1
|
Xu K, Ji S, Huang J, Yin L, Zhang J, Sun R, Pu Y. ZMAT3 participated in benzene-caused disruption in self-renewal and differentiation of hematopoietic stem cells via TNF-α/NF-κB pathway. Food Chem Toxicol 2024; 190:114838. [PMID: 38914192 DOI: 10.1016/j.fct.2024.114838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/05/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Benzene is a common environmental and occupational pollutant, benzene exposure causes damage to hematopoietic system. ZMAT3 is a zinc finger protein which has important biological functions. In this study, benzene-exposed mouse model and ZMAT3 overexpression and low expression hematopoietic stem cells (HSCs) models were constructed to explore the mechanism of ZMAT3 in benzene-induced hematopoietic toxicity. The results showed that benzene increased the expression of ZMAT3 in mouse bone marrow (BM) cells, HSCs and peripheral blood (PB) leukocyte, and the changes in HSCs were more sensitive than BM and PB cells. In addition, overexpression of ZMAT3 decreased the self-renewal ability of HSCs and reduced the HSCs differentiation into myeloid hematopoietic cells, while low expression has the opposite effect. Besides, over and low expression of ZMAT3 both increased the HSCs differentiation into lymphoid progenitor cells. Moreover, bioinformatics analysis suggested that ZMAT3 was associated with TNF-α signaling pathway, and the correlation was confirmed in mouse model. Meanwhile, the results indicated that ZMAT3 promoted TNF-α mRNA processing by binding to the ARE structural domain on TNF-α and interacting with hnRNP A2/B1 and hnRNP A1 proteins, ultimately activating the NF-κB signaling pathway. This study provides a new mechanism for the study of benzene toxicity.
Collapse
Affiliation(s)
- Kai Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Shuangbin Ji
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jiawei Huang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Bragato C, Persico A, Ferreres G, Tzanov T, Mantecca P. Exploring the Effects of Lignin Nanoparticles in Different Zebrafish Inflammatory Models. Int J Nanomedicine 2024; 19:7731-7750. [PMID: 39099787 PMCID: PMC11297570 DOI: 10.2147/ijn.s469813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Purpose Lignin is the most abundant source of aromatic biopolymers and has gained interest in industrial and biomedical applications due to the reported biocompatibility and defense provided against bacterial and fungal pathogens, besides antioxidant and UV-blocking properties. Especially in the form of nanoparticles (NPs), lignin may display also antioxidant and anti-inflammatory activities. Methods To evaluate these characteristics, sonochemically nano-formulated pristine lignin (LigNPs) and enzymatically-phenolated one (PheLigNPs) were used to expose zebrafish embryos, without chorion, at different concentrations. Furthermore, two different zebrafish inflammation models were generated, by injecting Pseudomonas aeruginosa lipopolysaccharide (LPS) and by provoking a wound injury in the embryo caudal fin. The inflammatory process was investigated in both models by qPCR, analyzing the level of genes as il8, il6, il1β, tnfα, nfkbiaa, nfk2, and ccl34a.4, and by the evaluation of neutrophils recruitment, taking advantage of the Sudan Black staining, in the presence or not of LigNPs and PheLigNPs. Finally, the Wnt/β-catenin pathway, related to tissue regeneration, was investigated at the molecular level in embryos wounded and exposed to NPs. Results The data obtained demonstrated that the lignin-based NPs showed the capacity to induce a positive response during an inflammatory event, increasing the recruitment of cytokines to accelerate their chemotactic function. Moreover, the LigNPs and PheLigNPs have a role in the resolution of wounds, favoring the regeneration process. Conclusion In this paper, we used zebrafish embryos within 5 days post fertilization (hpf). Despite being an early-stage exemplary, the zebrafish embryos have proven their potential as predicting models. Further long-term experiments in adults will be needed to explore completely the biomedical capabilities of lignin NPs. The results underlined the safety of both NPs tested paved the way for further evaluations to exploit the anti-inflammatory and pro-healing properties of the lignin nanoparticles examined.
Collapse
Affiliation(s)
- Cinzia Bragato
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, 20126, Italy
| | - Andrea Persico
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, 20126, Italy
| | - Guillem Ferreres
- Group of Molecular and Industrial Biotechnology, Universitat Politècnica de Catalunya, Terrassa, 08222, Spain
| | - Tzanko Tzanov
- Group of Molecular and Industrial Biotechnology, Universitat Politècnica de Catalunya, Terrassa, 08222, Spain
| | - Paride Mantecca
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, 20126, Italy
| |
Collapse
|
3
|
Matsui S, Ri C, Bolanos LC, Choi K, Shibamiya A, Ishii A, Takaishi K, Oshima-Hasegawa N, Tsukamoto S, Takeda Y, Mimura N, Yoshimi A, Yokote K, Starczynowski DT, Sakaida E, Muto T. Metabolic reprogramming regulated by TRAF6 contributes to the leukemia progression. Leukemia 2024; 38:1032-1045. [PMID: 38609495 PMCID: PMC11073974 DOI: 10.1038/s41375-024-02245-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
TNF receptor associated factor 6 (TRAF6) is an E3 ubiquitin ligase that has been implicated in myeloid malignancies. Although altered TRAF6 expression is observed in human acute myeloid leukemia (AML), its role in the AML pathogenesis remains elusive. In this study, we showed that the loss of TRAF6 in AML cells significantly impairs leukemic function in vitro and in vivo, indicating its functional importance in AML subsets. Loss of TRAF6 induces metabolic alterations, such as changes in glycolysis, TCA cycle, and nucleic acid metabolism as well as impaired mitochondrial membrane potential and respiratory capacity. In leukemic cells, TRAF6 expression shows a positive correlation with the expression of O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT), which catalyzes the addition of O-GlcNAc to target proteins involved in metabolic regulation. The restoration of growth capacity and metabolic activity in leukemic cells with TRAF6 loss, achieved through either forced expression of OGT or pharmacological inhibition of O-GlcNAcase (OGA) that removes O-GlcNAc, indicates the significant role of O-GlcNAc modification in the TRAF6-related cellular and metabolic dynamics. Our findings highlight the oncogenic function of TRAF6 in leukemia and illuminate the novel TRAF6/OGT/O-GlcNAc axis as a potential regulator of metabolic reprogramming in leukemogenesis.
Collapse
Affiliation(s)
- Shinichiro Matsui
- Department of Hematology, Chiba University Hospital, Chiba, Japan
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Chihiro Ri
- Department of Hematology, Chiba University Hospital, Chiba, Japan
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Lyndsey C Bolanos
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Asuka Shibamiya
- Department of Hematology, Chiba University Hospital, Chiba, Japan
| | - Arata Ishii
- Department of Hematology, Chiba University Hospital, Chiba, Japan
| | - Koji Takaishi
- Department of Hematology, Chiba University Hospital, Chiba, Japan
| | - Nagisa Oshima-Hasegawa
- Department of Hematology, Chiba University Hospital, Chiba, Japan
- Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan
| | | | - Yusuke Takeda
- Department of Hematology, Chiba University Hospital, Chiba, Japan
| | - Naoya Mimura
- Department of Hematology, Chiba University Hospital, Chiba, Japan
- Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan
| | - Akihide Yoshimi
- Division of Cancer RNA Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Emiko Sakaida
- Department of Hematology, Chiba University Hospital, Chiba, Japan
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan
| | - Tomoya Muto
- Department of Hematology, Chiba University Hospital, Chiba, Japan.
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan.
- Division of Cancer RNA Research, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
4
|
Allara M, Girard JR. Towards an integrated understanding of inflammatory pathway influence on hematopoietic stem and progenitor cell differentiation. Bioessays 2024; 46:e2300142. [PMID: 38488673 DOI: 10.1002/bies.202300142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Recent research highlights that inflammatory signaling pathways such as pattern recognition receptor (PRR) signaling and inflammatory cytokine signaling play an important role in both on-demand hematopoiesis as well as steady-state hematopoiesis. Knockout studies have demonstrated the necessity of several distinct pathways in these processes, but often lack information about the contribution of specific cell types to the phenotypes in question. Transplantation studies have increased the resolution to the level of specific cell types by testing the necessity of inflammatory pathways specifically in donor hematopoietic stem and progenitor cells (HSPCs) or in recipient niche cells. Here, we argue that for an integrated understanding of how these processes occur in vivo and to inform the development of therapies that modulate hematopoietic responses, we need studies that knockout inflammatory signaling receptors in a cell-specific manner and compare the phenotypes caused by knockout in individual niche cells versus HSPCs.
Collapse
Affiliation(s)
- Michael Allara
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Juliet R Girard
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Zhu Y, Guan X, Geng X, Du Y, Jin S, Liu J. The signaling pathways involved in non-coding RNA regulation during osteogenic differentiation of periodontal tissue-derived cells in the field of periodontitis. J Periodontal Res 2024; 59:18-31. [PMID: 37961979 DOI: 10.1111/jre.13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/07/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023]
Abstract
Periodontitis is a prevalent oral disease caused by chronic inflammation of the periodontal tissues surrounding the teeth, which can lead to bone loss, tooth loosening, and even tooth loss. This inflammation has a negative impact on the osteogenic differentiation capacity of periodontal tissue-derived cells. Non-coding RNAs (ncRNAs) are a class of RNA molecules that do not encode proteins but can regulate various physiological processes. In this review, we summarized the critical signaling pathways that ncRNAs modulate in osteogenic differentiation of periodontal tissue-derived cells, such as the Wnt, BMP/Smad, NF-κB, and PI3-K/Akt/mTOR pathways. This comprehensive exploration of ncRNA-mediated modulation offers fresh and promising insights for prospective approaches in the management of periodontitis and the advancement of periodontal regeneration therapies.
Collapse
Affiliation(s)
- Yinci Zhu
- School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Xiaoyan Guan
- Department of Orthodontics, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Xiaorui Geng
- Department of Otolaryngology. Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, Shenzhen, China
| | - Yuanhang Du
- School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Suhan Jin
- Department of Orthodontics, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Jianguo Liu
- School of Stomatology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Oral Diseases Research, Higher Education Institution, Zunyi, China
| |
Collapse
|
6
|
Wang Y, Sun Y, Deng S, Liu J, Yu J, Chi H, Han X, Zhang Y, Shi J, Wang Y, Quan Y, Li H, Xu J. Discovery of galectin-8 as an LILRB4 ligand driving M-MDSCs defines a class of antibodies to fight solid tumors. Cell Rep Med 2024; 5:101374. [PMID: 38232701 PMCID: PMC10829871 DOI: 10.1016/j.xcrm.2023.101374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/16/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024]
Abstract
LILRB4 is an immunosuppressive receptor, and its targeting drugs are undergoing multiple preclinical and clinical trials. Currently, the absence of a functional LILRB4 ligand in solid tumors not only limits the strategy of early antibody screening but also leads to the lack of companion diagnostic (CDx) criteria, which is critical to the objective response rate in early-stage clinical trials. Here, we show that galectin-8 (Gal-8) is a high-affinity functional ligand of LILRB4, and its ligation induces M-MDSC by activating STAT3 and inhibiting NF-κB. Significantly, Gal-8, but not APOE, can induce MDSC, and both ligands bind LILRB4 noncompetitively. Gal-8 expression promotes in vivo tumor growth in mice, and the knockout of LILRB4 attenuates tumor growth in this context. Antibodies capable of functionally blocking Gal-8 are able to suppress tumor growth in vivo. These results identify Gal-8 as an MDSC-driving ligand of LILRB4, and they redefine a class of antibodies for solid tumors.
Collapse
Affiliation(s)
- Yiting Wang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yufan Sun
- BioTroy Therapeutics, Shanghai, China
| | - Shouyan Deng
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jiayang Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jianghong Yu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Hao Chi
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xue Han
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yuan Zhang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jiawei Shi
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yungang Wang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | | | - Hai Li
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Xu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
7
|
Muto T, Walker CS, Agarwal P, Vick E, Sampson A, Choi K, Niederkorn M, Ishikawa C, Hueneman K, Varney M, Starczynowski DT. Inactivation of p53 provides a competitive advantage to del(5q) myelodysplastic syndrome hematopoietic stem cells during inflammation. Haematologica 2023; 108:2715-2729. [PMID: 37102608 PMCID: PMC10542836 DOI: 10.3324/haematol.2022.282349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
Inflammation is associated with the pathogenesis of myelodysplastic syndromes (MDS) and emerging evidence suggests that MDS hematopoietic stem and progenitor cells (HSPC) exhibit an altered response to inflammation. Deletion of chromosome 5 (del(5q)) is the most common chromosomal abnormality in MDS. Although this MDS subtype contains several haploinsufficient genes that impact innate immune signaling, the effects of inflammation on del(5q) MDS HSPC remains undefined. Utilizing a model of del(5q)-like MDS, inhibiting the IRAK1/4-TRAF6 axis improved cytopenias, suggesting that activation of innate immune pathways contributes to certain clinical features underlying the pathogenesis of low-risk MDS. However, low-grade inflammation in the del(5q)-like MDS model did not contribute to more severe disease but instead impaired the del(5q)-like HSPC as indicated by their diminished numbers, premature attrition and increased p53 expression. Del(5q)-like HSPC exposed to inflammation became less quiescent, but without affecting cell viability. Unexpectedly, the reduced cellular quiescence of del(5q) HSPC exposed to inflammation was restored by p53 deletion. These findings uncovered that inflammation confers a competitive advantage of functionally defective del(5q) HSPC upon loss of p53. Since TP53 mutations are enriched in del(5q) AML following an MDS diagnosis, increased p53 activation in del(5q) MDS HSPC due to inflammation may create a selective pressure for genetic inactivation of p53 or expansion of a pre-existing TP53-mutant clone.
Collapse
Affiliation(s)
- Tomoya Muto
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Hematology, Chiba University Hospital, Chiba.
| | - Callum S Walker
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Puneet Agarwal
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Eric Vick
- Division of Hematology and Oncology, University of Cincinnati, Cincinnati, OH
| | - Avery Sampson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Madeline Niederkorn
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Chiharu Ishikawa
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Cancer Biology, University of Cincinnati, Cincinnati, OH
| | - Kathleen Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Melinda Varney
- Department of Pharmaceutical Science and Research, Marshall University, Huntington, WV
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Cancer Biology, University of Cincinnati, Cincinnati, OH; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; UC Cancer Center, Cincinnati, OH.
| |
Collapse
|
8
|
Vegivinti CTR, Keesari PR, Veeraballi S, Martins Maia CMP, Mehta AK, Lavu RR, Thakur RK, Tella SH, Patel R, Kakumani VK, Pulakurthi YS, Aluri S, Aggarwal RK, Ramachandra N, Zhao R, Sahu S, Shastri A, Verma A. Role of innate immunological/inflammatory pathways in myelodysplastic syndromes and AML: a narrative review. Exp Hematol Oncol 2023; 12:60. [PMID: 37422676 DOI: 10.1186/s40164-023-00422-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/22/2023] [Indexed: 07/10/2023] Open
Abstract
Dysregulation of the innate immune system and inflammatory-related pathways has been implicated in hematopoietic defects in the bone marrow microenvironment and associated with aging, clonal hematopoiesis, myelodysplastic syndromes (MDS), and acute myeloid leukemia (AML). As the innate immune system and its pathway regulators have been implicated in the pathogenesis of MDS/AML, novel approaches targeting these pathways have shown promising results. Variability in expression of Toll like receptors (TLRs), abnormal levels of MyD88 and subsequent activation of NF-κβ, dysregulated IL1-receptor associated kinases (IRAK), alterations in TGF-β and SMAD signaling, high levels of S100A8/A9 have all been implicated in pathogenesis of MDS/AML. In this review we not only discuss the interplay of various innate immune pathways in MDS pathogenesis but also focus on potential therapeutic targets from recent clinical trials including the use of monoclonal antibodies and small molecule inhibitors against these pathways.
Collapse
Affiliation(s)
- Charan Thej Reddy Vegivinti
- Department of Medicine, Jacobi Medical Center/Albert Einstein College of Medicine, Bronx, NY, 10461, US
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | | | | | | | - Ansh Krishnachandra Mehta
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
- Department of Hematology and Oncology, Jacobi Medical Center/ Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | - Rohit Reddy Lavu
- Department of Oncology, Yashoda hospitals, Hyderabad, 500036, India
| | - Rahul Kumar Thakur
- Department of Medicine, Jacobi Medical Center/Albert Einstein College of Medicine, Bronx, NY, 10461, US
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | - Sri Harsha Tella
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, 55905, US
| | - Riya Patel
- Department of Hematology and Oncology, University of Buffalo - Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, US
| | | | | | - Srinivas Aluri
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | | | - Nandini Ramachandra
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | - Rongbao Zhao
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | - Srabani Sahu
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | - Aditi Shastri
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
- Department of Oncology, Blood Cancer Institute, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | - Amit Verma
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US.
- Department of Oncology, Blood Cancer Institute, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, 10461, US.
| |
Collapse
|
9
|
Zaunz S, De Smedt J, Lauwereins L, Cleuren L, Laffeber C, Bajaj M, Lebbink JHG, Marteijn JA, De Keersmaecker K, Verfaillie C. APEX1 Nuclease and Redox Functions are Both Essential for Adult Mouse Hematopoietic Stem and Progenitor Cells. Stem Cell Rev Rep 2023:10.1007/s12015-023-10550-0. [PMID: 37266894 PMCID: PMC10390635 DOI: 10.1007/s12015-023-10550-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 06/03/2023]
Abstract
Self-renewal and differentiation of hematopoietic stem and progenitor cells (HSPCs) are carefully controlled by extrinsic and intrinsic factors, to ensure the lifelong process of hematopoiesis. Apurinic/apyrimidinic endonuclease 1 (APEX1) is a multifunctional protein implicated in DNA repair and transcriptional regulation. Although previous studies have emphasized the necessity of studying APEX1 in a lineage-specific context and its role in progenitor differentiation, no studies have assessed the role of APEX1, nor its two enzymatic domains, in supporting adult HSPC function. In this study, we demonstrated that complete loss of APEX1 from murine bone marrow HSPCs (induced by CRISPR/Cas9) caused severe hematopoietic failure following transplantation, as well as a HSPC expansion defect in culture conditions maintaining in vivo HSC functionality. Using specific inhibitors against either the nuclease or redox domains of APEX1 in combination with single cell transcriptomics (CITE-seq), we found that both APEX1 nuclease and redox domains are regulating mouse HSPCs, but through distinct underlying transcriptional changes. Inhibition of the APEX1 nuclease function resulted in loss of HSPCs accompanied by early activation of differentiation programs and enhanced lineage commitment. By contrast, inhibition of the APEX1 redox function significantly downregulated interferon-stimulated genes and regulons in expanding HSPCs and their progeny, resulting in dysfunctional megakaryocyte-biased HSPCs, as well as loss of monocytes and lymphoid progenitor cells. In conclusion, we demonstrate that APEX1 is a key regulator for adult regenerative hematopoiesis, and that the APEX1 nuclease and redox domains differently impact proliferating HSPCs.
Collapse
Affiliation(s)
- Samantha Zaunz
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, O&N IV Herestraat 49, 3000, Louvain, Belgium.
| | - Jonathan De Smedt
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, O&N IV Herestraat 49, 3000, Louvain, Belgium
- GlaxoSmithKline Biologicals SA, 1300, Wavre, Belgium
| | - Lukas Lauwereins
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, O&N IV Herestraat 49, 3000, Louvain, Belgium
| | - Lana Cleuren
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, O&N IV Herestraat 49, 3000, Louvain, Belgium
| | - Charlie Laffeber
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Manmohan Bajaj
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, O&N IV Herestraat 49, 3000, Louvain, Belgium
| | - Joyce H G Lebbink
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Kim De Keersmaecker
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven, Louvain, Belgium
| | - Catherine Verfaillie
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, O&N IV Herestraat 49, 3000, Louvain, Belgium
| |
Collapse
|
10
|
Sun T, Li D, Huang L, Zhu X. Inflammatory abrasion of hematopoietic stem cells: a candidate clue for the post-CAR-T hematotoxicity? Front Immunol 2023; 14:1141779. [PMID: 37223096 PMCID: PMC10200893 DOI: 10.3389/fimmu.2023.1141779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/21/2023] [Indexed: 05/25/2023] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has shown remarkable effects in treating various hematological malignancies. However, hematotoxicity, specifically neutropenia, thrombocytopenia, and anemia, poses a serious threat to patient prognosis and remains a less focused adverse effect of CAR-T therapy. The mechanism underlying lasting or recurring late-phase hematotoxicity, long after the influence of lymphodepletion therapy and cytokine release syndrome (CRS), remains elusive. In this review, we summarize the current clinical studies on CAR-T late hematotoxicity to clarify its definition, incidence, characteristics, risk factors, and interventions. Owing to the effectiveness of transfusing hematopoietic stem cells (HSCs) in rescuing severe CAR-T late hematotoxicity and the unignorable role of inflammation in CAR-T therapy, this review also discusses possible mechanisms of the harmful influence of inflammation on HSCs, including inflammatory abrasion of the number and the function of HSCs. We also discuss chronic and acute inflammation. Cytokines, cellular immunity, and niche factors likely to be disturbed in CAR-T therapy are highlighted factors with possible contributions to post-CAR-T hematotoxicity.
Collapse
|
11
|
Jia K, Xiong H, Yuan W, Huang L, Xu J, Lu C, Hu Y, Huang K, Luo Q, Ma J, Lu H. Diflovidazin damages the hematopoietic stem cells to zebrafish embryos via the TLR4/ NF-κB/ p53 pathway. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108672. [PMID: 36893927 DOI: 10.1016/j.fsi.2023.108672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/13/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Exposure to environmental contaminants frequently induces the occurrence of blood diseases, but the underlying molecular mechanisms are scarcely known. The toxicity of Diflovidazin (DFD), a widely used mite-remover, to the blood system of non-target organisms requires urgent elucidation. To investigate the deleterious effects of DFD (2, 2.5, and 3 mg/L) on the development and survive of hematopoietic stem cells (HSCs), the zebrafish model was used in this study. DFD exposure reduced the number of HSCs and their subtypes, including macrophages, neutrophils, thymus T-cells, erythrocytes, and platelets. The significant changes in the abnormal apoptosis and differentiation of HSCs were the major reasons for the reduction in blood cells. Using small-molecule antagonists and p53 morpholino revealed that the NF-κB/p53 pathway was responsible for the apoptosis of HSCs upon DFD exposure. The restoration results attributed to the TLR4 inhibitor and molecular docking showed that the TLR4 protein, which was upstream of NF-κB signaling, played a vital role in DFD toxicology. This study elucidates the role and molecular mechanism of DFD in damaging zebrafish HSCs. It provides a theoretical basis for the occurrence of various blood diseases in zebrafish and other organisms.
Collapse
Affiliation(s)
- Kun Jia
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Haibin Xiong
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Wei Yuan
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Lirong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Jiaxin Xu
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Chen Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Ying Hu
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Kaijie Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Qiang Luo
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Jinze Ma
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, Ji'an, 343009, China.
| |
Collapse
|
12
|
Cell-intrinsic factors governing quiescence vis-à-vis activation of adult hematopoietic stem cells. Mol Cell Biochem 2022; 478:1361-1382. [PMID: 36309884 DOI: 10.1007/s11010-022-04594-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/13/2022] [Indexed: 10/31/2022]
Abstract
Hematopoiesis is a highly complex process, regulated by both intrinsic and extrinsic factors. Often, these two regulatory arms work in tandem to maintain the steady-state condition of hematopoiesis. However, at times, certain intrinsic attributes of hematopoietic stem cells (HSCs) override the external stimuli and dominate the outcome. These could be genetic events like mutations or environmentally induced epigenetic or transcriptomic changes. Since leukemic stem cells (LSCs) share molecular pathways that also regulate normal HSCs, identifying specific, dominantly acting intrinsic factors could help in the development of novel therapeutic approaches. Here we have reviewed such dominantly acting intrinsic factors governing quiescence vis-à-vis activation of the HSCs in the face of external forces acting on them. For brevity, we have restricted our review to the articles dealing with adult HSCs of human and mouse origin that have been published in the last 10 years. Hematopoietic stem cells (HSCs) are closely associated with various stromal cells in their microenvironment and, thus, constantly receive signaling cues from them. The illustration depicts some dominantly acting intrinsic or cell-autonomous factors operative in the HSCs. These fall into various categories, such as epigenetic regulators, transcription factors, cell cycle regulators, tumor suppressor genes, signaling pathways, and metabolic regulators, which counteract the outcome of extrinsic signaling exerted by the HSC niche.
Collapse
|
13
|
Tang H, Huang L, Hu J. Inhibition of the m6A Methyltransferase METTL3 Attenuates the Inflammatory Response in Fusarium solani-Induced Keratitis via the NF-κB Signaling Pathway. Invest Ophthalmol Vis Sci 2022; 63:2. [PMID: 36194423 PMCID: PMC9547362 DOI: 10.1167/iovs.63.11.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to elucidate the effect of methyltransferase-like enzyme 3 (METTL3) on inflammation and the NF-κB signaling pathway in fungal keratitis (FK). Methods We established corneal stromal cell models and FK mouse models by incubation with Fusarium solani. The overall RNA N6-methyladenosine (m6A) level was determined using an m6A RNA methylation assay kit. The expression of METTL3 was quantified via real-time quantitative polymerase chain reaction (RT–PCR), Western blotting, and immunofluorescence. Subsequently, the level of tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) was identified by Western blotting and immunofluorescence. Moreover, we assessed the effect of METTL3 by transfecting cells with siRNA (in vitro) or adeno-associated virus (in vivo). Hematoxylin and eosin (H&E) staining and slit-lamp biomicroscopy were performed to evaluate corneal damage. Furthermore, the state of NF-κB signaling pathway activation was examined by Western blotting. In addition, RT–PCR and enzyme-linked immunosorbent assays (ELISAs) were performed to evaluate levels of the pro-inflammatory factors interleukin-1β (IL-1β), interleukin-6 (IL-6) and TNF-ɑ. Results Our data demonstrated that the levels of the RNA m6A methylation and METTL3 were dramatically increased and that the NF-κB signaling pathway was activated in Fusarium solani-induced keratitis. Inhibition of METTL3 decreased the level of TRAF6, downregulated the phospho-p65(p-p65)/p65 and phospho-IκB(p-IκB)/IκB protein ratios, simultaneously attenuating the inflammatory response and fungal burden in FK. Conclusions Our research suggests that the m6A methyltransferase METTL3 regulates the inflammatory response in FK by modulating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Hanfeng Tang
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fu Zhou, China
| | - Liwei Huang
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fu Zhou, China
| | - Jianzhang Hu
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fu Zhou, China
| |
Collapse
|
14
|
King JK, Tran TM, Paing MH, Yin Y, Jaiswal AK, Tso CH, Roy K, Casero D, Rao DS. Regulation of T-independent B-cell responses by microRNA-146a. Front Immunol 2022; 13:984302. [PMID: 36172375 PMCID: PMC9511149 DOI: 10.3389/fimmu.2022.984302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/19/2022] [Indexed: 11/18/2022] Open
Abstract
The microRNA, miR-146a, is a negative feedback regulator of the central immune transcription factor, nuclear factor kappa B (NFkB). MiR-146a plays important roles in the immune system, and miR-146a deficient mice show a complex phenotype with features of chronic inflammation and autoimmune disease. In this study, we examined the role of miR-146a in extrafollicular B-cell responses, finding that miR-146a suppresses cellular responses in vivo and in vitro. Gene expression profiling revealed that miR-146a-deficient B-cells showed upregulation of interferon pathway genes, including Traf6, a known miR-146a target. We next interrogated the role of TRAF6 in these B-cell responses, finding that TRAF6 is required for proliferation by genetic and pharmacologic inhibition. Together, our findings demonstrate a novel role for miR-146a and TRAF6 in the extrafollicular B-cell responses, which have recently been tied to autoimmune disease pathogenesis. Our work highlights the pathogenetic role of miR-146a and the potential of pharmacologic inhibition of TRAF6 in autoimmune diseases in which miR-146a is deregulated.
Collapse
Affiliation(s)
- Jennifer K. King
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, CA, United States
| | - Tiffany M. Tran
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, CA, United States
| | - May H. Paing
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, CA, United States
| | - Yuxin Yin
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, CA, United States
| | - Amit K. Jaiswal
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, CA, United States
| | - Ching-Hsuan Tso
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, CA, United States
| | - Koushik Roy
- Department of Pathology, University of Utah Salt Lake City, UT, United States
| | - David Casero
- F Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Dinesh S. Rao
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, CA, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, CA, United States
| |
Collapse
|
15
|
Pelinski Y, Hidaoui D, Stolz A, Hermetet F, Chelbi R, Diop MK, Chioukh AM, Porteu F, Elvira-Matelot E. NF-κB signaling controls H3K9me3 levels at intronic LINE-1 and hematopoietic stem cell genes in cis. J Exp Med 2022; 219:213343. [PMID: 35802137 PMCID: PMC9274146 DOI: 10.1084/jem.20211356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/23/2021] [Accepted: 06/21/2022] [Indexed: 01/11/2023] Open
Abstract
Ionizing radiations (IR) alter hematopoietic stem cell (HSC) function on the long term, but the mechanisms underlying these effects are still poorly understood. We recently showed that IR induces the derepression of L1Md, the mouse young subfamilies of LINE-1/L1 retroelements. L1 contributes to gene regulatory networks. However, how L1Md are derepressed and impact HSC gene expression are not known. Here, we show that IR triggers genome-wide H3K9me3 decrease that occurs mainly at L1Md. Loss of H3K9me3 at intronic L1Md harboring NF-κB binding sites motifs but not at promoters is associated with the repression of HSC-specific genes. This is correlated with reduced NFKB1 repressor expression. TNF-α treatment rescued all these effects and prevented IR-induced HSC loss of function in vivo. This TNF-α/NF-κB/H3K9me3/L1Md axis might be important to maintain HSCs while allowing expression of immune genes during myeloid regeneration or damage-induced bone marrow ablation.
Collapse
Affiliation(s)
- Yanis Pelinski
- INSERM UMR1287, Gustave Roussy, Villejuif, France,Université Paris-Saclay, Gif-sur-Yvette, France
| | - Donia Hidaoui
- INSERM UMR1287, Gustave Roussy, Villejuif, France,Université Paris-Saclay, Gif-sur-Yvette, France
| | - Anne Stolz
- INSERM UMR1287, Gustave Roussy, Villejuif, France,Université Paris-Saclay, Gif-sur-Yvette, France
| | - François Hermetet
- INSERM UMR1287, Gustave Roussy, Villejuif, France,Université Paris-Saclay, Gif-sur-Yvette, France
| | - Rabie Chelbi
- INSERM UMR1287, Gustave Roussy, Villejuif, France,Université Paris-Saclay, Gif-sur-Yvette, France
| | - M’boyba Khadija Diop
- Université Paris-Saclay, Gif-sur-Yvette, France,Bioinformatics Platform UMS AMMICa INSERM US23/CNRS 3655, Gustave Roussy, Villejuif, France
| | - Amir M. Chioukh
- INSERM UMR1287, Gustave Roussy, Villejuif, France,Université Paris-Saclay, Gif-sur-Yvette, France
| | - Françoise Porteu
- INSERM UMR1287, Gustave Roussy, Villejuif, France,Université Paris-Saclay, Gif-sur-Yvette, France
| | - Emilie Elvira-Matelot
- INSERM UMR1287, Gustave Roussy, Villejuif, France,Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
16
|
Pendse S, Kale V, Vaidya A. The Intercellular Communication Between Mesenchymal Stromal Cells and Hematopoietic Stem Cells Critically Depends on NF-κB Signalling in the Mesenchymal Stromal Cells. Stem Cell Rev Rep 2022; 18:2458-2473. [PMID: 35347654 DOI: 10.1007/s12015-022-10364-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/31/2022]
Abstract
Mesenchymal stromal cells (MSCs) regulate the fate of the hematopoietic stem cells (HSCs) through both cell-cell interactions and paracrine mechanisms involving multiple signalling pathways. We have previously shown that co-culturing of HSCs with CoCl2-treated MSCs expands functional HSCs. While performing these experiments, we had observed that the growth of CoCl2-treated MSCs was significantly stunted. Here, we show that CoCl2-treated MSCs possess activated NF-κB signalling pathway, and its pharmacological inhibition significantly relieves their growth arrest. Most interestingly, we found that pharmacological inhibition of NF-κB pathway in both control and CoCl2-treated MSCs completely blocks their intercellular communication with the co-cultured hematopoietic stem and progenitor cells (HSPCs), resulting in an extremely poor output of hematopoietic cells. Mechanistically, we show that this is due to the down-regulation of adhesion molecules and various HSC-supportive factors in the MSCs. This loss of physical interaction with HSPCs could be partially restored by treating the MSCs with calcium ionophore or calmodulin, suggesting that NF-κB regulates intracellular calcium flux in the MSCs. Importantly, the HSPCs co-cultured with NF-κB-inhibited-MSCs were in a quiescent state, which could be rescued by re-culturing them with untreated MSCs. Our data underscore a critical requirement of NF-κB signalling in the MSCs in intercellular communication between HSCs and MSCs for effective hematopoiesis to occur ex vivo. Our data raises a cautionary note against excessive use of anti-inflammatory drugs targeting NF-κB.
Collapse
Affiliation(s)
- Shalmali Pendse
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Gram: Lavale, Taluka: Mulshi, Pune, 412115, Maharashtra, India
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Gram: Lavale, Taluka: Mulshi, Pune, 412115, Maharashtra, India
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Gram: Lavale, Taluka: Mulshi, Pune, 412115, Maharashtra, India
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Gram: Lavale, Taluka: Mulshi, Pune, 412115, Maharashtra, India
| | - Anuradha Vaidya
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Gram: Lavale, Taluka: Mulshi, Pune, 412115, Maharashtra, India.
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Gram: Lavale, Taluka: Mulshi, Pune, 412115, Maharashtra, India.
| |
Collapse
|
17
|
Barreyro L, Sampson AM, Ishikawa C, Hueneman KM, Choi K, Pujato MA, Chutipongtanate S, Wyder M, Haffey WD, O'Brien E, Wunderlich M, Ramesh V, Kolb EM, Meydan C, Neelamraju Y, Bolanos LC, Christie S, Smith MA, Niederkorn M, Muto T, Kesari S, Garrett-Bakelman FE, Bartholdy B, Will B, Weirauch MT, Mulloy JC, Gul Z, Medlin S, Kovall RA, Melnick AM, Perentesis JP, Greis KD, Nurmemmedov E, Seibel WL, Starczynowski DT. Blocking UBE2N abrogates oncogenic immune signaling in acute myeloid leukemia. Sci Transl Med 2022; 14:eabb7695. [PMID: 35263148 DOI: 10.1126/scitranslmed.abb7695] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dysregulation of innate immune signaling pathways is implicated in various hematologic malignancies. However, these pathways have not been systematically examined in acute myeloid leukemia (AML). We report that AML hematopoietic stem and progenitor cells (HSPCs) exhibit a high frequency of dysregulated innate immune-related and inflammatory pathways, referred to as oncogenic immune signaling states. Through gene expression analyses and functional studies in human AML cell lines and patient-derived samples, we found that the ubiquitin-conjugating enzyme UBE2N is required for leukemic cell function in vitro and in vivo by maintaining oncogenic immune signaling states. It is known that the enzyme function of UBE2N can be inhibited by interfering with thioester formation between ubiquitin and the active site. We performed in silico structure-based and cellular-based screens and identified two related small-molecule inhibitors UC-764864/65 that targeted UBE2N at its active site. Using these small-molecule inhibitors as chemical probes, we further revealed the therapeutic efficacy of interfering with UBE2N function. This resulted in the blocking of ubiquitination of innate immune- and inflammatory-related substrates in human AML cell lines. Inhibition of UBE2N function disrupted oncogenic immune signaling by promoting cell death of leukemic HSPCs while sparing normal HSPCs in vitro. Moreover, baseline oncogenic immune signaling states in leukemic cells derived from discrete subsets of patients with AML exhibited a selective dependency on UBE2N function in vitro and in vivo. Our study reveals that interfering with UBE2N abrogates leukemic HSPC function and underscores the dependency of AML cells on UBE2N-dependent oncogenic immune signaling states.
Collapse
Affiliation(s)
- Laura Barreyro
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Avery M Sampson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Chiharu Ishikawa
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kathleen M Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mario A Pujato
- Center for Autoimmune Genetics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Somchai Chutipongtanate
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA.,Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Michael Wyder
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Wendy D Haffey
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Eric O'Brien
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Vighnesh Ramesh
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ellen M Kolb
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Yaseswini Neelamraju
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Lyndsey C Bolanos
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Susanne Christie
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Molly A Smith
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Madeline Niederkorn
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Tomoya Muto
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Santosh Kesari
- Saint John's Cancer Institute at Providence St. John's Health Center, Santa Monica, CA, USA
| | - Francine E Garrett-Bakelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.,Department of Medicine, University of Virginia, Charlottesville, VA, USA.,Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY, USA.,University of Virginia Cancer Center, Charlottesville, VA, USA
| | - Boris Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Britta Will
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genetics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Division of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - James C Mulloy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Zartash Gul
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Stephen Medlin
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Rhett A Kovall
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ari M Melnick
- Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY, USA
| | - John P Perentesis
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kenneth D Greis
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Elmar Nurmemmedov
- Saint John's Cancer Institute at Providence St. John's Health Center, Santa Monica, CA, USA
| | - William L Seibel
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
18
|
Yu J, Hang Y, Sun W, Wang G, Xiong Z, Ai L, Xia Y. Anti-Osteoporotic Effect of Lactobacillus brevis AR281 in an Ovariectomized Mouse Model Mediated by Inhibition of Osteoclast Differentiation. BIOLOGY 2022; 11:359. [PMID: 35336732 PMCID: PMC8944959 DOI: 10.3390/biology11030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/30/2022]
Abstract
Osteoporosis is a global disease characterized by weakened bone microarchitecture, leading to osteoporotic fractures. Estrogen replacement therapy is the traditional treatment for osteoporosis but carries with it an increased risk of cardiac events. In search of a safe and effective treatment, we used Lactobacillus brevis AR281, which has anti-inflammatory properties, to conduct a 7-week experiment, investigating its inhibitory effects on osteoporosis in an ovariectomized (ovx) mouse model. The results demonstrated that AR281 significantly improved bone microarchitecture and biomechanical strength in ovx mice by attenuating bone resorption. AR281 significantly decreased the critical osteoclast activator, the ratio of the receptor activator for nuclear factor kappa B (NF-κB) ligand (RANKL) to osteoprotegerin, and pro-inflammatory osteoclastogenic mediators, such as IL-1, IL-6, and IL-17, which can increase the RANKL expression. Moreover, AR281 modulated intestinal microbiota in ovx mice increased the abundance of Akkermansia, which is responsible for the improvement of gut epithelial barrier integrity. In an in vitro trial, AR281 suppressed the number of osteoclasts differentiated from the osteoclast precursor RAW264.7 cells caused by RANKL through the tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6)/NF-κB/nuclear factor of activated T cells c1 (NFATc1) pathway. Therefore, AR281 may be a natural alternative for combating osteoporosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yongjun Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.Y.); (Y.H.); (W.S.); (G.W.); (Z.X.); (L.A.)
| |
Collapse
|
19
|
Degradation of DRAK1 by CUL3/SPOP E3 Ubiquitin ligase promotes tumor growth of paclitaxel-resistant cervical cancer cells. Cell Death Dis 2022; 13:169. [PMID: 35194034 PMCID: PMC8863983 DOI: 10.1038/s41419-022-04619-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022]
Abstract
Despite favorable responses to initial chemotherapy, drug resistance is a major cause limiting chemotherapeutic efficacy in many advanced cancers. However, mechanisms that drive drug-specific resistance in chemotherapy for patients with advanced cancers are still unclear. Here, we report a unique role of death-associated protein kinase-related apoptosis-inducing kinase 1 (DRAK1) associated with paclitaxel resistance in cervical cancer cells. Interestingly, DRAK1 protein level was markedly decreased in paclitaxel-resistant cervical cancer cells without affecting its mRNA expression, which resulted in an increase in tumor necrosis factor receptor-associated factor 6 (TRAF6) expression, as well as an activation of TRAF6-mediated nuclear factor-kappa B (NF-κB) signaling cascade, thereby promoting tumor progression. DRAK1 depletion markedly increased the chemotherapeutic IC50 values of paclitaxel in cervical cancer cells. Ectopic expression of DRAK1 inhibited growth of paclitaxel-resistant cervical cancer cells in vitro and in vivo. Furthermore, DRAK1 was markedly underexpressed in chemoresistant cervical cancer patient tissues compared with chemosensitive samples. We found that DRAK1 protein was destabilized through K48-linked polyubiquitination promoted by the Cullin scaffold protein 3 (CUL3) / speckle-type POZ (poxvirus and zinc finger protein) protein (SPOP) E3 ubiquitin ligase in paclitaxel-resistant cells. Collectively, these findings suggest that DRAK1 may serve as a potential predictive biomarker for overcoming paclitaxel resistance in cervical cancer.
Collapse
|
20
|
Lynch OF, Calvi LM. Immune Dysfunction, Cytokine Disruption, and Stromal Changes in Myelodysplastic Syndrome: A Review. Cells 2022; 11:580. [PMID: 35159389 PMCID: PMC8834462 DOI: 10.3390/cells11030580] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/12/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are myeloid neoplasms characterized by bone marrow dysfunction and increased risk of transformation to leukemia. MDS represent complex and diverse diseases that evolve from malignant hematopoietic stem cells and involve not only the proliferation of malignant cells but also the dysfunction of normal bone marrow. Specifically, the marrow microenvironment-both hematopoietic and stromal components-is disrupted in MDS. While microenvironmental disruption has been described in human MDS and murine models of the disease, only a few current treatments target the microenvironment, including the immune system. In this review, we will examine current evidence supporting three key interdependent pillars of microenvironmental alteration in MDS-immune dysfunction, cytokine skewing, and stromal changes. Understanding the molecular changes seen in these diseases has been, and will continue to be, foundational to developing effective novel treatments that prevent disease progression and transformation to leukemia.
Collapse
Affiliation(s)
- Olivia F. Lynch
- School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA;
| | - Laura M. Calvi
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
21
|
AQP4 Attenuated TRAF6/NFκB Activation in Acrylamide-Induced Neurotoxicity. Molecules 2022; 27:molecules27031066. [PMID: 35164330 PMCID: PMC8838058 DOI: 10.3390/molecules27031066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 02/05/2023] Open
Abstract
Acrylamide (ACR) is present in high-temperature-processed high-carbohydrate foods, cigarette smoke, and industrial pollution. Chronic exposure to ACR may induce neurotoxicity from reactive oxygen species (ROS); however, the mechanisms underlying ACR-induced neurotoxicity remain unclear. We studied 28-day subacute ACR toxicity by repeatedly feeding ACR (0, 15, or 30 mg/kg) to rats. We conducted RNA sequencing and Western blot analyses to identify differences in mRNA expression in the blood and in protein expression in the brain tissues, respectively, of the rats. AQP4 transient transfection was performed to identify potential associations with protein regulation. The rats treated with 30 mg/kg ACR exhibited hind-limb muscle weakness. Matrix metalloproteinase (MMP9) expression was higher in the ACR-treated group than in the control group. ACR induced MMP-9 and AQP4 protein expression in the brain tissues of the rats, which subsequently presented with neurotoxicity. In the in vitro study, Neuro-2a cells were transiently transfected with AQP4, which inhibited MMP-9 and TNF receptor-associated factor 6 (TRAF6) expression, and inhibited ACR induced expression of TRAF6, IκBα, and nuclear factor κB (NFκB). Using a combination of in vivo and in vitro experiments, this study revealed that depressive symptoms associated with ACR-induced neurotoxicity are associated with downregulation of AQP4 and induction of the TRAF6 pathway.
Collapse
|
22
|
Muto T, Guillamot M, Yeung J, Fang J, Bennett J, Nadorp B, Lasry A, Redondo LZ, Choi K, Gong Y, Walker CS, Hueneman K, Bolanos LC, Barreyro L, Lee LH, Greis KD, Vasyliev N, Khodadadi-Jamayran A, Nudler E, Lujambio A, Lowe SW, Aifantis I, Starczynowski DT. TRAF6 functions as a tumor suppressor in myeloid malignancies by directly targeting MYC oncogenic activity. Cell Stem Cell 2022; 29:298-314.e9. [PMID: 35045331 PMCID: PMC8822959 DOI: 10.1016/j.stem.2021.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/05/2021] [Accepted: 12/15/2021] [Indexed: 02/05/2023]
Abstract
Clonal hematopoiesis (CH) is an aging-associated condition characterized by the clonal outgrowth of pre-leukemic cells that acquire specific mutations. Although individuals with CH are healthy, they are at an increased risk of developing myeloid malignancies, suggesting that additional alterations are needed for the transition from a pre-leukemia stage to frank leukemia. To identify signaling states that cooperate with pre-leukemic cells, we used an in vivo RNAi screening approach. One of the most prominent genes identified was the ubiquitin ligase TRAF6. Loss of TRAF6 in pre-leukemic cells results in overt myeloid leukemia and is associated with MYC-dependent stem cell signatures. TRAF6 is repressed in a subset of patients with myeloid malignancies, suggesting that subversion of TRAF6 signaling can lead to acute leukemia. Mechanistically, TRAF6 ubiquitinates MYC, an event that does not affect its protein stability but rather represses its functional activity by antagonizing an acetylation modification.
Collapse
Affiliation(s)
- Tomoya Muto
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Maria Guillamot
- Department of Pathology and Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Jennifer Yeung
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC 29208, USA
| | - Jing Fang
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC 29208, USA
| | - Joshua Bennett
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC 29208, USA
| | - Bettina Nadorp
- Department of Pathology and Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Audrey Lasry
- Department of Pathology and Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Luna Zea Redondo
- Department of Pathology and Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yixiao Gong
- Department of Pathology and Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Callum S Walker
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kathleen Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lyndsey C Bolanos
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Laura Barreyro
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lynn H Lee
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Kenneth D Greis
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Nikita Vasyliev
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Alireza Khodadadi-Jamayran
- Applied Bioinformatics Laboratories and Genome Technology Center, NYU School of Medicine, New York, NY 10016, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Amaia Lujambio
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Scott W Lowe
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, Chevy Chase, MD 201815, USA
| | - Iannis Aifantis
- Department of Pathology and Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA.
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
23
|
Gao M, Peng X, Tang J, Deng J, Wang F, Zhang Y, Zhao P, Kan H, Liu Y. Anti-Inflammatory Effects of Camellia fascicularis Polyphenols via Attenuation of NF-κB and MAPK Pathways in LPS-Induced THP-1 Macrophages. J Inflamm Res 2022; 15:851-864. [PMID: 35177920 PMCID: PMC8843420 DOI: 10.2147/jir.s349981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/20/2022] [Indexed: 12/16/2022] Open
Abstract
Purpose Plant polyphenols possess beneficial functions against various diseases. This study aimed to identify phenolic ingredients in Camellia fascicularis (C. fascicularis) and investigate its possible underlying anti-inflammatory mechanism in lipopolysaccharide (LPS)-induced human monocytes (THP-1) macrophages. Methods C. fascicularis polyphenols (CFP) were characterized by ultra-performance liquid chromatography (UPLC) combined with quadrupole-time-of-flight mass/mass spectrometry (Q-TOF-MS/MS). The THP-1 cells were differentiated into macrophages under the stimulation of phorbol 12-myristate 13-acetate (PMA) and then treated with LPS to build a cellular inflammation model. The cell viability was detected by CCK-8 assay. The levels of reactive oxygen species (ROS) were assessed by flow cytometry. The secretion and expression of inflammatory cytokines were tested by enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (RT-PCR). In addition, the nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways were analyzed by Western blotting. Results Twelve phenolic constituents including (–)-epicatechin, casuariin, agastachoside, etc. in CFP were identified. The CCK-8 assay showed that CFP exhibited no significant cytotoxicity between 100 and 300 μg/mL. After treated with CFP, the release of ROS was significantly suppressed. CFP inhibited inflammation in macrophages by attenuating the polarization of LPS-induced THP-1 macrophages, down-regulating the expression of the pro-inflammatory cytokines IL-6, IL-1β and TNF-α, and up-regulating the expression of the anti-inflammatory cytokine IL-10. Western blotting experiments manifested that CFP could markedly inhibit the phosphorylation of p65, ERK and JNK, thereby suppressing the activation of NF-κB and MAPK signaling pathways. Conclusion These findings indicated that CFP exerted anti-inflammatory activity by inhibiting the activation NF-κB and MAPK pathways which may induce the secretion of pro-inflammatory cytokines. This study offers a reference for C. fascicularis as the source of developing natural, safe anti-inflammatory agents in the future.
Collapse
Affiliation(s)
- Miaozi Gao
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, People’s Republic of China
- Key Laboratory of State Forestry and Grassland Administration on Highly-efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, People’s Republic of China
| | - Xiaowei Peng
- School of Life Science, Southwest Forestry University, Kunming, People’s Republic of China
| | - Junrong Tang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, People’s Republic of China
| | - Jia Deng
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, People’s Republic of China
| | - Fang Wang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, People’s Republic of China
| | - Yingjun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People’s Republic of China
| | - Ping Zhao
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, People’s Republic of China
- Key Laboratory of State Forestry and Grassland Administration on Highly-efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, People’s Republic of China
- Correspondence: Ping Zhao; Yun Liu, Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, #300, Bailong Road, Kunming, 650224, People’s Republic of China, Email ;
| | - Huan Kan
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, People’s Republic of China
- School of Life Science, Southwest Forestry University, Kunming, People’s Republic of China
| | - Yun Liu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, People’s Republic of China
- School of Life Science, Southwest Forestry University, Kunming, People’s Republic of China
| |
Collapse
|
24
|
Niederkorn M, Ishikawa C, M. Hueneman K, Bartram J, Stepanchick E, R. Bennett J, E. Culver-Cochran A, Bolanos LC, Uible E, Choi K, Wunderlich M, Perentesis JP, M. Chlon T, Filippi MD, Starczynowski DT. The deubiquitinase USP15 modulates cellular redox and is a therapeutic target in acute myeloid leukemia. Leukemia 2022; 36:438-451. [PMID: 34465865 PMCID: PMC8807387 DOI: 10.1038/s41375-021-01394-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
Ubiquitin-specific peptidase 15 (USP15) is a deubiquitinating enzyme implicated in critical cellular and oncogenic processes. We report that USP15 mRNA and protein are overexpressed in human acute myeloid leukemia (AML) as compared to normal hematopoietic progenitor cells. This high expression of USP15 in AML correlates with KEAP1 protein and suppression of NRF2. Knockdown or deletion of USP15 in human and mouse AML models significantly impairs leukemic progenitor function and viability and de-represses an antioxidant response through the KEAP1-NRF2 axis. Inhibition of USP15 and subsequent activation of NRF2 leads to redox perturbations in AML cells, coincident with impaired leukemic cell function. In contrast, USP15 is dispensable for human and mouse normal hematopoietic cells in vitro and in vivo. A preclinical small-molecule inhibitor of USP15 induced the KEAP1-NRF2 axis and impaired AML cell function, suggesting that targeting USP15 catalytic function can suppress AML. Based on these findings, we report that USP15 drives AML cell function, in part, by suppressing a critical oxidative stress sensor mechanism and permitting an aberrant redox state. Furthermore, we postulate that inhibition of USP15 activity with small molecule inhibitors will selectively impair leukemic progenitor cells by re-engaging homeostatic redox responses while sparing normal hematopoiesis.
Collapse
Affiliation(s)
- Madeline Niederkorn
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Chiharu Ishikawa
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Kathleen M. Hueneman
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - James Bartram
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Emily Stepanchick
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Joshua R. Bennett
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Ashley E. Culver-Cochran
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Lyndsey C. Bolanos
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Emma Uible
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Kwangmin Choi
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Mark Wunderlich
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - John P. Perentesis
- grid.239573.90000 0000 9025 8099Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Timothy M. Chlon
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Marie-Dominique Filippi
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Daniel T. Starczynowski
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| |
Collapse
|
25
|
Liu S, Yu T, Zhang Y, Pan C, Cai L, Yang M. Integrated analysis of mRNA and long non-coding RNA expression profiles reveals the potential roles of lncRNA-mRNA network in carp macrophage immune regulation. In Vitro Cell Dev Biol Anim 2021; 57:835-847. [PMID: 34554377 DOI: 10.1007/s11626-021-00610-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/28/2021] [Indexed: 12/27/2022]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as a hot topic in research as mounting evidence has indicated their transcriptional or post-transcriptional regulatory potential in multiple biological processes. Previous studies have revealed the involvement of lncRNAs in the immunoregulation of mammalian macrophages by changing mRNA expression; however, studies on the lncRNAs in fish macrophages and their potential roles in the immune system remain unknown. Primary macrophages were isolated from the head kidney (HK) of red common carp (Cyprinus carpio) and high-throughput lncRNA-mRNA sequencing was performed using the Illumina HiSeq platform. The results revealed that the most highly expressed mRNAs in primary HK macrophages were mainly involved in immune-related signal pathways. Furthermore, the most enriched immune-related GO term and KEGG pathway of the mRNAs were "immune system development" and "chemokine signaling pathway," respectively. A total of 20,333 lncRNAs, composed of 10,512 known and 9821 novel lncRNAs, were identified, and functional enrichment analysis of the lncRNA-mRNA network indicated that the expressed lncRNAs in primary HK macrophages could be associated with the regulation of multiple immune-related signaling pathways. In addition, the expressions of several selected lncRNAs and their related mRNAs were determined in carp macrophages following a 6-h exposure to lipopolysaccharide (LPS) and Poly(I: C), the results of which confirmed the co-expression regulation of lncRNAs and target mRNAs in the immune response of carp macrophages. These results suggest the correlative of the lncRNA-mRNA network in fish macrophage immune response, which may further affect the cross-talk of various signaling pathways by interaction with other network genes. Here, we provided fundamental data about the transcriptome profiles of primary HK macrophages from red common carp by analysis of the lncRNA-mRNA network, and ultimately suggest the potential roles of lncRNA-mRNA networks in immune regulation in teleost fish.
Collapse
Affiliation(s)
- Shuai Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang, 330012, China
| | - Ting Yu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yuanyuan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Chenyuan Pan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Ling Cai
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| | - Ming Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
26
|
Wang J, Tu C, Zhang H, Huo Y, Menu E, Liu J. Single-cell analysis at the protein level delineates intracellular signaling dynamic during hematopoiesis. BMC Biol 2021; 19:201. [PMID: 34503511 PMCID: PMC8428103 DOI: 10.1186/s12915-021-01138-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/01/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Hematopoietic stem and progenitor cell (HSPC) subsets in mice have previously been studied using cell surface markers, and more recently single-cell technologies. The recent revolution of single-cell analysis is substantially transforming our understanding of hematopoiesis, confirming the substantial heterogeneity of cells composing the hematopoietic system. While dynamic molecular changes at the DNA/RNA level underlying hematopoiesis have been extensively explored, a broad understanding of single-cell heterogeneity in hematopoietic signaling programs and landscapes, studied at protein level and reflecting post-transcriptional processing, is still lacking. Here, we accurately quantified the intracellular levels of 9 phosphorylated and 2 functional proteins at the single-cell level to systemically capture the activation dynamics of 8 signaling pathways, including EGFR, Jak/Stat, NF-κB, MAPK/ERK1/2, MAPK/p38, PI3K/Akt, Wnt, and mTOR pathways, during mouse hematopoiesis using mass cytometry. RESULTS With fine-grained analyses of 3.2 million of single hematopoietic stem and progenitor cells (HSPCs), and lineage cells in conjunction with multiparameter cellular phenotyping, we mapped trajectories of signaling programs during HSC differentiation and identified specific signaling biosignatures of cycling HSPC and multiple differentiation routes from stem cells to progenitor and lineage cells. We also investigated the recovery pattern of hematopoietic cell populations, as well as signaling regulation in these populations, during hematopoietic reconstruction. Overall, we found substantial heterogeneity of pathway activation within HSPC subsets, characterized by diverse patterns of signaling. CONCLUSIONS These comprehensive single-cell data provide a powerful insight into the intracellular signaling-regulated hematopoiesis and lay a solid foundation to dissect the nature of HSC fate decision. Future integration of transcriptomics and proteomics data, as well as functional validation, will be required to verify the heterogeneity in HSPC subsets during HSC differentiation and to identify robust markers to phenotype those HSPC subsets.
Collapse
Affiliation(s)
- Jinheng Wang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China. .,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Chenggong Tu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hui Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yongliang Huo
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Jinbao Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China. .,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
27
|
Mosquera Orgueira A, Ferreiro Ferro R, Díaz Arias JÁ, Aliste Santos C, Antelo Rodríguez B, Bao Pérez L, Alonso Vence N, Bendaña López Á, Abuin Blanco A, Melero Valentín P, Peleteiro Raindo A, Cid López M, Pérez Encinas MM, González Pérez MS, Fraga Rodríguez MF, Bello López JL. Detection of new drivers of frequent B-cell lymphoid neoplasms using an integrated analysis of whole genomes. PLoS One 2021; 16:e0248886. [PMID: 33945543 PMCID: PMC8096002 DOI: 10.1371/journal.pone.0248886] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/19/2021] [Indexed: 12/21/2022] Open
Abstract
B-cell lymphoproliferative disorders exhibit a diverse spectrum of diagnostic entities with heterogeneous behaviour. Multiple efforts have focused on the determination of the genomic drivers of B-cell lymphoma subtypes. In the meantime, the aggregation of diverse tumors in pan-cancer genomic studies has become a useful tool to detect new driver genes, while enabling the comparison of mutational patterns across tumors. Here we present an integrated analysis of 354 B-cell lymphoid disorders. 112 recurrently mutated genes were discovered, of which KMT2D, CREBBP, IGLL5 and BCL2 were the most frequent, and 31 genes were putative new drivers. Mutations in CREBBP, TNFRSF14 and KMT2D predominated in follicular lymphoma, whereas those in BTG2, HTA-A and PIM1 were more frequent in diffuse large B-cell lymphoma. Additionally, we discovered 31 significantly mutated protein networks, reinforcing the role of genes such as CREBBP, EEF1A1, STAT6, GNA13 and TP53, but also pointing towards a myriad of infrequent players in lymphomagenesis. Finally, we report aberrant expression of oncogenes and tumor suppressors associated with novel noncoding mutations (DTX1 and S1PR2), and new recurrent copy number aberrations affecting immune check-point regulators (CD83, PVR) and B-cell specific genes (TNFRSF13C). Our analysis expands the number of mutational drivers of B-cell lymphoid neoplasms, and identifies several differential somatic events between disease subtypes.
Collapse
Affiliation(s)
- Adrián Mosquera Orgueira
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain
- Department of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Galicia, Spain
- University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Roi Ferreiro Ferro
- Department of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Galicia, Spain
| | - José Ángel Díaz Arias
- Department of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Galicia, Spain
| | - Carlos Aliste Santos
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain
- Department of Pathology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Galicia, Spain
| | - Beatriz Antelo Rodríguez
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain
- Department of Pathology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Galicia, Spain
| | - Laura Bao Pérez
- Department of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Galicia, Spain
| | - Natalia Alonso Vence
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain
- Department of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Galicia, Spain
| | - Ággeles Bendaña López
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain
- Department of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Galicia, Spain
- University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Aitor Abuin Blanco
- Department of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Galicia, Spain
| | - Paula Melero Valentín
- Department of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Galicia, Spain
| | - And´res Peleteiro Raindo
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain
- Department of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Galicia, Spain
- University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Miguel Cid López
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain
- Department of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Galicia, Spain
- University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Manuel Mateo Pérez Encinas
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain
- Department of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Galicia, Spain
- University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Marta Sonia González Pérez
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain
- Department of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Galicia, Spain
| | - Máximo Francisco Fraga Rodríguez
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain
- University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
- Department of Pathology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Galicia, Spain
| | - José Luis Bello López
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain
- Department of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Galicia, Spain
- University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| |
Collapse
|
28
|
Molagoda IMN, Jayasingha JACC, Choi YH, Jayasooriya RGPT, Kang CH, Kim GY. Fisetin inhibits lipopolysaccharide-induced inflammatory response by activating β-catenin, leading to a decrease in endotoxic shock. Sci Rep 2021; 11:8377. [PMID: 33863923 PMCID: PMC8052411 DOI: 10.1038/s41598-021-87257-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Fisetin is a naturally occurring flavonoid that possesses several pharmacological benefits including anti-inflammatory activity. However, its precise anti-inflammatory mechanism is not clear. In the present study, we found that fisetin significantly inhibited the expression of proinflammatory mediators, such as nitric oxide (NO) and prostaglandin E2 (PGE2), and cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Additionally, fisetin attenuated LPS-induced mortality and abnormalities in zebrafish larvae and normalized the heart rate. Fisetin decreased the recruitment of macrophages and neutrophils to the LPS-microinjected inflammatory site in zebrafish larvae, concomitant with a significant downregulation of proinflammatory genes, such as inducible NO synthase (iNOS), cyclooxygenase-2a (COX-2a), IL-6, and TNF-α. Fisetin inhibited the nuclear localization of nuclear factor-kappa B (NF-κB), which reduced the expression of pro-inflammatory genes. Further, fisetin inactivated glycogen synthase kinase 3β (GSK-3β) via phosphorylation at Ser9, and inhibited the degradation of β-catenin, which consequently promoted the localization of β-catenin into the nucleus. The pharmacological inhibition of β-catenin with FH535 reversed the fisetin-induced anti-inflammatory activity and restored NF-κB activity, which indicated that fisetin-mediated activation of β-catenin results in the inhibition of LPS-induced NF-κB activity. In LPS-microinjected zebrafish larvae, FH535 promoted the migration of macrophages to the yolk sac and decreased resident neutrophil counts in the posterior blood island and induced high expression of iNOS and COX-2a, which was accompanied by the inhibition of fisetin-induced anti-inflammatory activity. Altogether, the current study confirmed that the dietary flavonoid, fisetin, inhibited LPS-induced inflammation and endotoxic shock through crosstalk between GSK-3β/β-catenin and the NF-κB signaling pathways.
Collapse
Affiliation(s)
| | | | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan, 47227, Republic of Korea
| | | | - Chang-Hee Kang
- Bioresources Industrialization Support Department, Nakdonggang National Institute of Biological Resources, Sangju, 37242, Republic of Korea.
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
29
|
Serrano-Lopez J, Hegde S, Kumar S, Serrano J, Fang J, Wellendorf AM, Roche PA, Rangel Y, Carrington LJ, Geiger H, Grimes HL, Luther S, Maillard I, Sanchez-Garcia J, Starczynowski DT, Cancelas JA. Inflammation rapidly recruits mammalian GMP and MDP from bone marrow into regional lymphatics. eLife 2021; 10:e66190. [PMID: 33830019 PMCID: PMC8137144 DOI: 10.7554/elife.66190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/07/2021] [Indexed: 12/22/2022] Open
Abstract
Innate immune cellular effectors are actively consumed during systemic inflammation, but the systemic traffic and the mechanisms that support their replenishment remain unknown. Here, we demonstrate that acute systemic inflammation induces the emergent activation of a previously unrecognized system of rapid migration of granulocyte-macrophage progenitors and committed macrophage-dendritic progenitors, but not other progenitors or stem cells, from bone marrow (BM) to regional lymphatic capillaries. The progenitor traffic to the systemic lymphatic circulation is mediated by Ccl19/Ccr7 and is NF-κB independent, Traf6/IκB-kinase/SNAP23 activation dependent, and is responsible for the secretion of pre-stored Ccl19 by a subpopulation of CD205+/CD172a+ conventional dendritic cells type 2 and upregulation of BM myeloid progenitor Ccr7 signaling. Mature myeloid Traf6 signaling is anti-inflammatory and necessary for lymph node myeloid cell development. This report unveils the existence and the mechanistic basis of a very early direct traffic of myeloid progenitors from BM to lymphatics during inflammation.
Collapse
Affiliation(s)
- Juana Serrano-Lopez
- Divisions of Experimental Hematology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Shailaja Hegde
- Divisions of Experimental Hematology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
- Hoxworth Blood Center, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Sachin Kumar
- Divisions of Experimental Hematology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Josefina Serrano
- Hematology Department, Reina Sofía University Hospital/Maimonides Biomedical Research Institute of Córdoba (IMIBIC)/University of CórdobaCórdobaSpain
| | - Jing Fang
- Divisions of Experimental Hematology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Ashley M Wellendorf
- Divisions of Experimental Hematology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Paul A Roche
- Center for Cancer Research, National Cancer InstituteBethesdaUnited States
- Experimental Immunology Branch, National Cancer Institute, National Institutes of HealthBethesdaUnited States
| | - Yamileth Rangel
- Hematology Department, Reina Sofía University Hospital/Maimonides Biomedical Research Institute of Córdoba (IMIBIC)/University of CórdobaCórdobaSpain
| | | | - Hartmut Geiger
- Divisions of Experimental Hematology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
- Institute of Molecular Medicine, Ulm UniversityUlmGermany
| | - H Leighton Grimes
- Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Sanjiv Luther
- Center for Immunity and Infection, Department of Biochemistry, University of LausanneEpalingesSwitzerland
| | - Ivan Maillard
- University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Joaquin Sanchez-Garcia
- Hematology Department, Reina Sofía University Hospital/Maimonides Biomedical Research Institute of Córdoba (IMIBIC)/University of CórdobaCórdobaSpain
| | - Daniel T Starczynowski
- Divisions of Experimental Hematology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
- Department of Cancer Biology, University of CincinnatiCincinnatiUnited States
| | - Jose A Cancelas
- Divisions of Experimental Hematology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
- Hoxworth Blood Center, University of Cincinnati College of MedicineCincinnatiUnited States
| |
Collapse
|
30
|
Regulation of Transcription Factor NF-κB in Its Natural Habitat: The Nucleus. Cells 2021; 10:cells10040753. [PMID: 33805563 PMCID: PMC8066257 DOI: 10.3390/cells10040753] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 01/11/2023] Open
Abstract
Activation of the transcription factor NF-κB elicits an individually tailored transcriptional response in order to meet the particular requirements of specific cell types, tissues, or organs. Control of the induction kinetics, amplitude, and termination of gene expression involves multiple layers of NF-κB regulation in the nucleus. Here we discuss some recent advances in our understanding of the mutual relations between NF-κB and chromatin regulators also in the context of different levels of genome organization. Changes in the 3D folding of the genome, as they occur during senescence or in cancer cells, can causally contribute to sustained increases in NF-κB activity. We also highlight the participation of NF-κB in the formation of hierarchically organized super enhancers, which enable the coordinated expression of co-regulated sets of NF-κB target genes. The identification of mechanisms allowing the specific regulation of NF-κB target gene clusters could potentially enable targeted therapeutic interventions, allowing selective interference with subsets of the NF-κB response without a complete inactivation of this key signaling system.
Collapse
|
31
|
TIFAB Regulates USP15-Mediated p53 Signaling during Stressed and Malignant Hematopoiesis. Cell Rep 2021; 30:2776-2790.e6. [PMID: 32101751 PMCID: PMC7384867 DOI: 10.1016/j.celrep.2020.01.093] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/15/2019] [Accepted: 01/24/2020] [Indexed: 12/16/2022] Open
Abstract
TRAF-interacting protein with a forkhead-associated domain B (TIFAB) is implicated in myeloid malignancies with deletion of chromosome 5q. Employing a combination of proteomic and genetic approaches, we find that TIFAB regulates ubiquitin-specific peptidase 15 (USP15) ubiquitin hydrolase activity. Expression of TIFAB in hematopoietic stem/progenitor cells (HSPCs) permits USP15 signaling to substrates, including MDM2 and KEAP1, and mitigates p53 expression. Consequently, TIFAB-deficient HSPCs exhibit compromised USP15 signaling and are sensitized to hematopoietic stress by derepression of p53. In MLL-AF9 leukemia, deletion of TIFAB increases p53 signaling and correspondingly decreases leukemic cell function and development of leukemia. Restoring USP15 expression partially rescues the function of TIFAB-deficient MLL-AF9 cells. Conversely, elevated TIFAB represses p53, increases leukemic progenitor function, and correlates with MLL gene expression programs in leukemia patients. Our studies uncover a function of TIFAB as an effector of USP15 activity and rheostat of p53 signaling in stressed and malignant HSPCs. Niederkorn et al. identify TIFAB as a critical node in hematopoietic cells under stressed and oncogenic cell states. Their studies indicate that deregulation of the TIFAB-USP15 complex, as observed in del(5q) myelodysplasia or MLL-rearranged leukemia, modulates p53 activity and has critical functional consequences for stressed and malignant hematopoietic cells.
Collapse
|
32
|
Fan Z, Wu Z, Yang B. The Effect of miR-361-3p Targeting TRAF6 on Apoptosis of Multiple Myeloma Cells. J Microbiol Biotechnol 2021; 31:197-206. [PMID: 33323675 PMCID: PMC9705904 DOI: 10.4014/jmb.2010.10059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022]
Abstract
microRNA-361-3p (miR-361-3p) is involved in the carcinogenesis of oral cancer and pancreatic catheter adenocarcinoma, and has anti-carcinogenic effects on non-small cell lung cancer (NSCLC). However, its effect on multiple myeloma (MM) is less reported. Here, we found that upregulating the expression of miR-361-3p inhibited MM cell viability and promoted MM apoptosis. We measured expressions of tumor necrosis factor receptor-associated factor 6 (TRAF6) and miR-361-3p in MM cells and detected the viability, colony formation rate, and apoptosis of MM cells. In addition, we measured expressions of apoptosis-related genes Bcl-2, Bax, and Cleaved caspase-3 (C caspase-3). The binding site between miR-361-3p and TRAF6 was predicted by TargetScan. Our results showed that miR-361-3p was low expressed in the plasma of MM patients and cell lines, while its overexpression inhibited viability and colony formation of MM cells and increased the cell apoptosis. Furthermore, TRAF6, which was predicted to be a target gene of miR-361-3p, was highexpressed in the plasma of patients and cell lines with MM. Rescue experiments demonstrated that the effect of TRAF6 on MM cells was opposite to that of miR-361-3p. Upregulation of miR-361-3p induced apoptosis and inhibited the proliferation of MM cells through targeting TRAF6, suggesting that miR-361-3p might be a potential target for MM therapy.
Collapse
Affiliation(s)
- Zhen Fan
- Department of Hematology, The First People’s Hospital of Jingmen, No. 67 Xiangshan Avenue, Jingmen, Hubei Province 448000, P.R. China
| | - Zhiwei Wu
- Department of Hematology, The First People’s Hospital of Jingmen, No. 67 Xiangshan Avenue, Jingmen, Hubei Province 448000, P.R. China
| | - Bo Yang
- Department of Hematology, The First People’s Hospital of Jingmen, No. 67 Xiangshan Avenue, Jingmen, Hubei Province 448000, P.R. China,Corresponding author Phone: +86-724-2305120 E-mail:
| |
Collapse
|
33
|
Cai J, Guan H, Jiao X, Yang J, Chen X, Zhang H, Zheng Y, Zhu Y, Liu Q, Zhang Z. NLRP3 inflammasome mediated pyroptosis is involved in cadmium exposure-induced neuroinflammation through the IL-1β/IkB-α-NF-κB-NLRP3 feedback loop in swine. Toxicology 2021; 453:152720. [PMID: 33592257 DOI: 10.1016/j.tox.2021.152720] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Cadmium (Cd) chloride, as widely distributed toxic environmental pollutants by using in industry, severely imperils animal and human health. Pyroptosis is a Cas1-dependent pro-inflammatory programmed cell death and involves in various types of diseases. Nevertheless, the mechanism of pyroptosis and Cd-induced neurotoxicity remains obscure. To investigate the specific molecular mechanisms of Cd-induced neurotoxicity, 10 weaned piglets were randomly divided into 2 groups treated with 0 and 20 mg/kg CdCl2 in the diet for 40 days. The levels of pyroptosis, mitochondrial and inflammation-related genes were validated by qRT-PCR and WB in vivo. Our results revealed that Cd caused cerebral histopathology lesions, inducing cerebral pyroptosis and the mass generation of inflammatory cytokines, as indicated by the increased NLRP3 inflammasome activation (NLRP3, Cas1 and ASC) and the upregulation of inflammation factors IL-2, IL-6, IL-7 and inhibition of IL-10. Subsequently, further research indicated that Cd triggered pyroptosis via activating the TRAF6-IkB-α-NF-κB pathway, which interfered with the phosphorylation and ubiquitination of IkB-α. Furthermore, Cd caused mitochondrial dysfunction and fragmentation by inhibiting the AMPK-PGC-1α-NRF1/2 signaling pathway and reduced the expression of mitochondrial-related regulatory factors OPA1, TFAM and mtDNA, resulting in the increase of NLRP3 inflammasome. Besides, we found eight hub genes (IKK, IKB-α, NLRP3, TRAF6, NF-κB, AMPK, TNFα and PGC-1α), mainly related to the interaction between the NF-κB pathway and NLRP3 inflammasome. Overall, these results demonstrated that Cd could promote the IL-1β/IkB-α-NF-κB-NLRP3 inflammasome activation positive feedback loop to result in neuroinflammation in swine, which provided new insights in understanding Cd-induced toxicity.
Collapse
Affiliation(s)
- Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Haoyue Guan
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, PR China
| | - Xing Jiao
- China Institute of Water Resources and Hydropower Research, Beijing 100048, PR China
| | - Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaoming Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Haoran Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yingying Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, PR China.
| |
Collapse
|
34
|
Hu M, Lu Y, Zeng H, Zhang Z, Chen S, Qi Y, Xu Y, Chen F, Tang Y, Chen M, Du C, Shen M, Wang F, Su Y, Wang S, Wang J. MicroRNA-21 maintains hematopoietic stem cell homeostasis through sustaining the NF-κB signaling pathway in mice. Haematologica 2021; 106:412-423. [PMID: 31974197 PMCID: PMC7849563 DOI: 10.3324/haematol.2019.236927] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/20/2020] [Indexed: 02/06/2023] Open
Abstract
Long-term hematopoietic output is dependent on hematopoietic stem cell (HSC) homeostasis which is maintained by a complex molecular network in which microRNA play crucial roles, although the underlying molecular basis has not been fully elucidated. Here we show that microRNA-21 (miR-21) is enriched in murine HSC, and that mice with conditional knockout of miR-21 exhibit an obvious perturbation in hematopoiesis. Moreover, significant loss of HSC quiescence and long-term reconstituting ability are observed in the absence of miR-21. Further studies revealed that miR-21 deficiency markedly decreases the nuclear factor kappa B (NF-B) pathway, accompanied by increased expression of PDCD4, a direct target of miR-21, in HSC. Interestingly, overexpression of PDCD4 in wild-type HSC generates similar phenotypes as those of miR-21-deficient HSC. More importantly, knockdown of PDCD4 can significantly rescue the attenuation of NF-B activity, thereby improving the defects in miR-21-null HSC. On the other hand, we found that miR-21 is capable of preventing HSC from ionizing radiation- induced DNA damage via activation of the NF-B pathway. Collectively, our data demonstrate that miR-21 is involved in maintaining HSC homeostasis and function, at least in part, by regulating the PDCD4-mediated NF-B pathway and provide a new insight into radioprotection of HSC.
Collapse
Affiliation(s)
- Mengjia Hu
- Third Military Medical University, Chongqing, China
| | - Yukai Lu
- Third Military Medical University, Chongqing, China
| | - Hao Zeng
- Third Military Medical University, Chongqing, China
| | - Zihao Zhang
- Third Military Medical University, Chongqing, China
| | - Shilei Chen
- Third Military Medical University, Chongqing, China
| | - Yan Qi
- Third Military Medical University, Chongqing, China
| | - Yang Xu
- Third Military Medical University, Chongqing, China
| | - Fang Chen
- Third Military Medical University, Chongqing, China
| | - Yong Tang
- Third Military Medical University, Chongqing, China
| | - Mo Chen
- Third Military Medical University, Chongqing, China
| | - Changhong Du
- Third Military Medical University, Chongqing, China
| | | | | | - Yongping Su
- Third Military Medical University, Chongqing, China
| | - Song Wang
- Third Military Medical University, Chongqing, China
| | - Junping Wang
- Third Military Medical University, Chongqing, China
| |
Collapse
|
35
|
Liao W, Du C, Wang J. The cGAS-STING Pathway in Hematopoiesis and Its Physiopathological Significance. Front Immunol 2020; 11:573915. [PMID: 33329537 PMCID: PMC7734179 DOI: 10.3389/fimmu.2020.573915] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/29/2020] [Indexed: 01/09/2023] Open
Abstract
Cytosolic DNA sensing is a fundamental mechanism by which organisms handle various stresses, including infection and genotoxicity. The hematopoietic system is sensitive to stresses, and hematopoietic changes are often rapid and the first response to stresses. Based on the transcriptome database, cytosolic DNA sensing pathways are widely expressed in the hematopoietic system, and components of these pathways may be expressed at even higher levels in hematopoietic stem and progenitor cells (HSPCs) than in their certain progeny immune cells. Recent studies have described a previously unrecognized role for cytosolic DNA sensing pathways in the regulation of hematopoiesis under both homeostatic and stress conditions. In particular, the recently discovered cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway is a critical modulator of hematopoiesis. Perturbation of the cGAS-STING pathway in HSPCs may be involved in the pathogenesis of hematopoietic disorders, autoimmune diseases, and inflammation-related diseases and may be candidate therapeutic targets. In this review, we focus on the recent findings of the cGAS-STING pathway in the regulation of hematopoiesis, and its physiopathological significance including its implications in diseases and therapeutic potential.
Collapse
Affiliation(s)
- Weinian Liao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Changhong Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
36
|
Smith MA, Culver-Cochran AE, Adelman ER, Rhyasen GW, Ma A, Figueroa ME, Starczynowski DT. TNFAIP3 Plays a Role in Aging of the Hematopoietic System. Front Immunol 2020; 11:536442. [PMID: 33224133 PMCID: PMC7670064 DOI: 10.3389/fimmu.2020.536442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/09/2020] [Indexed: 12/22/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPC) experience a functional decline in response to chronic inflammation or aging. Haploinsufficiency of A20, or TNFAIP3, an innate immune regulator, is associated with a variety of autoimmune, inflammatory, and hematologic malignancies. Based on a prior analysis of epigenomic and transcriptomic changes during normal human aging, we find that the expression of A20 is significantly reduced in aged HSPC as compared to young HSPC. Here, we show that the partial reduction of A20 expression in young HSPC results in characteristic features of aging. Specifically, heterozygous deletion of A20 in hematopoietic cells resulted in expansion of the HSPC pool, reduced HSPC fitness, and myeloid-biased hematopoiesis. These findings suggest that altered expression of A20 in HSPC contributes to an aging-like phenotype, and that there may be a common underlying mechanism for diminished HSPC function between inflammatory states and aging.
Collapse
Affiliation(s)
- Molly A Smith
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, United States
| | - Ashley E Culver-Cochran
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Emmalee R Adelman
- Department of Human Genetics, University of Miami, Miami, FL, United States
| | - Garrett W Rhyasen
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, United States
| | - Averil Ma
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Maria E Figueroa
- Department of Human Genetics, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
| | - Daniel T Starczynowski
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, United States.,Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
37
|
Lefkopoulos S, Polyzou A, Derecka M, Bergo V, Clapes T, Cauchy P, Jerez-Longres C, Onishi-Seebacher M, Yin N, Martagon-Calderón NA, Potts KS, Klaeylé L, Liu F, Bowman TV, Jenuwein T, Mione MC, Trompouki E. Repetitive Elements Trigger RIG-I-like Receptor Signaling that Regulates the Emergence of Hematopoietic Stem and Progenitor Cells. Immunity 2020; 53:934-951.e9. [DOI: 10.1016/j.immuni.2020.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 06/23/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
|
38
|
Gritsenko A, Yu S, Martin-Sanchez F, Diaz-del-Olmo I, Nichols EM, Davis DM, Brough D, Lopez-Castejon G. Priming Is Dispensable for NLRP3 Inflammasome Activation in Human Monocytes In Vitro. Front Immunol 2020; 11:565924. [PMID: 33101286 PMCID: PMC7555430 DOI: 10.3389/fimmu.2020.565924] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022] Open
Abstract
Interleukin (IL)-18 and IL-1β are potent pro-inflammatory cytokines that contribute to inflammatory conditions such as rheumatoid arthritis and Alzheimer's disease. They are produced as inactive precursors that are activated by large macromolecular complexes called inflammasomes upon sensing damage or pathogenic signals. NLRP3 inflammasome activation is regarded to require a priming step that causes NLRP3 and IL-1β gene upregulation, and also NLRP3 post-translational licencing. A subsequent activation step leads to the assembly of the complex and the cleavage of pro-IL-18 and pro-IL-1β by caspase-1 into their mature forms, allowing their release. Here we show that human monocytes, but not monocyte derived macrophages, are able to form canonical NLRP3 inflammasomes in the absence of priming. NLRP3 activator nigericin caused the processing and release of constitutively expressed IL-18 in an unprimed setting. This was mediated by the canonical NLRP3 inflammasome that was dependent on K+ and Cl- efflux and led to ASC oligomerization, caspase-1 and Gasdermin-D (GSDMD) cleavage. IL-18 release was impaired by the NLRP3 inhibitor MCC950 and by the absence of NLRP3, but also by deficiency of GSDMD, suggesting that pyroptosis is the mechanism of release. This work highlights the readiness of the NLRP3 inflammasome to assemble in the absence of priming in human monocytes and hence contribute to the very early stages of the inflammatory response when IL-1β has not yet been produced. It is important to consider the unprimed setting when researching the mechanisms of NLRP3 activation, as to not overshadow the pathways that occur in the absence of priming stimuli, which might only enhance this response.
Collapse
Affiliation(s)
- Anna Gritsenko
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Shi Yu
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Fatima Martin-Sanchez
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Ines Diaz-del-Olmo
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | | | - Daniel M. Davis
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - David Brough
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Gloria Lopez-Castejon
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
39
|
He X, Hawkins C, Lawley L, Freeman K, Phan TM, Zhang J, Xu Y, Fang J. Whole body deletion of Gpr68 does not change hematopoietic stem cell function. Stem Cell Res 2020; 47:101869. [PMID: 32592951 PMCID: PMC7749853 DOI: 10.1016/j.scr.2020.101869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 11/17/2022] Open
Abstract
G protein-coupled receptor 68 (GPR68) responds to extracellular protons, thus called the proton-sensing G protein-coupled receptor (GPCR), leading to activation of the phospholipase C-β (PLCβ)/calcium (Ca2+) pathway or the adenylyl cyclase (AC)/cyclic AMP (cAMP) pathway. We recently found that whole body deletion of Gpr68 (Gpr68-/- mice) reduced the number of B lymphocytes with age and during hematopoietic regeneration, such as in response to fluorouracil (5-FU) administration. This prompted us to characterize the hematopoietic stem cell (HSC) phenotype in Gpr68-/- mice. Despite high level of Gpr68 protein expression on HSC in bone marrow (BM), the pool size of HSC was unaltered in Gpr68-/- mice either under steady state or upon stress, including aging and 5-FU treatment. HSC from Gpr68-/- mice exhibited comparable cellular features, such as cell cycle quiescence and cell survival. HSC from Gpr68-/- mice also exhibited comparable competitiveness after serial transplantation. Surprisingly, cytosolic Ca2+ accumulation was increased in HSC from Gpr68-/- mice. In contrast, cAMP levels were reduced in hematopoietic stem and progenitor cells (HSPC) from Gpr68-/- mice. Intriguingly, we found high level of Gpr68 protein expression on non-hematopoietic cells in BM, especially endothelial cells that function as HSC niche. In addition, expression of other proton-sensing GPCR was upregulated in HSPC from Gpr68-/- mice. Our studies suggest that Gpr68-/- mice display insignificant phenotype on HSC biology, possibly due to the function of Gpr68 in non-hematopoietic cells and/or the compensatory effects from other proton-sensing GPCR.
Collapse
Affiliation(s)
- Xiaofei He
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC, USA
| | - Caleb Hawkins
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC, USA
| | - Lauren Lawley
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC, USA
| | - Kennedy Freeman
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC, USA
| | - Tra Mi Phan
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC, USA
| | - Jiajia Zhang
- Department of Epidemiology and Biostatistics, University of South Carolina Arnold School of Public Health, Columbia, SC, USA
| | - Yan Xu
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jing Fang
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC, USA.
| |
Collapse
|
40
|
Itskovich SS, Gurunathan A, Clark J, Burwinkel M, Wunderlich M, Berger MR, Kulkarni A, Chetal K, Venkatasubramanian M, Salomonis N, Kumar AR, Lee LH. MBNL1 regulates essential alternative RNA splicing patterns in MLL-rearranged leukemia. Nat Commun 2020; 11:2369. [PMID: 32398749 PMCID: PMC7217953 DOI: 10.1038/s41467-020-15733-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
Despite growing awareness of the biologic features underlying MLL-rearranged leukemia, targeted therapies for this leukemia have remained elusive and clinical outcomes remain dismal. MBNL1, a protein involved in alternative splicing, is consistently overexpressed in MLL-rearranged leukemias. We found that MBNL1 loss significantly impairs propagation of murine and human MLL-rearranged leukemia in vitro and in vivo. Through transcriptomic profiling of our experimental systems, we show that in leukemic cells, MBNL1 regulates alternative splicing (predominantly intron exclusion) of several genes including those essential for MLL-rearranged leukemogenesis, such as DOT1L and SETD1A. We finally show that selective leukemic cell death is achievable with a small molecule inhibitor of MBNL1. These findings provide the basis for a new therapeutic target in MLL-rearranged leukemia and act as further validation of a burgeoning paradigm in targeted therapy, namely the disruption of cancer-specific splicing programs through the targeting of selectively essential RNA binding proteins.
Collapse
Affiliation(s)
- Svetlana S Itskovich
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Arun Gurunathan
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Jason Clark
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Matthew Burwinkel
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Mikaela R Berger
- College of Medicine, University of Cincinnati School of Medicine, Cincinnati, OH, 45267, USA
| | - Aishwarya Kulkarni
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, 45221, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Kashish Chetal
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Meenakshi Venkatasubramanian
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, 45221, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, 45229, USA
| | - Ashish R Kumar
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, 45229, USA
| | - Lynn H Lee
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, 45229, USA.
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
41
|
Liu S, Pan C, Tang Y, Chen F, Yang M, Wang KJ. Identification of novel long non-coding RNAs involved in bisphenol A induced immunotoxicity in fish primary macrophages. FISH & SHELLFISH IMMUNOLOGY 2020; 100:152-160. [PMID: 32147374 DOI: 10.1016/j.fsi.2020.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/19/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Bisphenol A (BPA), a well-known environmental endocrine-disrupting chemical (EDC), could pose a great toxicity risk to aquatic organisms. The present study aimed to evaluate the underlying role of long non-coding RNAs (lncRNAs) in BPA-induced immunotoxicity in head kidney (HK) macrophages of the red common carp (Cyprinus carpio), using lncRNA-RNA sequencing (RNA-Seq). In BPA-exposed HK macrophages group, 2,095 and 1,138 differentially expressed mRNAs (DEGs) and lncRNAs (DE-lncRNAs) were obtained, respectively, compared with controls. The qRT-PCR validation results of DEGs and DE-lncRNAs were similar to the RNA-Seq results. The KEGG analysis of DEGs and target genes of DE-lncRNAs have shown that some immune-related signaling pathways, including NF-kappa B, Toll-like receptor, B-cell receptor, Jak-STAT, and Hippo signaling pathways, were severely disrupted by BPA exposure. Moreover, we observed the synergic regulation of some mRNAs involved in immune response such as two hub genes traf6 and mapk1/3 and their upstream lncRNAs in HK macrophages upon the BPA exposure or its analogue bisphenol S (BPS) exposure. This suggested the dysregulation of lncRNAs by BPA or BPS may lead to a change in the expression of hub genes, which affects the cross-talk of various signaling pathways by interaction with other network genes. In conclusion, the present study demonstrates the potential role of lncRNAs in immunotoxicity of bisphenol compounds in red common carp HK macrophages, and our results provide evidence for further exploring lncRNA's role in EDC-induced toxicity in aquatic organisms.
Collapse
Affiliation(s)
- Shuai Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Chenyuan Pan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Yi Tang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, 361005, China.
| | - Ming Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
42
|
D’Ignazio L, Shakir D, Batie M, Muller HA, Rocha S. HIF-1β Positively Regulates NF-κB Activity via Direct Control of TRAF6. Int J Mol Sci 2020; 21:ijms21083000. [PMID: 32344511 PMCID: PMC7216149 DOI: 10.3390/ijms21083000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
NF-κB signalling is crucial for cellular responses to inflammation but is also associated with the hypoxia response. NF-κB and hypoxia inducible factor (HIF) transcription factors possess an intense molecular crosstalk. Although it is known that HIF-1α modulates NF-κB transcriptional response, very little is understood regarding how HIF-1β contributes to NF-κB signalling. Here, we demonstrate that HIF-1β is required for full NF-κB activation in cells following canonical and non-canonical stimuli. We found that HIF-1β specifically controls TRAF6 expression in human cells but also in Drosophila melanogaster. HIF-1β binds to the TRAF6 gene and controls its expression independently of HIF-1α. Furthermore, exogenous TRAF6 expression is able to rescue all of the cellular phenotypes observed in the absence of HIF-1β. These results indicate that HIF-1β is an important regulator of NF-κB with consequences for homeostasis and human disease.
Collapse
Affiliation(s)
- Laura D’Ignazio
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;
- The Lieber Institute for Brain Development, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Dilem Shakir
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (D.S.); (M.B.)
| | - Michael Batie
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (D.S.); (M.B.)
| | - H. Arno Muller
- Developmental Genetics Unit, Institute of Biology, University of Kassel, 34132 Kassel, Germany;
| | - Sonia Rocha
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (D.S.); (M.B.)
- Correspondence: ; Tel.: +44-(0)151-794-9084
| |
Collapse
|
43
|
Muto T, Walker CS, Choi K, Hueneman K, Smith MA, Gul Z, Garcia-Manero G, Ma A, Zheng Y, Starczynowski DT. Adaptive response to inflammation contributes to sustained myelopoiesis and confers a competitive advantage in myelodysplastic syndrome HSCs. Nat Immunol 2020; 21:535-545. [PMID: 32313245 DOI: 10.1038/s41590-020-0663-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
Abstract
Despite evidence of chronic inflammation in myelodysplastic syndrome (MDS) and cell-intrinsic dysregulation of Toll-like receptor (TLR) signaling in MDS hematopoietic stem and progenitor cells (HSPCs), the mechanisms responsible for the competitive advantage of MDS HSPCs in an inflammatory milieu over normal HSPCs remain poorly defined. Here, we found that chronic inflammation was a determinant for the competitive advantage of MDS HSPCs and for disease progression. The cell-intrinsic response of MDS HSPCs, which involves signaling through the noncanonical NF-κB pathway, protected these cells from chronic inflammation as compared to normal HSPCs. In response to inflammation, MDS HSPCs switched from canonical to noncanonical NF-κB signaling, a process that was dependent on TLR-TRAF6-mediated activation of A20. The competitive advantage of TLR-TRAF6-primed HSPCs could be restored by deletion of A20 or inhibition of the noncanonical NF-κB pathway. These findings uncover the mechanistic basis for the clonal dominance of MDS HSPCs and indicate that interfering with noncanonical NF-κB signaling could prevent MDS progression.
Collapse
Affiliation(s)
- Tomoya Muto
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Callum S Walker
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kathleen Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Molly A Smith
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Zartash Gul
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | | | - Averil Ma
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
44
|
Park Y, Pang K, Park J, Hong E, Lee J, Ooshima A, Kim HS, Cho JH, Han Y, Lee C, Song YS, Park KS, Yang KM, Kim SJ. Destablilization of TRAF6 by DRAK1 Suppresses Tumor Growth and Metastasis in Cervical Cancer Cells. Cancer Res 2020; 80:2537-2549. [PMID: 32265222 DOI: 10.1158/0008-5472.can-19-3428] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/06/2020] [Accepted: 04/03/2020] [Indexed: 11/16/2022]
Abstract
The adaptor protein TNF receptor-associated factor 6 (TRAF6) is a key mediator in inflammation. However, the molecular mechanisms controlling its activity and stability in cancer progression remain unclear. Here we show that death-associated protein kinase-related apoptosis-inducing kinase 1 (DRAK1) inhibits the proinflammatory signaling pathway by targeting TRAF6 for degradation, thereby suppressing inflammatory signaling-mediated tumor growth and metastasis in advanced cervical cancer cells. DRAK1 bound directly to the TRAF domain of TRAF6, preventing its autoubiquitination by interfering with homo-oligomerization, eventually leading to autophagy-mediated degradation of TRAF6. Depletion of DRAK1 in cervical cancer cells resulted in markedly increased levels of TRAF6 protein, promoting activation of the IL1β signaling-associated pathway and proinflammatory cytokine production. DRAK1 was specifically underexpressed in metastatic cervical cancers and inversely correlated with TRAF6 expression in mouse xenograft model tumor tissues and human cervical tumor tissues. Collectively, our findings highlight DRAK1 as a novel antagonist of inflammation targeting TRAF6 for degradation that limits inflammatory signaling-mediated progression of advanced cervical cancer. SIGNIFICANCE: Serine/threonine kinase DRAK1 serves a unique role as a novel negative regulator of the inflammatory signaling mediator TRAF6 in cervical cancer progression.
Collapse
Affiliation(s)
- Yuna Park
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, Republic of Korea.,Department of Biomedical Science, College of Life Science, CHA University, Seongnam City, Gyeonggi-do, Korea
| | - Kyoungwha Pang
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, Republic of Korea.,Department of Biomedical Science, College of Life Science, CHA University, Seongnam City, Gyeonggi-do, Korea
| | - Jinah Park
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, Republic of Korea
| | - Eunji Hong
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, Republic of Korea.,Department of Biological Science, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Jihee Lee
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, Republic of Korea.,Department of Biomedical Science, College of Life Science, CHA University, Seongnam City, Gyeonggi-do, Korea
| | - Akira Ooshima
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, Republic of Korea
| | - Hae-Suk Kim
- TheragenEtex Bio Institute, TheragenEtex Co., Suwon, Gyeonggi-do, Republic of Korea
| | - Jae Hyun Cho
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Youngjin Han
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea.,Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Cheol Lee
- Department of Pathology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, Republic of Korea.,Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam City, Gyeonggi-do, Korea
| | - Kyung-Min Yang
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, Republic of Korea.
| | - Seong-Jin Kim
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, Republic of Korea. .,TheragenEtex Bio Institute, TheragenEtex Co., Suwon, Gyeonggi-do, Republic of Korea.,Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Gyeonggi-do, Republic of Korea
| |
Collapse
|
45
|
Semmler S, Gagné M, Garg P, Pickles SR, Baudouin C, Hamon-Keromen E, Destroismaisons L, Khalfallah Y, Chaineau M, Caron E, Bayne AN, Trempe JF, Cashman NR, Star AT, Haqqani AS, Durcan TM, Meiering EM, Robertson J, Grandvaux N, Plotkin SS, McBride HM, Vande Velde C. TNF receptor-associated factor 6 interacts with ALS-linked misfolded superoxide dismutase 1 and promotes aggregation. J Biol Chem 2020; 295:3808-3825. [PMID: 32029478 DOI: 10.1074/jbc.ra119.011215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/17/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease, characterized by the selective loss of motor neurons leading to paralysis. Mutations in the gene encoding superoxide dismutase 1 (SOD1) are the second most common cause of familial ALS, and considerable evidence suggests that these mutations result in an increase in toxicity due to protein misfolding. We previously demonstrated in the SOD1G93A rat model that misfolded SOD1 exists as distinct conformers and forms deposits on mitochondrial subpopulations. Here, using SOD1G93A rats and conformation-restricted antibodies specific for misfolded SOD1 (B8H10 and AMF7-63), we identified the interactomes of the mitochondrial pools of misfolded SOD1. This strategy identified binding proteins that uniquely interacted with either AMF7-63 or B8H10-reactive SOD1 conformers as well as a high proportion of interactors common to both conformers. Of this latter set, we identified the E3 ubiquitin ligase TNF receptor-associated factor 6 (TRAF6) as a SOD1 interactor, and we determined that exposure of the SOD1 functional loops facilitates this interaction. Of note, this conformational change was not universally fulfilled by all SOD1 variants and differentiated TRAF6 interacting from TRAF6 noninteracting SOD1 variants. Functionally, TRAF6 stimulated polyubiquitination and aggregation of the interacting SOD1 variants. TRAF6 E3 ubiquitin ligase activity was required for the former but was dispensable for the latter, indicating that TRAF6-mediated polyubiquitination and aggregation of the SOD1 variants are independent events. We propose that the interaction between misfolded SOD1 and TRAF6 may be relevant to the etiology of ALS.
Collapse
Affiliation(s)
- Sabrina Semmler
- Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec H3A 2B4, Canada.,Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada
| | - Myriam Gagné
- Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Pranav Garg
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Sarah R Pickles
- Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Charlotte Baudouin
- Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada.,Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Emeline Hamon-Keromen
- Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada.,Université Pierre et Marie Curie, 75005 Paris, France
| | - Laurie Destroismaisons
- Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada
| | - Yousra Khalfallah
- Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Mathilde Chaineau
- Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec H3A 2B4, Canada.,Montreal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Elise Caron
- Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada
| | - Andrew N Bayne
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Jean-François Trempe
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Neil R Cashman
- Department of Medicine (Neurology), University of British Columbia and Vancouver Coastal Health Research Institute, Brain Research Centre, Vancouver, British Columbia V6T 2B5, Canada
| | - Alexandra T Star
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, K1A 0R6, Canada
| | - Arsalan S Haqqani
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, K1A 0R6, Canada
| | - Thomas M Durcan
- Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec H3A 2B4, Canada.,Montreal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Elizabeth M Meiering
- Department of Chemistry, Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5T 0S8, Canada
| | - Nathalie Grandvaux
- Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Steven S Plotkin
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Heidi M McBride
- Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec H3A 2B4, Canada.,Montreal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Christine Vande Velde
- Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada .,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada.,Department of Neurosciences, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| |
Collapse
|
46
|
Molecular Mechanisms That Define Redox Balance Function in Pathogen-Host Interactions-Is There a Role for Dietary Bioactive Polyphenols? Int J Mol Sci 2019; 20:ijms20246222. [PMID: 31835548 PMCID: PMC6940965 DOI: 10.3390/ijms20246222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 01/01/2023] Open
Abstract
To ensure a functional immune system, the mammalian host must detect and respond to the presence of pathogenic bacteria during infection. This is accomplished in part by generating reactive oxygen species (ROS) that target invading bacteria; a process that is facilitated by NADPH oxidase upregulation. Thus, bacterial pathogens must overcome the oxidative burst produced by the host innate immune cells in order to survive and proliferate. In this way, pathogenic bacteria develop virulence, which is related to the affinity to secrete effector proteins against host ROS in order to facilitate microbial survival in the host cell. These effectors scavenge the host generated ROS directly, or alternatively, manipulate host cell signaling mechanisms designed to benefit pathogen survival. The redox-balance of the host is important for the regulation of cell signaling activities that include mitogen-activated protein kinase (MAPK), p21-activated kinase (PAK), phosphatidylinositol 3-kinase (PI3K)/Akt, and nuclear factor κB (NF-κB) pathways. An understanding of the function of pathogenic effectors to divert host cell signaling is important to ascertain the mechanisms underlying pathogen virulence and the eventual host–pathogen relationship. Herein, we examine the effectors produced by the microbial secretion system, placing emphasis on how they target molecular signaling mechanisms involved in a host immune response. Moreover, we discuss the potential impact of bioactive polyphenols in modulating these molecular interactions that will ultimately influence pathogen virulence.
Collapse
|
47
|
Cao Y, Lu G, Chen X, Chen X, Guo N, Li W. BAFF is involved in the pathogenesis of IgA nephropathy by activating the TRAF6/NF‑κB signaling pathway in glomerular mesangial cells. Mol Med Rep 2019; 21:795-805. [PMID: 31974601 PMCID: PMC6947818 DOI: 10.3892/mmr.2019.10870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 10/30/2019] [Indexed: 01/28/2023] Open
Abstract
The aim of the present study was to investigate the involvement of B cell-activating factor (BAFF) in the pathogenesis of IgA nephropathy by activating the tumor necrosis factor receptor-associated factor 6 (TRAF6)/NF-κB signaling pathway in glomerular mesangial cells. For the clinical analysis, blood, urine and kidney tissue samples were collected from 58 patients diagnosed with primary IgA nephropathy by renal biopsy. For the in vitro study, glomerular mesangial cells were divided into five groups: Control (con)-short hairpin RNA (shRNA) (control group); con-shRNA + BAFF (20 ng/ml); con-shRNA + BAFF + BAFF-RFc chimera protein (500 µg/ml); TRAF6-shRNA; and TRAF6-shRNA + BAFF (20 ng/ml). For the in vivo experiments, 60 Sprague-Dawley rats were randomly divided into four groups: Con-small interfering RNA (siRNA) (control group); con-siRNA + IgA (IgA nephropathy group), BAFF-RFc chimera protein (2 µg/ml) + IgA, and TRAF6-siRNA (0.2 µM) + IgA. Reverse transcription-quantitative PCR was performed to evaluate the mRNA expression levels of TRAF6, connective tissue growth factor (CTGF), fibronectin (FN) and NF-κBP65. Western blot analysis was used to detect the protein expression levels of TRAF6, FN, CTGF and phosphorylated-NF-κBP65 in glomerular mesangial cells and kidney tissues. The results revealed that plasma BAFF levels were positively correlated with the severity of pathological damage in patients with IgA nephropathy. In vitro, BAFF induced the mRNA and protein expression of TRAF6, CTGF, FN and NF-κBP65 in glomerular mesangial cells. After the BAFF-RFc chimera protein was added to inhibit the binding of BAFF and BAFF-receptor (-R), this effect was reduced. In vivo, inhibition of the effects of BAFF via injection with the BAFF-R Fc chimera protein reduced kidney damage in rats suffering from IgA nephropathy. The effect on the expression of signaling pathway-associated proteins was also alleviated. In conclusion, BAFF enhanced the expression of fibroblast factors in the kidneys by activating the TRAF6/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yingjie Cao
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Guoyuan Lu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xiaolan Chen
- Department of Nephrology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Xu Chen
- Department of Nephrology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Naifeng Guo
- Department of Nephrology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Wenwen Li
- Department of Nephrology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| |
Collapse
|
48
|
UM171 induces a homeostatic inflammatory-detoxification response supporting human HSC self-renewal. PLoS One 2019; 14:e0224900. [PMID: 31703090 PMCID: PMC6839847 DOI: 10.1371/journal.pone.0224900] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022] Open
Abstract
Elucidation of the molecular cues required to balance adult stem cell self-renewal and differentiation is critical for advancing cellular therapies. Herein, we report that the hematopoietic stem cell (HSC) self-renewal agonist UM171 triggers a balanced pro- and anti-inflammatory/detoxification network that relies on NFKB activation and protein C receptor-dependent ROS detoxification, respectively. We demonstrate that within this network, EPCR serves as a critical protective component as its deletion hypersensitizes primitive hematopoietic cells to pro-inflammatory signals and ROS accumulation resulting in compromised stem cell function. Conversely, abrogation of the pro-inflammatory activity of UM171 through treatment with dexamethasone, cAMP elevating agents or NFkB inhibitors abolishes EPCR upregulation and HSC expansion. Together, these results show that UM171 stimulates ex vivo HSC expansion by establishing a critical balance between key pro- and anti-inflammatory mediators of self-renewal.
Collapse
|
49
|
Ribezzo F, Snoeren IAM, Ziegler S, Stoelben J, Olofsen PA, Henic A, Ferreira MV, Chen S, Stalmann USA, Buesche G, Hoogenboezem RM, Kramann R, Platzbecker U, Raaijmakers MHGP, Ebert BL, Schneider RK. Rps14, Csnk1a1 and miRNA145/miRNA146a deficiency cooperate in the clinical phenotype and activation of the innate immune system in the 5q- syndrome. Leukemia 2019; 33:1759-1772. [PMID: 30651631 DOI: 10.1038/s41375-018-0350-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/13/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022]
Abstract
RPS14, CSNK1A1, and miR-145 are universally co-deleted in the 5q- syndrome, but mouse models of each gene deficiency recapitulate only a subset of the composite clinical features. We analyzed the combinatorial effect of haploinsufficiency for Rps14, Csnk1a1, and miRNA-145, using mice with genetically engineered, conditional heterozygous inactivation of Rps14 and Csnk1a1 and stable knockdown of miR-145/miR-146a. Combined Rps14/Csnk1a1/miR-145/146a deficiency recapitulated the cardinal features of the 5q- syndrome, including (1) more severe anemia with faster kinetics than Rps14 haploinsufficiency alone and (2) pathognomonic megakaryocyte morphology. Macrophages, regulatory cells of erythropoiesis and the innate immune response, were significantly increased in Rps14/Csnk1a1/miR-145/146a deficient mice as well as in 5q- syndrome patient bone marrows and showed activation of the innate immune response, reflected by increased expression of S100A8, and decreased phagocytic function. We demonstrate that Rps14/Csnk1a1/miR-145 and miR-146a deficient macrophages alter the microenvironment and induce S100A8 expression in the mesenchymal stem cell niche. The increased S100A8 expression in the mesenchymal niche was confirmed in 5q- syndrome patients. These data indicate that intrinsic defects of the 5q- syndrome hematopoietic stem cell directly alter the surrounding microenvironment, which in turn affects hematopoiesis as an extrinsic mechanism.
Collapse
Affiliation(s)
- Flavia Ribezzo
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, RWTH Aachen University, Aachen, Germany
| | - Inge A M Snoeren
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Susanne Ziegler
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, RWTH Aachen University, Aachen, Germany
| | - Jacques Stoelben
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, RWTH Aachen University, Aachen, Germany
| | - Patricia A Olofsen
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Almira Henic
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Monica Ventura Ferreira
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, RWTH Aachen University, Aachen, Germany
| | - Si Chen
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Ursula S A Stalmann
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Guntram Buesche
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Remco M Hoogenboezem
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Rafael Kramann
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Uwe Platzbecker
- Department of Hematology, University Hospital Carl Gustav Carus Technical University, Dresden, Germany
| | | | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Rebekka K Schneider
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, RWTH Aachen University, Aachen, Germany.
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| |
Collapse
|
50
|
Dainichi T, Matsumoto R, Mostafa A, Kabashima K. Immune Control by TRAF6-Mediated Pathways of Epithelial Cells in the EIME (Epithelial Immune Microenvironment). Front Immunol 2019; 10:1107. [PMID: 31156649 PMCID: PMC6532024 DOI: 10.3389/fimmu.2019.01107] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/01/2019] [Indexed: 12/13/2022] Open
Abstract
In the protective responses of epithelial tissues, not only immune cells but also non-immune cells directly respond to external agents. Epithelial cells can be involved in the organization of immune responses through two phases. First, the exogenous harmful agents trigger the primary responses of the epithelial cells leading to various types of immune cell activation. Second, cytokines produced by the immune cells that are activated directly by the external agents and indirectly by the epithelial cell products elicit the secondary responses giving rise to further propagation of immune responses. TRAF6 is a ubiquitin E3 ligase, which intermediates between various types of receptors for exogenous agents or endogenous mediators and activation of subsequent transcriptional responses via NF-kappaB and MAPK pathways. TRAF6 ubiquitously participates in many protective responses in immune and non-immune cells. Particularly, epithelial TRAF6 has an essential role in the primary and secondary responses via driving type 17 response in psoriatic inflammation of the skin. Consistently, many psoriasis susceptibility genes encode the TRAF6 signaling players, such as ACT1 (TRAF3IP2), A20 (TNFAIP3), ABIN1 (TNIP1), IL-36Ra (IL36RN), IkappaBzeta (NFKBIZ), and CARD14. Herein, we describe the principal functions of TRAF6, especially in terms of positive and regulatory immune controls by interaction between immune cells and epithelial cells. In addition, we discuss how TRAF6 in the epithelial cells can organize the differentiation of immune responses and drive inflammatory loops in the epithelial immune microenvironment, which is termed EIME.
Collapse
Affiliation(s)
- Teruki Dainichi
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Reiko Matsumoto
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Alshimaa Mostafa
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Dermatology, Beni-Suef University, Beni-Suef, Egypt
| | - Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Singapore Immunology Network (SIgN) and Institute of Medical Biology, Agency for Science, Technology and Research (ASTAR), Biopolis, Singapore, Singapore
| |
Collapse
|