeutic vaccination activates and expands type 1 cytokine-producing CD4+CD161+ effector T cells. The expression of CD161 is dynamic and follows a pattern opposite of the checkpoint molecules PD1 and CD39. CD161 did not function as an immune checkpoint molecule as demonstrated using multiple experimental approaches using antibodies to block CD161 and gene editing to knockout CD161 expression. Single-cell transcriptomics revealed KLRB1 expression in many T cell clusters suggesting differences in their activation. Indeed, CD4+CD161+ effector cells specifically expressed the transcriptional transactivator SOX4, known to enhance T cell receptor (TCR) signaling via CD3ε. Consistent with this observation, CD4+CD161+ cells respond more vigorously to limiting amounts of cognate antigen in presence of interleukin (IL)-12 and IL-18 compared to their CD161- counterparts. The expression of CD161/KLRB1 and SOX4 was downregulated upon TCR stimulation and this effect was boosted by transforming growth factor (TGF)β1. CONCLUSION High levels of CD4+CD161+ Tem are associated with improved survival and our data show that CD161 is dynamically regulated by cell intrinsic and extrinsic factors. CD161 expressing CD4+ T cells rapidly respond to suboptimal antigen stimulation suggesting that CD161, similar to SOX4, is involved in the amplification of TCR signals in CD4+ T cells.
Collapse
Affiliation(s)
- Chantal L Duurland
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Saskia J Santegoets
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Ziena Abdulrahman
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Nikki M Loof
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Gregor Sturm
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Tom H Wesselink
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ramon Arens
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sanne Boekestijn
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Ilina Ehsan
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Francesca Finotello
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Molecular Biology, University of Innsbruck, Innsbruck, Austria
- Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Austria
| | - Hubert Hackl
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Zlatko Trajanoski
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Veronique M Braud
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université Côte d'Azur, UMR7275, 06560 Valbonne, Sophia Antipolis, France
| | - Marij J P Welters
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
29
|
Choi SM, Park HJ, Choi EA, Jung KC, Lee JI. Cellular heterogeneity of circulating CD4 +CD8 + double-positive T cells characterized by single-cell RNA sequencing. Sci Rep 2021; 11:23607. [PMID: 34880348 PMCID: PMC8655006 DOI: 10.1038/s41598-021-03013-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022] Open
Abstract
Circulating CD4+CD8+ double-positive (DP) T cells are associated with a variety of disease states. However, unlike conventional T cells, the composition of this population is poorly understood. Here, we used single-cell RNA sequencing (scRNA-seq) to analyze the composition and characteristics of the DP T cell population circulating in the peripheral blood of cynomolgus monkeys. We found that circulating DP T cells not only contain a large number of naïve cells, but also comprise a heterogeneous population (CD4 CTL-, Eomes+ Tr1-, Th2-, Th17-, Tfh-, Treg-, CD8 CTL-, and innate-like cells) with multiple potential functions. Flow cytometry analysis revealed that a substantial number of the naïve DP T cells expressed CD8αβ, as well as CD8αα, along with high expression of CD31. Moreover, the CD4hiCD8lo and CD4hiCD8hi populations, which express high levels of the CD4 coreceptor, comprised subsets characterized by helper and regulatory functions, some of which also exhibited cytotoxic functions. By contrast, the CD4loCD8hi population with high CD8 coreceptor expression comprised a subset characterized by CD8 CTL- and innate-like properties. Taken together, the data show that scRNA-seq analysis identified a more diverse subset of the circulating DP cells than is currently known, despite this population being very small.
Collapse
Affiliation(s)
- Sung Min Choi
- Graduate Course of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hi Jung Park
- Graduate Course of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Eun A Choi
- Graduate Course of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Kyeong Cheon Jung
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Jae Il Lee
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Department of Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
30
|
Andrews LP, Vignali KM, Szymczak-Workman AL, Burton AR, Brunazzi EA, Ngiow SF, Harusato A, Sharpe AH, Wherry EJ, Taniuchi I, Workman CJ, Vignali DAA. A Cre-driven allele-conditioning line to interrogate CD4 + conventional T cells. Immunity 2021; 54:2209-2217.e6. [PMID: 34551314 DOI: 10.1016/j.immuni.2021.08.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/04/2021] [Accepted: 08/30/2021] [Indexed: 01/22/2023]
Abstract
CD4+ T cells share common developmental pathways with CD8+ T cells, and upon maturation, CD4+ T conventional T (Tconv) cells lack phenotypic markers that distinguish these cells from FoxP3+ T regulatory cells. We developed a tamoxifen-inducible ThPOKCreERT2.hCD2 line with Frt sites inserted on either side of the CreERT2-hCD2 cassette, and a Foxp3Ametrine-FlpO strain, expressing Ametrine and FlpO in Foxp3+ cells. Breeding these mice resulted in a CD4conviCreERT2-hCD2 line that allows for the specific manipulation of a gene in CD4+ Tconv cells. As FlpO removes the CreERT2-hCD2 cassette, CD4+ Treg cells are spared from Cre activity, which we refer to as allele conditioning. Comparison with an E8IiCreERT2.GFP mouse that enables inducible targeting of CD8+ T cells, and deletion of two inhibitory receptors, PD-1 and LAG-3, in a melanoma model, support the fidelity of these lines. These engineered mouse strains present a resource for the temporal manipulation of genes in CD4+ T cells and CD4+ Tconv cells.
Collapse
Affiliation(s)
- Lawrence P Andrews
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Kate M Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | | | - Amanda R Burton
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Erin A Brunazzi
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Shin Foong Ngiow
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Akihito Harusato
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - E John Wherry
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ichiro Taniuchi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA.
| |
Collapse
|
31
|
Tanaka Y, Onozato M, Mikami T, Kohwi-Shigematsu T, Fukushima T, Kondo M. Increased Indoleamine 2,3-Dioxygenase Levels at the Onset of Sjögren's Syndrome in SATB1-Conditional Knockout Mice. Int J Mol Sci 2021; 22:10125. [PMID: 34576286 PMCID: PMC8468825 DOI: 10.3390/ijms221810125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 01/16/2023] Open
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disease characterized by dysfunction of salivary and lacrimal glands, resulting in xerostomia (dry mouth) and keratoconjunctivitis sicca (dry eyes). Autoantibodies, such as anti-SSA and anti-SSB antibodies, are hallmarks and important diagnostic factors for SS. In our previous study, we demonstrated that SS-like xerostomia was observed in SATB1 conditional knockout (SATB1cKO) mice, in which the floxed SATB1 gene was specifically deleted in hematopoietic cells as early as 4 weeks of age. In these mice, autoantibodies were not detected until 8 weeks of age in SATB1cKO mice, although exocrine gland function reached its lowest at this age. Therefore, other markers may be necessary for the diagnosis of SS in the early phase. Here, we found that mRNA expression of the interferonγ (IFN-γ) gene and the IFN-responsive indoleamine 2,3-dioxygenase (IDO) gene is upregulated in the salivary glands of SATB1cKO mice after 3 and 4 weeks of age, respectively. We detected l-kynurenine (l-KYN), an intermediate of l-tryptophan (l-Trp) metabolism mediated by IDO, in the serum of SATB1cKO mice after 4 weeks of age. In addition, the upregulation of IDO expression was significantly suppressed by the administration of IFN-γ neutralizing antibodies in SATB1cKO mice. These results suggest that the induction of IFN-dependent IDO expression is an initial event that occurs immediately after the onset of SS in SATB1cKO mice. These results also imply that serum l-KYN could be used as a marker for SS diagnosis in the early phases of the disease before autoantibodies are detectable.
Collapse
Grants
- JP24390121 to M.K. and Y.T., JP26670240 to M.K., 18K07075 to Y.T. MEXT/JSPS KAKENHI
- Strategic Research Foundation Grant-aided Project for Private Schools at Heisei 26th (S1411015 ) Ministry of Education, Culture, Sports, Science and Technology
- Research Promotion Grant (14-02) Toho University Graduate School of Medicine
- Project Research Grants (23-4 and 26-22 to Y.T.) Toho University School of Medicine
- N/A Public Foundation of the Vaccination Research Center
- Joint research Fund to M.K., Y.T., M.O. and K.F. Toho University
- Initiative for Realizing Diversity in the Research Environment Japan Science and Technology Agency
- R37CA39681 to T.K.-S. NIH HHS
- Grant-in Aid for Private University Research Branding Project Ministry of Education, Culture, Sports, Science and Technology
- Grant for Research Initiative Program Toho University
Collapse
Affiliation(s)
- Yuriko Tanaka
- Department of Molecular Immunology, Toho University School of Medicine, Tokyo 143-8540, Japan;
| | - Mayu Onozato
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan; (M.O.); (T.F.)
| | - Tetuo Mikami
- Department of Pathology, Toho University School of Medicine, Tokyo 143-8540, Japan;
| | - Terumi Kohwi-Shigematsu
- Department of Orofacial Sciences, University of California San Francisco School of Dentistry, San Francisco, CA 94143, USA;
| | - Takeshi Fukushima
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan; (M.O.); (T.F.)
| | - Motonari Kondo
- Department of Molecular Immunology, Toho University School of Medicine, Tokyo 143-8540, Japan;
| |
Collapse
|
32
|
Drieux F, Ruminy P, Sater V, Marchand V, Fataccioli V, Lanic MD, Viennot M, Viailly PJ, Sako N, Robe C, Dupuy A, Vallois D, Veresezan L, Poullot E, Picquenot JM, Bossard C, Parrens M, Lemonnier F, Jardin F, de Leval L, Gaulard P. Detection of Gene Fusion Transcripts in Peripheral T-Cell Lymphoma Using a Multiplexed Targeted Sequencing Assay. J Mol Diagn 2021; 23:929-940. [PMID: 34147695 DOI: 10.1016/j.jmoldx.2021.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022] Open
Abstract
The genetic basis of peripheral T-cell lymphoma (PTCL) is complex and encompasses several recurrent fusion transcripts discovered over the past years by means of massive parallel sequencing. However, there is currently no affordable and rapid technology for their simultaneous detection in clinical samples. Herein, we developed a multiplex ligation-dependent RT-PCR-based assay, followed by high-throughput sequencing, to detect 33 known PTCL-associated fusion transcripts. Anaplastic lymphoma kinase (ALK) fusion transcripts were detected in 15 of 16 ALK-positive anaplastic large-cell lymphomas. The latter case was further characterized by a novel SATB1_ALK fusion transcript. Among 239 other PTCLs, representative of nine entities, non-ALK fusion transcripts were detected in 24 samples, mostly of follicular helper T-cell (TFH) derivation. The most frequent non-ALK fusion transcript was ICOS_CD28 in nine TFH-PTCLs, one PTCL not otherwise specified, and one adult T-cell leukemia/lymphoma, followed by VAV1 rearrangements with multiple partners (STAP2, THAP4, MYO1F, and CD28) in five samples (three PTCL not otherwise specified and two TFH-PTCLs). The other rearrangements were CTLA4_CD28 (one TFH-PTCL), ITK_SYK (two TFH-PTCLs), ITK_FER (one TFH-PTCL), IKZF2_ERBB4 (one TFH-PTCL and one adult T-cell leukemia/lymphoma), and TP63_TBL1XR1 (one ALK-negative anaplastic large-cell lymphoma). All fusions detected by our assay were validated by conventional RT-PCR and Sanger sequencing in 30 samples with adequate material. The simplicity and robustness of this targeted multiplex assay make it an attractive tool for the characterization of these heterogeneous diseases.
Collapse
Affiliation(s)
- Fanny Drieux
- INSERM U1245, Centre Henri Becquerel, Rouen, France; Pathology Department, Centre Henri Becquerel, Rouen, France; INSERM U955, Université Paris-Est, Créteil, France
| | | | | | | | - Virginie Fataccioli
- INSERM U955, Université Paris-Est, Créteil, France; Pathology Department, Groupe Hospitalier Henri Mondor, AP-HP, Créteil, France
| | | | | | | | - Nouhoum Sako
- INSERM U955, Université Paris-Est, Créteil, France
| | | | | | - David Vallois
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | - Elsa Poullot
- INSERM U955, Université Paris-Est, Créteil, France; Pathology Department, Groupe Hospitalier Henri Mondor, AP-HP, Créteil, France
| | | | | | - Marie Parrens
- Pathology Department, Hôpital Haut-Lévêque, Bordeaux, France
| | - François Lemonnier
- INSERM U955, Université Paris-Est, Créteil, France; Hematology Department, Lymphoma Unit, Henri Mondor Hospital, Public Assistance Hospital of Paris, Créteil, France
| | | | - Laurence de Leval
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Philippe Gaulard
- INSERM U955, Université Paris-Est, Créteil, France; Pathology Department, Groupe Hospitalier Henri Mondor, AP-HP, Créteil, France.
| |
Collapse
|
33
|
Pawlicki JM, Cookmeyer DL, Maseda D, Everett JK, Wei F, Kong H, Zhang Q, Wang HY, Tobias JW, Walter DM, Zullo KM, Javaid S, Watkins A, Wasik MA, Bushman FD, Riley JL. NPM-ALK-Induced Reprogramming of Mature TCR-Stimulated T Cells Results in Dedifferentiation and Malignant Transformation. Cancer Res 2021; 81:3241-3254. [PMID: 33619116 PMCID: PMC8260452 DOI: 10.1158/0008-5472.can-20-2297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/28/2020] [Accepted: 02/19/2021] [Indexed: 12/22/2022]
Abstract
Fusion genes including NPM-ALK can promote T-cell transformation, but the signals required to drive a healthy T cell to become malignant remain undefined. In this study, we introduce NPM-ALK into primary human T cells and demonstrate induction of the epithelial-to-mesenchymal transition (EMT) program, attenuation of most T-cell effector programs, reemergence of an immature epigenomic profile, and dynamic regulation of c-Myc, E2F, and PI3K/mTOR signaling pathways early during transformation. A mutant of NPM-ALK failed to bind several signaling complexes including GRB2/SOS, SHC1, SHC4, and UBASH3B and was unable to transform T cells. Finally, T-cell receptor (TCR)-generated signals were required to achieve T-cell transformation, explaining how healthy individuals can harbor T cells with NPM-ALK translocations. These findings describe the fundamental mechanisms of NPM-ALK-mediated oncogenesis and may serve as a model to better understand factors that regulate tumor formation. SIGNIFICANCE: This investigation into malignant transformation of T cells uncovers a requirement for TCR triggering, elucidates integral signaling complexes nucleated by NPM-ALK, and delineates dynamic transcriptional changes as a T cell transforms.See related commentary by Spasevska and Myklebust, p. 3160.
Collapse
MESH Headings
- Apoptosis
- Cell Dedifferentiation
- Cell Proliferation
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cellular Reprogramming
- Humans
- Lymphoma, Large-Cell, Anaplastic/genetics
- Lymphoma, Large-Cell, Anaplastic/immunology
- Lymphoma, Large-Cell, Anaplastic/metabolism
- Lymphoma, Large-Cell, Anaplastic/pathology
- Phosphorylation
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Jan M Pawlicki
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David L Cookmeyer
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Damian Maseda
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John K Everett
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Fang Wei
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hong Kong
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Qian Zhang
- Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hong Y Wang
- Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John W Tobias
- Penn Genomic Analysis Core, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David M Walter
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kelly M Zullo
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sarah Javaid
- Merck Research Laboratories, Boston, Massachusetts
| | | | - Mariusz A Wasik
- Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - James L Riley
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania.
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
34
|
Abstract
The regulatory circuits that define developmental decisions of thymocytes are still incompletely resolved. SATB1 protein is predominantly expressed at the CD4+CD8+cell stage exerting its broad transcription regulation potential with both activatory and repressive roles. A series of post-translational modifications and the presence of potential SATB1 protein isoforms indicate the complexity of its regulatory potential. The most apparent mechanism of its involvement in gene expression regulation is via the orchestration of long-range chromatin loops between genes and their regulatory elements. Multiple SATB1 perturbations in mice uncovered a link to autoimmune diseases while clinical investigations on cancer research uncovered that SATB1 has a promoting role in several types of cancer and can be used as a prognostic biomarker. SATB1 is a multivalent tissue-specific factor with a broad and yet undetermined regulatory potential. Future investigations on this protein could further uncover T cell-specific regulatory pathways and link them to (patho)physiology.
Collapse
Affiliation(s)
- Tomas Zelenka
- Department of Biology, University of Crete , Heraklion, Crete, Greece.,Gene Regulation & Genomics, Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas , Heraklion, Crete, Greece
| | - Charalampos Spilianakis
- Department of Biology, University of Crete , Heraklion, Crete, Greece.,Gene Regulation & Genomics, Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas , Heraklion, Crete, Greece
| |
Collapse
|
35
|
Scourzic L, Salataj E, Apostolou E. Deciphering the Complexity of 3D Chromatin Organization Driving Lymphopoiesis and Lymphoid Malignancies. Front Immunol 2021; 12:669881. [PMID: 34054841 PMCID: PMC8160312 DOI: 10.3389/fimmu.2021.669881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
Proper lymphopoiesis and immune responses depend on the spatiotemporal control of multiple processes, including gene expression, DNA recombination and cell fate decisions. High-order 3D chromatin organization is increasingly appreciated as an important regulator of these processes and dysregulation of genomic architecture has been linked to various immune disorders, including lymphoid malignancies. In this review, we present the general principles of the 3D chromatin topology and its dynamic reorganization during various steps of B and T lymphocyte development and activation. We also discuss functional interconnections between architectural, epigenetic and transcriptional changes and introduce major key players of genomic organization in B/T lymphocytes. Finally, we present how alterations in architectural factors and/or 3D genome organization are linked to dysregulation of the lymphopoietic transcriptional program and ultimately to hematological malignancies.
Collapse
Affiliation(s)
| | | | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
36
|
Feng D, Li Z, Qin L, Hao B. The role of chromatin organizer Satb1 in shaping TCR repertoire in adult thymus. Genome 2021; 64:821-832. [PMID: 33617384 DOI: 10.1139/gen-2020-0139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
T cells recognize the universe of foreign antigens with a diverse repertoire of T cell receptors generated by V(D)J recombination. Special AT-rich binding protein 1 (Satb1) is a chromatin organizer that plays an essential role in T cell development. Previous study has shown that Satb1 regulates the re-induction of recombinase Rag1 and Rag2 in CD4+CD8+ thymocytes, affecting the secondary rearrangement of the Tcra gene. Here, we detected the repertoires of four TCR genes, Tcrd, Tcrg, Tcrb, and Tcra, in the adult thymus, and explored the role of the Satb1 in shaping the TCR repertoires. We observed a strong bias in the V and J gene usages of the Tcrd and Tcrg repertoires in WT and Satb1-deleted thymocytes. Satb1 deletion had few effects on the V(D)J rearrangement and repertoire of the Tcrg, Tcrd, and Tcrb genes. The Tcra repertoire was severely impaired in Satb1-deleted thymocytes, while the primary rearrangement was relatively normal. We also found the CDR3 length of TCRα chain was significantly longer in Satb1-deleted thymocytes, which can be explained by the strong bias of the proximal Jα usage. Our results showed that Satb1 plays an essential role in shaping TCR repertoires in αβ T cells.
Collapse
Affiliation(s)
- Delong Feng
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhaoqiang Li
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Litao Qin
- Medical Genetic Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 450003, P.R. China.,National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, Henan 450003, P.R. China
| | - Bingtao Hao
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Medical Genetic Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 450003, P.R. China.,National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
37
|
Chopp LB, Gopalan V, Ciucci T, Ruchinskas A, Rae Z, Lagarde M, Gao Y, Li C, Bosticardo M, Pala F, Livak F, Kelly MC, Hannenhalli S, Bosselut R. An Integrated Epigenomic and Transcriptomic Map of Mouse and Human αβ T Cell Development. Immunity 2020; 53:1182-1201.e8. [PMID: 33242395 PMCID: PMC8641659 DOI: 10.1016/j.immuni.2020.10.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/25/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
Abstract
αβ lineage T cells, most of which are CD4+ or CD8+ and recognize MHC I- or MHC II-presented antigens, are essential for immune responses and develop from CD4+CD8+ thymocytes. The absence of in vitro models and the heterogeneity of αβ thymocytes have hampered analyses of their intrathymic differentiation. Here, combining single-cell RNA and ATAC (chromatin accessibility) sequencing, we identified mouse and human αβ thymocyte developmental trajectories. We demonstrated asymmetric emergence of CD4+ and CD8+ lineages, matched differentiation programs of agonist-signaled cells to their MHC specificity, and identified correspondences between mouse and human transcriptomic and epigenomic patterns. Through computational analysis of single-cell data and binding sites for the CD4+-lineage transcription factor Thpok, we inferred transcriptional networks associated with CD4+- or CD8+-lineage differentiation, and with expression of Thpok or of the CD8+-lineage factor Runx3. Our findings provide insight into the mechanisms of CD4+ and CD8+ T cell differentiation and a foundation for mechanistic investigations of αβ T cell development.
Collapse
Affiliation(s)
- Laura B Chopp
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Immunology Graduate Group, University of Pennsylvania Medical School, Philadelphia, PA, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Ciucci
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Allison Ruchinskas
- Cancer Research Technology Program, Single Cell Analysis Facility, Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Zachary Rae
- Cancer Research Technology Program, Single Cell Analysis Facility, Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Manon Lagarde
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yayi Gao
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Caiyi Li
- Laboratory of Genomic Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ferenc Livak
- Laboratory of Genomic Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael C Kelly
- Cancer Research Technology Program, Single Cell Analysis Facility, Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
38
|
Nomura A, Taniuchi I. The Role of CD8 Downregulation during Thymocyte Differentiation. Trends Immunol 2020; 41:972-981. [DOI: 10.1016/j.it.2020.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 11/26/2022]
|
39
|
Brown CY, Sadlon T, Hope CM, Wong YY, Wong S, Liu N, Withers H, Brown K, Bandara V, Gundsambuu B, Pederson S, Breen J, Robertson SA, Forrest A, Beyer M, Barry SC. Molecular Insights Into Regulatory T-Cell Adaptation to Self, Environment, and Host Tissues: Plasticity or Loss of Function in Autoimmune Disease. Front Immunol 2020; 11:1269. [PMID: 33072063 PMCID: PMC7533603 DOI: 10.3389/fimmu.2020.01269] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
There has been much interest in the ability of regulatory T cells (Treg) to switch function in vivo, either as a result of genetic risk of disease or in response to environmental and metabolic cues. The relationship between levels of FOXP3 and functional fitness plays a significant part in this plasticity. There is an emerging role for Treg in tissue repair that may be less dependent on FOXP3, and the molecular mechanisms underpinning this are not fully understood. As a result of detailed, high-resolution functional genomics, the gene regulatory networks and key functional mediators of Treg phenotype downstream of FOXP3 have been mapped, enabling a mechanistic insight into Treg function. This transcription factor-driven programming of T-cell function to generate Treg requires the switching on and off of key genes that form part of the Treg gene regulatory network and raises the possibility that this is reversible. It is plausible that subtle shifts in expression levels of specific genes, including transcription factors and non-coding RNAs, change the regulation of the Treg gene network. The subtle skewing of gene expression initiates changes in function, with the potential to promote chronic disease and/or to license appropriate inflammatory responses. In the case of autoimmunity, there is an underlying genetic risk, and the interplay of genetic and environmental cues is complex and impacts gene regulation networks frequently involving promoters and enhancers, the regulatory elements that control gene expression levels and responsiveness. These promoter–enhancer interactions can operate over long distances and are highly cell type specific. In autoimmunity, the genetic risk can result in changes in these enhancer/promoter interactions, and this mainly impacts genes which are expressed in T cells and hence impacts Treg/conventional T-cell (Tconv) function. Genetic risk may cause the subtle alterations to the responsiveness of gene regulatory networks which are controlled by or control FOXP3 and its target genes, and the application of assays of the 3D organization of chromatin, enabling the connection of non-coding regulatory regions to the genes they control, is revealing the direct impact of environmental/metabolic/genetic risk on T-cell function and is providing mechanistic insight into susceptibility to inflammatory and autoimmune conditions.
Collapse
Affiliation(s)
- Cheryl Y Brown
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Timothy Sadlon
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.,Women's and Children's Health Network, North Adelaide, SA, Australia
| | | | - Ying Y Wong
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Soon Wong
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Ning Liu
- Bioinformatics Hub, University of Adelaide, Adelaide, SA, Australia
| | - Holly Withers
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Katherine Brown
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Veronika Bandara
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Batjargal Gundsambuu
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Stephen Pederson
- Bioinformatics Hub, University of Adelaide, Adelaide, SA, Australia
| | - James Breen
- Bioinformatics Hub, University of Adelaide, Adelaide, SA, Australia
| | - Sarah Anne Robertson
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Alistair Forrest
- QEII Medical Centre and Centre for Medical Research, Harry Perkins Institute of Medical Research, Murdoch, WA, Australia
| | - Marc Beyer
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Simon Charles Barry
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.,Women's and Children's Health Network, North Adelaide, SA, Australia
| |
Collapse
|
40
|
Andrews LP, Somasundaram A, Moskovitz JM, Szymczak-Workman AL, Liu C, Cillo AR, Lin H, Normolle DP, Moynihan KD, Taniuchi I, Irvine DJ, Kirkwood JM, Lipson EJ, Ferris RL, Bruno TC, Workman CJ, Vignali DAA. Resistance to PD1 blockade in the absence of metalloprotease-mediated LAG3 shedding. Sci Immunol 2020; 5:eabc2728. [PMID: 32680952 PMCID: PMC7901539 DOI: 10.1126/sciimmunol.abc2728] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
Abstract
Mechanisms of resistance to cancer immunotherapy remain poorly understood. Lymphocyte activation gene-3 (LAG3) signaling is regulated by a disintegrin and metalloprotease domain-containing protein-10 (ADAM10)- and ADAM17-mediated cell surface shedding. Here, we show that mice expressing a metalloprotease-resistant, noncleavable LAG3 mutant (LAG3NC) are resistant to PD1 blockade and fail to mount an effective antitumor immune response. Expression of LAG3NC intrinsically perturbs CD4+ T conventional cells (Tconvs), limiting their capacity to provide CD8+ T cell help. Furthermore, the translational relevance for these observations is highlighted with an inverse correlation between high LAG3 and low ADAM10 expression on CD4+ Tconvs in the peripheral blood of patients with head and neck squamous cell carcinoma, which corresponded with poor prognosis. This correlation was also observed in a cohort of patients with skin cancers and was associated with increased disease progression after standard-of-care immunotherapy. These data suggest that subtle changes in LAG3 inhibitory receptor signaling can act as a resistance mechanism with a substantive effect on patient responsiveness to immunotherapy.
Collapse
MESH Headings
- ADAM10 Protein/antagonists & inhibitors
- ADAM10 Protein/immunology
- Adenocarcinoma/drug therapy
- Adenocarcinoma/genetics
- Adenocarcinoma/immunology
- Adenocarcinoma/pathology
- Animals
- Antigens, CD/blood
- Antigens, CD/genetics
- Antigens, CD/immunology
- Cell Line, Tumor
- Colonic Neoplasms/drug therapy
- Colonic Neoplasms/immunology
- Colonic Neoplasms/pathology
- Drug Resistance, Neoplasm/immunology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Female
- Head and Neck Neoplasms/drug therapy
- Head and Neck Neoplasms/immunology
- Head and Neck Neoplasms/pathology
- Humans
- Immune Checkpoint Inhibitors/therapeutic use
- Immunotherapy
- Male
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Mice, Transgenic
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/immunology
- Skin Neoplasms/drug therapy
- Skin Neoplasms/immunology
- Skin Neoplasms/pathology
- Squamous Cell Carcinoma of Head and Neck/drug therapy
- Squamous Cell Carcinoma of Head and Neck/immunology
- Squamous Cell Carcinoma of Head and Neck/pathology
- T-Lymphocytes/immunology
- Transcriptome
- Lymphocyte Activation Gene 3 Protein
Collapse
Affiliation(s)
- Lawrence P Andrews
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ashwin Somasundaram
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jessica M Moskovitz
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | | | - Chang Liu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Anthony R Cillo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Huang Lin
- Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Daniel P Normolle
- Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Kelly D Moynihan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ichiro Taniuchi
- RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, Japan
| | - Darrell J Irvine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - John M Kirkwood
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Evan J Lipson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert L Ferris
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
41
|
Thymic development of unconventional T cells: how NKT cells, MAIT cells and γδ T cells emerge. Nat Rev Immunol 2020; 20:756-770. [DOI: 10.1038/s41577-020-0345-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2020] [Indexed: 12/11/2022]
|
42
|
Patta I, Madhok A, Khare S, Gottimukkala KP, Verma A, Giri S, Dandewad V, Seshadri V, Lal G, Misra-Sen J, Galande S. Dynamic regulation of chromatin organizer SATB1 via TCR-induced alternative promoter switch during T-cell development. Nucleic Acids Res 2020; 48:5873-5890. [PMID: 32392347 PMCID: PMC7293019 DOI: 10.1093/nar/gkaa321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023] Open
Abstract
The chromatin organizer SATB1 is highly enriched in thymocytes and is essential for T-cell development. Although SATB1 regulates a large number of genes important for T-cell development, the mechanism(s) regulating expression of SATB1 during this process remain elusive. Using chromatin immune precipitation-seq-based occupancy profiles of H3K4me3 and H3Kme1 at Satb1 gene locus, we predicted four different alternative promoters of Satb1 in mouse thymocytes and characterized them. The expression of Satb1 transcript variants with distinct 5′ UTRs occurs in a stage-specific manner during T-cell development and is dependent on TCR signaling. The observed discrepancy between the expression levels of SATB1 mRNA and protein in developing thymocytes can be explained by the differential translatability of Satb1 transcript variants as confirmed by polysome profiling and in vitro translation assay. We show that Satb1 alternative promoters exhibit lineage-specific chromatin accessibility during T-cell development from progenitors. Furthermore, TCF1 regulates the Satb1 P2 promoter switch during CD4SP development, via direct binding to the Satb1 P2 promoter. CD4SP T cells from TCF1 KO mice exhibit downregulation of P2 transcript variant expression as well as low levels of SATB1 protein. Collectively, these results provide unequivocal evidence toward alternative promoter switch-mediated developmental stage-specific regulation of SATB1 in thymocytes.
Collapse
Affiliation(s)
- Indumathi Patta
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Ayush Madhok
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Satyajeet Khare
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India.,Symbiosis School of Biological Sciences, Pune, Maharashtra 412115, India
| | - Kamalvishnu P Gottimukkala
- National Institute on Aging, NIH and School of Medicine Immunology Graduate Program, Johns Hopkins University, Baltimore, MD 21224, USA
| | - Anjali Verma
- National Institute on Aging, NIH and School of Medicine Immunology Graduate Program, Johns Hopkins University, Baltimore, MD 21224, USA
| | - Shilpi Giri
- National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra 411007, India
| | - Vishal Dandewad
- National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra 411007, India
| | - Vasudevan Seshadri
- National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra 411007, India
| | - Girdhari Lal
- National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra 411007, India
| | - Jyoti Misra-Sen
- National Institute on Aging, NIH and School of Medicine Immunology Graduate Program, Johns Hopkins University, Baltimore, MD 21224, USA
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| |
Collapse
|
43
|
Mazuz M, Tiroler A, Moyal L, Hodak E, Nadarajan S, Vinayaka AC, Gorovitz-Haris B, Lubin I, Drori A, Drori G, Cauwenberghe OV, Faigenboim A, Namdar D, Amitay-Laish I, Koltai H. Synergistic cytotoxic activity of cannabinoids from cannabis sativa against cutaneous T-cell lymphoma (CTCL) in-vitro and ex-vivo. Oncotarget 2020; 11:1141-1156. [PMID: 32284791 PMCID: PMC7138167 DOI: 10.18632/oncotarget.27528] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 03/03/2020] [Indexed: 12/30/2022] Open
Abstract
Cannabis sativa produces hundreds of phytocannabinoids and terpenes. Mycosis fungoides (MF) is the most common type of cutaneous T-cell lymphoma (CTCL), characterized by patches, plaques and tumors. Sézary is a leukemic stage of CTCL presenting with erythroderma and the presence of neoplastic Sézary T-cells in peripheral blood. This study aimed to identify active compounds from whole cannabis extracts and their synergistic mixtures, and to assess respective cytotoxic activity against CTCL cells. Ethanol extracts of C. sativa were analyzed by high-performance liquid chromatography (HPLC) and gas chromatography/mass spectrometry (GC/MS). Cytotoxic activity was determined using the XTT assay on My-La and HuT-78 cell lines as well as peripheral blood lymphocytes from Sézary patients (SPBL). Annexin V assay and fluorescence-activated cell sorting (FACS) were used to determine apoptosis and cell cycle. RNA sequencing and quantitative PCR were used to determine gene expression. Active cannabis compounds presenting high cytotoxic activity on My-La and HuT-78 cell lines were identified in crude extract fractions designated S4 and S5, and their synergistic mixture was specified. This mixture induced cell cycle arrest and cell apoptosis; a relatively selective apoptosis was also recorded on the malignant CD4+CD26- SPBL cells. Significant cytotoxic activity of the corresponding mixture of pure phytocannabinoids further verified genuine interaction between S4 and S5. The gene expression profile was distinct in My-La and HuT-78 cells treated with the S4 and S5 synergistic mixture. We suggest that specifying formulations of synergistic active cannabis compounds and unraveling their modes of action may lead to new cannabis-based therapies.
Collapse
Affiliation(s)
- Moran Mazuz
- Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion, Israel.,These authors equally contributed as the first author
| | - Amir Tiroler
- Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion, Israel.,The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,These authors equally contributed as the first author
| | - Lilach Moyal
- Division of Dermatology, Rabin Medical Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Laboratory for Molecular Dermatology, Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Emmilia Hodak
- Division of Dermatology, Rabin Medical Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Laboratory for Molecular Dermatology, Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Stalin Nadarajan
- Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion, Israel
| | | | - Batia Gorovitz-Haris
- Laboratory for Molecular Dermatology, Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ido Lubin
- Core Facility, Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avi Drori
- MedC Biopharma Corporation, Ontario, Canada
| | - Guy Drori
- MedC Biopharma Corporation, Ontario, Canada
| | | | - Adi Faigenboim
- Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion, Israel
| | - Dvora Namdar
- Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion, Israel
| | - Iris Amitay-Laish
- Division of Dermatology, Rabin Medical Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Laboratory for Molecular Dermatology, Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,These authors equally contributed as the last author
| | - Hinanit Koltai
- Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion, Israel.,These authors equally contributed as the last author
| |
Collapse
|
44
|
Seo W, Shimizu K, Kojo S, Okeke A, Kohwi-Shigematsu T, Fujii SI, Taniuchi I. Runx-mediated regulation of CCL5 via antagonizing two enhancers influences immune cell function and anti-tumor immunity. Nat Commun 2020; 11:1562. [PMID: 32218434 PMCID: PMC7099032 DOI: 10.1038/s41467-020-15375-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/09/2020] [Indexed: 12/22/2022] Open
Abstract
CCL5 is a unique chemokine with distinct stage and cell-type specificities for regulating inflammation, but how these specificities are achieved and how CCL5 modulates immune responses is not well understood. Here we identify two stage-specific enhancers: the proximal enhancer mediates the constitutive CCL5 expression during the steady state, while the distal enhancer located 1.35 Mb from the promoter induces CCL5 expression in activated cells. Both enhancers are antagonized by RUNX/CBFβ complexes, and SATB1 further mediates the long-distance interaction of the distal enhancer with the promoter. Deletion of the proximal enhancer decreases CCL5 expression and augments the cytotoxic activity of tissue-resident T and NK cells, which coincides with reduced melanoma metastasis in mouse models. By contrast, increased CCL5 expression resulting from RUNX3 mutation is associated with more tumor metastasis in the lung. Collectively, our results suggest that RUNX3-mediated CCL5 repression is critical for modulating anti-tumor immunity. CCL5 is an important chemokine for modulation of inflammatory responses, but how CCL5 expression is regulated is still unclear. Here the authors show that the CCL5 locus contains two enhancers, with the proximal enhancer being responsible for homeostatic expression and the distal enhancer enforcing inducibility, while both enhancers are modulated by RUNX3.
Collapse
Affiliation(s)
- Wooseok Seo
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan. .,Department of Immunology, Nagoya University Graduate School of Medicine, Showa-ku Tsurumai-Cho 65, Nagoya, 466-8550, Japan.
| | - Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Satoshi Kojo
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Arinze Okeke
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | | | - Shin-Ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
| |
Collapse
|
45
|
Ono M. Control of regulatory T-cell differentiation and function by T-cell receptor signalling and Foxp3 transcription factor complexes. Immunology 2020; 160:24-37. [PMID: 32022254 DOI: 10.1111/imm.13178] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/18/2019] [Accepted: 01/11/2020] [Indexed: 12/11/2022] Open
Abstract
The transcription factor Foxp3 controls the differentiation and function of regulatory T-cells (Treg). Studies in the past decades identified numerous Foxp3-interacting protein partners. However, it is still not clear how Foxp3 produces the Treg-type transcriptomic landscape through cooperating with its partners. Here I show the current understanding of how Foxp3 transcription factor complexes regulate the differentiation, maintenance and functional maturation of Treg. Importantly, T-cell receptor (TCR) signalling plays central roles in Treg differentiation and Foxp3-mediated gene regulation. Differentiating Treg will have recognized their cognate antigens and received TCR signals before initiating Foxp3 transcription, which is triggered by TCR-induced transcription factors including NFAT, AP-1 and NF-κB. Once expressed, Foxp3 seizes TCR signal-induced transcriptional and epigenetic mechanisms through interacting with AML1/Runx1 and NFAT. Thus, Foxp3 modifies gene expression dynamics of TCR-induced genes, which constitute cardinal mechanisms for Treg-mediated immune suppression. Next, I discuss the following key topics, proposing new mechanistic models for Foxp3-mediated gene regulation: (i) how Foxp3 transcription is induced and maintained by the Foxp3-inducing enhanceosome and the Foxp3 autoregulatory transcription factor complex; (ii) molecular mechanisms for effector Treg differentiation (i.e. Treg maturation); (iii) how Foxp3 activates or represses its target genes through recruiting coactivators and corepressors; (iv) the 'decision-making' Foxp3-containing transcription factor complex for Th17 and Treg differentiation; and (v) the roles of post-translational modification in Foxp3 regulation. Thus, this article provides cutting-edge understanding of molecular biology of Foxp3 and Treg, integrating findings by biochemical and genomic studies.
Collapse
Affiliation(s)
- Masahiro Ono
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
46
|
ZBTB7B (ThPOK) Is Required for Pathogenesis of Cerebral Malaria and Protection against Pulmonary Tuberculosis. Infect Immun 2020; 88:IAI.00845-19. [PMID: 31792077 DOI: 10.1128/iai.00845-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 11/20/2022] Open
Abstract
We used a genome-wide screen in N-ethyl-N-nitrosourea (ENU)-mutagenized mice to identify genes in which recessive loss-of-function mutations protect against pathological neuroinflammation. We identified an R367Q mutation in the ZBTB7B (ThPOK) protein in which homozygosity causes protection against experimental cerebral malaria (ECM) caused by infection with Plasmodium berghei ANKA. Zbtb7bR367Q homozygous mice show a defect in the lymphoid compartment expressed as severe reduction in the number of single-positive CD4 T cells in the thymus and in the periphery, reduced brain infiltration of proinflammatory leukocytes in P. berghei ANKA-infected mice, and reduced production of proinflammatory cytokines by primary T cells ex vivo and in vivo Dampening of proinflammatory immune responses in Zbtb7bR367Q mice is concomitant to increased susceptibility to infection with avirulent (Mycobacterium bovis BCG) and virulent (Mycobacterium tuberculosis H37Rv) mycobacteria. The R367Q mutation maps to the first DNA-binding zinc finger domain of ThPOK and causes loss of base contact by R367 in the major groove of the DNA, which is predicted to impair DNA binding. Global immunoprecipitation of ThPOK-containing chromatin complexes coupled to DNA sequencing (ChIP-seq) identified transcriptional networks and candidate genes likely to play key roles in CD4+ CD8+ T cell development and in the expression of lineage-specific functions of these cells. This study highlights ThPOK as a global regulator of immune function in which alterations may affect normal responses to infectious and inflammatory stimuli.
Collapse
|
47
|
Zhang Y, Zheng L, Le M, Nakano Y, Chan B, Huang Y, Torbaty PM, Kohwi Y, Marcucio R, Habelitz S, Den Besten PK, Kohwi-Shigematsu T. SATB1 establishes ameloblast cell polarity and regulates directional amelogenin secretion for enamel formation. BMC Biol 2019; 17:104. [PMID: 31830989 PMCID: PMC6909472 DOI: 10.1186/s12915-019-0722-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 11/13/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Polarity is necessary for epithelial cells to perform distinct functions at their apical and basal surfaces. Oral epithelial cell-derived ameloblasts at secretory stage (SABs) synthesize large amounts of enamel matrix proteins (EMPs), largely amelogenins. EMPs are unidirectionally secreted into the enamel space through their apical cytoplasmic protrusions, or Tomes' processes (TPs), to guide the enamel formation. Little is known about the transcriptional regulation underlying the establishment of cell polarity and unidirectional secretion of SABs. RESULTS The higher-order chromatin architecture of eukaryotic genome plays important roles in cell- and stage-specific transcriptional programming. A genome organizer, special AT-rich sequence-binding protein 1 (SATB1), was discovered to be significantly upregulated in ameloblasts compared to oral epithelial cells using a whole-transcript microarray analysis. The Satb1-/- mice possessed deformed ameloblasts and a thin layer of hypomineralized and non-prismatic enamel. Remarkably, Satb1-/- ameloblasts at the secretory stage lost many morphological characteristics found at the apical surface of wild-type (wt) SABs, including the loss of Tomes' processes, defective inter-ameloblastic adhesion, and filamentous actin architecture. As expected, the secretory function of Satb1-/- SABs was compromised as amelogenins were largely retained in cells. We found the expression of epidermal growth factor receptor pathway substrate 8 (Eps8), a known regulator for actin filament assembly and small intestinal epithelial cytoplasmic protrusion formation, to be SATB1 dependent. In contrast to wt SABs, EPS8 could not be detected at the apical surface of Satb1-/- SABs. Eps8 expression was greatly reduced in small intestinal epithelial cells in Satb1-/- mice as well, displaying defective intestinal microvilli. CONCLUSIONS Our data show that SATB1 is essential for establishing secretory ameloblast cell polarity and for EMP secretion. In line with the deformed apical architecture, amelogenin transport to the apical secretory front and secretion into enamel space were impeded in Satb1-/- SABs resulting in a massive cytoplasmic accumulation of amelogenins and a thin layer of hypomineralized enamel. Our studies strongly suggest that SATB1-dependent Eps8 expression plays a critical role in cytoplasmic protrusion formation in both SABs and in small intestines. This study demonstrates the role of SATB1 in the regulation of amelogenesis and the potential application of SATB1 in ameloblast/enamel regeneration.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Orofacial Sciences, University of California, San Francisco, USA.
| | - Liwei Zheng
- Department of Orofacial Sciences, University of California, San Francisco, USA
| | - Michael Le
- Department of Orofacial Sciences, University of California, San Francisco, USA
| | - Yukiko Nakano
- Department of Orofacial Sciences, University of California, San Francisco, USA
| | - Barry Chan
- Department of Orofacial Sciences, University of California, San Francisco, USA
| | - Yulei Huang
- Department of Orofacial Sciences, University of California, San Francisco, USA
| | | | - Yoshinori Kohwi
- Department of Orofacial Sciences, University of California, San Francisco, USA
| | - Ralph Marcucio
- Department of Orthopaedic Surgery, University of California, San Francisco, USA
| | - Stefan Habelitz
- Preventive and Restorative Dental Sciences, University of California, San Francisco, USA
| | - Pamela K Den Besten
- Department of Orofacial Sciences, University of California, San Francisco, USA
| | | |
Collapse
|
48
|
Koay HF, Su S, Amann-Zalcenstein D, Daley SR, Comerford I, Miosge L, Whyte CE, Konstantinov IE, d'Udekem Y, Baldwin T, Hickey PF, Berzins SP, Mak JYW, Sontani Y, Roots CM, Sidwell T, Kallies A, Chen Z, Nüssing S, Kedzierska K, Mackay LK, McColl SR, Deenick EK, Fairlie DP, McCluskey J, Goodnow CC, Ritchie ME, Belz GT, Naik SH, Pellicci DG, Godfrey DI. A divergent transcriptional landscape underpins the development and functional branching of MAIT cells. Sci Immunol 2019; 4:eaay6039. [PMID: 31757835 PMCID: PMC10627559 DOI: 10.1126/sciimmunol.aay6039] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022]
Abstract
MR1-restricted mucosal-associated invariant T (MAIT) cells play a unique role in the immune system. These cells develop intrathymically through a three-stage process, but the events that regulate this are largely unknown. Here, using bulk and single-cell RNA sequencing-based transcriptomic analysis in mice and humans, we studied the changing transcriptional landscape that accompanies transition through each stage. Many transcripts were sharply modulated during MAIT cell development, including SLAM (signaling lymphocytic activation molecule) family members, chemokine receptors, and transcription factors. We also demonstrate that stage 3 "mature" MAIT cells comprise distinct subpopulations including newly arrived transitional stage 3 cells, interferon-γ-producing MAIT1 cells and interleukin-17-producing MAIT17 cells. Moreover, the validity and importance of several transcripts detected in this study are directly demonstrated using specific mutant mice. For example, MAIT cell intrathymic maturation was found to be halted in SLAM-associated protein (SAP)-deficient and CXCR6-deficient mouse models, providing clear evidence for their role in modulating MAIT cell development. These data underpin a model that maps the changing transcriptional landscape and identifies key factors that regulate the process of MAIT cell differentiation, with many parallels between mice and humans.
Collapse
Affiliation(s)
- H-F Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - S Su
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Single Cell Open Research Endeavour (SCORE), Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - D Amann-Zalcenstein
- Single Cell Open Research Endeavour (SCORE), Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - S R Daley
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - I Comerford
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - L Miosge
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - C E Whyte
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - I E Konstantinov
- Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia
- Melbourne Children's Centre for Cardiovascular Genomics and Regenerative Medicine, Murdoch Children's Research Institute, Victoria 3052, Australia
- Murdoch Children's Research Institute, Victoria 3052, Australia
| | - Y d'Udekem
- Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia
- Melbourne Children's Centre for Cardiovascular Genomics and Regenerative Medicine, Murdoch Children's Research Institute, Victoria 3052, Australia
- Murdoch Children's Research Institute, Victoria 3052, Australia
| | - T Baldwin
- Single Cell Open Research Endeavour (SCORE), Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - P F Hickey
- Single Cell Open Research Endeavour (SCORE), Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - S P Berzins
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
- Federation University Australia, Ballarat, Victoria 3350, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, Victoria 3350, Australia
| | - J Y W Mak
- Division of Chemistry and Structural Biology, and Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Y Sontani
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - C M Roots
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - T Sidwell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - A Kallies
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Z Chen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - S Nüssing
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - K Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - L K Mackay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - S R McColl
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - E K Deenick
- Garvan Institute of Medical Research, Sydney, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales (UNSW), Sydney, Australia
| | - D P Fairlie
- Division of Chemistry and Structural Biology, and Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Queensland, Brisbane, Queensland 4072, Australia
| | - J McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - C C Goodnow
- Garvan Institute of Medical Research, Sydney, Australia
- UNSW Cellular Genomics Futures Institute, UNSW, Sydney, Australia
| | - M E Ritchie
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - G T Belz
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - S H Naik
- Single Cell Open Research Endeavour (SCORE), Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - D G Pellicci
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia.
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Melbourne, Victoria 3000, Australia
- Murdoch Children's Research Institute, Victoria 3052, Australia
| | - D I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia.
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Melbourne, Victoria 3000, Australia
| |
Collapse
|
49
|
Abstract
A fundamental question in developmental immunology is how bipotential thymocyte precursors generate both CD4+ helper and CD8+ cytotoxic T cell lineages. The MHC specificity of αβ T cell receptors (TCRs) on precursors is closely correlated with cell fate-determining processes, prompting studies to characterize how variations in TCR signaling are linked with genetic programs establishing lineage-specific gene expression signatures, such as exclusive CD4 or CD8 expression. The key transcription factors ThPOK and Runx3 have been identified as mediating development of helper and cytotoxic T cell lineages, respectively. Together with increasing knowledge of epigenetic regulators, these findings have advanced our understanding of the transcription factor network regulating the CD4/CD8 dichotomy. It has also become apparent that CD4+ T cells retain developmental plasticity, allowing them to acquire cytotoxic activity in the periphery. Despite such advances, further studies are necessary to identify the molecular links between TCR signaling and the nuclear machinery regulating expression of ThPOK and Runx3.
Collapse
Affiliation(s)
- Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan;
| |
Collapse
|
50
|
Luo X, Xu L, Wu X, Tan H, Liu L. Decreased SATB1 expression promotes AML cell proliferation through NF-κB activation. Cancer Cell Int 2019; 19:134. [PMID: 31130823 PMCID: PMC6525380 DOI: 10.1186/s12935-019-0850-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/07/2019] [Indexed: 12/28/2022] Open
Abstract
Background Special AT-rich sequence-binding protein 1 (SATB1) is a chromatin-remodeling protein that regulates gene expressions in different types of cancer. Up-regulation of SATB1 is linked with progression of tumors. Our previous study showed that SATB1 expression was decreased in T cell leukemia/lymphoma. The contrary roles of SATB1 in solid organ tumors and hematology malignancy may provide hints to study the function of SATB1. Methods To characterize SATB1 mRNA and protein expression in acute myeloid leukemia (AML), we performed qRT-PCR and Western blot on bone marrow mononuclear cells from 52 newly diagnosed AML patients. Stable HL-60 cell lines with knockdown of SATB1 by shRNAs sequences (HL-60 SATB1-shRNA1 and HL-60 SATB1-shRNA2) were established. Cell proliferation, cell cycle and cell invasiveness were analyzed. Murine model was established using HL-60 SATB1-shRNAs treated nude mice and tumorigenicity was compared to study the role of SATB1 in vivo. Global gene expression profiles were analyzed in HL-60 cells with SATB1 knockdown to investigate the mechanisms underlying the regulation of AML cell growth by SATB1. Results We found that SATB1 expression was significantly decreased in patients with AML compared to normal control, and was increased after complete remission of AML. Knockdown of SATB1 enhanced the proliferation of HL-60 cells and accelerated S phase entry in vitro, and promoted the tumor growth in vivo. Global gene expression profiles were analyzed in HL-60 cells with SATB1 knockdown and the differentially expressed genes were involved in NF-κB, MAPK and PI3 K/Akt signaling pathways. Nuclear NF-κB p65 levels were significantly increased in SATB1 depleted HL-60 cells. Conclusions Decreased SATB1 expression promotes AML cell proliferation through NF-κB activation. SATB1 could be a predictor for better response to treatment in AML.
Collapse
Affiliation(s)
- Xiaodan Luo
- Department of Hematology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510230 China
| | - Lihua Xu
- Department of Hematology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510230 China
| | - Xiaohong Wu
- Department of Hematology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510230 China
| | - Huo Tan
- Department of Hematology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510230 China
| | - Lian Liu
- Department of Hematology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510230 China
| |
Collapse
|