1
|
Yang Y, Mou Y, Wan LX, Zhu S, Wang G, Gao H, Liu B. Rethinking therapeutic strategies of dual-target drugs: An update on pharmacological small-molecule compounds in cancer. Med Res Rev 2024; 44:2600-2623. [PMID: 38769656 DOI: 10.1002/med.22057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/06/2023] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Oncogenes and tumor suppressors are well-known to orchestrate several signaling cascades, regulate extracellular and intracellular stimuli, and ultimately control the fate of cancer cells. Accumulating evidence has recently revealed that perturbation of these key modulators by mutations or abnormal protein expressions are closely associated with drug resistance in cancer therapy; however, the inherent drug resistance or compensatory mechanism remains to be clarified for targeted drug discovery. Thus, dual-target drug development has been widely reported to be a promising therapeutic strategy for improving drug efficiency or overcoming resistance mechanisms. In this review, we provide an overview of the therapeutic strategies of dual-target drugs, especially focusing on pharmacological small-molecule compounds in cancer, including small molecules targeting mutation resistance, compensatory mechanisms, synthetic lethality, synergistic effects, and other new emerging strategies. Together, these therapeutic strategies of dual-target drugs would shed light on discovering more novel candidate small-molecule drugs for the future cancer treatment.
Collapse
Affiliation(s)
- Yiren Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yi Mou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Lin-Xi Wan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Shiou Zhu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Huiyuan Gao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Osia B, Merkell A, Lopezcolorado FW, Ping X, Stark JM. RAD52 and ERCC6L/PICH have a compensatory relationship for genome stability in mitosis. PLoS Genet 2024; 20:e1011479. [PMID: 39561207 PMCID: PMC11614213 DOI: 10.1371/journal.pgen.1011479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 12/03/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024] Open
Abstract
Mammalian RAD52 is a DNA repair factor with strand annealing and recombination mediator activities that appear important in both interphase and mitotic cells. Nonetheless, RAD52 is dispensable for cell viability. To query RAD52 synthetic lethal relationships, we performed genome-wide CRISPR knock-out screens and identified hundreds of candidate synthetic lethal interactions. We then performed secondary screening and identified genes for which depletion causes reduced viability and elevated genome instability (increased 53BP1 nuclear foci) in RAD52-deficient cells. One such factor was ERCC6L, which marks DNA bridges during anaphase, and hence is important for genome stability in mitosis. Thus, we investigated the functional interrelationship between RAD52 and ERCC6L. We found that RAD52 deficiency increases ERCC6L-coated anaphase ultrafine bridges, and that ERCC6L depletion causes elevated RAD52 foci in prometaphase and interphase cells. These effects were enhanced with replication stress (i.e. hydroxyurea) and topoisomerase IIα inhibition (ICRF-193), where post-treatment effect timings were consistent with defects in addressing stress in mitosis. Altogether, we suggest that RAD52 and ERCC6L co-compensate to protect genome stability in mitosis.
Collapse
Affiliation(s)
- Beth Osia
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Arianna Merkell
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Felicia Wednesday Lopezcolorado
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Xiaoli Ping
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Jeremy M. Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| |
Collapse
|
3
|
Balboni B, Marotta R, Rinaldi F, Milordini G, Varignani G, Girotto S, Cavalli A. An integrative structural study of the human full-length RAD52 at 2.2 Å resolution. Commun Biol 2024; 7:956. [PMID: 39112549 PMCID: PMC11306251 DOI: 10.1038/s42003-024-06644-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024] Open
Abstract
Human RAD52 (RAD52) is a DNA-binding protein involved in many DNA repair mechanisms and genomic stability maintenance. In the last few years, this protein was discovered to be a promising novel pharmacological target for anticancer strategies. Although the interest in RAD52 has exponentially grown in the previous decade, most information about its structure and mechanism still needs to be elucidated. Here, we report the 2.2 Å resolution cryo-EM reconstruction of the full-length RAD52 (FL-RAD52) protein. This allows us to describe the hydration shell of the N-terminal region of FL-RAD52, which is structured in an undecamer ring. Water molecules coordinate with protein residues to promote stabilization inside and among the protomers and within the inner DNA binding cleft to drive protein-DNA recognition. Additionally, through a multidisciplinary approach involving SEC-SAXS and computational methods, we comprehensively describe the highly flexible and dynamic organization of the C-terminal portion of FL-RAD52. This work discloses unprecedented structural details on the FL-RAD52, which will be critical for characterizing its mechanism of action and inhibitor development, particularly in the context of novel approaches to synthetic lethality and anticancer drug discovery.
Collapse
Affiliation(s)
- Beatrice Balboni
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Genoa, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Roberto Marotta
- Electron Microscopy Facility (EMF), Istituto Italiano di Tecnologia, Genoa, Italy
| | - Francesco Rinaldi
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Genoa, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giulia Milordini
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Giulia Varignani
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Genoa, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Stefania Girotto
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Genoa, Italy.
- Structural Biophysics Facility, Istituto Italiano di Tecnologia, Genoa, Italy.
| | - Andrea Cavalli
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Genoa, Italy.
- CECAM, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
4
|
Xie Y, Xiao D, Li D, Peng M, Peng W, Duan H, Yang X. Combined strategies with PARP inhibitors for the treatment of BRCA wide type cancer. Front Oncol 2024; 14:1441222. [PMID: 39156700 PMCID: PMC11327142 DOI: 10.3389/fonc.2024.1441222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024] Open
Abstract
Genomic instability stands out as a pivotal hallmark of cancer, and PARP inhibitors (PARPi) emerging as a groundbreaking class of targeted therapy drugs meticulously crafted to inhibit the repair of DNA single-strand breaks(SSB) in tumor cells. Currently, PARPi have been approved for the treatment of ovarian cancer, pancreatic cancer, breast cancer, and prostate cancer characterized by homologous recombination(HR) repair deficiencies due to mutations in BRCA1/2 or other DNA repair associated genes and acquiring the designation of breakthrough therapy. Nonetheless, PARPi exhibit limited efficacy in the majority of HR-proficient BRCA1/2 wild-type cancers. At present, the synergistic approach of combining PARPi with agents that induce HR defects, or with chemotherapy and radiotherapy to induce substantial DNA damage, significantly enhances the efficacy of PARPi in BRCA wild-type or HR-proficient patients, supporting extension the use of PARPi in HR proficient patients. Therefore, we have summarized the effects and mechanisms of the combined use of drugs with PARPi, including the combination of PARPi with HR defect-inducing drugs such as ATRi, CHKi, HR indirectly inducing drugs like VEGFRi, CDKi, immune checkpoint inhibitors and drugs instigating DNA damage such as chemotherapy or radiotherapy. In addition, this review discusses several ongoing clinical trials aimed at analyzing the clinical application potential of these combined treatment strategies.
Collapse
Affiliation(s)
- Yijun Xie
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Di Xiao
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Duo Li
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Mei Peng
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Wei Peng
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Huaxin Duan
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xiaoping Yang
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
5
|
Onji H, Tate S, Sakaue T, Fujiwara K, Nakano S, Kawaida M, Onishi N, Matsumoto T, Yamagami W, Sugiyama T, Higashiyama S, Pommier Y, Kobayashi Y, Murai J. Schlafen 11 further sensitizes BRCA-deficient cells to PARP inhibitors through single-strand DNA gap accumulation behind replication forks. Oncogene 2024; 43:2475-2489. [PMID: 38961202 PMCID: PMC11315672 DOI: 10.1038/s41388-024-03094-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
The preferential response to PARP inhibitors (PARPis) in BRCA-deficient and Schlafen 11 (SLFN11)-expressing ovarian cancers has been documented, yet the underlying molecular mechanisms remain unclear. As the accumulation of single-strand DNA (ssDNA) gaps behind replication forks is key for the lethality effect of PARPis, we investigated the combined effects of SLFN11 expression and BRCA deficiency on PARPi sensitivity and ssDNA gap formation in human cancer cells. PARPis increased chromatin-bound RPA2 and ssDNA gaps in SLFN11-expressing cells and even more in cells with BRCA1 or BRCA2 deficiency. SLFN11 was co-localized with chromatin-bound RPA2 under PARPis treatment, with enhanced recruitment in BRCA2-deficient cells. Notably, the chromatin-bound SLFN11 under PARPis did not block replication, contrary to its function under replication stress. SLFN11 recruitment was attenuated by the inactivation of MRE11. Hence, under PARPi treatment, MRE11 expression and BRCA deficiency lead to ssDNA gaps behind replication forks, where SLFN11 binds and increases their accumulation. As ovarian cancer patients who responded (progression-free survival >2 years) to olaparib maintenance therapy had a significantly higher SLFN11-positivity than short-responders (<6 months), our findings provide a mechanistic understanding of the favorable responses to PARPis in SLFN11-expressing and BRCA-deficient tumors. It highlight the clinical implications of SLFN11.
Collapse
Affiliation(s)
- Hiroshi Onji
- Department of Obstetrics and Gynecology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Sota Tate
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center (PROS), Toon, Ehime, Japan
| | - Tomohisa Sakaue
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center (PROS), Toon, Ehime, Japan
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Kohei Fujiwara
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Shiho Nakano
- Department of Obstetrics and Gynecology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Miho Kawaida
- Division of Diagnostic Pathology, Keio University Hospital, Shinjuku-ku, Tokyo, Japan
| | - Nobuyuki Onishi
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Shinagawa-ku, Tokyo, Japan
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Takashi Matsumoto
- Department of Obstetrics and Gynecology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Wataru Yamagami
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Takashi Sugiyama
- Department of Obstetrics and Gynecology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Shigeki Higashiyama
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center (PROS), Toon, Ehime, Japan
- Department of Oncogenesis and Tumor Regulation, Osaka International Cancer Institute, Chuo-ku, Osaka, Japan
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Yusuke Kobayashi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.
- Department of Obstetrics and Gynecology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Junko Murai
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan.
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center (PROS), Toon, Ehime, Japan.
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan.
| |
Collapse
|
6
|
Previtali V, Bagnolini G, Ciamarone A, Ferrandi G, Rinaldi F, Myers SH, Roberti M, Cavalli A. New Horizons of Synthetic Lethality in Cancer: Current Development and Future Perspectives. J Med Chem 2024; 67:11488-11521. [PMID: 38955347 DOI: 10.1021/acs.jmedchem.4c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
In recent years, synthetic lethality has been recognized as a solid paradigm for anticancer therapies. The discovery of a growing number of synthetic lethal targets has led to a significant expansion in the use of synthetic lethality, far beyond poly(ADP-ribose) polymerase inhibitors used to treat BRCA1/2-defective tumors. In particular, molecular targets within DNA damage response have provided a source of inhibitors that have rapidly reached clinical trials. This Perspective focuses on the most recent progress in synthetic lethal targets and their inhibitors, within and beyond the DNA damage response, describing their design and associated therapeutic strategies. We will conclude by discussing the current challenges and new opportunities for this promising field of research, to stimulate discussion in the medicinal chemistry community, allowing the investigation of synthetic lethality to reach its full potential.
Collapse
Affiliation(s)
- Viola Previtali
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Greta Bagnolini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Andrea Ciamarone
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Giovanni Ferrandi
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Francesco Rinaldi
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Samuel Harry Myers
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Marinella Roberti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Andrea Cavalli
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
7
|
Vekariya U, Minakhin L, Chandramouly G, Tyagi M, Kent T, Sullivan-Reed K, Atkins J, Ralph D, Nieborowska-Skorska M, Kukuyan AM, Tang HY, Pomerantz RT, Skorski T. PARG is essential for Polθ-mediated DNA end-joining by removing repressive poly-ADP-ribose marks. Nat Commun 2024; 15:5822. [PMID: 38987289 PMCID: PMC11236980 DOI: 10.1038/s41467-024-50158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 06/27/2024] [Indexed: 07/12/2024] Open
Abstract
DNA polymerase theta (Polθ)-mediated end-joining (TMEJ) repairs DNA double-strand breaks and confers resistance to genotoxic agents. How Polθ is regulated at the molecular level to exert TMEJ remains poorly characterized. We find that Polθ interacts with and is PARylated by PARP1 in a HPF1-independent manner. PARP1 recruits Polθ to the vicinity of DNA damage via PARylation dependent liquid demixing, however, PARylated Polθ cannot perform TMEJ due to its inability to bind DNA. PARG-mediated de-PARylation of Polθ reactivates its DNA binding and end-joining activities. Consistent with this, PARG is essential for TMEJ and the temporal recruitment of PARG to DNA damage corresponds with TMEJ activation and dissipation of PARP1 and PAR. In conclusion, we show a two-step spatiotemporal mechanism of TMEJ regulation. First, PARP1 PARylates Polθ and facilitates its recruitment to DNA damage sites in an inactivated state. PARG subsequently activates TMEJ by removing repressive PAR marks on Polθ.
Collapse
Affiliation(s)
- Umeshkumar Vekariya
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Leonid Minakhin
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Gurushankar Chandramouly
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Mrityunjay Tyagi
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Tatiana Kent
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Katherine Sullivan-Reed
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jessica Atkins
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Douglas Ralph
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Margaret Nieborowska-Skorska
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Anna-Mariya Kukuyan
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Hsin-Yao Tang
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Richard T Pomerantz
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA.
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Toma MM, Karami A, Nieborowska-Skorska M, Chirtala KN, Pepek M, Hadzijusufovic E, Stoklosa T, Valent P, Skorski T. Clonal medicine targeting DNA damage response eradicates leukemia. Leukemia 2024; 38:671-675. [PMID: 38228681 PMCID: PMC10912018 DOI: 10.1038/s41375-024-02138-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024]
Affiliation(s)
- Monika M Toma
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Adam Karami
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Margaret Nieborowska-Skorska
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Kumaraswamy Naidu Chirtala
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Monika Pepek
- Department of Tumor Biology and Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Emir Hadzijusufovic
- Ludwig Boltzmann Institute for Hematology and Oncology and Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
- Department for Companion Animals & Horses, Clinic for Internal Medicine and Infectious Diseases, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Tomasz Stoklosa
- Department of Tumor Biology and Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Peter Valent
- Ludwig Boltzmann Institute for Hematology and Oncology and Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
9
|
Sullivan-Reed K, Toma MM, Drzewiecka M, Nieborowska-Skorska M, Nejati R, Karami A, Wasik MA, Sliwinski T, Skorski T. Simultaneous Targeting of DNA Polymerase Theta and PARP1 or RAD52 Triggers Dual Synthetic Lethality in Homologous Recombination-Deficient Leukemia Cells. Mol Cancer Res 2023; 21:1017-1022. [PMID: 37358557 PMCID: PMC10654933 DOI: 10.1158/1541-7786.mcr-22-1035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/09/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
DNA polymerase theta (Polθ, encoded by POLQ gene) plays an essential role in Polθ-mediated end-joining (TMEJ) of DNA double-strand breaks (DSB). Inhibition of Polθ is synthetic lethal in homologous recombination (HR)-deficient tumor cells. However, DSBs can be also repaired by PARP1 and RAD52-mediated mechanisms. Because leukemia cells accumulate spontaneous DSBs, we tested if simultaneous targeting of Polθ and PARP1 or RAD52 enhance the synthetic lethal effect in HR-deficient leukemia cells. Transformation potential of the oncogenes inducing BRCA1/2-deficiency (BCR-ABL1 and AML1-ETO) was severely limited in Polq-/-;Parp1-/- and Polq-/-;Rad52-/- cells when compared with single knockouts, which was associated with accumulation of DSBs. Small-molecule inhibitor of Polθ (Polθi) when combined with PARP or RAD52 inhibitors (PARPi, RAD52i) caused accumulation of DSBs and exerted increased effect against HR-deficient leukemia and myeloproliferative neoplasm cells. IMPLICATIONS In conclusion, we show that PARPi or RAD52i might improve therapeutic effect of Polθi against HR-deficient leukemias.
Collapse
Affiliation(s)
- Katherine Sullivan-Reed
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Monika M. Toma
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Malgorzata Drzewiecka
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Margaret Nieborowska-Skorska
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Adam Karami
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Mariusz A. Wasik
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Beha MJ, Kim J, Im SH, Kim Y, Yang S, Lee J, Nam YR, Lee H, Park H, Chung HJ. Bioorthogonal CRISPR/Cas9-Drug Conjugate: A Combinatorial Nanomedicine Platform. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302253. [PMID: 37485817 PMCID: PMC10520654 DOI: 10.1002/advs.202302253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/27/2023] [Indexed: 07/25/2023]
Abstract
Bioconjugation of proteins can substantially expand the opportunities in biopharmaceutical development, however, applications are limited for the gene editing machinery despite its tremendous therapeutic potential. Here, a self-delivered nanomedicine platform based on bioorthogonal CRISPR/Cas9 conjugates, which can be armed with a chemotherapeutic drug for combinatorial therapy is introduced. It is demonstrated that multi-functionalized Cas9 with a drug and polymer can form self-condensed nanocomplexes, and induce significant gene editing upon delivery while avoiding the use of a conventional carrier formulation. It is shown that the nanomedicine platform can be applied for combinatorial therapy by incorporating the anti-cancer drug olaparib and targeting the RAD52 gene, leading to significant anti-tumor effects in BRCA-mutant cancer. The current development provides a versatile nanomedicine platform for combination treatment of human diseases such as cancer.
Collapse
Affiliation(s)
- Marcel Janis Beha
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Joo‐Chan Kim
- Department of ChemistryKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - San Hae Im
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Yunsu Kim
- Department of ChemistryKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Seungju Yang
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Juhee Lee
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Yu Ri Nam
- Department of ChemistryKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Haeshin Lee
- Department of ChemistryKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Hee‐Sung Park
- Department of ChemistryKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Hyun Jung Chung
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
- Graduate School of Nanoscience and TechnologyKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| |
Collapse
|
11
|
Beneyton A, Nonfoux L, Gagné JP, Rodrigue A, Kothari C, Atalay N, Hendzel M, Poirier G, Masson JY. The dynamic process of covalent and non-covalent PARylation in the maintenance of genome integrity: a focus on PARP inhibitors. NAR Cancer 2023; 5:zcad043. [PMID: 37609662 PMCID: PMC10440794 DOI: 10.1093/narcan/zcad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023] Open
Abstract
Poly(ADP-ribosylation) (PARylation) by poly(ADP-ribose) polymerases (PARPs) is a highly regulated process that consists of the covalent addition of polymers of ADP-ribose (PAR) through post-translational modifications of substrate proteins or non-covalent interactions with PAR via PAR binding domains and motifs, thereby reprogramming their functions. This modification is particularly known for its central role in the maintenance of genomic stability. However, how genomic integrity is controlled by an intricate interplay of covalent PARylation and non-covalent PAR binding remains largely unknown. Of importance, PARylation has caught recent attention for providing a mechanistic basis of synthetic lethality involving PARP inhibitors (PARPi), most notably in homologous recombination (HR)-deficient breast and ovarian tumors. The molecular mechanisms responsible for the anti-cancer effect of PARPi are thought to implicate both catalytic inhibition and trapping of PARP enzymes on DNA. However, the relative contribution of each on tumor-specific cytotoxicity is still unclear. It is paramount to understand these PAR-dependent mechanisms, given that resistance to PARPi is a challenge in the clinic. Deciphering the complex interplay between covalent PARylation and non-covalent PAR binding and defining how PARP trapping and non-trapping events contribute to PARPi anti-tumour activity is essential for developing improved therapeutic strategies. With this perspective, we review the current understanding of PARylation biology in the context of the DNA damage response (DDR) and the mechanisms underlying PARPi activity and resistance.
Collapse
Affiliation(s)
- Adèle Beneyton
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Louis Nonfoux
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Jean-Philippe Gagné
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Amélie Rodrigue
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Charu Kothari
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Nurgul Atalay
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Michael J Hendzel
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AlbertaT6G 1Z2, Canada
| | - Guy G Poirier
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Jean-Yves Masson
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| |
Collapse
|
12
|
Palovcak A, Yuan F, Verdun R, Luo L, Zhang Y. Fanconi anemia associated protein 20 (FAAP20) plays an essential role in homology-directed repair of DNA double-strand breaks. Commun Biol 2023; 6:873. [PMID: 37620397 PMCID: PMC10449828 DOI: 10.1038/s42003-023-05252-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
FAAP20 is a Fanconi anemia (FA) protein that associates with the FA core complex to promote FANCD2/FANCI monoubiquitination and activate the damage response to interstrand crosslink damage. Here, we report that FAAP20 has a marked role in homologous recombination at a DNA double-strand break not associated with an ICL and separable from its binding partner FANCA. While FAAP20's role in homologous recombination is not dependent on FANCA, we found that FAAP20 stimulates FANCA's biochemical activity in vitro and participates in the single-strand annealing pathway of double-strand break repair in a FANCA-dependent manner. This indicates that FAAP20 has roles in several homology-directed repair pathways. Like other homology-directed repair factors, FAAP20 loss causes a reduction in nuclear RAD51 Irradiation-induced foci; and sensitizes cancer cells to ionizing radiation and PARP inhibition. In summary, FAAP20 participates in DNA double strand break repair by supporting homologous recombination in a non-redundant manner to FANCA, and single-strand annealing repair via FANCA-mediated strand annealing activity.
Collapse
Affiliation(s)
- Anna Palovcak
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Fenghua Yuan
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Ramiro Verdun
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Liang Luo
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Yanbin Zhang
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
13
|
Osia B, Merkell A, Lopezcolorado FW, Ping X, Stark JM. RAD52 and ERCC6L/PICH have a compensatory relationship for genome stability in mitosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554522. [PMID: 37662271 PMCID: PMC10473716 DOI: 10.1101/2023.08.23.554522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The mammalian RAD52 protein is a DNA repair factor that has both strand annealing and recombination mediator activities, yet is dispensable for cell viability. To characterize genetic contexts that reveal dependence on RAD52 to sustain cell viability (i.e., synthetic lethal relationships), we performed genome-wide CRISPR knock-out screens. Subsequent secondary screening found that depletion of ERCC6L in RAD52-deficient cells causes reduced viability and elevated genome instability, measured as accumulation of 53BP1 into nuclear foci. Furthermore, loss of RAD52 causes elevated levels of anaphase ultrafine bridges marked by ERCC6L, and conversely depletion of ERCC6L causes elevated RAD52 foci both in prometaphase and interphase cells. These effects were enhanced with combination treatments using hydroxyurea and the topoisomerase IIα inhibitor ICRF-193, and the timing of these treatments are consistent with defects in addressing such stress in mitosis. Thus, loss of RAD52 appears to cause an increased reliance on ERCC6L in mitosis, and vice versa. Consistent with this notion, combined depletion of ERCC6L and disrupting G2/M progression via CDK1 inhibition causes a marked loss of viability in RAD52-deficient cells. We suggest that RAD52 and ERCC6L play compensatory roles in protecting genome stability in mitosis.
Collapse
|
14
|
Gao H, Sun L, Ni D, Zhang L, Wang H, Bu W, Li J, Shen Q, Wang Y, Liu Y, Zheng X. Regulating electron transportation by tungsten oxide nanocapacitors for enhanced radiation therapy. J Nanobiotechnology 2023; 21:205. [PMID: 37386437 DOI: 10.1186/s12951-023-01962-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023] Open
Abstract
In the process of radiation therapy (RT), the cytotoxic effects of excited electrons generated from water radiolysis tend to be underestimated due to multiple biochemical factors, particularly the recombination between electrons and hydroxyl radicals (·OH). To take better advantage of radiolytic electrons, we constructed WO3 nanocapacitors that reversibly charge and discharge electrons to regulate electron transportation and utilization. During radiolysis, WO3 nanocapacitors could contain the generated electrons that block electron-·OH recombination and contribute to the yield of ·OH at a high level. These contained electrons could be discharged from WO3 nanocapacitors after radiolysis, resulting in the consumption of cytosolic NAD+ and impairment of NAD+-dependent DNA repair. Overall, this strategy of nanocapacitor-based radiosensitization improves the radiotherapeutic effects by increasing the utilization of radiolytic electrons and ·OH, warranting further validation in multiple tumour models and preclinical experiments.
Collapse
Affiliation(s)
- Hongbo Gao
- Department of Radiation Oncology, Shanghai Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Li Sun
- Department of Radiation Oncology, Shanghai Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Libo Zhang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Han Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenbo Bu
- Department of Material Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Jinjin Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Qianwen Shen
- Department of Radiation Oncology, Shanghai Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Ya Wang
- Department of Material Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Yanyan Liu
- Department of Material Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China.
| | - Xiangpeng Zheng
- Department of Radiation Oncology, Shanghai Huadong Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
15
|
Vekariya U, Toma M, Nieborowska-Skorska M, Le BV, Caron MC, Kukuyan AM, Sullivan-Reed K, Podszywalow-Bartnicka P, Chitrala KN, Atkins J, Drzewiecka M, Feng W, Chan J, Chatla S, Golovine K, Jelinek J, Sliwinski T, Ghosh J, Matlawska-Wasowska K, Chandramouly G, Nejati R, Wasik M, Sykes SM, Piwocka K, Hadzijusufovic E, Valent P, Pomerantz RT, Morton G, Childers W, Zhao H, Paietta EM, Levine RL, Tallman MS, Fernandez HF, Litzow MR, Gupta GP, Masson JY, Skorski T. DNA polymerase θ protects leukemia cells from metabolically induced DNA damage. Blood 2023; 141:2372-2389. [PMID: 36580665 PMCID: PMC10273171 DOI: 10.1182/blood.2022018428] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022] Open
Abstract
Leukemia cells accumulate DNA damage, but altered DNA repair mechanisms protect them from apoptosis. We showed here that formaldehyde generated by serine/1-carbon cycle metabolism contributed to the accumulation of toxic DNA-protein crosslinks (DPCs) in leukemia cells, especially in driver clones harboring oncogenic tyrosine kinases (OTKs: FLT3(internal tandem duplication [ITD]), JAK2(V617F), BCR-ABL1). To counteract this effect, OTKs enhanced the expression of DNA polymerase theta (POLθ) via ERK1/2 serine/threonine kinase-dependent inhibition of c-CBL E3 ligase-mediated ubiquitination of POLθ and its proteasomal degradation. Overexpression of POLθ in OTK-positive cells resulted in the efficient repair of DPC-containing DNA double-strand breaks by POLθ-mediated end-joining. The transforming activities of OTKs and other leukemia-inducing oncogenes, especially of those causing the inhibition of BRCA1/2-mediated homologous recombination with and without concomitant inhibition of DNA-PK-dependent nonhomologous end-joining, was abrogated in Polq-/- murine bone marrow cells. Genetic and pharmacological targeting of POLθ polymerase and helicase activities revealed that both activities are promising targets in leukemia cells. Moreover, OTK inhibitors or DPC-inducing drug etoposide enhanced the antileukemia effect of POLθ inhibitor in vitro and in vivo. In conclusion, we demonstrated that POLθ plays an essential role in protecting leukemia cells from metabolically induced toxic DNA lesions triggered by formaldehyde, and it can be targeted to achieve a therapeutic effect.
Collapse
Affiliation(s)
- Umeshkumar Vekariya
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Monika Toma
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Margaret Nieborowska-Skorska
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Bac Viet Le
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Marie-Christine Caron
- CHU de Québec Research Centre (Oncology Division) and Laval University Cancer Research Center, Québec City, QC, Canada
| | - Anna-Mariya Kukuyan
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Katherine Sullivan-Reed
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | | | - Kumaraswamy N. Chitrala
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Jessica Atkins
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Malgorzata Drzewiecka
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Wanjuan Feng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Joe Chan
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Srinivas Chatla
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Konstantin Golovine
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | | | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Jayashri Ghosh
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | | | - Gurushankar Chandramouly
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA
| | - Mariusz Wasik
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA
| | - Stephen M. Sykes
- Division of Hematology/Oncology, Department of Pediatrics, Washington University at St. Louis, St. Louis, MO
| | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Emir Hadzijusufovic
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
- Department for Companion Animals & Horses, Clinic for Internal Medicine and Infectious Diseases, University of Veterinary Medicine Vienna, Austria
| | - Peter Valent
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Richard T. Pomerantz
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - George Morton
- Moulder Center for Drug Discovery, Temple University School of Pharmacy, Philadelphia, PA
| | - Wayne Childers
- Moulder Center for Drug Discovery, Temple University School of Pharmacy, Philadelphia, PA
| | - Huaqing Zhao
- Department of Clinical Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Elisabeth M. Paietta
- Department of Oncology, Albert Einstein College of Medicine-Montefiore Medical Center, Bronx, NY
| | - Ross L. Levine
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Martin S. Tallman
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Hugo F. Fernandez
- Moffitt Malignant Hematology & Cellular Therapy at Memorial Healthcare System, Pembroke Pines, FL
| | - Mark R. Litzow
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Gaorav P. Gupta
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jean-Yves Masson
- CHU de Québec Research Centre (Oncology Division) and Laval University Cancer Research Center, Québec City, QC, Canada
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| |
Collapse
|
16
|
Hiroki H, Ishii Y, Piao J, Namikawa Y, Masutani M, Honda H, Akahane K, Inukai T, Morio T, Takagi M. Targeting Poly(ADP)ribose polymerase in BCR/ABL1-positive cells. Sci Rep 2023; 13:7588. [PMID: 37165001 PMCID: PMC10172294 DOI: 10.1038/s41598-023-33852-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/20/2023] [Indexed: 05/12/2023] Open
Abstract
BCR/ABL1 causes dysregulated cell proliferation and is responsible for chronic myelogenous leukemia (CML) and Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph1-ALL). In addition to the deregulatory effects of its kinase activity on cell proliferation, BCR/ABL1 induces genomic instability by downregulating BRCA1. PARP inhibitors (PARPi) effectively induce cell death in BRCA-defective cells. Therefore, PARPi are expected to inhibit growth of CML and Ph1-ALL cells showing downregulated expression of BRCA1. Here, we show that PARPi effectively induced cell death in BCR/ABL1 positive cells and suppressed colony forming activity. Prevention of BCR/ABL1-mediated leukemogenesis by PARP inhibition was tested in two in vivo models: wild-type mice that had undergone hematopoietic cell transplantation with BCR/ABL1-transduced cells, and a genetic model constructed by crossing Parp1 knockout mice with BCR/ABL1 transgenic mice. The results showed that a PARPi, olaparib, attenuates BCR/ABL1-mediated leukemogenesis. One possible mechanism underlying PARPi-dependent inhibition of leukemogenesis is increased interferon signaling via activation of the cGAS/STING pathway. This is compatible with the use of interferon as a first-line therapy for CML. Because tyrosine kinase inhibitor (TKI) monotherapy does not completely eradicate leukemic cells in all patients, combined use of PARPi and a TKI is an attractive option that may eradicate CML stem cells.
Collapse
Affiliation(s)
- Haruka Hiroki
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Yuko Ishii
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Jinhua Piao
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Yui Namikawa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Mitsuko Masutani
- Department of Molecular and Genomic Biomedicine, Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, 852-8523, Nagasaki, Japan
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan
| | - Koshi Akahane
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Takeshi Inukai
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8519, Japan.
| |
Collapse
|
17
|
Golovine K, Abalakov G, Lian Z, Chatla S, Karami A, Chitrala KN, Madzo J, Nieborowska-Skorska M, Huang J, Skorski T. ABL1 kinase as a tumor suppressor in AML1-ETO and NUP98-PMX1 leukemias. Blood Cancer J 2023; 13:42. [PMID: 36959186 PMCID: PMC10036529 DOI: 10.1038/s41408-023-00810-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/25/2023] Open
Abstract
Deletion of ABL1 was detected in a cohort of hematologic malignancies carrying AML1-ETO and NUP98 fusion proteins. Abl1-/- murine hematopoietic cells transduced with AML1-ETO and NUP98-PMX1 gained proliferation advantage when compared to Abl1 + /+ counterparts. Conversely, overexpression and pharmacological stimulation of ABL1 kinase resulted in reduced proliferation. To pinpoint mechanisms facilitating the transformation of ABL1-deficient cells, Abl1 was knocked down in 32Dcl3-Abl1ko cells by CRISPR/Cas9 followed by the challenge of growth factor withdrawal. 32Dcl3-Abl1ko cells but not 32Dcl3-Abl1wt cells generated growth factor-independent clones. RNA-seq implicated PI3K signaling as one of the dominant mechanisms contributing to growth factor independence in 32Dcl3-Abl1ko cells. PI3K inhibitor buparlisib exerted selective activity against Lin-cKit+ NUP98-PMX1;Abl1-/- cells when compared to the Abl1 + /+ counterparts. Since the role of ABL1 in DNA damage response (DDR) is well established, we also tested the inhibitors of ATM (ATMi), ATR (ATRi) and DNA-PKcs (DNA-PKi). AML1-ETO;Abl1-/- and NUP98-PMX1;Abl1-/- cells were hypersensitive to DNA-PKi and ATRi, respectively, when compared to Abl1 + /+ counterparts. Moreover, ABL1 kinase inhibitor enhanced the sensitivity to PI3K, DNA-PKcs and ATR inhibitors. In conclusion, we showed that ABL1 kinase plays a tumor suppressor role in hematological malignancies induced by AML1-ETO and NUP98-PMX1 and modulates the response to PI3K and/or DDR inhibitors.
Collapse
Affiliation(s)
- Konstantin Golovine
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Gleb Abalakov
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Zhaorui Lian
- Coriell Institute for Medical Research, Camden, NJ, USA
| | - Srinivas Chatla
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Adam Karami
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Kumaraswamy Naidu Chitrala
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Jozef Madzo
- Coriell Institute for Medical Research, Camden, NJ, USA
| | - Margaret Nieborowska-Skorska
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Jian Huang
- Coriell Institute for Medical Research, Camden, NJ, USA.
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Balboni B, Rinaldi F, Previtali V, Ciamarone A, Girotto S, Cavalli A. Novel Insights into RAD52’s Structure, Function, and Druggability for Synthetic Lethality and Innovative Anticancer Therapies. Cancers (Basel) 2023; 15:cancers15061817. [PMID: 36980703 PMCID: PMC10046612 DOI: 10.3390/cancers15061817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
In recent years, the RAD52 protein has been highlighted as a mediator of many DNA repair mechanisms. While RAD52 was initially considered to be a non-essential auxiliary factor, its inhibition has more recently been demonstrated to be synthetically lethal in cancer cells bearing mutations and inactivation of specific intracellular pathways, such as homologous recombination. RAD52 is now recognized as a novel and critical pharmacological target. In this review, we comprehensively describe the available structural and functional information on RAD52. The review highlights the pathways in which RAD52 is involved and the approaches to RAD52 inhibition. We discuss the multifaceted role of this protein, which has a complex, dynamic, and functional 3D superstructural arrangement. This complexity reinforces the need to further investigate and characterize RAD52 to solve a challenging mechanistic puzzle and pave the way for a robust drug discovery campaign.
Collapse
Affiliation(s)
- Beatrice Balboni
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Francesco Rinaldi
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Viola Previtali
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Andrea Ciamarone
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Stefania Girotto
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Structural Biophysics and Translational Pharmacology Facility, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Correspondence: (S.G.); (A.C.); Tel.: +39-010-2896-983 (S.G.); +39-010-2897-403 (A.C.)
| | - Andrea Cavalli
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
- Correspondence: (S.G.); (A.C.); Tel.: +39-010-2896-983 (S.G.); +39-010-2897-403 (A.C.)
| |
Collapse
|
19
|
Loboda AP, Adonin LS, Zvereva SD, Guschin DY, Korneenko TV, Telegina AV, Kondratieva OK, Frolova SE, Pestov NB, Barlev NA. BRCA Mutations-The Achilles Heel of Breast, Ovarian and Other Epithelial Cancers. Int J Mol Sci 2023; 24:ijms24054982. [PMID: 36902416 PMCID: PMC10003548 DOI: 10.3390/ijms24054982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Two related tumor suppressor genes, BRCA1 and BRCA2, attract a lot of attention from both fundamental and clinical points of view. Oncogenic hereditary mutations in these genes are firmly linked to the early onset of breast and ovarian cancers. However, the molecular mechanisms that drive extensive mutagenesis in these genes are not known. In this review, we hypothesize that one of the potential mechanisms behind this phenomenon can be mediated by Alu mobile genomic elements. Linking mutations in the BRCA1 and BRCA2 genes to the general mechanisms of genome stability and DNA repair is critical to ensure the rationalized choice of anti-cancer therapy. Accordingly, we review the literature available on the mechanisms of DNA damage repair where these proteins are involved, and how the inactivating mutations in these genes (BRCAness) can be exploited in anti-cancer therapy. We also discuss a hypothesis explaining why breast and ovarian epithelial tissues are preferentially susceptible to mutations in BRCA genes. Finally, we discuss prospective novel therapeutic approaches for treating BRCAness cancers.
Collapse
Affiliation(s)
- Anna P. Loboda
- Laboratory of Molecular Oncology, Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | | | - Svetlana D. Zvereva
- Laboratory of Molecular Oncology, Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Dmitri Y. Guschin
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| | - Tatyana V. Korneenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | | | | | | | - Nikolay B. Pestov
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, 108819 Moscow, Russia
- Correspondence: (N.B.P.); (N.A.B.)
| | - Nick A. Barlev
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, 108819 Moscow, Russia
- Institute of Cytology, Tikhoretsky ave 4, 194064 St-Petersburg, Russia
- Correspondence: (N.B.P.); (N.A.B.)
| |
Collapse
|
20
|
Guantay L, Garro C, Siri S, Pansa MF, Ghidelli-Disse S, Paviolo N, Racca A, Nicotra V, Radu C, Bocco JL, Felice R, Jansson KH, Remlinger K, Amador A, Stronach E, Coleman K, Muelbaier M, Drewes G, Gloger I, Madauss K, García M, Gottifredi V, Soria G. Deoxycytidine kinase (dCK) inhibition is synthetic lethal with BRCA2 deficiency. Drug Resist Updat 2023; 67:100932. [PMID: 36706533 DOI: 10.1016/j.drup.2023.100932] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 01/23/2023]
Abstract
BRCA2 is a well-established cancer driver in several human malignancies. While the remarkable success of PARP inhibitors proved the clinical potential of targeting BRCA deficiencies, the emergence of resistance mechanisms underscores the importance of seeking novel Synthetic Lethal (SL) targets for future drug development efforts. In this work, we performed a BRCA2-centric SL screen with a collection of plant-derived compounds from South America. We identified the steroidal alkaloid Solanocapsine as a selective SL inducer, and we were able to substantially increase its potency by deriving multiple analogs. The use of two complementary chemoproteomic approaches led to the identification of the nucleotide salvage pathway enzyme deoxycytidine kinase (dCK) as Solanocapsine's target responsible for its BRCA2-linked SL induction. Additional confirmatory evidence was obtained by using the highly specific dCK inhibitor (DI-87), which induces SL in multiple BRCA2-deficient and KO contexts. Interestingly, dCK-induced SL is mechanistically different from the one induced by PARP inhibitors. dCK inhibition generates substantially lower levels of DNA damage, and cytotoxic phenotypes are associated exclusively with mitosis, thus suggesting that the fine-tuning of nucleotide supply in mitosis is critical for the survival of BRCA2-deficient cells. Moreover, by using a xenograft model of contralateral tumors, we show that dCK impairment suffices to trigger SL in-vivo. Taken together, our findings unveil dCK as a promising new target for BRCA2-deficient cancers, thus setting the ground for future therapeutic alternatives to PARP inhibitors.
Collapse
Affiliation(s)
- Laura Guantay
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - Sebastián Siri
- Fundación Instituto Leloir - CONICET, Buenos Aires, Argentina
| | - María Florencia Pansa
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; GlaxoSmithKline, Global Health R&D, Upper Providence, PA, United States
| | | | - Natalia Paviolo
- Fundación Instituto Leloir - CONICET, Buenos Aires, Argentina
| | - Ana Racca
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Viviana Nicotra
- Facultad de Ciencias Químicas, Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Caius Radu
- University of California, Los Angeles, CA, United States
| | - José Luis Bocco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Rosana Felice
- GlaxoSmithKline, Southern Cone LatAm, Buenos Aires, Argentina
| | - Keith H Jansson
- GlaxoSmithKline, Global Health R&D, Upper Providence, PA, United States
| | - Katja Remlinger
- GlaxoSmithKline, Global Health R&D, Upper Providence, PA, United States
| | - Alejandro Amador
- GlaxoSmithKline, Global Health R&D, Upper Providence, PA, United States
| | - Euan Stronach
- GlaxoSmithKline, Global Health R&D, Stevenage, United Kingdom
| | - Kevin Coleman
- GlaxoSmithKline, Synthetic Lethal RU, Waltham, MA, United States
| | | | - Gerard Drewes
- Cellzome GmbH - a GSK Company, 69117 Heidelberg, Germany
| | - Isro Gloger
- GlaxoSmithKline, Global Health R&D, Stevenage, United Kingdom
| | - Kevin Madauss
- GlaxoSmithKline, Global Health R&D, Upper Providence, PA, United States
| | - Manuela García
- Facultad de Ciencias Químicas, Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | |
Collapse
|
21
|
Rauth S, Ganguly K, Atri P, Parte S, Nimmakayala RK, Varadharaj V, Nallasamy P, Vengoji R, Ogunleye AO, Lakshmanan I, Chirravuri R, Bessho M, Cox JL, Foster JM, Talmon GA, Bessho T, Ganti AK, Batra SK, Ponnusamy MP. Elevated PAF1-RAD52 axis confers chemoresistance to human cancers. Cell Rep 2023; 42:112043. [PMID: 36709426 PMCID: PMC10374878 DOI: 10.1016/j.celrep.2023.112043] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/11/2022] [Accepted: 01/13/2023] [Indexed: 01/30/2023] Open
Abstract
Cisplatin- and gemcitabine-based chemotherapeutics represent a mainstay of cancer therapy for most solid tumors; however, resistance limits their curative potential. Here, we identify RNA polymerase II-associated factor 1 (PAF1) as a common driver of cisplatin and gemcitabine resistance in human cancers (ovarian, lung, and pancreas). Mechanistically, cisplatin- and gemcitabine-resistant cells show enhanced DNA repair, which is inhibited by PAF1 silencing. We demonstrate an increased interaction of PAF1 with RAD52 in resistant cells. Targeting the PAF1 and RAD52 axis combined with cisplatin or gemcitabine strongly diminishes the survival potential of resistant cells. Overall, this study shows clinical evidence that the expression of PAF1 contributes to chemotherapy resistance and worse clinical outcome for lethal cancers.
Collapse
Affiliation(s)
- Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Koelina Ganguly
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Seema Parte
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Venkatesh Varadharaj
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Palanisamy Nallasamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Ayoola O Ogunleye
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Ramakanth Chirravuri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Mika Bessho
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Jesse L Cox
- Department of Pathology and Microbiology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Jason M Foster
- Department of Surgery, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Geoffrey A Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Tadayoshi Bessho
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Apar Kishor Ganti
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA; Division of Oncology-Hematology, Department of Internal Medicine, VA Nebraska Western Iowa Health Care System, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, Omaha, NE, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, Omaha, NE, USA.
| |
Collapse
|
22
|
Bhat DS, Spies MA, Spies M. A moving target for drug discovery: Structure activity relationship and many genome (de)stabilizing functions of the RAD52 protein. DNA Repair (Amst) 2022; 120:103421. [PMID: 36327799 PMCID: PMC9888176 DOI: 10.1016/j.dnarep.2022.103421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 02/02/2023]
Abstract
BRCA-ness phenotype, a signature of many breast and ovarian cancers, manifests as deficiency in homologous recombination, and as defects in protection and repair of damaged DNA replication forks. A dependence of such cancers on DNA repair factors less important for survival of BRCA-proficient cells, offers opportunities for development of novel chemotherapeutic interventions. The first drugs targeting BRCA-deficient cancers, poly-ADP-ribose polymerase (PARP) inhibitors have been approved for the treatment of advanced, chemotherapy resistant cancers in patients with BRCA1/2 germline mutations. Nine additional proteins that can be targeted to selectively kill BRCA-deficient cancer cells have been identified. Among them, a DNA repair protein RAD52 is an especially attractive target due to general tolerance of the RAD52 loss of function, and protective role of an inactivating mutation. Yet, the effective pharmacological inhibitors of RAD52 have not been forthcoming. In this review, we discuss advances in the state of our knowledge of the RAD52 structure, activities and cellular functions, with a specific focus on the features that make RAD52 an attractive, but difficult drug target.
Collapse
Affiliation(s)
- Divya S Bhat
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA
| | - M Ashley Spies
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA; Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Maria Spies
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA.
| |
Collapse
|
23
|
Pre-Existing and Acquired Resistance to PARP Inhibitor-Induced Synthetic Lethality. Cancers (Basel) 2022; 14:cancers14235795. [PMID: 36497275 PMCID: PMC9741207 DOI: 10.3390/cancers14235795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
The advanced development of synthetic lethality has opened the doors for specific anti-cancer medications of personalized medicine and efficient therapies against cancers. One of the most popular approaches being investigated is targeting DNA repair pathways as the implementation of the PARP inhibitor (PARPi) into individual or combinational therapeutic schemes. Such treatment has been effectively employed against homologous recombination-defective solid tumors as well as hematopoietic malignancies. However, the resistance to PARPi has been observed in both preclinical research and clinical treatment. Therefore, elucidating the mechanisms responsible for the resistance to PARPi is pivotal for the further success of this intervention. Apart from mechanisms of acquired resistance, the bone marrow microenvironment provides a pre-existing mechanism to induce the inefficiency of PARPi in leukemic cells. Here, we describe the pre-existing and acquired mechanisms of the resistance to PARPi-induced synthetic lethality. We also discuss the potential rationales for developing effective therapies to prevent/repress the PARPi resistance in cancer cells.
Collapse
|
24
|
Mughal TI, Pemmaraju N, Bejar R, Gale RP, Bose P, Kiladjian JJ, Prchal J, Royston D, Pollyea D, Valent P, Brümmendorf TH, Skorski T, Patnaik M, Santini V, Fenaux P, Kucine N, Verstovsek S, Mesa R, Barbui T, Saglio G, Van Etten RA. Perspective: Pivotal translational hematology and therapeutic insights in chronic myeloid hematopoietic stem cell malignancies. Hematol Oncol 2022; 40:491-504. [PMID: 35368098 DOI: 10.1002/hon.2987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 11/10/2022]
Abstract
Despite much of the past 2 years being engulfed by the devastating consequences of the SAR-CoV-2 pandemic, significant progress, even breathtaking, occurred in the field of chronic myeloid malignancies. Some of this was show-cased at the 15th Post-American Society of Hematology (ASH) and the 25th John Goldman workshops on myeloproliferative neoplasms (MPN) held on 9th-10th December 2020 and 7th-10th October 2021, respectively. The inaugural Post-ASH MPN workshop was set out in 2006 by John Goldman (deceased) and Tariq Mughal to answer emerging translational hematology and therapeutics of patients with these malignancies. Rather than present a resume of the discussions, this perspective focuses on some of the pivotal translational hematology and therapeutic insights in these diseases.
Collapse
Affiliation(s)
- Tariq I Mughal
- Tufts University School of Medicine, Boston, Massachusetts, USA
- University of Buckingham, Buckingham, UK
| | - Naveen Pemmaraju
- MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | - Rafael Bejar
- University of California San Diego, La Jolla, California, USA
| | | | - Prithviraj Bose
- MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | | | - Josef Prchal
- Huntsman Cancer Center, Salt Lake City, Utah, USA
| | - Daniel Royston
- John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Daniel Pollyea
- University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Peter Valent
- Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | | | - Tomasz Skorski
- Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Valeria Santini
- Azienda Ospedaliero Universitaria Careggi, University of Florence, Florence, Italy
| | - Pierre Fenaux
- Hospital St Louis, Assistance Publique Hôpitaux de Paris, Paris, France
| | | | - Srdan Verstovsek
- MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | - Ruben Mesa
- Mays Cancer Center, UT Health San Antonio MD Anderson Cancer Center, San Antonio, Texas, USA
| | - Tiziano Barbui
- Fondazione per la Ricerca Ospedale Maggiore di Bergamo, Bergamo, Italy
| | | | - Richard A Van Etten
- Chao Family Comprehensive Cancer Center, University of California, Irvine, California, USA
| |
Collapse
|
25
|
Yin C, Kulasekaran M, Roy T, Decker B, Alexander S, Margolis M, Jha RC, Kupfer GM, He AR. Homologous Recombination Repair in Biliary Tract Cancers: A Prime Target for PARP Inhibition? Cancers (Basel) 2022; 14:2561. [PMID: 35626165 PMCID: PMC9140037 DOI: 10.3390/cancers14102561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/10/2022] [Accepted: 05/14/2022] [Indexed: 01/27/2023] Open
Abstract
Biliary tract cancers (BTCs) are a heterogeneous group of malignancies that make up ~7% of all gastrointestinal tumors. It is notably aggressive and difficult to treat; in fact, >70% of patients with BTC are diagnosed at an advanced, unresectable stage and are not amenable to curative therapy. For these patients, chemotherapy has been the mainstay treatment, providing an inadequate overall survival of less than one year. Despite the boom in targeted therapies over the past decade, only a few targeted agents have been approved in BTCs (i.e., IDH1 and FGFR inhibitors), perhaps in part due to its relatively low incidence. This review will explore current data on PARP inhibitors (PARPi) used in homologous recombination deficiency (HRD), particularly with respect to BTCs. Greater than 28% of BTC cases harbor mutations in genes involved in homologous recombination repair (HRR). We will summarize the mechanisms for PARPi and its role in synthetic lethality and describe select genes in the HRR pathway contributing to HRD. We will provide our rationale for expanding patient eligibility for PARPi use based on literature and anecdotal evidence pertaining to mutations in HRR genes, such as RAD51C, and the potential use of reliable surrogate markers of HRD.
Collapse
Affiliation(s)
- Chao Yin
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA; (C.Y.); (M.K.); (T.R.)
| | - Monika Kulasekaran
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA; (C.Y.); (M.K.); (T.R.)
| | - Tina Roy
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA; (C.Y.); (M.K.); (T.R.)
| | - Brennan Decker
- Foundation Medicine, Cambridge, MA 20007, USA; (B.D.); (S.A.); (M.M.)
| | - Sonja Alexander
- Foundation Medicine, Cambridge, MA 20007, USA; (B.D.); (S.A.); (M.M.)
| | - Mathew Margolis
- Foundation Medicine, Cambridge, MA 20007, USA; (B.D.); (S.A.); (M.M.)
| | - Reena C. Jha
- Department of Radiology, Georgetown University Medical Center, Washington, DC 20007, USA;
| | - Gary M. Kupfer
- Departments of Oncology and Pediatrics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA;
| | - Aiwu R. He
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA; (C.Y.); (M.K.); (T.R.)
| |
Collapse
|
26
|
SF3B4 promotes ovarian cancer progression by regulating alternative splicing of RAD52. Cell Death Dis 2022; 13:179. [PMID: 35210412 PMCID: PMC8873359 DOI: 10.1038/s41419-022-04630-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 11/08/2022]
Abstract
Many studies have proven that splicing factors are crucial for human malignant tumor development. However, as a classical splicing factor, the expression of SF3B4 is not clear, and its biological function needs to be further clarified in ovarian cancer (OC). We determined that SF3B4 was obviously upregulated and its high expression was associated with poor prognosis in OC patients. In vitro and in vivo assays suggested that SF3B4 overexpression promoted OC cell proliferation and mobility, and downregulation of SF3B4 had the opposite effect. Further studies found that miR-509–3p decreased SF3B4 mRNA expression by binding to the 3’ -UTR of SF3B4 directly. Importantly, we revealed that RAD52 was a potential target of SF3B4 through alternative splicing events analysis. Loss of SF3B4 led to decreased expression of RAD52, owing to intron 8 retention and generation of premature termination codons. Moreover, decreased expression of RAD52 partially counteracted the tumor-promoting effect of SF3B4 overexpression. In conclusion, our results suggested that SF3B4, negatively regulated by miR-509–3p, promoted OC progression through effective splicing of RAD52. Therefore, SF3B4 may be a promising biomarker and effective therapeutic target for OC.
Collapse
|
27
|
Understanding and overcoming resistance to PARP inhibitors in cancer therapy. Nat Rev Clin Oncol 2021; 18:773-791. [PMID: 34285417 DOI: 10.1038/s41571-021-00532-x] [Citation(s) in RCA: 256] [Impact Index Per Article: 85.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
Developing novel targeted anticancer therapies is a major goal of current research. The use of poly(ADP-ribose) polymerase (PARP) inhibitors in patients with homologous recombination-deficient tumours provides one of the best examples of a targeted therapy that has been successfully translated into the clinic. The success of this approach has so far led to the approval of four different PARP inhibitors for the treatment of several types of cancers and a total of seven different compounds are currently under clinical investigation for various indications. Clinical trials have demonstrated promising response rates among patients receiving PARP inhibitors, although the majority will inevitably develop resistance. Preclinical and clinical data have revealed multiple mechanisms of resistance and current efforts are focused on developing strategies to address this challenge. In this Review, we summarize the diverse processes underlying resistance to PARP inhibitors and discuss the potential strategies that might overcome these mechanisms such as combinations with chemotherapies, targeting the acquired vulnerabilities associated with resistance to PARP inhibitors or suppressing genomic instability.
Collapse
|
28
|
Rossi MJ, DiDomenico SF, Patel M, Mazin AV. RAD52: Paradigm of Synthetic Lethality and New Developments. Front Genet 2021; 12:780293. [PMID: 34887904 PMCID: PMC8650160 DOI: 10.3389/fgene.2021.780293] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/05/2021] [Indexed: 12/31/2022] Open
Abstract
DNA double-strand breaks and inter-strand cross-links are the most harmful types of DNA damage that cause genomic instability that lead to cancer development. The highest fidelity pathway for repairing damaged double-stranded DNA is termed Homologous recombination (HR). Rad52 is one of the key HR proteins in eukaryotes. Although it is critical for most DNA repair and recombination events in yeast, knockouts of mammalian RAD52 lack any discernable phenotypes. As a consequence, mammalian RAD52 has been long overlooked. That is changing now, as recent work has shown RAD52 to be critical for backup DNA repair pathways in HR-deficient cancer cells. Novel findings have shed light on RAD52's biochemical activities. RAD52 promotes DNA pairing (D-loop formation), single-strand DNA and DNA:RNA annealing, and inverse strand exchange. These activities contribute to its multiple roles in DNA damage repair including HR, single-strand annealing, break-induced replication, and RNA-mediated repair of DNA. The contributions of RAD52 that are essential to the viability of HR-deficient cancer cells are currently under investigation. These new findings make RAD52 an attractive target for the development of anti-cancer therapies against BRCA-deficient cancers.
Collapse
Affiliation(s)
- Matthew J. Rossi
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | | | | | | |
Collapse
|
29
|
Mo Y, Zhang Y, Zhang Y, Yuan J, Mo L, Zhang Q. Nickel nanoparticle-induced cell transformation: involvement of DNA damage and DNA repair defect through HIF-1α/miR-210/Rad52 pathway. J Nanobiotechnology 2021; 19:370. [PMID: 34789290 PMCID: PMC8600818 DOI: 10.1186/s12951-021-01117-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/02/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Nickel nanoparticles (Nano-Ni) are increasingly used in industry and biomedicine with the development of nanotechnology. However, the genotoxic and carcinogenic effects of Nano-Ni and the underlying mechanisms are still unclear. METHODS At first, dose-response (0, 10, 20, and 30 μg/mL) and time-response (0, 3, 6, 12, and 24 h) studies were performed in immortalized normal human bronchial epithelial cells BEAS-2B to observe the effects of Nano-Ni on DNA damage response (DDR)-associated proteins and the HIF-1α/miR-210/Rad52 pathway by real-time PCR or Western blot. Then, a Hsp90 inhibitor (1 µM of 17-AAG, an indirect HIF-1α inhibitor), HIF-1α knock-out (KO) cells, and a miR-210 inhibitor (20 nM) were used to determine whether Nano-Ni-induced Rad52 down-regulation was through HIF-1α nuclear accumulation and miR-210 up-regulation. In the long-term experiments, cells were treated with 0.25 and 0.5 µg/mL of Nano-Ni for 21 cycles (~ 150 days), and the level of anchorage-independent growth was determined by plating the cells in soft agar. Transduction of lentiviral particles containing human Rad52 ORF into BEAS-2B cells was used to observe the role of Rad52 in Nano-Ni-induced cell transformation. Nano-Ni-induced DNA damage and dysregulation of HIF-1α/miR-210/Rad52 pathway were also investigated in vivo by intratracheal instillation of 50 µg per mouse of Nano-Ni. gpt delta transgenic mice were used to analyze mutant frequency and mutation spectrum in mouse lungs after Nano-Ni exposure. RESULTS Nano-Ni exposure caused DNA damage at both in vitro and in vivo settings, which was reflected by increased phosphorylation of DDR-associated proteins such as ATM at Ser1981, p53 at Ser15, and H2AX. Nano-Ni exposure also induced HIF-1α nuclear accumulation, miR-210 up-regulation, and down-regulation of homologous recombination repair (HRR) gene Rad52. Inhibition of or knocking-out HIF-1α or miR-210 ameliorated Nano-Ni-induced Rad52 down-regulation. Long-term low-dose Nano-Ni exposure led to cell malignant transformation, and augmentation of Rad52 expression significantly reduced Nano-Ni-induced cell transformation. In addition, increased immunostaining of cell proliferation markers, Ki-67 and PCNA, was observed in bronchiolar epithelial cells and hyperplastic pneumocytes in mouse lungs at day 7 and day 42 after Nano-Ni exposure. Finally, using gpt delta transgenic mice revealed that Nano-Ni exposure did not cause increased gpt mutant frequency and certain DNA mutations, such as base substitution and small base insertions/deletions, are not the main types of Nano-Ni-induced DNA damage. CONCLUSIONS This study unraveled the mechanisms underlying Nano-Ni-induced cell malignant transformation; the combined effects of Nano-Ni-induced DNA damage and DNA repair defects through HIF-1α/miR-210/Rad52 pathway likely contribute to Nano-Ni-induced genomic instability and ultimately cell transformation. Our findings will provide information to further elucidate the molecular mechanisms of Nano-Ni-induced genotoxicity and carcinogenicity.
Collapse
Affiliation(s)
- Yiqun Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| | - Yue Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| | - Yuanbao Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| | - Jiali Yuan
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| | - Luke Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| | - Qunwei Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| |
Collapse
|
30
|
Abstract
ABSTRACT Despite representing only 5% of all annual cancer diagnoses in the United States, pancreatic cancer is projected to become the second leading cause of cancer-related death within the next 10 years. Progress in the treatment of advanced pancreatic cancer has been slow. Systemic therapies rely on combination cytotoxic agents, with limited options at progression. Recently, poly(ADP-ribose) polymerase inhibitors have demonstrated clinical activity in patients with advanced pancreatic cancer and pathogenic variants in BRCA1, BRCA2, and PALB2. In this review, we discuss the development of poly(ADP-ribose) polymerase inhibitors in pancreatic cancer, relevant clinical trials, and future directions.
Collapse
Affiliation(s)
- Timothy J Brown
- Abramson Cancer Center, The University of Pennsylvania, Philadelphia, PA 19121
| | - Kim A Reiss
- Abramson Cancer Center, The University of Pennsylvania, Philadelphia, PA 19121
| |
Collapse
|
31
|
Stoof J, Harrold E, Mariottino S, Lowery MA, Walsh N. DNA Damage Repair Deficiency in Pancreatic Ductal Adenocarcinoma: Preclinical Models and Clinical Perspectives. Front Cell Dev Biol 2021; 9:749490. [PMID: 34712667 PMCID: PMC8546202 DOI: 10.3389/fcell.2021.749490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/22/2021] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers worldwide, and survival rates have barely improved in decades. In the era of precision medicine, treatment strategies tailored to disease mutations have revolutionized cancer therapy. Next generation sequencing has found that up to a third of all PDAC tumors contain deleterious mutations in DNA damage repair (DDR) genes, highlighting the importance of these genes in PDAC. The mechanisms by which DDR gene mutations promote tumorigenesis, therapeutic response, and subsequent resistance are still not fully understood. Therefore, an opportunity exists to elucidate these processes and to uncover relevant therapeutic drug combinations and strategies to target DDR deficiency in PDAC. However, a constraint to preclinical research is due to limitations in appropriate laboratory experimental models. Models that effectively recapitulate their original cancer tend to provide high levels of predictivity and effective translation of preclinical findings to the clinic. In this review, we outline the occurrence and role of DDR deficiency in PDAC and provide an overview of clinical trials that target these pathways and the preclinical models such as 2D cell lines, 3D organoids and mouse models [genetically engineered mouse model (GEMM), and patient-derived xenograft (PDX)] used in PDAC DDR deficiency research.
Collapse
Affiliation(s)
- Jojanneke Stoof
- Trinity St. James Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Emily Harrold
- Trinity College Dublin, Dublin, Ireland
- Mater Private Hospital, Dublin, Ireland
| | - Sarah Mariottino
- Trinity St. James Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Maeve A Lowery
- Trinity St. James Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Naomi Walsh
- National Institute of Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
32
|
Sharma AB, Erasimus H, Pinto L, Caron MC, Gopaul D, Peterlini T, Neumann K, Nazarov PV, Fritah S, Klink B, Herold-Mende CC, Niclou SP, Pasero P, Calsou P, Masson JY, Britton S, Van Dyck E. XAB2 promotes Ku eviction from single-ended DNA double-strand breaks independently of the ATM kinase. Nucleic Acids Res 2021; 49:9906-9925. [PMID: 34500463 PMCID: PMC8464071 DOI: 10.1093/nar/gkab785] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022] Open
Abstract
Replication-associated single-ended DNA double-strand breaks (seDSBs) are repaired predominantly through RAD51-mediated homologous recombination (HR). Removal of the non-homologous end-joining (NHEJ) factor Ku from resected seDSB ends is crucial for HR. The coordinated actions of MRE11-CtIP nuclease activities orchestrated by ATM define one pathway for Ku eviction. Here, we identify the pre-mRNA splicing protein XAB2 as a factor required for resistance to seDSBs induced by the chemotherapeutic alkylator temozolomide. Moreover, we show that XAB2 prevents Ku retention and abortive HR at seDSBs induced by temozolomide and camptothecin, via a pathway that operates in parallel to the ATM-CtIP-MRE11 axis. Although XAB2 depletion preserved RAD51 focus formation, the resulting RAD51-ssDNA associations were unproductive, leading to increased NHEJ engagement in S/G2 and genetic instability. Overexpression of RAD51 or RAD52 rescued the XAB2 defects and XAB2 loss was synthetically lethal with RAD52 inhibition, providing potential perspectives in cancer therapy.
Collapse
Affiliation(s)
- Abhishek Bharadwaj Sharma
- DNA Repair and Chemoresistance Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| | - Hélène Erasimus
- DNA Repair and Chemoresistance Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg.,Faculty of Science, Technology and Communication, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Lia Pinto
- DNA Repair and Chemoresistance Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg.,Faculty of Science, Technology and Communication, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Marie-Christine Caron
- CHU de Québec Research Center, Oncology Division, Québec City, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Canada
| | - Diyavarshini Gopaul
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France
| | - Thibaut Peterlini
- CHU de Québec Research Center, Oncology Division, Québec City, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Canada
| | - Katrin Neumann
- DNA Repair and Chemoresistance Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| | - Petr V Nazarov
- Quantitative Biology Unit, Multiomics Data Science Group, LIH, Luxembourg
| | - Sabrina Fritah
- NorLux Neuro-Oncology Laboratory, Department of Oncology, LIH, Luxembourg
| | - Barbara Klink
- National Center of Genetics, Laboratoire National de Santé, Dudelange, Luxembourg.,Functional Tumour Genetics Group, Department of Oncology, LIH, Luxembourg
| | | | - Simone P Niclou
- NorLux Neuro-Oncology Laboratory, Department of Oncology, LIH, Luxembourg.,Department of Biomedicine, University of Bergen, Norway
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France
| | - Patrick Calsou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France, Equipe Labellisée Ligue Nationale Contre le Cancer 2018
| | - Jean-Yves Masson
- CHU de Québec Research Center, Oncology Division, Québec City, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Canada
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France, Equipe Labellisée Ligue Nationale Contre le Cancer 2018
| | - Eric Van Dyck
- DNA Repair and Chemoresistance Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| |
Collapse
|
33
|
Puhalla SL, Diéras V, Arun BK, Kaufman B, Wildiers H, Han HS, Ayoub JP, Stearns V, Yuan Y, Helsten T, Riley-Gillis B, Murphy E, Kundu MG, Wu M, Maag D, Ratajczak CK, Ramathal CY, Friedlander M. Relevance of Platinum-free Interval and BRCA Reversion Mutations for Veliparib Monotherapy after Progression on Carboplatin/Paclitaxel for g BRCA Advanced Breast Cancer (BROCADE3 Crossover). Clin Cancer Res 2021; 27:4983-4993. [PMID: 34131001 PMCID: PMC9401555 DOI: 10.1158/1078-0432.ccr-21-0748] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/30/2021] [Accepted: 06/08/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Safety, efficacy, and exploratory biomarker analyses were evaluated in patients with advanced HER2-negative germline breast cancer susceptibility gene (gBRCA)-associated breast cancer enrolled in the BROCADE3 trial who received crossover veliparib monotherapy after disease progression on placebo plus carboplatin/paclitaxel. PATIENTS AND METHODS Eligible patients (N = 513) were randomized 2:1 to veliparib plus carboplatin/paclitaxel or placebo plus carboplatin/paclitaxel; patients had variable platinum-free intervals (PFI) at progression. In the placebo arm, patients were eligible to receive crossover veliparib monotherapy (300-400 mg twice daily continuous). Antitumor activity and adverse events were assessed during crossover veliparib treatment. BRCA reversion mutations at crossover were analyzed retrospectively using next-generation sequencing on plasma circulating tumor DNA (ctDNA). RESULTS Seventy-five patients in the placebo plus carboplatin/paclitaxel arm received ≥1 dose of crossover veliparib postprogression (mean treatment duration: 154 days). Eight of 50 (16%) patients with measurable disease had a RECIST v1.1 response. Activity was greater in patients with PFI ≥180 days compared with <180 days [responses in 23.1% (3/13) vs. 13.5% (5/37) of patients]. BRCA reversion mutations that restored protein function were detected in ctDNA from 4 of 28 patients tested, and the mean duration of crossover veliparib monotherapy was <1 month in these 4 patients versus 7.49 months in patients lacking reversion mutations. The most frequent adverse events were nausea (61%), vomiting (29%), and fatigue (24%). CONCLUSIONS Crossover veliparib monotherapy demonstrated limited antitumor activity in patients who experienced disease progression on placebo plus carboplatin/paclitaxel. PFI appeared to affect veliparib activity. BRCA reversion mutations may promote cross-resistance and limit veliparib activity following progression on platinum.
Collapse
Affiliation(s)
- Shannon L Puhalla
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, Pennsylvania.
| | - Véronique Diéras
- Institut Curie, Paris, France
- Centre Eugène Marquis, Rennes, France
| | - Banu K Arun
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Hyo S Han
- Moffitt Cancer Center, Tampa, Florida
| | - Jean-Pierre Ayoub
- Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Vered Stearns
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Yuan Yuan
- City of Hope Cancer Center, Duarte, California
| | - Teresa Helsten
- University of California San Diego Moores Cancer Center, La Jolla, California
| | | | | | | | | | | | | | | | - Michael Friedlander
- Prince of Wales Clinical School UNSW and Prince of Wales Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
34
|
McPherson KS, Korzhnev DM. Targeting protein-protein interactions in the DNA damage response pathways for cancer chemotherapy. RSC Chem Biol 2021; 2:1167-1195. [PMID: 34458830 PMCID: PMC8342002 DOI: 10.1039/d1cb00101a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/20/2021] [Indexed: 12/11/2022] Open
Abstract
Cellular DNA damage response (DDR) is an extensive signaling network that orchestrates DNA damage recognition, repair and avoidance, cell cycle progression and cell death. DDR alteration is a hallmark of cancer, with the deficiency in one DDR capability often compensated by a dependency on alternative pathways endowing cancer cells with survival and growth advantage. Targeting these DDR pathways has provided multiple opportunities for the development of cancer therapies. Traditional drug discovery has mainly focused on catalytic inhibitors that block enzyme active sites, which limits the number of potential drug targets within the DDR pathways. This review article describes the emerging approach to the development of cancer therapeutics targeting essential protein-protein interactions (PPIs) in the DDR network. The overall strategy for the structure-based design of small molecule PPI inhibitors is discussed, followed by an overview of the major DNA damage sensing, DNA repair, and DNA damage tolerance pathways with a specific focus on PPI targets for anti-cancer drug design. The existing small molecule inhibitors of DDR PPIs are summarized that selectively kill cancer cells and/or sensitize cancers to front-line genotoxic therapies, and a range of new PPI targets are proposed that may lead to the development of novel chemotherapeutics.
Collapse
Affiliation(s)
- Kerry Silva McPherson
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center Farmington CT 06030 USA +1 860 679 3408 +1 860 679 2849
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center Farmington CT 06030 USA +1 860 679 3408 +1 860 679 2849
| |
Collapse
|
35
|
Tomasini PP, Guecheva TN, Leguisamo NM, Péricart S, Brunac AC, Hoffmann JS, Saffi J. Analyzing the Opportunities to Target DNA Double-Strand Breaks Repair and Replicative Stress Responses to Improve Therapeutic Index of Colorectal Cancer. Cancers (Basel) 2021; 13:3130. [PMID: 34201502 PMCID: PMC8268241 DOI: 10.3390/cancers13133130] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/22/2022] Open
Abstract
Despite the ample improvements of CRC molecular landscape, the therapeutic options still rely on conventional chemotherapy-based regimens for early disease, and few targeted agents are recommended for clinical use in the metastatic setting. Moreover, the impact of cytotoxic, targeted agents, and immunotherapy combinations in the metastatic scenario is not fully satisfactory, especially the outcomes for patients who develop resistance to these treatments need to be improved. Here, we examine the opportunity to consider therapeutic agents targeting DNA repair and DNA replication stress response as strategies to exploit genetic or functional defects in the DNA damage response (DDR) pathways through synthetic lethal mechanisms, still not explored in CRC. These include the multiple actors involved in the repair of DNA double-strand breaks (DSBs) through homologous recombination (HR), classical non-homologous end joining (NHEJ), and microhomology-mediated end-joining (MMEJ), inhibitors of the base excision repair (BER) protein poly (ADP-ribose) polymerase (PARP), as well as inhibitors of the DNA damage kinases ataxia-telangiectasia and Rad3 related (ATR), CHK1, WEE1, and ataxia-telangiectasia mutated (ATM). We also review the biomarkers that guide the use of these agents, and current clinical trials with targeted DDR therapies.
Collapse
Affiliation(s)
- Paula Pellenz Tomasini
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Avenida Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (P.P.T.); (N.M.L.)
- Post-Graduation Program in Cell and Molecular Biology, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, Brazil
| | - Temenouga Nikolova Guecheva
- Cardiology Institute of Rio Grande do Sul, University Foundation of Cardiology (IC-FUC), Porto Alegre 90620-000, Brazil;
| | - Natalia Motta Leguisamo
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Avenida Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (P.P.T.); (N.M.L.)
| | - Sarah Péricart
- Laboratoire D’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France; (S.P.); (A.-C.B.); (J.S.H.)
| | - Anne-Cécile Brunac
- Laboratoire D’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France; (S.P.); (A.-C.B.); (J.S.H.)
| | - Jean Sébastien Hoffmann
- Laboratoire D’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France; (S.P.); (A.-C.B.); (J.S.H.)
| | - Jenifer Saffi
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Avenida Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (P.P.T.); (N.M.L.)
- Post-Graduation Program in Cell and Molecular Biology, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, Brazil
| |
Collapse
|
36
|
The Multiple Facets of ATRX Protein. Cancers (Basel) 2021; 13:cancers13092211. [PMID: 34062956 PMCID: PMC8124985 DOI: 10.3390/cancers13092211] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The gene encoding for the epigenetic regulator ATRX is gaining a prominent position among the most important oncosuppressive genes of the human genome. ATRX gene somatic mutations are found across a number of diverse cancer types, suggesting its relevance in tumor induction and progression. In the present review, the multiple activities of ATRX protein are described in the light of the most recent literature available highlighting its multifaceted role in the caretaking of the human genome. Abstract ATRX gene codifies for a protein member of the SWI-SNF family and was cloned for the first time over 25 years ago as the gene responsible for a rare developmental disorder characterized by α-thalassemia and intellectual disability called Alpha Thalassemia/mental Retardation syndrome X-linked (ATRX) syndrome. Since its discovery as a helicase involved in alpha-globin gene transcriptional regulation, our understanding of the multiple roles played by the ATRX protein increased continuously, leading to the recognition of this multifaceted protein as a central “caretaker” of the human genome involved in cancer suppression. In this review, we report recent advances in the comprehension of the ATRX manifold functions that encompass heterochromatin epigenetic regulation and maintenance, telomere function, replicative stress response, genome stability, and the suppression of endogenous transposable elements and exogenous viral genomes.
Collapse
|
37
|
GADD45g acts as a novel tumor suppressor and its activation confers new combination regimens for the treatment of AML. Blood 2021; 138:464-479. [PMID: 33945602 DOI: 10.1182/blood.2020008229] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 04/07/2021] [Indexed: 11/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematopoietic malignancy for which there is an unmet need for novel treatment strategies. Here, we characterize the growth arrest and DNA damage-inducible gene gamma (GADD45g) as a novel tumor suppressor in AML. We show that GADD45g is preferentially silenced in AML, especially in AML with FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) mutations and mixed-lineage leukemia (MLL)-rearrangements, and reduced expression of GADD45g is correlated with poor prognosis in AML patients. Upregulation of GADD45g impairs homologous recombination (HR) DNA repair, leading to DNA damage accumulation, and dramatically induces apoptosis, differentiation, growth arrest and increases sensitivity of AML cells to chemotherapeutic drugs, without affecting normal cells. In addition, GADD45g is epigenetically silenced by histone deacetylation in AML, and its expression is further downregulated by oncogenes FLT3-ITD and MLL-AF9 in patients carrying these genetic abnormalities. Combination of histone deacetylase 1/2 inhibitor Romidepsin with FLT3 tyrosine kinase inhibitor AC220 or bromodomain inhibitor JQ1 exert synergistic anti-leukemic effects on FLT3-ITD+ and MLL-AF9+ AML, respectively, by dually activating GADD45g. These findings uncover hitherto unreported evidence for the selective anti-leukemia role of GADD45g and provide novel strategies for the treatment of FLT3-ITD+ and MLL-AF9+ AML.
Collapse
|
38
|
Tseng WC, Chen CY, Chern CY, Wang CA, Lee WC, Chi YC, Cheng SF, Kuo YT, Chiu YC, Tseng ST, Lin PY, Liou SJ, Li YC, Chen CC. Targeting HR Repair as a Synthetic Lethal Approach to Increase DNA Damage Sensitivity by a RAD52 Inhibitor in BRCA2-Deficient Cancer Cells. Int J Mol Sci 2021; 22:4422. [PMID: 33922657 PMCID: PMC8122931 DOI: 10.3390/ijms22094422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/01/2023] Open
Abstract
BRCA mutation, one of the most common types of mutations in breast and ovarian cancer, has been suggested to be synthetically lethal with depletion of RAD52. Pharmacologically inhibiting RAD52 specifically eradicates BRCA-deficient cancer cells. In this study, we demonstrated that curcumin, a plant polyphenol, sensitizes BRCA2-deficient cells to CPT-11 by impairing RAD52 recombinase in MCF7 cells. More specifically, in MCF7-siBRCA2 cells, curcumin reduced homologous recombination, resulting in tumor growth suppression. Furthermore, a BRCA2-deficient cell line, Capan1, became resistant to CPT-11 when BRCA2 was reintroduced. In vivo, xenograft model studies showed that curcumin combined with CPT-11 reduced the growth of BRCA2-knockout MCF7 tumors but not MCF7 tumors. In conclusion, our data indicate that curcumin, which has RAD52 inhibitor activity, is a promising candidate for sensitizing BRCA2-deficient cells to DNA damage-based cancer therapies.
Collapse
Affiliation(s)
- Wei-Che Tseng
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan 333, Taiwan; (W.-C.T.); (S.-F.C.); (Y.-T.K.); (Y.-C.C.); (S.-T.T.); (P.-Y.L.); (S.-J.L.)
| | - Chi-Yuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- Graduate Institute of Health Industry Technology and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Ching-Yuh Chern
- Department of Applied Chemistry, National Chiayi University, Chiayi 600, Taiwan; (C.-Y.C.); (Y.-C.L.)
| | - Chu-An Wang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Wen-Chih Lee
- Translational Research Program in Pediatric Orthopedics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Ying-Chih Chi
- Cryo-EM Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Shu-Fang Cheng
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan 333, Taiwan; (W.-C.T.); (S.-F.C.); (Y.-T.K.); (Y.-C.C.); (S.-T.T.); (P.-Y.L.); (S.-J.L.)
| | - Yi-Tsen Kuo
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan 333, Taiwan; (W.-C.T.); (S.-F.C.); (Y.-T.K.); (Y.-C.C.); (S.-T.T.); (P.-Y.L.); (S.-J.L.)
| | - Ya-Chen Chiu
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan 333, Taiwan; (W.-C.T.); (S.-F.C.); (Y.-T.K.); (Y.-C.C.); (S.-T.T.); (P.-Y.L.); (S.-J.L.)
| | - Shih-Ting Tseng
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan 333, Taiwan; (W.-C.T.); (S.-F.C.); (Y.-T.K.); (Y.-C.C.); (S.-T.T.); (P.-Y.L.); (S.-J.L.)
| | - Pei-Ya Lin
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan 333, Taiwan; (W.-C.T.); (S.-F.C.); (Y.-T.K.); (Y.-C.C.); (S.-T.T.); (P.-Y.L.); (S.-J.L.)
| | - Shou-Jhen Liou
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan 333, Taiwan; (W.-C.T.); (S.-F.C.); (Y.-T.K.); (Y.-C.C.); (S.-T.T.); (P.-Y.L.); (S.-J.L.)
| | - Yi-Chen Li
- Department of Applied Chemistry, National Chiayi University, Chiayi 600, Taiwan; (C.-Y.C.); (Y.-C.L.)
| | - Chin-Chuan Chen
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan 333, Taiwan; (W.-C.T.); (S.-F.C.); (Y.-T.K.); (Y.-C.C.); (S.-T.T.); (P.-Y.L.); (S.-J.L.)
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| |
Collapse
|
39
|
Patel PS, Algouneh A, Hakem R. Exploiting synthetic lethality to target BRCA1/2-deficient tumors: where we stand. Oncogene 2021; 40:3001-3014. [PMID: 33716297 DOI: 10.1038/s41388-021-01744-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
The principle of synthetic lethality, which refers to the loss of viability resulting from the disruption of two genes, which, individually, do not cause lethality, has become an attractive target approach due to the development and clinical success of Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi). In this review, we present the most recent findings on the use of PARPi in the clinic, which are currently approved for second-line therapy for advanced ovarian and breast cancer associated with mutations of BRCA1 or BRCA2 (BRCA1/2) genes. PARPi efficacy, however, appears to be limited by acquired and inherent resistance, highlighting the need for alternative and synergistic targets to eliminate these tumors. Here, we explore other identified synthetic lethal interactors of BRCA1/2, including DNA polymerase theta (POLQ), Fanconi anemia complementation group D2 (FANDC2), radiation sensitive 52 (RAD52), Flap structure-specific endonuclease 1 (FEN1), and apurinic/apyrimidinic endodeoxyribonuclease 2 (APE2), as well as other protein and nonprotein targets, for BRCA1/2-mutated cancers and their implications for future therapies. A wealth of information now exists for phenotypic and functional characterization of these novel synthetic lethal interactors of BRCA1/2, and leveraging these findings can pave the way for the development of new targeted therapies for patients suffering from these cancers.
Collapse
Affiliation(s)
- Parasvi S Patel
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Arash Algouneh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Razq Hakem
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
40
|
Abstract
Synthetic lethality is emerging as an important cancer therapeutic paradigm, while the comprehensive selective treatment opportunities for various tumors have not yet been explored. We develop the Synthetic Lethality Knowledge Graph (SLKG), presenting the tumor therapy landscape of synthetic lethality (SL) and synthetic dosage lethality (SDL). SLKG integrates the large-scale entity of different tumors, drugs and drug targets by exploring a comprehensive set of SL and SDL pairs. The overall therapy landscape is prioritized to identify the best repurposable drug candidates and drug combinations with literature supports, in vitro pharmacologic evidence or clinical trial records. Finally, cladribine, an FDA-approved multiple sclerosis treatment drug, is selected and identified as a repurposable drug for treating melanoma with CDKN2A mutation by in vitro validation, serving as a demonstrating SLKG utility example for novel tumor therapy discovery. Collectively, SLKG forms the computational basis to uncover cancer-specific susceptibilities and therapy strategies based on the principle of synthetic lethality. Various methods have been proposed to identify synthetic lethality interactions, but selective treatment opportunities for various tumors have not yet been explored. Here, the authors develop the Synthetic Lethality Knowledge Graph webserver (SLKG, http://www.slkg.net) to explore the comprehensive tumor therapy landscape and uncover cancer-specific susceptibilities based on the principle of synthetic lethality.
Collapse
|
41
|
Single-Strand Annealing in Cancer. Int J Mol Sci 2021; 22:ijms22042167. [PMID: 33671579 PMCID: PMC7926775 DOI: 10.3390/ijms22042167] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/23/2022] Open
Abstract
DNA double-strand breaks (DSBs) are among the most serious forms of DNA damage. In humans, DSBs are repaired mainly by non-homologous end joining (NHEJ) and homologous recombination repair (HRR). Single-strand annealing (SSA), another DSB repair system, uses homologous repeats flanking a DSB to join DNA ends and is error-prone, as it removes DNA fragments between repeats along with one repeat. Many DNA deletions observed in cancer cells display homology at breakpoint junctions, suggesting the involvement of SSA. When multiple DSBs occur in different chromosomes, SSA may result in chromosomal translocations, essential in the pathogenesis of many cancers. Inhibition of RAD52 (RAD52 Homolog, DNA Repair Protein), the master regulator of SSA, results in decreased proliferation of BRCA1/2 (BRCA1/2 DNA Repair Associated)-deficient cells, occurring in many hereditary breast and ovarian cancer cases. Therefore, RAD52 may be targeted in synthetic lethality in cancer. SSA may modulate the response to platinum-based anticancer drugs and radiation. SSA may increase the efficacy of the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 (CRISPR associated 9) genome editing and reduce its off-target effect. Several basic problems associated with SSA, including its evolutionary role, interplay with HRR and NHEJ and should be addressed to better understand its role in cancer pathogenesis and therapy.
Collapse
|
42
|
Baird L, Yamamoto M. NRF2-Dependent Bioactivation of Mitomycin C as a Novel Strategy To Target KEAP1-NRF2 Pathway Activation in Human Cancer. Mol Cell Biol 2021; 41:e00473-20. [PMID: 33139492 PMCID: PMC8093492 DOI: 10.1128/mcb.00473-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/04/2020] [Accepted: 10/27/2020] [Indexed: 12/23/2022] Open
Abstract
Activating mutations in the KEAP1-NRF2 pathway are found in approximately 25% of lung tumors, where the hijacking of NRF2's cytoprotective functions results in aggressive tumor growth, chemoresistance, and a poor prognosis for patients. There are currently no approved drugs which target aberrant NRF2 activation, which means that there is an urgent clinical need to target this orphan oncogenic pathway in human tumors. In this study, we used an isogenic pair of wild-type and Keap1 knockout cells to screen a range of chemotherapeutic and pathway-targeted anticancer drugs in order to identify compounds which display enhanced toxicity toward cells with high levels of Nrf2 activity. Through this approach, complemented by validation across a panel of eight human cancer cell lines from a range of different tissues, we identified the DNA-damaging agent mitomycin C to be significantly more toxic in cells with aberrant Nrf2 activation. Mechanistically, we found that the NRF2 target genes for cytochrome P450 reductase, NQO1, and enzymes in the pentose phosphate pathway are all responsible for the NRF2-dependent enhanced bioactivation of mitomycin C. As mitomycin C is already approved for clinical use, it represents as excellent drug repositioning candidate to target the currently untreatable NRF2 activation in human tumors.
Collapse
Affiliation(s)
- Liam Baird
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| |
Collapse
|
43
|
Hanamshet K, Mazin AV. The function of RAD52 N-terminal domain is essential for viability of BRCA-deficient cells. Nucleic Acids Res 2021; 48:12778-12791. [PMID: 33275133 PMCID: PMC7736796 DOI: 10.1093/nar/gkaa1145] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
RAD52 is a member of the homologous recombination pathway that is important for survival of BRCA-deficient cells. Inhibition of RAD52 leads to lethality in BRCA-deficient cells. However, the exact mechanism of how RAD52 contributes to viability of BRCA-deficient cells remains unknown. Two major activities of RAD52 were previously identified: DNA or RNA pairing, which includes DNA/RNA annealing and strand exchange, and mediator, which is to assist RAD51 loading on RPA-covered ssDNA. Here, we report that the N-terminal domain (NTD) of RAD52 devoid of the potential mediator function is essential for maintaining viability of BRCA-deficient cells owing to its ability to promote DNA/RNA pairing. We show that RAD52 NTD forms nuclear foci upon DNA damage in BRCA-deficient human cells and promotes DNA double-strand break repair through two pathways: homology-directed repair (HDR) and single-strand annealing (SSA). Furthermore, we show that mutations in the RAD52 NTD that disrupt these activities fail to maintain viability of BRCA-deficient cells.
Collapse
Affiliation(s)
- Kritika Hanamshet
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Alexander V Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
44
|
Wang J, Oh YT, Li Z, Dou J, Tang S, Wang X, Wang H, Takeda S, Wang Y. RAD52 Adjusts Repair of Single-Strand Breaks via Reducing DNA-Damage-Promoted XRCC1/LIG3α Co-localization. Cell Rep 2021; 34:108625. [PMID: 33440161 PMCID: PMC7872142 DOI: 10.1016/j.celrep.2020.108625] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/20/2020] [Accepted: 12/17/2020] [Indexed: 11/07/2022] Open
Abstract
Radiation sensitive 52 (RAD52) is an important factor for double-strand break repair (DSBR). However, deficiency in vertebrate/mammalian Rad52 has no apparent phenotype. The underlying mechanism remains elusive. Here, we report that RAD52 deficiency increased cell survival after camptothecin (CPT) treatment. CPT generates single-strand breaks (SSBs) that further convert to double-strand breaks (DSBs) if they are not repaired. RAD52 inhibits SSB repair (SSBR) through strong single-strand DNA (ssDNA) and/or poly(ADP-ribose) (PAR) binding affinity to reduce DNA-damage-promoted X-Ray Repair Cross Complementing 1 (XRCC1)/ligase IIIα (LIG3α) co-localization. The inhibitory effects of RAD52 on SSBR neutralize the role of RAD52 in DSBR, suggesting that RAD52 may maintain a balance between cell survival and genomic integrity. Furthermore, we demonstrate that blocking RAD52 oligomerization that disrupts RAD52’s DSBR, while retaining its ssDNA binding capacity that is required for RAD52’s inhibitory effects on SSBR, sensitizes cells to different DNA-damaging agents. This discovery provides guidance for developing efficient RAD52 inhibitors in cancer therapy. Wang et al. show that vertebrate/mammalian RAD52 promotes CPT-induced cell death via inhibition of PARP-mediated SSBR, which involves RAD52’s strong ssDNA/PAR binding affinity that reduces DNA-damage-promoted XRCC1-LIG3a interaction. Blocking of RAD52 oligomerization, while retaining the ssDNA binding capacity of RAD52, efficiently sensitizes cells to different DNA-damaging agents.
Collapse
Affiliation(s)
- Jian Wang
- Department of Radiation Oncology, Emory University School of Medicine and the Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - You-Take Oh
- Department of Radiation Oncology, Emory University School of Medicine and the Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Zhentian Li
- Department of Radiation Oncology, Emory University School of Medicine and the Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Juan Dou
- Department of Radiation Oncology, Emory University School of Medicine and the Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Siyuan Tang
- Department of Radiation Oncology, Emory University School of Medicine and the Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Xiang Wang
- Department of Radiation Oncology, Emory University School of Medicine and the Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Hongyan Wang
- Department of Radiation Oncology, Emory University School of Medicine and the Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Shunichi Takeda
- CREST Research Project, Radiation Genetics, Faculty of Medicine, Kyoto University, Yoshida-konoe, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Ya Wang
- Department of Radiation Oncology, Emory University School of Medicine and the Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
45
|
Tamura N, Shaikh N, Muliaditan D, Soliman TN, McGuinness JR, Maniati E, Moralli D, Durin MA, Green CM, Balkwill FR, Wang J, Curtius K, McClelland SE. Specific Mechanisms of Chromosomal Instability Indicate Therapeutic Sensitivities in High-Grade Serous Ovarian Carcinoma. Cancer Res 2020; 80:4946-4959. [PMID: 32998996 DOI: 10.1158/0008-5472.can-19-0852] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/23/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022]
Abstract
Chromosomal instability (CIN) comprises continual gain and loss of chromosomes or parts of chromosomes and occurs in the majority of cancers, often conferring poor prognosis. Because of a scarcity of functional studies and poor understanding of how genetic or gene expression landscapes connect to specific CIN mechanisms, causes of CIN in most cancer types remain unknown. High-grade serous ovarian carcinoma (HGSC), the most common subtype of ovarian cancer, is the major cause of death due to gynecologic malignancy in the Western world, with chemotherapy resistance developing in almost all patients. HGSC exhibits high rates of chromosomal aberrations and knowledge of causative mechanisms would represent an important step toward combating this disease. Here we perform the first in-depth functional characterization of mechanisms driving CIN in HGSC in seven cell lines that accurately recapitulate HGSC genetics. Multiple mechanisms coexisted to drive CIN in HGSC, including elevated microtubule dynamics and DNA replication stress that can be partially rescued to reduce CIN by low doses of paclitaxel and nucleoside supplementation, respectively. Distinct CIN mechanisms indicated relationships with HGSC-relevant therapy including PARP inhibition and microtubule-targeting agents. Comprehensive genomic and transcriptomic profiling revealed deregulation of various genes involved in genome stability but were not directly predictive of specific CIN mechanisms, underscoring the importance of functional characterization to identify causes of CIN. Overall, we show that HGSC CIN is complex and suggest that specific CIN mechanisms could be used as functional biomarkers to indicate appropriate therapy. SIGNIFICANCE: These findings characterize multiple deregulated mechanisms of genome stability that lead to CIN in ovarian cancer and demonstrate the benefit of integrating analysis of said mechanisms into predictions of therapy response.
Collapse
Affiliation(s)
- Naoka Tamura
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Nadeem Shaikh
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Daniel Muliaditan
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Tanya N Soliman
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | | - Eleni Maniati
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Daniela Moralli
- Chromosome Dynamics, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Mary-Anne Durin
- Chromosome Dynamics, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Catherine M Green
- Chromosome Dynamics, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Frances R Balkwill
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jun Wang
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Kit Curtius
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, California
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Sarah E McClelland
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
46
|
Beyond Kinases: Targeting Replication Stress Proteins in Cancer Therapy. Trends Cancer 2020; 7:430-446. [PMID: 33203609 DOI: 10.1016/j.trecan.2020.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
DNA replication stress describes a state of impaired replication fork progress that triggers a cellular stress response to maintain genome stability and complete DNA synthesis. Replication stress is a common state that must be tolerated in many cancers. One promising therapeutic approach is targeting replication stress response factors such as the ataxia telangiectasia and rad 3-related kinase (ATR) or checkpoint kinase 1 (CHK1) kinases that some cancers depend upon to survive endogenous replication stress. However, research revealing the complexity of the replication stress response suggests new genetic interactions and candidate therapeutic targets. Many of these candidates regulate DNA transactions around reversed replication forks, including helicases, nucleases and alternative polymerases that promote fork stability and restart. Here we review emerging strategies to exploit replication stress for cancer therapy.
Collapse
|
47
|
Genomic profiling of platinum-resistant ovarian cancer: The road into druggable targets. Semin Cancer Biol 2020; 77:29-41. [PMID: 33161141 DOI: 10.1016/j.semcancer.2020.10.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023]
Abstract
Ovarian cancer is the most lethal gynecologic cancer. High-grade serous carcinoma (HGSC) is the most frequent histologic subtype and while it is a highly platinum-sensitive cancer at initial treatment, nearly 90 % of stage IIIC patients recur in 5 years and eventually become resistant to platinum treatment. Historically, the definition of platinum-resistant disease is based on the time interval between last platinum therapy and recurrence shorter than 6 months. Nowadays the use of sophisticated imaging techniques and serum markers to detect recurrence makes the accuracy of this clinical definition less clear and even more debatable as we begin to better understand the molecular landscape of HGSC and markers of platinum resistance and sensitivity. HGSC is characterized by a low frequency of recurrent mutations, great genomic instability with widespread copy number variations, universal TP53 mutations, and homologous recombination deficiency in more than 50 % of cases. Platinum agents form DNA adducts and intra- and inter-strand cross-links in the DNA. Most of DNA repair pathways are involved at some point in the repair of platinum induced DNA damaging, most notably homologous recombination, Fanconi Anemia, and nucleotide excision repair pathways. Mechanisms of platinum resistance are related mostly to the limitation of platinum-DNA adduct formation by changing cellular pharmacology, and to the prevention of cell death after DNA damage due to alterations in DNA repair pathways and cell cycle regulation. Understanding these mechanisms of sensitivity and resistance may help to define the utility of platinum re-challenge in each situation and guide new therapeutic opportunities. Moreover, the discovery of mechanisms of synthetic lethality related to alterations in DNA repair and cell cycle regulation pathways has opened up a new avenue for drug therapy in the last decade. In the present article, we review pathways involved in platinum-induced DNA damage repair and their relationship with genomic alterations present in HGSC. Moreover, we report new treatment strategies that are underway to target these alterations.
Collapse
|
48
|
Le BV, Podszywalow-Bartnicka P, Maifrede S, Sullivan-Reed K, Nieborowska-Skorska M, Golovine K, Yao JC, Nejati R, Cai KQ, Caruso LB, Swatler J, Dabrowski M, Lian Z, Valent P, Paietta EM, Levine RL, Fernandez HF, Tallman MS, Litzow MR, Huang J, Challen GA, Link D, Tempera I, Wasik MA, Piwocka K, Skorski T. TGFβR-SMAD3 Signaling Induces Resistance to PARP Inhibitors in the Bone Marrow Microenvironment. Cell Rep 2020; 33:108221. [PMID: 33027668 DOI: 10.1016/j.celrep.2020.108221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/18/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
Synthetic lethality triggered by PARP inhibitor (PARPi) yields promising therapeutic results. Unfortunately, tumor cells acquire PARPi resistance, which is usually associated with the restoration of homologous recombination, loss of PARP1 expression, and/or loss of DNA double-strand break (DSB) end resection regulation. Here, we identify a constitutive mechanism of resistance to PARPi. We report that the bone marrow microenvironment (BMM) facilitates DSB repair activity in leukemia cells to protect them against PARPi-mediated synthetic lethality. This effect depends on the hypoxia-induced overexpression of transforming growth factor beta receptor (TGFβR) kinase on malignant cells, which is activated by bone marrow stromal cells-derived transforming growth factor beta 1 (TGF-β1). Genetic and/or pharmacological targeting of the TGF-β1-TGFβR kinase axis results in the restoration of the sensitivity of malignant cells to PARPi in BMM and prolongs the survival of leukemia-bearing mice. Our finding may lead to the therapeutic application of the TGFβR inhibitor in patients receiving PARPis.
Collapse
Affiliation(s)
- Bac Viet Le
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA; Nencki Institute of Experimental Biology, Polish Academy of Sciences, Laboratory of Cytometry, Warsaw, Poland
| | | | - Silvia Maifrede
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Katherine Sullivan-Reed
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Margaret Nieborowska-Skorska
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Konstantin Golovine
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Juo-Chin Yao
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Kathy Q Cai
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Lisa Beatrice Caruso
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Julian Swatler
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Laboratory of Cytometry, Warsaw, Poland
| | - Michal Dabrowski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Laboratory of Bioinformatics, Warsaw, Poland
| | - Zhaorui Lian
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna and Ludwig-Boltzmann Institute for Hematology and Oncology, Vienna, Austria
| | - Elisabeth M Paietta
- Albert Einstein College of Medicine-Montefiore Medical Center, Bronx, NY, USA
| | - Ross L Levine
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hugo F Fernandez
- Moffitt Malignant Hematology & Cellular Therapy at Memorial Healthcare System, Pembroke Pines, FL, USA
| | - Martin S Tallman
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark R Litzow
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jian Huang
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Grant A Challen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel Link
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Italo Tempera
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Mariusz A Wasik
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Katarzyna Piwocka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Laboratory of Cytometry, Warsaw, Poland.
| | - Tomasz Skorski
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
| |
Collapse
|
49
|
Lodovichi S, Cervelli T, Pellicioli A, Galli A. Inhibition of DNA Repair in Cancer Therapy: Toward a Multi-Target Approach. Int J Mol Sci 2020; 21:E6684. [PMID: 32932697 PMCID: PMC7554826 DOI: 10.3390/ijms21186684] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
Alterations in DNA repair pathways are one of the main drivers of cancer insurgence. Nevertheless, cancer cells are more susceptible to DNA damage than normal cells and they rely on specific functional repair pathways to survive. Thanks to advances in genome sequencing, we now have a better idea of which genes are mutated in specific cancers and this prompted the development of inhibitors targeting DNA repair players involved in pathways essential for cancer cells survival. Currently, the pivotal concept is that combining the inhibition of mechanisms on which cancer cells viability depends is the most promising way to treat tumorigenesis. Numerous inhibitors have been developed and for many of them, efficacy has been demonstrated either alone or in combination with chemo or radiotherapy. In this review, we will analyze the principal pathways involved in cell cycle checkpoint and DNA repair focusing on how their alterations could predispose to cancer, then we will explore the inhibitors developed or in development specifically targeting different proteins involved in each pathway, underscoring the rationale behind their usage and how their combination and/or exploitation as adjuvants to classic therapies could help in patients clinical outcome.
Collapse
Affiliation(s)
- Samuele Lodovichi
- Bioscience Department, University of Milan, Via Celoria 26, 20131 Milan, Italy;
| | - Tiziana Cervelli
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, Via Moruzzi 1, 56125 Pisa, Italy;
| | - Achille Pellicioli
- Bioscience Department, University of Milan, Via Celoria 26, 20131 Milan, Italy;
| | - Alvaro Galli
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, Via Moruzzi 1, 56125 Pisa, Italy;
| |
Collapse
|
50
|
Zeng L, Boggs DH, Xing C, Zhang Z, Anderson JC, Wajapeyee N, Veale C, Bredel M, Shi LZ, Bonner JA, Willey CD, Yang ES. Combining PARP and DNA-PK Inhibitors With Irradiation Inhibits HPV-Negative Head and Neck Cancer Squamous Carcinoma Growth. Front Genet 2020; 11:1036. [PMID: 33133138 PMCID: PMC7511754 DOI: 10.3389/fgene.2020.01036] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/11/2020] [Indexed: 01/24/2023] Open
Abstract
Novel targeted agents to inhibit DNA repair pathways to sensitize tumors to irradiation (IR) are being investigated as an alternative to chemoradiation for locally advanced human papilloma virus negative (HPV-negative) head and neck squamous cell carcinoma (HNSCC). Two well-characterized targets that, when inhibited, exhibit potent IR sensitization are PARP1 and DNA-PKcs. However, their cooperation in sensitizing HPV-negative HNSCC to IR remains to be explored given that PARP1 and DNA-PkCS bind to unresected stalled DNA replication forks and cooperate to recruit XRCC1 to facilitate double-strand break repair. Here, we show that the combination of the DNA-PK inhibitor NU7441 and the PARP inhibitor olaparib significantly decrease proliferation (61–78%) compared to no reduction with either agent alone (p < 0.001) in both SCC1 and SCC6 cell lines. Adding IR to the combination further decreased cell proliferation (91–92%, p < 0.001) in SCC1 and SCC6. Similar results were observed using long-term colony formation assays [dose enhancement ratio (DER) 2.3–3.2 at 4Gy, p < 0.05]. Reduced cell survival was attributed to increased apoptosis and G2/M cell cycle arrest. Kinomic analysis using tyrosine (PTK) and serine/threonine (STK) arrays reveals that combination treatment results in the most potent inhibition of kinases involved in the CDK and ERK pathways compared to either agent alone. In vivo, a significant delay of tumor growth was observed in UM-SCC1 xenografts receiving IR with olaparib and/or NU7441, which was similar to the cisplatin-IR group. Both regimens were less toxic than cisplatin-IR as assessed by loss of mouse body weight. Taken together, these results demonstrate that the combination of NU7441 and olaparib with IR enhances HPV-negative HNSCC inhibition in both cell culture and in mice, suggesting a potential innovative combination for effectively treating patients with HPV-negative HNSCC.
Collapse
Affiliation(s)
- Ling Zeng
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Drexell Hunter Boggs
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Chuan Xing
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Zhuo Zhang
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Joshua C Anderson
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Chris Veale
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Markus Bredel
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Lewis Z Shi
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - James A Bonner
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Christopher D Willey
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States.,Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States.,Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Eddy S Yang
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States.,Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States.,Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| |
Collapse
|