1
|
Kazansky Y, Mueller HS, Cameron D, Demarest P, Zaffaroni N, Arrighetti N, Zuco V, Mundi PS, Kuwahara Y, Somwar R, Qu R, Califano A, de Stanchina E, Dela Cruz FS, Kung AL, Gounder MM, Kentsis A. Epigenetic targeting of PGBD5-dependent DNA damage in SMARCB1-deficient sarcomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.03.592420. [PMID: 38766189 PMCID: PMC11100591 DOI: 10.1101/2024.05.03.592420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Despite the potential of targeted epigenetic therapies, most cancers do not respond to current epigenetic drugs. The Polycomb repressive complex EZH2 inhibitor tazemetostat was recently approved for the treatment of SMARCB1-deficient epithelioid sarcomas, based on the functional antagonism between PRC2 and loss of SMARCB1. Through the analysis of tazemetostat-treated patient tumors, we recently defined key principles of their response and resistance to EZH2 epigenetic therapy. Here, using transcriptomic inference from SMARCB1-deficient tumor cells, we nominate the DNA damage repair kinase ATR as a target for rational combination EZH2 epigenetic therapy. We show that EZH2 inhibition promotes DNA damage in epithelioid and rhabdoid tumor cells, at least in part via its induction of the transposase-derived PGBD5. We leverage this collateral synthetic lethal dependency to target PGBD5-dependent DNA damage by inhibition of ATR but not CHK1 using elimusertib. Consequently, combined EZH2 and ATR inhibition improves therapeutic responses in diverse patient-derived epithelioid and rhabdoid tumors in vivo. This advances a combination epigenetic therapy based on EZH2-PGBD5 synthetic lethal dependency suitable for immediate translation to clinical trials for patients.
Collapse
Affiliation(s)
- Yaniv Kazansky
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Helen S. Mueller
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Cameron
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Phillip Demarest
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Noemi Arrighetti
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Valentina Zuco
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Prabhjot S. Mundi
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yasumichi Kuwahara
- Department of Biochemistry and Molecular Biology, Kyoto Prefectural University of Medicine
| | - Romel Somwar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rui Qu
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Chan Zuckerberg Biohub, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Filemon S. Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew L. Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mrinal M. Gounder
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Departments of Pediatrics, Pharmacology, and Physiology & Biophysics, Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
2
|
Fleischmann LS, Nemes K, Glaser S, Kouroukli AG, Boros M, Bens S, Dahlum S, Kretzmer H, Oyen F, Gerss J, Hasselblatt M, Frühwald MC, Siebert R. Constitutional mosaicism of pathogenic variants in SMARCB1 in a subset of patients with sporadic rhabdoid tumors. Neuro Oncol 2025; 27:533-544. [PMID: 39288268 PMCID: PMC11812048 DOI: 10.1093/neuonc/noae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Malignant rhabdoid tumors (RT) are aggressive malignancies predominantly affecting very young children. The characteristic genetic alteration is the biallelic inactivation of SMARCB1. In approximately 30% of patients, one SMARCB1 allele is constitutionally altered conferring a particularly unfavorable prognosis. Constitutional mosaicism for pathogenic SMARCB1 mutations has recently been reported in distinct cases of allegedly sporadic RT. We aimed to systematically investigate the frequency and clinical impact of constitutional mosaicism in patients with sporadic RT included in the EU-RHAB registry. METHODS We selected 29 patients with RT displaying at least one pathogenic small variant in SMARCB1 in the tumor DNA and the absence of a germline mutation. We re-screened blood-derived patients and controlled DNA for the respective small variant by polymerase chain reaction with unique molecular identifiers and ultra-deep next-generation sequencing. Clinical data in patients with and without mosaicism and 174 EU-RHAB controls were compared. RESULTS Employing an ultra-deep sequencing approach, we detected tumor-associated SMARCB1 variants in blood-derived DNA in 9/29 patients. In 6/29 patients (21%), whose variant allele frequency (VAF) exceeded 2%, constitutional mosaicism was assumed whereas tumor DNA contamination was documented in 1/3 of patients with VAF below 1%. No significant differences were observed between 6 mosaic-positive and 20 -negative patients regarding age at diagnosis, presence of metastases, event-free or overall survival. CONCLUSIONS Constitutional mosaicism for pathogenic small SMARCB1 variants is recurrent in patients with allegedly sporadic RT. The clinical implications of such variants need to be determined in larger, prospective cohorts also including detection of structural variants of SMARCB1.
Collapse
Affiliation(s)
- Lara S Fleischmann
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Karolina Nemes
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
- Swabian Children’s Cancer Center, Pediatrics and Adolescent Medicine, University Medical Center Augsburg, Germany
| | - Selina Glaser
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Alexandra G Kouroukli
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Matej Boros
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Susanne Bens
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Sonja Dahlum
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Florian Oyen
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joachim Gerss
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Michael C Frühwald
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
- Swabian Children’s Cancer Center, Pediatrics and Adolescent Medicine, University Medical Center Augsburg, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
3
|
Perotti D, O'Sullivan MJ, Walz AL, Davick J, Al-Saadi R, Benedetti DJ, Brzezinski J, Ciceri S, Cost NG, Dome JS, Drost J, Evageliou N, Furtwängler R, Graf N, Maschietto M, Mullen EA, Murphy AJ, Ortiz MV, van der Beek JN, Verschuur A, Wegert J, Williams R, Spreafico F, Geller JI, van den Heuvel-Eibrink MM, Hong AL. Hallmark discoveries in the biology of non-Wilms tumour childhood kidney cancers. Nat Rev Urol 2025:10.1038/s41585-024-00993-6. [PMID: 39881003 DOI: 10.1038/s41585-024-00993-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/31/2025]
Abstract
Approximately 20% of paediatric and adolescent/young adult patients with renal tumours are diagnosed with non-Wilms tumour, a broad heterogeneous group of tumours that includes clear-cell sarcoma of the kidney, congenital mesoblastic nephroma, malignant rhabdoid tumour of the kidney, renal-cell carcinoma, renal medullary carcinoma and other rare histologies. The differential diagnosis of these tumours dates back many decades, when these pathologies were identified initially through clinicopathological observation of entities with outcomes that diverged from Wilms tumour, corroborated with immunohistochemistry and molecular cytogenetics and, subsequently, through next-generation sequencing. These advances enabled near-definitive recognition of different tumours and risk stratification of patients. In parallel, the generation of new renal-tumour models of some of these pathologies including cell lines, organoids, xenografts and genetically engineered mouse models improved our understanding of the development of these tumours and have facilitated the identification of new therapeutic targets. Despite these many achievements, paediatric and adolescent/young adult patients continue to die from such rare cancers at higher rates than patients with Wilms tumour. Thus, international coordinated efforts are needed to answer unresolved questions and improve outcomes.
Collapse
Affiliation(s)
- Daniela Perotti
- Predictive Medicine: Molecular Bases of Genetic Risk, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Maureen J O'Sullivan
- Histology Laboratory, Children's Health Ireland at Crumlin, Dublin, Ireland
- Histopathology, School of Medicine, Trinity College, Dublin, Ireland
- Departments of Histopathology and Paediatrics, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Amy L Walz
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jonathan Davick
- University of Iowa Hospitals and Clinics Stead Family Children's Hospital, Carver College of Medicine, Iowa City, IA, USA
| | - Reem Al-Saadi
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Daniel J Benedetti
- Division of Pediatric Hematology/Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jack Brzezinski
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Sara Ciceri
- Predictive Medicine: Molecular Bases of Genetic Risk, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Nicholas G Cost
- Department of Surgery, Division of Urology, University of Colorado School of Medicine and the Surgical Oncology Program at Children's Hospital Colorado, Denver, CO, USA
| | - Jeffrey S Dome
- Division of Oncology, Center for Cancer and Blood Disorders, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | | | - Rhoikos Furtwängler
- Pediatric Hematology and Oncology, Children's Hospital, Inselspital Bern University, Bern, Switzerland
- Childhood Renal Tumour Center Saarland University, Homburg, Germany
| | - Norbert Graf
- Department Paediatric Oncology & Hematology, Saarland University, Homburg, Germany
| | | | - Elizabeth A Mullen
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Andrew J Murphy
- St. Jude Children's Research Hospital Memphis, Memphis, TN, USA
| | | | - Justine N van der Beek
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Arnauld Verschuur
- Department of Pediatric Hematology and Oncology, Hôpital d'Enfants de la Timone, APHM, Marseille, France
| | - Jenny Wegert
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Wuerzburg University, Wuerzburg, Germany
| | - Richard Williams
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Section of Genetics and Genomics, Faculty of Medicine, Imperial College London, London, UK
| | - Filippo Spreafico
- Paediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - James I Geller
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | | | - Andrew L Hong
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
4
|
Golbourn B, Ho B, Bondoc A, Luck A, Fan X, Richardson E, Marcellus R, Prakesch M, Halbert M, Agrawal N, Smith C, Huang A, Rutka JT. A kinome drug screen identifies multi-TKI synergies and ERBB2 signaling as a therapeutic vulnerability in MYC/TYR subgroup atypical teratoid rhabdoid tumors. Neuro Oncol 2024; 26:1895-1911. [PMID: 38981018 PMCID: PMC11448967 DOI: 10.1093/neuonc/noae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Atypical teratoid rhabdoid tumor (ATRT) is a rare, devastating, and largely incurable pediatric brain tumor. Although recent studies have uncovered 3 molecular subgroups of ATRTs with distinct disease patterns, and signaling features, the therapeutic profiles of ATRT subgroups remain incompletely elucidated. METHODS We examined the effect of 465 kinase inhibitors on a panel of ATRT subgroup-specific cell lines. We then applied multiomics analyses to investigate the underlying molecular mechanism of kinase inhibitor efficacy in ATRT subgroups. RESULTS We observed that ATRT cell lines are broadly sensitive to inhibitors of the PI3K and MAPK signaling pathways, as well as CDKs, AURKA/B kinases, and polo-like kinase 1. We identified 2 classes of multikinase inhibitors predominantly targeting receptor tyrosine kinases including PDGFR and EGFR/ERBB2 in MYC/TYR ATRT cells. The PDGFRB inhibitor, Dasatinib, synergistically affected MYC/TYR ATRT cell growth when combined with broad-acting PI3K and MAPK pathway inhibitors, including Rapamycin and Trametinib. We observed that MYC/TYR ATRT cells were also distinctly sensitive to various inhibitors of ERBB2 signaling. Transcriptional, H3K27Ac ChIPSeq, ATACSeq, and HiChIP analyses of primary MYC/TYR ATRTs revealed ERBB2 expression, which correlated with differential methylation and activation of a distinct enhancer element by DNA looping. Significantly, we show the brain penetrant EGFR/ERBB2 inhibitor, Afatinib, specifically inhibited in vitro and in vivo growth of MYC/TYR ATRT cells. CONCLUSIONS Taken together, our studies suggest combined treatments with PDGFR and ERBB2-directed TKIs with inhibitors of the PI3K and MAPK pathways as an important new therapeutic strategy for the MYC/TYR subgroup of ATRTs.
Collapse
Affiliation(s)
- Brian Golbourn
- John G. Rangos Sr. Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ben Ho
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Hematology and Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andrew Bondoc
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amanda Luck
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Xiaolian Fan
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elizabeth Richardson
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Richard Marcellus
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Michael Prakesch
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Mathew Halbert
- John G. Rangos Sr. Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nishant Agrawal
- John G. Rangos Sr. Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christian Smith
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Annie Huang
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Hematology and Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - James T Rutka
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Martin-Liberal J, Garralda E, García-Donas J, Soto-Castillo JJ, Mussetti A, Codony C, Martin-Lluesma S, Muñoz S, Galvao V, Lostes J, Rotxes M, Prat-Vidal C, Palomero J, Muñoz A, Moreno R, García del Muro X, Sureda A, Alemany R, Gros A, Piulats JM. Clinical protocol phase II study of tumor infiltrating lymphocytes in advanced tumors with alterations in the SWI/SNF complex: the TILTS study. Future Oncol 2024; 20:2437-2445. [PMID: 39129675 PMCID: PMC11520549 DOI: 10.1080/14796694.2024.2385287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024] Open
Abstract
The SWI/SNF complex is a chromatin remodeling complex comprised by several proteins such as SMARCA4 or SMARCB1. Mutations in its components can lead to the development of aggressive rhabdoid tumors such as epithelioid sarcoma, malignant rhabdoid tumor or small cell carcinoma of the ovary hypercalcemic type, among others. These malignancies tend to affect young patients and their prognosis is poor given the lack of effective treatments. Characteristically, these tumors are highly infiltrated by TILs, suggesting that some lymphocytes are recognizing tumor antigens. The use of those TILs as a therapeutic strategy is a promising approach worth exploring. Here, we report the clinical protocol of the TILTS study, a Phase II clinical trial assessing personalized adoptive cell therapy with TILs in patients affected by these tumor types.Clinical Trial Registration: 2023-504632-17-00 (www.clinicaltrialsregister.eu) (ClinicalTrials.gov).
Collapse
Affiliation(s)
| | - Elena Garralda
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | | | | | - Carles Codony
- Institute of Biomedical Research of Bellvitge (IDIBELL), Barcelona, Spain
| | | | - Susana Muñoz
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Vladimir Galvao
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Julia Lostes
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Marta Rotxes
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | | | - Ainhoa Muñoz
- Institute of Biomedical Research of Bellvitge (IDIBELL), Barcelona, Spain
| | - Rafael Moreno
- Catalan Institute of Oncology (ICO), Barcelona, Spain
| | | | - Anna Sureda
- Catalan Institute of Oncology (ICO), Barcelona, Spain
| | - Ramon Alemany
- Catalan Institute of Oncology (ICO), Barcelona, Spain
| | - Alena Gros
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | |
Collapse
|
6
|
Hofvander J, Qiu A, Lee K, Bilenky M, Carles A, Cao Q, Moksa M, Steif J, Su E, Sotiriou A, Goytain A, Hill LA, Singer S, Andrulis IL, Wunder JS, Mertens F, Banito A, Jones KB, Underhill TM, Nielsen TO, Hirst M. Synovial Sarcoma Chromatin Dynamics Reveal a Continuum in SS18:SSX Reprograming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594262. [PMID: 38798672 PMCID: PMC11118320 DOI: 10.1101/2024.05.14.594262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Synovial sarcoma (SyS) is an aggressive soft-tissue malignancy characterized by a pathognomonic chromosomal translocation leading to the formation of the SS18::SSX fusion oncoprotein. SS18::SSX associates with mammalian BAF complexes suggesting deregulation of chromatin architecture as the oncogenic driver in this tumour type. To examine the epigenomic state of SyS we performed comprehensive multi-omics analysis on 52 primary pre-treatment human SyS tumours. Our analysis revealed a continuum of epigenomic states across the cohort at fusion target genes independent of rare somatic genetic lesions. We identify cell-of-origin signatures defined by enhancer states and reveal unexpected relationships between H2AK119Ub1 and active marks. The number of bivalent promoters, dually marked by the repressive H3K27me3 and activating H3K4me3 marks, has strong prognostic value and outperforms tumor grade in predicting patient outcome. Finally, we identify SyS defining epigenomic features including H3K4me3 expansion associated with striking promoter DNA hypomethylation in which SyS displays the lowest mean methylation level of any sarcoma subtype. We explore these distinctive features as potential vulnerabilities in SyS and identify H3K4me3 inhibition as a promising therapeutic strategy.
Collapse
Affiliation(s)
- Jakob Hofvander
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Alvin Qiu
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, UBC, Vancouver, Canada
| | - Kiera Lee
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, UBC, Vancouver, Canada
| | - Misha Bilenky
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - Annaïck Carles
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - Qi Cao
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - Michelle Moksa
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - Jonathan Steif
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - Edmund Su
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - Afroditi Sotiriou
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, Germany
- Soft-Tissue Sarcoma Junior Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Germany
| | - Angela Goytain
- Department of Pathology and Laboratory Medicine, UBC, Vancouver, Canada
| | - Lesley A Hill
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sam Singer
- Sarcoma Biology Laboratory, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Irene L Andrulis
- University Musculoskeletal Oncology Unit, Mount Sinai Hospital, Toronto, Canada
| | - Jay S Wunder
- Lunefeld-Tanenbaum Research Institute, Sinai Health System and Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Fredrik Mertens
- Division of Clinical Genetics, Lund University and Skåne University Hospital, Lund, Sweden
| | - Ana Banito
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, Germany
- Soft-Tissue Sarcoma Junior Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kevin B Jones
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, United States of America
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| | - T Michael Underhill
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Torsten O Nielsen
- Department of Pathology and Laboratory Medicine, UBC, Vancouver, Canada
| | - Martin Hirst
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| |
Collapse
|
7
|
Chaudhri A, Lizee G, Hwu P, Rai K. Chromatin Remodelers Are Regulators of the Tumor Immune Microenvironment. Cancer Res 2024; 84:965-976. [PMID: 38266066 DOI: 10.1158/0008-5472.can-23-2244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/24/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Immune checkpoint inhibitors show remarkable responses in a wide range of cancers, yet patients develop adaptive resistance. This necessitates the identification of alternate therapies that synergize with immunotherapies. Epigenetic modifiers are potent mediators of tumor-intrinsic mechanisms and have been shown to regulate immune response genes, making them prime targets for therapeutic combinations with immune checkpoint inhibitors. Some success has been observed in early clinical studies that combined immunotherapy with agents targeting DNA methylation and histone modification; however, less is known about chromatin remodeler-targeted therapies. Here, we provide a discussion on the regulation of tumor immunogenicity by the chromatin remodeling SWI/SNF complex through multiple mechanisms associated with immunotherapy response that broadly include IFN signaling, DNA damage, mismatch repair, regulation of oncogenic programs, and polycomb-repressive complex antagonism. Context-dependent targeting of SWI/SNF subunits can elicit opportunities for synthetic lethality and reduce T-cell exhaustion. In summary, alongside the significance of SWI/SNF subunits in predicting immunotherapy outcomes, their ability to modulate the tumor immune landscape offers opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Apoorvi Chaudhri
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Gregory Lizee
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Kunal Rai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- MDACC Epigenomics Therapy Initiative, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
8
|
Yaguchi A, Fujimura J, Maruyama K, Fujiwara M, Ishibashi T, Tomita O, Shimizu T. Recurrent spinal atypical teratoid/rhabdoid tumor with pulmonary metastasis. Cancer Rep (Hoboken) 2024; 7:e1975. [PMID: 38217390 PMCID: PMC10850004 DOI: 10.1002/cnr2.1975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/29/2023] [Accepted: 12/28/2023] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Atypical teratoid/rhabdoid tumors (ATRT) are aggressive pediatric central nervous system malignancies that predominantly affect the brain and have poor survival outcomes. However, spinal ATRT is an uncommon subset of ATRT, and its clinical course and management are poorly understood. CASE We describe a case of spinal ATRT in a previously healthy 5-year-old girl who initially presented with rapid-onset gait disturbance. Magnetic resonance imaging (MRI) revealed an extramedullary tumor at thoracic level 5 (T5) without bony destruction or metastasis. The patient partially recovered after surgical resection. One month was required for a definitive diagnosis, and the pathology confirmed ATRT characterized by the loss of INI-1 protein expression. Chemoradiotherapy with local irradiation and high-dose chemotherapy with autologous peripheral blood stem cell transplantation led to complete remission and functional recovery for 5 months. However, the condition exhibited progression in the cerebrospinal fluid (CSF) region, resulting in cerebellar, cerebral, and spinal tumor development. Eventually, the disease metastasized to the lungs and disseminated to the entire cerebrospinal cord and fluid. The patient died 15 months after the initial diagnosis. CONCLUSION This case emphasizes the importance of considering ATRT as a potential diagnostic modality for pediatric spinal cord tumors, enabling prompt multidisciplinary intervention. The heterogeneous appearance of spinal ATRT may make distinguishing it from other spinal tumors difficult, resulting in delayed diagnosis and treatment. The treatment approach for ATRT remains challenging with no established standards. Local irradiation may be preferable to minimize neurodevelopmental effects, and initial craniospinal irradiation may potentially prevent recurrence. Our case emphasizes the likelihood of extracranial metastasis in ATRT, thereby highlighting the importance of a comprehensive assessment of both genetic and epigenetic profiles to identify any factors that may influence the clinical course of this disease. Prompt diagnosis and comprehensive therapeutic strategies are critical for improving outcomes in spinal ATRT patients.
Collapse
Affiliation(s)
- Akinori Yaguchi
- Department of PediatricsJuntendo University Faculty of MedicineTokyoJapan
| | - Junya Fujimura
- Department of PediatricsJuntendo University Faculty of MedicineTokyoJapan
| | - Kazutaka Maruyama
- Department of PediatricsJuntendo University Faculty of MedicineTokyoJapan
| | - Megumi Fujiwara
- Department of PediatricsJuntendo University Faculty of MedicineTokyoJapan
| | - Takeshi Ishibashi
- Department of PediatricsJuntendo University Faculty of MedicineTokyoJapan
| | - Osamu Tomita
- Department of PediatricsJuntendo University Faculty of MedicineTokyoJapan
| | - Toshiaki Shimizu
- Department of PediatricsJuntendo University Faculty of MedicineTokyoJapan
| |
Collapse
|
9
|
Huhtala L, Karabiyik G, Rautajoki KJ. Development and epigenetic regulation of Atypical teratoid/rhabdoid tumors in the context of cell-of-origin and halted cell differentiation. Neurooncol Adv 2024; 6:vdae162. [PMID: 39465218 PMCID: PMC11502914 DOI: 10.1093/noajnl/vdae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Atypical teratoid/rhabdoid tumors (AT/RTs) are aggressive brain tumors primarily observed in infants. The only characteristic, recurrent genetic aberration of AT/RTs is biallelic inactivation of SMARCB1 (or SMARCA4). These genes are members of the mSWI/SNF chromatin-remodeling complex, which regulates various developmental processes, including neural differentiation. This review explores AT/RT subgroups regarding their distinct SMARCB1 loss-of-function mechanisms, molecular features, and patient characteristics. Additionally, it addresses the ongoing debate about the oncogenic relevance of cell-of-origin, examining the influence of developmental stage and lineage commitment of the seeding cell on tumor malignancy and other characteristics. Epigenetic dysregulation, particularly through the regulation of histone modifications and DNA hypermethylation, has been shown to play an integral role in AT/RTs' malignancy and differentiation blockage, maintaining cells in a poorly differentiated state via the insufficient activation of differentiation-related genes. Here, the differentiation blockage and its contribution to malignancy are also explored in a cellular context. Understanding these mechanisms and AT/RT heterogeneity is crucial for therapeutic improvements against AT/RTs.
Collapse
Affiliation(s)
- Laura Huhtala
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Goktug Karabiyik
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Kirsi J Rautajoki
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
10
|
Ho B, Arnoldo A, Zhong Y, Lu M, Torchia J, Yao F, Hawkins C, Huang A. Rapid, economical diagnostic classification of ATRT molecular subgroup using NanoString nCounter platform. Neurooncol Adv 2024; 6:vdae004. [PMID: 38292239 PMCID: PMC10825849 DOI: 10.1093/noajnl/vdae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Background Despite genomic simplicity, recent studies have reported at least 3 major atypical teratoid rhabdoid tumor (ATRT) subgroups with distinct molecular and clinical features. Reliable ATRT subgrouping in clinical settings remains challenging due to a lack of suitable biological markers, sample rarity, and the relatively high cost of conventional subgrouping methods. This study aimed to develop a reliable ATRT molecular stratification method to implement in clinical settings. Methods We have developed an ATRT subgroup predictor assay using a custom genes panel for the NanoString nCounter System and a flexible machine learning classifier package. Seventy-one ATRT primary tumors with matching gene expression array and NanoString data were used to construct a multi-algorithms ensemble classifier. Additional validation was performed using an independent gene expression array against the independently generated dataset. We also analyzed 11 extra-cranial rhabdoid tumors with our classifier and compared our approach against DNA methylation classification to evaluate the result consistency with existing methods. Results We have demonstrated that our novel ensemble classifier has an overall average of 93.6% accuracy in the validation dataset, and a striking 98.9% accuracy was achieved with the high-prediction score samples. Using our classifier, all analyzed extra-cranial rhabdoid tumors are classified as MYC subgroups. Compared with the DNA methylation classification, the results show high agreement, with 84.5% concordance and up to 95.8% concordance for high-confidence predictions. Conclusions Here we present a rapid, cost-effective, and accurate ATRT subgrouping assay applicable for clinical use.
Collapse
Affiliation(s)
- Ben Ho
- Division of Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anthony Arnoldo
- Division of Pathology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Yvonne Zhong
- Division of Pathology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mei Lu
- Division of Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Fupan Yao
- Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Cynthia Hawkins
- Division of Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Pathology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Annie Huang
- Division of Hematology and Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Blackburn PR, McGee RB, Mostafavi R, Carroll AJ, Mikhail FM, Armstrong GT, Furtado LV, Chiang J, Wheeler DA, Carey SS, Nichols KE, Upadhyaya SA. Constitutional balanced translocations involving SMARCB1: A rare cause of rhabdoid tumor predisposition syndrome. Genes Chromosomes Cancer 2024; 63:e23195. [PMID: 37548271 DOI: 10.1002/gcc.23195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023] Open
Abstract
Rhabdoid Tumor Predisposition Syndrome 1 (RTPS1) confers an increased risk of developing rhabdoid tumors and is caused by germline mutations in SMARCB1. RTPS1 should be evaluated in all individuals with rhabdoid tumor and is more likely in those with a young age at presentation (occasionally congenital presentation), multiple primary tumors, or a family history of rhabdoid tumor or RTPS1. Proband genetic testing is the standard method for diagnosing RTPS1. Most known RTPS1-related SMARCB1 gene mutations are copy number variants (CNVs) or single nucleotide variants/indels, but structural variant analysis (SVA) is not usually included in the molecular evaluation. Here, we report two children with RTPS1 presenting with atypical teratoid/rhabdoid tumor (ATRT) who had constitutional testing showing balanced chromosome translocations involving SMARCB1. Patient 1 is a 23-year-old female diagnosed with pineal region ATRT at 7 months who was found to have a de novo, constitutional t(16;22)(p13.3;q11.2). Patient 2 is a 24-month-old male diagnosed with a posterior fossa ATRT at 14 months, with subsequent testing showing a constitutional t(5;22)(q14.1;q11.23). These structural rearrangements have not been previously reported in RTPS1. While rare, these cases suggest that structural variants should be considered in the evaluation of children with rhabdoid tumors to provide more accurate genetic counseling on the risks of developing tumors, the need for surveillance, and the risks of passing the disorder on to future children. Further research is needed to understand the prevalence, clinical features, and tumor risks associated with RTPS1-related constitutional balanced translocations.
Collapse
Affiliation(s)
- Patrick R Blackburn
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rose B McGee
- Division of Cancer Predisposition, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Roya Mostafavi
- Division of Cancer Predisposition, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Andrew J Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Fady M Mikhail
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gregory T Armstrong
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Larissa V Furtado
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jason Chiang
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - David A Wheeler
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Steven S Carey
- Department of Hospitalist Medicine, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Kim E Nichols
- Division of Cancer Predisposition, St Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Santhosh A Upadhyaya
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
12
|
Gastberger K, Fincke VE, Mucha M, Siebert R, Hasselblatt M, Frühwald MC. Current Molecular and Clinical Landscape of ATRT - The Link to Future Therapies. Cancer Manag Res 2023; 15:1369-1393. [PMID: 38089834 PMCID: PMC10712249 DOI: 10.2147/cmar.s379451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/28/2023] [Indexed: 10/16/2024] Open
Abstract
ATRT is a highly aggressive and rare pediatric CNS tumor of very young children. Its genetic hallmark is bi-allelic inactivation of SMARCB1 encoding INI1. Rarely SMARCA4 encoding BRG1 is affected. Up to 30% are associated with constitutional heterozygous pathogenic variants in one of the two genes, giving rise to the Rhabdoid-Tumor-Predisposition-Syndromes (RTPS) 1 and 2. Characteristic DNA methylation profiles distinguish ATRT from other SMARCB1-deficient entities. Three distinct subtypes ATRT-MYC, -TYR, and -SHH are on record. ATRT-SHH may be further divided into the subgroups ATRT-SHH1A, -SHH1B, and -SHH2. The cure of ATRT remains challenging, notwithstanding an increasing understanding of molecular pathomechanisms and genetic background. The implementation of multimodal institutional treatment protocols has improved prognosis. Regardless of treatment approaches, clinical risk factors such as age, metastases, and DNA methylation subtype affect survival probability. We provide a critical appraisal of current conventional multimodal regimens and emerging targeted treatment approaches investigated in clinical trials and entity-specific registries. Intense treatment approaches featuring radiotherapy (RT) and high-dose chemotherapy (HDCT) face the difficulty of balancing tumor control and treatment-related toxicity. Current approaches focus on minimizing radiation fields by proton beam therapy or to withhold RT in HDCT-only approaches. Still, a 40-75% relapse rate upon first-line treatment reveals the need for novel treatment strategies in primary and even more in recurrent/refractory (r/r) disease. Among targeted treatments, immune checkpoint inhibitors and epigenetically active agents appear most promising. Success remains limited in single agent approaches. We hypothesize that mechanism-informed combination therapy will enhance response, as the low mutational burden of ATRT may contribute to acquiring resistance to single targeted agents. As DNA methylation group-specific gene expression profiles appear to influence response to distinct agents, the future treatment of ATRT should respect clinical and biological heterogeneity in risk group adjusted treatment protocols.
Collapse
Affiliation(s)
- Katharina Gastberger
- Pediatrics and Adolescent Medicine, Swabian Children’s Cancer Center, University Medical Center Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
| | - Victoria E Fincke
- Pediatrics and Adolescent Medicine, Swabian Children’s Cancer Center, University Medical Center Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
| | - Marlena Mucha
- Pediatrics and Adolescent Medicine, Swabian Children’s Cancer Center, University Medical Center Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Michael C Frühwald
- Pediatrics and Adolescent Medicine, Swabian Children’s Cancer Center, University Medical Center Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
| |
Collapse
|
13
|
Liu NQ, Paassen I, Custers L, Zeller P, Teunissen H, Ayyildiz D, He J, Buhl JL, Hoving EW, van Oudenaarden A, de Wit E, Drost J. SMARCB1 loss activates patient-specific distal oncogenic enhancers in malignant rhabdoid tumors. Nat Commun 2023; 14:7762. [PMID: 38040699 PMCID: PMC10692191 DOI: 10.1038/s41467-023-43498-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 11/10/2023] [Indexed: 12/03/2023] Open
Abstract
Malignant rhabdoid tumor (MRT) is a highly malignant and often lethal childhood cancer. MRTs are genetically defined by bi-allelic inactivating mutations in SMARCB1, a member of the BRG1/BRM-associated factors (BAF) chromatin remodeling complex. Mutations in BAF complex members are common in human cancer, yet their contribution to tumorigenesis remains in many cases poorly understood. Here, we study derailed regulatory landscapes as a consequence of SMARCB1 loss in the context of MRT. Our multi-omics approach on patient-derived MRT organoids reveals a dramatic reshaping of the regulatory landscape upon SMARCB1 reconstitution. Chromosome conformation capture experiments subsequently reveal patient-specific looping of distal enhancer regions with the promoter of the MYC oncogene. This intertumoral heterogeneity in MYC enhancer utilization is also present in patient MRT tissues as shown by combined single-cell RNA-seq and ATAC-seq. We show that loss of SMARCB1 activates patient-specific epigenetic reprogramming underlying MRT tumorigenesis.
Collapse
Affiliation(s)
- Ning Qing Liu
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Hematology, Erasmus Medical Center (MC) Cancer Institute, Rotterdam, the Netherlands
| | - Irene Paassen
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Lars Custers
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Peter Zeller
- Oncode Institute, Utrecht, the Netherlands
- Hubrecht Institute-KNAW, Utrecht, the Netherlands
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hans Teunissen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Dilara Ayyildiz
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Jiayou He
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Juliane Laura Buhl
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | | | - Alexander van Oudenaarden
- Oncode Institute, Utrecht, the Netherlands
- Hubrecht Institute-KNAW, Utrecht, the Netherlands
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Elzo de Wit
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|
14
|
Lobón-Iglesias MJ, Andrianteranagna M, Han ZY, Chauvin C, Masliah-Planchon J, Manriquez V, Tauziede-Espariat A, Turczynski S, Bouarich-Bourimi R, Frah M, Dufour C, Blauwblomme T, Cardoen L, Pierron G, Maillot L, Guillemot D, Reynaud S, Bourneix C, Pouponnot C, Surdez D, Bohec M, Baulande S, Delattre O, Piaggio E, Ayrault O, Waterfall JJ, Servant N, Beccaria K, Dangouloff-Ros V, Bourdeaut F. Imaging and multi-omics datasets converge to define different neural progenitor origins for ATRT-SHH subgroups. Nat Commun 2023; 14:6669. [PMID: 37863903 PMCID: PMC10589300 DOI: 10.1038/s41467-023-42371-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/09/2023] [Indexed: 10/22/2023] Open
Abstract
Atypical teratoid rhabdoid tumors (ATRT) are divided into MYC, TYR and SHH subgroups, suggesting diverse lineages of origin. Here, we investigate the imaging of human ATRT at diagnosis and the precise anatomic origin of brain tumors in the Rosa26-CreERT2::Smarcb1flox/flox model. This cross-species analysis points to an extra-cerebral origin for MYC tumors. Additionally, we clearly distinguish SHH ATRT emerging from the cerebellar anterior lobe (CAL) from those emerging from the basal ganglia (BG) and intra-ventricular (IV) regions. Molecular characteristics point to the midbrain-hindbrain boundary as the origin of CAL SHH ATRT, and to the ganglionic eminence as the origin of BG/IV SHH ATRT. Single-cell RNA sequencing on SHH ATRT supports these hypotheses. Trajectory analyses suggest that SMARCB1 loss induces a de-differentiation process mediated by repressors of the neuronal program such as REST, ID and the NOTCH pathway.
Collapse
Affiliation(s)
- María-Jesús Lobón-Iglesias
- INSERM U830, Laboratory of Translational Research In Pediatric Oncology, PSL Research University, SIREDO Oncology center, Institut Curie Research Center, Paris, France
| | - Mamy Andrianteranagna
- INSERM U830, Laboratory of Translational Research In Pediatric Oncology, PSL Research University, SIREDO Oncology center, Institut Curie Research Center, Paris, France
- INSERM U900, Bioinformatics, Biostatistics, Epidemiology and Computational Systems Unit, Institut Curie, Mines Paris Tech, PSL Research University, Institut Curie Research Center, Paris, France
| | - Zhi-Yan Han
- INSERM U830, Laboratory of Translational Research In Pediatric Oncology, PSL Research University, SIREDO Oncology center, Institut Curie Research Center, Paris, France
| | - Céline Chauvin
- INSERM U830, Laboratory of Translational Research In Pediatric Oncology, PSL Research University, SIREDO Oncology center, Institut Curie Research Center, Paris, France
| | - Julien Masliah-Planchon
- Somatic Genetic Unit, Department of Pathology and Diagnostic and Theranostic Medecine, Institut Curie Hospital, Paris, France
| | - Valeria Manriquez
- INSERM U932, Immunity and Cancer, PSL Research University, Institut Curie Research Center, Paris, France
| | - Arnault Tauziede-Espariat
- Department of Neuropathology, GHU Paris-Psychiatry and Neurosciences, Sainte-Anne Hospital, Paris, France
- Paris Psychiatry and Neurosciences Institute (IPNP), UMR S1266, INSERM, IMA-BRAIN, Paris, France
| | - Sandrina Turczynski
- INSERM U830, Laboratory of Translational Research In Pediatric Oncology, PSL Research University, SIREDO Oncology center, Institut Curie Research Center, Paris, France
| | - Rachida Bouarich-Bourimi
- INSERM U830, Laboratory of Translational Research In Pediatric Oncology, PSL Research University, SIREDO Oncology center, Institut Curie Research Center, Paris, France
| | - Magali Frah
- INSERM U830, Laboratory of Translational Research In Pediatric Oncology, PSL Research University, SIREDO Oncology center, Institut Curie Research Center, Paris, France
| | - Christelle Dufour
- Department of Children and Adolescents Oncology, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Thomas Blauwblomme
- Department of Pediatric Neurosurgery-AP-HP, Necker Sick Kids Hospital, Université de Paris, Paris, France
| | | | - Gaelle Pierron
- Somatic Genetic Unit, Department of Pathology and Diagnostic and Theranostic Medecine, Institut Curie Hospital, Paris, France
| | - Laetitia Maillot
- Somatic Genetic Unit, Department of Pathology and Diagnostic and Theranostic Medecine, Institut Curie Hospital, Paris, France
| | - Delphine Guillemot
- Somatic Genetic Unit, Department of Pathology and Diagnostic and Theranostic Medecine, Institut Curie Hospital, Paris, France
| | - Stéphanie Reynaud
- Somatic Genetic Unit, Department of Pathology and Diagnostic and Theranostic Medecine, Institut Curie Hospital, Paris, France
| | - Christine Bourneix
- Somatic Genetic Unit, Department of Pathology and Diagnostic and Theranostic Medecine, Institut Curie Hospital, Paris, France
| | - Célio Pouponnot
- CNRS UMR 3347, INSERM U1021, Institut Curie, PSL Research University, Université Paris-Saclay, Orsay, France
| | - Didier Surdez
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
- Balgrist University Hospital, Faculty of Medicine, University of Zurich (UZH), Zurich, Switzerland
| | - Mylene Bohec
- Institut Curie, PSL University, Single Cell Initiative, ICGex Next-Generation Sequencing Platform, PSL University, 75005, Paris, France
| | - Sylvain Baulande
- Institut Curie, PSL University, Single Cell Initiative, ICGex Next-Generation Sequencing Platform, PSL University, 75005, Paris, France
| | - Olivier Delattre
- Somatic Genetic Unit, Department of Pathology and Diagnostic and Theranostic Medecine, Institut Curie Hospital, Paris, France
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
| | - Eliane Piaggio
- INSERM U932, Immunity and Cancer, PSL Research University, Institut Curie Research Center, Paris, France
| | - Olivier Ayrault
- CNRS UMR 3347, INSERM U1021, Institut Curie, PSL Research University, Université Paris-Saclay, Orsay, France
| | - Joshua J Waterfall
- INSERM U830, Integrative Functional Genomics of Cancer Lab, PSL Research University, Institut Curie Research Center, Paris, France
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Nicolas Servant
- INSERM U900, Bioinformatics, Biostatistics, Epidemiology and Computational Systems Unit, Institut Curie, Mines Paris Tech, PSL Research University, Institut Curie Research Center, Paris, France
| | - Kevin Beccaria
- Department of Pediatric Neurosurgery-AP-HP, Necker Sick Kids Hospital, Université de Paris, Paris, France
| | - Volodia Dangouloff-Ros
- Pediatric Radiology Department, AP-HP, Necker Sick Kids Hospital and Paris Cite Universiy INSERM 1299 and UMR 1163, Institut Imagine, Paris, France
| | - Franck Bourdeaut
- INSERM U830, Laboratory of Translational Research In Pediatric Oncology, PSL Research University, SIREDO Oncology center, Institut Curie Research Center, Paris, France.
- Department of Pediatric Oncology, SIREDO Oncology Center, Institut Curie Hospital, Paris, and Université de Paris, Paris, France.
| |
Collapse
|
15
|
Nemes K, Benesch M, Kolarova J, Johann P, Hasselblatt M, Thomas C, Bens S, Glaser S, Ammerpohl O, Liaugaudiene O, Sadeghipour A, von der Weid N, Schmid I, Gidding C, Erdreich-Epstein A, Khurana C, Ebetsberger-Dachs G, Lemmer A, Khatib Z, Hernández Marqués C, Pears J, Quehenberger F, Kordes U, Vokuhl C, Gerss J, Schwarz H, Bison B, Biegel JA, Siebert R, Frühwald MC. Rhabdoid tumors in patients conceived following ART: is there an association? Hum Reprod 2023; 38:2028-2038. [PMID: 37553222 DOI: 10.1093/humrep/dead154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/14/2023] [Indexed: 08/10/2023] Open
Abstract
STUDY QUESTION In children affected by rhabdoid tumors (RT), are there clinical, therapeutic, and/or (epi-)genetic differences between those conceived following ART compared to those conceived without ART? SUMMARY ANSWER We detected a significantly elevated female predominance, and a lower median age at diagnosis, of children with RT conceived following ART (RT_ART) as compared to other children with RT. WHAT IS KNOWN ALREADY Anecdotal evidence suggests an association of ART with RT. STUDY DESIGN, SIZE, DURATION This was a multi-institutional retrospective survey. Children with RT conceived by ART were identified in our EU-RHAB database (n = 11/311 children diagnosed between January 2010 and January 2018) and outside the EU-RHAB database (n = 3) from nine different countries. A population-representative German EU-RHAB control cohort of children with RTs conceived without ART (n = 211) (EU-RHAB control cohort) during the same time period was used as a control cohort for clinical, therapeutic, and survival analyses. The median follow-up time was 11.5 months (range 0-120 months) for children with RT_ART and 18.5 months (range 0-153 months) for the EU-RHAB control cohort. PARTICIPANTS/MATERIALS, SETTING, METHODS We analyzed 14 children with RT_ART diagnosed from January 2010 to January 2018. We examined tumors and matching blood samples for SMARCB1 mutations and copy number alterations using FISH, multiplex ligation-dependent probe amplification, and DNA sequencing. DNA methylation profiling of tumor and/or blood samples was performed using DNA methylation arrays and compared to respective control cohorts of similar age (n = 53 tumors of children with RT conceived without ART, and n = 38 blood samples of children with no tumor born small for gestational age). MAIN RESULTS AND THE ROLE OF CHANCE The median age at diagnosis of 14 individuals with RT_ART was 9 months (range 0-66 months), significantly lower than the median age of patients with RT (n = 211) in the EU-RHAB control cohort (16 months (range 0-253), P = 0.03). A significant female predominance was observed in the RT_ART cohort (M:F ratio: 2:12 versus 116:95 in EU-RHAB control cohort, P = 0.004). Eight of 14 RT_ART patients were diagnosed with atypical teratoid rhabdoid tumor, three with extracranial, extrarenal malignant rhabdoid tumor, one with rhabdoid tumor of the kidney and two with synchronous tumors. The location of primary tumors did not differ significantly in the EU-RHAB control cohort (P = 0.27). Six of 14 RT_ART patients presented with metastases at diagnosis. Metastatic stage was not significantly different from that within the EU-RHAB control cohort (6/14 vs 88/211, P = 1). The incidence of pathogenic germline variants was five of the 12 tested RT_ART patients and, thus, not significantly different from the EU-RHAB control cohort (5/12 versus 36/183 tested, P = 0.35). The 5-year overall survival (OS) and event free survival (EFS) rates of RT_ART patients were 42.9 ± 13.2% and 21.4 ± 11%, respectively, and thus comparable to the EU-RHAB control cohort (OS 41.1 ± 3.5% and EFS 32.1 ± 3.3). We did not find other clinical, therapeutic, outcome factors distinguishing patients with RT_ART from children with RTs conceived without ART (EU-RHAB control cohort). DNA methylation analyses of 10 tumors (atypical teratoid RT = 6, extracranial, extrarenal malignant RT = 4) and six blood samples from RT_ART patients showed neither evidence of a general DNA methylation difference nor underlying imprinting defects, respectively, when compared to a control group (n = 53 RT samples of patients without ART, P = 0.51, n = 38 blood samples of patients born small for gestational age, P = 0.1205). LIMITATIONS, REASONS FOR CAUTION RTs are very rare malignancies and our results are based on a small number of children with RT_ART. WIDER IMPLICATIONS OF THE FINDINGS This cohort of patients with RT_ART demonstrated a marked female predominance, and a rather low median age at diagnosis even for RTs. Other clinical, treatment, outcome, and molecular factors did not differ from those conceived without ART (EU-RHAB control cohort) or reported in other series, and there was no evidence for imprinting defects. Long-term survival is achievable even in cases with pathogenic germline variants, metastatic disease at diagnosis, or relapse. The female preponderance among RT_ART patients is not yet understood and needs to be evaluated, ideally in larger international series. STUDY FUNDING/COMPETING INTEREST(S) M.C.F. is supported by the 'Deutsche Kinderkrebsstiftung' DKS 2020.10, by the 'Deutsche Forschungsgemeinschaft' DFG FR 1516/4-1 and by the Deutsche Krebshilfe 70113981. R.S. received grant support by Deutsche Krebshilfe 70114040 and for infrastructure by the KinderKrebsInitiative Buchholz/Holm-Seppensen. P.D.J. is supported by the Else-Kroener-Fresenius Stiftung and receives a Max-Eder scholarship from the Deutsche Krebshilfe. M.H. is supported by DFG (HA 3060/8-1) and IZKF Münster (Ha3/017/20). BB is supported by the 'Deutsche Kinderkrebsstiftung' DKS 2020.05. We declare no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Karolina Nemes
- Swabian Children's Cancer Center, Paediatric and Adolescent Medicine, University Medical Center Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center, Germany
| | - Martin Benesch
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Julia Kolarova
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - Pascal Johann
- Swabian Children's Cancer Center, Paediatric and Adolescent Medicine, University Medical Center Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center, Germany
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Christian Thomas
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Susanne Bens
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - Selina Glaser
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - Ole Ammerpohl
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - Olga Liaugaudiene
- Department of Genetics and Molecular Medicine, Hospital of Lithuanian University of Health Sciences, Kauno Klinikos, Kaunas, Lithuania
| | - Alireza Sadeghipour
- Department of Pathology, Rasoul Akram Medical Complex, Iran University of Medical Sciences, Tehran, Iran
| | - Nicolas von der Weid
- Department of Pediatric Hematology and Oncology, University Children's Hospital Basel (UKBB), Basel, Switzerland
| | - Irene Schmid
- Bavarian Cancer Research Center, Germany
- Department of Pediatric Hematology and Oncology, Dr. von Haunersches Kinderspital, München, Germany
| | - Corrie Gidding
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Anat Erdreich-Epstein
- Departments of Pediatrics and Pathology, Cancer and Blood Diseases Institute, Children's Hospital Los Angeles and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Claudia Khurana
- Children's Center, Evangelisches Krankenhaus Bielefeld, Bielefeld, Germany
| | | | - Andreas Lemmer
- Children's Hospital, HELIOS Klinikum Erfurt, Erfurt, Germany
| | - Ziad Khatib
- Department of Pediatric Hematology and Oncology, Miami Children's Hospital, Miami, FL, USA
| | | | - Jane Pears
- Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Franz Quehenberger
- Institute for Medical Statistics, Medical University of Graz, Graz, Austria
| | - Uwe Kordes
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Vokuhl
- Section of Pediatric Pathology, Department of Pathology, University Hospital Bonn, Bonn, Germany
| | - Joachim Gerss
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Heike Schwarz
- Bavarian Cancer Research Center, Germany
- Diagnostic and Interventional Radiology, University Medical Center Augsburg, Augsburg, Germany
| | - Brigitte Bison
- Bavarian Cancer Research Center, Germany
- Faculty of Medicine, Diagnostic and Interventional Neuroradiology, Neuroradiological Reference Center for the Pediatric Brain Tumor (HIT) Studies of the German Society of Pediatric Oncology and Hematology, University of Augsburg, Augsburg, Germany
| | - Jaclyn A Biegel
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - Michael C Frühwald
- Swabian Children's Cancer Center, Paediatric and Adolescent Medicine, University Medical Center Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center, Germany
| |
Collapse
|
16
|
Nabbi A, Beck P, Delaidelli A, Oldridge DA, Sudhaman S, Zhu K, Yang SYC, Mulder DT, Bruce JP, Paulson JN, Raman P, Zhu Y, Resnick AC, Sorensen PH, Sill M, Brabetz S, Lambo S, Malkin D, Johann PD, Kool M, Jones DTW, Pfister SM, Jäger N, Pugh TJ. Transcriptional immunogenomic analysis reveals distinct immunological clusters in paediatric nervous system tumours. Genome Med 2023; 15:67. [PMID: 37679810 PMCID: PMC10486055 DOI: 10.1186/s13073-023-01219-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Cancer immunotherapies including immune checkpoint inhibitors and Chimeric Antigen Receptor (CAR) T-cell therapy have shown variable response rates in paediatric patients highlighting the need to establish robust biomarkers for patient selection. While the tumour microenvironment in adults has been widely studied to delineate determinants of immune response, the immune composition of paediatric solid tumours remains relatively uncharacterized calling for investigations to identify potential immune biomarkers. METHODS To inform immunotherapy approaches in paediatric cancers with embryonal origin, we performed an immunogenomic analysis of RNA-seq data from 925 treatment-naïve paediatric nervous system tumours (pedNST) spanning 12 cancer types from three publicly available data sets. RESULTS Within pedNST, we uncovered four broad immune clusters: Paediatric Inflamed (10%), Myeloid Predominant (30%), Immune Neutral (43%) and Immune Desert (17%). We validated these clusters using immunohistochemistry, methylation immune inference and segmentation analysis of tissue images. We report shared biology of these immune clusters within and across cancer types, and characterization of specific immune cell frequencies as well as T- and B-cell repertoires. We found no associations between immune infiltration levels and tumour mutational burden, although molecular cancer entities were enriched within specific immune clusters. CONCLUSIONS Given the heterogeneity of immune infiltration within pedNST, our findings suggest personalized immunogenomic profiling is needed to guide selection of immunotherapeutic strategies.
Collapse
Affiliation(s)
- Arash Nabbi
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, Room 9-305, MaRS Centre, 101 College Street, Toronto, M5G 1L7, Canada
| | - Pengbo Beck
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), B062, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Alberto Delaidelli
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Derek A Oldridge
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sumedha Sudhaman
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Kelsey Zhu
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, Room 9-305, MaRS Centre, 101 College Street, Toronto, M5G 1L7, Canada
| | - S Y Cindy Yang
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, Room 9-305, MaRS Centre, 101 College Street, Toronto, M5G 1L7, Canada
| | - David T Mulder
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, Room 9-305, MaRS Centre, 101 College Street, Toronto, M5G 1L7, Canada
| | - Jeffrey P Bruce
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, Room 9-305, MaRS Centre, 101 College Street, Toronto, M5G 1L7, Canada
| | - Joseph N Paulson
- Department of Biostatistics, Genentech Inc, San Francisco, CA, USA
| | - Pichai Raman
- Division of Neurosurgery, Center for Childhood Cancer Research, Department of Biomedical and Health Informatics and Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yuankun Zhu
- Division of Neurosurgery, Center for Childhood Cancer Research, Department of Biomedical and Health Informatics and Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Adam C Resnick
- Division of Neurosurgery, Center for Childhood Cancer Research, Department of Biomedical and Health Informatics and Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Martin Sill
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), B062, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Sebastian Brabetz
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), B062, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Sander Lambo
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), B062, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - David Malkin
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Pascal D Johann
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), B062, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), B062, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), B062, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Natalie Jäger
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), B062, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany.
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, Room 9-305, MaRS Centre, 101 College Street, Toronto, M5G 1L7, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
- Ontario Institute for Cancer Research, Toronto, Canada.
| |
Collapse
|
17
|
Lanzi C, Arrighetti N, Pasquali S, Cassinelli G. Targeting EZH2 in SMARCB1-deficient sarcomas: Advances and opportunities to potentiate the efficacy of EZH2 inhibitors. Biochem Pharmacol 2023; 215:115727. [PMID: 37541451 DOI: 10.1016/j.bcp.2023.115727] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
Soft tissue sarcomas (STSs) are rare mesechymal malignancies characterized by distintive molecular, histological and clinical features. Many STSs are considered as predominatly epigenetic diseases due to underlying chromatin deregulation. Discovery of deregulated functional antagonism between the chromatin remodeling BRG1/BRM-associated (BAFs) and the histone modifying Polycomb repressor complexes (PRCs) has provided novel actionable targets. In epithelioid sarcoma (ES), extracranial, extrarenal malignant rhabdoid tumors (eMRTs) and synovial sarcoma (SS), the total or partial loss of the BAF core subunit SMARCB1, driven by different alterations, is associated with PRC2 deregulation and dependency on its enzymatic subunit, EZH2. In these SMARCB1-deficient STSs, aberrant EZH2 expression and/or activity emerged as a druggable vulnerability. Although preclinical investigation supported EZH2 targeting as a promising therapeutic option, clinical studies demonstrated a variable response to EZH2 inhibitors. Actually, whereas the clinical benefit recorded in ES patients prompted the FDA approval of the EZH2 inhibitor tazemetostat, the modest and sporadic responses observed in eMRT and SS patients highlighted the need to deepen mechanistic as well as pharmacological investigations to improve drug effectiveness. We summarize the current knowledge of different mechanisms driving SMARCB1 deficiency and EZH2 deregulation in ES, eMRT and SS along with preclinical and clinical studies of EZH2-targeting agents. Possible implication of the PRC2- and enzymatic-independent functions of EZH2 and of its homolog, EZH1, in the response to anti-EZH2 agents will be discussed together with combinatorial strategies under investigation to improve the efficacy of EZH2 targeting in these tumors.
Collapse
Affiliation(s)
- Cinzia Lanzi
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Noemi Arrighetti
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Sandro Pasquali
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| |
Collapse
|
18
|
Geller JI, Hong AL, Vallance KL, Evageliou N, Aldrink JH, Cost NG, Treece AL, Renfro LA, Mullen EA. Children's Oncology Group's 2023 blueprint for research: Renal tumors. Pediatr Blood Cancer 2023; 70 Suppl 6:e30586. [PMID: 37477907 PMCID: PMC10529605 DOI: 10.1002/pbc.30586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
Every year, approximately 600 infants, children, and adolescents are diagnosed with renal cancer in the United States. In addition to Wilms tumor (WT), which accounts for about 80% of all pediatric renal cancers, clear cell sarcoma of the kidney, renal cell carcinoma, malignant rhabdoid tumor, as well as more rare cancers (other sarcomas, rare carcinomas, lymphoma) and benign tumors can originate within the kidney. WT itself can be divided into favorable histology (FHWT), with a 5-year overall survival (OS) exceeding 90%, and anaplastic histology, with 4-year OS of 73.7%. Outcomes of the other pediatric renal cancers include clear cell sarcoma (5-year OS: 90%), malignant rhabdoid tumor (5-year OS: 10% for stages 3 and 4), and renal cell carcinoma (4-year OS: 84.8%). Recent clinical trials have identified novel biological prognostic markers for FHWT, and a series of Children's Oncology Group (COG) trials have demonstrated improving outcomes with therapy modification, and opportunities for further care refinement.
Collapse
Affiliation(s)
- James I Geller
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Andrew L Hong
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kelly L Vallance
- Hematology and Oncology, Cook Children's Medical Center, Fort Worth, Texas, USA
| | - Nick Evageliou
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jennifer H Aldrink
- Division of Pediatric Surgery, Department of Surgery, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Nicholas G Cost
- Department of Surgery, Division of Urology and the Surgical Oncology Program at Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Amy L Treece
- Department of Pathology and Laboratory Medicine, Children's of Alabama, Birmingham, Alabama, USA
| | | | - Elizabeth A Mullen
- Dana-Farber/Boston Children's Blood Disorders and Cancer Center, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Fountain DM, Sauka-Spengler T. The SWI/SNF Complex in Neural Crest Cell Development and Disease. Annu Rev Genomics Hum Genet 2023; 24:203-223. [PMID: 37624665 DOI: 10.1146/annurev-genom-011723-082913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
While the neural crest cell population gives rise to an extraordinary array of derivatives, including elements of the craniofacial skeleton, skin pigmentation, and peripheral nervous system, it is today increasingly recognized that Schwann cell precursors are also multipotent. Two mammalian paralogs of the SWI/SNF (switch/sucrose nonfermentable) chromatin-remodeling complexes, BAF (Brg1-associated factors) and PBAF (polybromo-associated BAF), are critical for neural crest specification during normal mammalian development. There is increasing evidence that pathogenic variants in components of the BAF and PBAF complexes play central roles in the pathogenesis of neural crest-derived tumors. Transgenic mouse models demonstrate a temporal window early in development where pathogenic variants in Smarcb1 result in the formation of aggressive, poorly differentiated tumors, such as rhabdoid tumors. By contrast, later in development, homozygous inactivation of Smarcb1 requires additional pathogenic variants in tumor suppressor genes to drive the development of differentiated adult neoplasms derived from the neural crest, which have a comparatively good prognosis in humans.
Collapse
Affiliation(s)
- Daniel M Fountain
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom; ,
| | - Tatjana Sauka-Spengler
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom; ,
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| |
Collapse
|
20
|
Tran S, Plant-Fox AS, Chi SN, Narendran A. Current advances in immunotherapy for atypical teratoid rhabdoid tumor (ATRT). Neurooncol Pract 2023; 10:322-334. [PMID: 37457224 PMCID: PMC10346396 DOI: 10.1093/nop/npad005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023] Open
Abstract
Atypical teratoid rhabdoid tumors (ATRT) are rare and aggressive embryonal tumors of central nervous system that typically affect children younger than 3 years of age. Given the generally poor outcomes of patients with ATRT and the significant toxicities associated with conventional multi-modal therapies, there is an urgent need for more novel approaches to treat ATRT, one such approach being immunotherapy. The recent rise of large-scale, multicenter interdisciplinary studies has delineated several molecular and genetic characteristics unique to ATRT. This review aims to describe currently available data on the tumor immune microenvironment of ATRT and its specific subtypes and to summarize the emerging clinical and preclinical results of immunotherapy-based approaches. It will also highlight the evolving knowledge of epigenetics on immunomodulation in this epigenetically influenced tumor, which may help guide the development of effective immunotherapeutic approaches in the future.
Collapse
Affiliation(s)
- Son Tran
- Departments of Oncology and Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ashley S Plant-Fox
- Division of Hematology, Stem Cell Transplant, and Neuro-Oncology, Ann & Robert H. Lurie Children’s Hospital of Chicago and Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Susan N Chi
- Department of Pediatric Oncology, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA, USA
| | - Aru Narendran
- Departments of Oncology and Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
21
|
Haefliger S, Chervova O, Davies C, Nottley S, Hargreaves S, Sumathi VP, Amary F, Tirabosco R, Pillay N, Beck S, Flanagan AM, Lyskjær I. Subclassification of epithelioid sarcoma with potential therapeutic impact. J Pathol 2023; 260:368-375. [PMID: 37316954 PMCID: PMC10952852 DOI: 10.1002/path.6135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/15/2023] [Accepted: 05/07/2023] [Indexed: 06/16/2023]
Abstract
Epithelioid sarcoma is a rare and aggressive mesenchymal tumour, the genetic hallmark of which is the loss of expression of SMARCB1, a key member of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodelling complex. Hampered by its rarity, epithelioid sarcoma has received little research attention and therapeutic options for this disease remain limited. SMARCB1-deficient tumours also include malignant rhabdoid tumour, atypical teratoid and rhabdoid tumour, epithelioid malignant peripheral nerve sheath tumour, and poorly differentiated chordoma. Histologically, it can be challenging to distinguish epithelioid sarcoma from malignant rhabdoid tumour and other SMARCB1-deficient tumours, whereas methylation profiling shows that they represent distinct entities and facilitates their classification. Methylation studies on SMARCB1-deficient tumours, although not including epithelioid sarcomas, reported methylation subgroups which resulted in new clinical stratification and therapeutic approaches. In addition, emerging evidence indicates that immunotherapy, including immune checkpoint inhibitors, represents a promising therapeutic strategy for SMARCB1-deficient tumours. Here, we show that some epithelioid sarcomas share methylation patterns of malignant rhabdoid tumours indicating that this could help to distinguish these entities and guide treatment. Using gene expression data, we also showed that the immune environment of epithelioid sarcoma is characterised by a predominance of CD8+ lymphocytes and M2 macrophages. These findings have potential implications for the management of patients with epithelioid sarcoma. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Simon Haefliger
- Research Department of PathologyUniversity College London, UCL Cancer InstituteLondonUK
- Institute of Medical Genetics and PathologyUniversity Hospital BaselBaselSwitzerland
- Department of HistopathologyRoyal National Orthopaedic HospitalStanmoreUK
| | - Olga Chervova
- Medical Genomics Research GroupUniversity College London, UCL Cancer InstituteLondonUK
| | - Christopher Davies
- Research Department of PathologyUniversity College London, UCL Cancer InstituteLondonUK
- Department of HistopathologyRoyal National Orthopaedic HospitalStanmoreUK
| | - Steven Nottley
- Research Department of PathologyUniversity College London, UCL Cancer InstituteLondonUK
| | - Steven Hargreaves
- Research Department of PathologyUniversity College London, UCL Cancer InstituteLondonUK
| | | | - Fernanda Amary
- Department of HistopathologyRoyal National Orthopaedic HospitalStanmoreUK
| | - Roberto Tirabosco
- Department of HistopathologyRoyal National Orthopaedic HospitalStanmoreUK
| | - Nischalan Pillay
- Research Department of PathologyUniversity College London, UCL Cancer InstituteLondonUK
- Department of HistopathologyRoyal National Orthopaedic HospitalStanmoreUK
| | - Stephan Beck
- Medical Genomics Research GroupUniversity College London, UCL Cancer InstituteLondonUK
| | - Adrienne M Flanagan
- Research Department of PathologyUniversity College London, UCL Cancer InstituteLondonUK
- Department of HistopathologyRoyal National Orthopaedic HospitalStanmoreUK
| | - Iben Lyskjær
- Department of Molecular MedicineAarhus University HospitalAarhusDenmark
| |
Collapse
|
22
|
Soto-Castillo JJ, Llavata-Marti L, Fort-Culillas R, Andreu-Cobo P, Moreno R, Codony C, García Del Muro X, Alemany R, Piulats JM, Martin-Liberal J. SWI/SNF Complex Alterations in Tumors with Rhabdoid Features: Novel Therapeutic Approaches and Opportunities for Adoptive Cell Therapy. Int J Mol Sci 2023; 24:11143. [PMID: 37446319 DOI: 10.3390/ijms241311143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin-remodeling complex is one of the most remarkably altered epigenetic regulators in cancer. Pathogenic mutations in genes encoding SWI/SNF-related proteins have been recently described in many solid tumors, including rare and aggressive malignancies with rhabdoid features with no standard therapies in advanced or metastatic settings. In recent years, clinical trials with targeted drugs aimed at restoring its function have shown discouraging results. However, preclinical data have found an association between these epigenetic alterations and response to immune therapy. Thus, the rationale for immunotherapy strategies in SWI/SNF complex alteration-related tumors is strong. Here, we review the SWI/SNF complex and how its dysfunction drives the oncogenesis of rhabdoid tumors and the proposed strategies to revert this alteration and promising novel therapeutic approaches, including immune checkpoint inhibition and adoptive cell therapy.
Collapse
Affiliation(s)
- Juan José Soto-Castillo
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
| | - Lucía Llavata-Marti
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 17007 Girona, Spain
| | - Roser Fort-Culillas
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 17007 Girona, Spain
| | - Pablo Andreu-Cobo
- Medical Oncology Department, Parc Tauli Hospital Universitari, 08208 Sabadell, Spain
| | - Rafael Moreno
- Cancer Immunotherapy Group, iPROCURE Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
| | - Carles Codony
- Cancer Immunotherapy Group, iPROCURE Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
| | - Xavier García Del Muro
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
| | - Ramon Alemany
- Cancer Immunotherapy Group, iPROCURE Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
| | - Josep M Piulats
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
- Cancer Immunotherapy Group, iPROCURE Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
| | - Juan Martin-Liberal
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
| |
Collapse
|
23
|
Kamenova M, Kaneva R, Genova K, Gabrovsky N. Embryonal Tumors of the Central Nervous System with Multilayered Rosettes and Atypical Teratoid/Rhabdoid Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1405:225-252. [PMID: 37452940 DOI: 10.1007/978-3-031-23705-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The 2016 WHO classification of tumors of the central nervous system affected importantly the group of CNS embryonal tumors. Molecular analysis on methylome, genome, and transcriptome levels allowed better classification, identification of specific molecular hallmarks of the different subtypes of CNS embryonal tumors, and their more precise diagnosis. Routine application of appropriate molecular testing and standardized reporting are of pivotal importance for adequate prognosis and treatment, but also for epidemiology studies and search for efficient targeted therapies. As a result of this approach, the term primitive neuroectodermal tumor-PNET was removed and a new clinic-pathological entity was introduced-Embryonal tumor with multilayered rosettes (ETMR). The group of CNS embryonal tumors include also medulloblastoma, medulloepithelioma, CNS neuroblastoma, CNS ganglioneuroblastoma, atypical teratoid/rhabdoid tumor (ATRT) and their subtypes. This chapter will focus mainly on ETMR and ATRT. Embryonal tumors with multilayered rosettes and the atypical teratoid/rhabdoid tumors are undifferentiated or poorly differentiated tumors of the nervous system that originate from primitive brain cells, develop exclusively in childhood or adolescence, and are characterized by a high degree of malignancy, aggressive evolution and a tendency to metastasize to the cerebrospinal fluid. Their clinical presentation is similar to other malignant, intracranial, neoplastic lesions and depends mainly on the localization of the tumor, the rise of the intracranial pressure, and eventually the obstruction of the cerebrospinal fluid pathways. The MRI image characteristics of these tumors are largely overlappingintra-axial, hypercellular, heterogeneous tumors, frequently with intratumoral necrosis and/or hemorrhages. Treatment options for ETMR and ATRT are very restricted. Surgery can seldom achieve radical excision. The rarity of the disease hampers the establishment of a chemotherapy protocol and the usual age of the patients limits severely the application of radiotherapy as a therapeutic option. Consequently, the prognosis of these undifferentiated, malignant, aggressive tumors remains dismal with a 5-year survival between 0 and 30%.
Collapse
Affiliation(s)
| | - Radka Kaneva
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical University, Sofia, Bulgaria
| | - Kamelia Genova
- Department of Image Diagnostic, University Hospital "Pirogov", Sofia, Bulgaria
| | - Nikolay Gabrovsky
- Department of Neurosurgery, University Hospital "Pirogov", Sofia, Bulgaria.
| |
Collapse
|
24
|
AlRayahi J, Alwalid O, Mubarak W, Maaz AUR, Mifsud W. Pediatric Brain Tumors in the Molecular Era: Updates for the Radiologist. Semin Roentgenol 2023; 58:47-66. [PMID: 36732011 DOI: 10.1053/j.ro.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/28/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Jehan AlRayahi
- Department of Pediatric Radiology, Sidra Medicine, Doha, Qatar.
| | - Osamah Alwalid
- Department of Pediatric Radiology, Sidra Medicine, Doha, Qatar
| | - Walid Mubarak
- Department of Pediatric Radiology, Sidra Medicine, Doha, Qatar
| | - Ata Ur Rehman Maaz
- Department of Pediatric Hematology-Oncology, Sidra Medicine, Doha, Qatar
| | | |
Collapse
|
25
|
Hont AB, Dumont B, Sutton KS, Anderson J, Kentsis A, Drost J, Hong AL, Verschuur A. The tumor microenvironment and immune targeting therapy in pediatric renal tumors. Pediatr Blood Cancer 2022; 70 Suppl 2:e30110. [PMID: 36451260 DOI: 10.1002/pbc.30110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 12/04/2022]
Abstract
This review highlights the role of several immunomodulating elements contributing to the tumor microenvironment of various pediatric renal tumors including Wilms tumor. The roles of innate and adaptive immune cells in renal tumors are summarized as well as immunomodulatory cytokines and other proteins. The expression and the predictive role of checkpoint modulators like PD-L1 and immunomodulating proteins like glypican-3, B7-H3, COX-2 are highlighted with a translational view toward potential therapeutic innovations. We further discuss the current state of preclinical models in advancing this field of study. Finally, examples of clinical trials of immunomodulating strategies such as monoclonal antibodies and chimeric antigen receptor T (CAR-T) cells for relapsed/refractory/progressive pediatric renal tumors are described.
Collapse
Affiliation(s)
- Amy B Hont
- Department of Hematology/Oncology, Children's National Hospital, George Washington University, Washington, District of Columbia, USA
| | - Benoit Dumont
- Pediatric Hematology and Oncology Institute, Léon Bérard Cancer Center, Lyon, France
| | - Kathryn S Sutton
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA
| | - John Anderson
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Alex Kentsis
- Tow Center for Developmental Oncology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center and Weill Medical College of Cornell University, New York, New York, USA
| | - Jarno Drost
- Princess Máxima Center and Oncode Institute, Utrecht, The Netherlands
| | - Andrew L Hong
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA
| | - Arnauld Verschuur
- Department of Pediatric Hematology and Oncology, Hôpital d'Enfants de la Timone, APHM, Marseille, France
| |
Collapse
|
26
|
Coutinho DF, Mundi PS, Marks LJ, Burke C, Ortiz MV, Diolaiti D, Bird L, Vallance KL, Ibáñez G, You D, Long M, Rosales N, Grunn A, Ndengu A, Siddiquee A, Gaviria ES, Rainey AR, Fazlollahi L, Hosoi H, Califano A, Kung AL, Dela Cruz FS. Validation of a non-oncogene encoded vulnerability to exportin 1 inhibition in pediatric renal tumors. MED 2022; 3:774-791.e7. [PMID: 36195086 PMCID: PMC9669237 DOI: 10.1016/j.medj.2022.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/20/2022] [Accepted: 09/13/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND Malignant rhabdoid tumors (MRTs) and Wilms' tumors (WTs) are rare and aggressive renal tumors of infants and young children comprising ∼5% of all pediatric cancers. MRTs are among the most genomically stable cancers, and although WTs are genomically heterogeneous, both generally lack therapeutically targetable genetic mutations. METHODS Comparative protein activity analysis of MRTs (n = 68) and WTs (n = 132) across TCGA and TARGET cohorts, using metaVIPER, revealed elevated exportin 1 (XPO1) inferred activity. In vitro studies were performed on a panel of MRT and WT cell lines to evaluate effects on proliferation and cell-cycle progression following treatment with the selective XPO1 inhibitor selinexor. In vivo anti-tumor activity was assessed in patient-derived xenograft (PDX) models of MRTs and WTs. FINDINGS metaVIPER analysis identified markedly aberrant activation of XPO1 in MRTs and WTs compared with other tumor types. All MRT and most WT cell lines demonstrated baseline, aberrant XPO1 activity with in vitro sensitivity to selinexor via cell-cycle arrest and induction of apoptosis. In vivo, XPO1 inhibitors significantly abrogated tumor growth in PDX models, inducing effective disease control with sustained treatment. Corroborating human relevance, we present a case report of a child with multiply relapsed WTs with prolonged disease control on selinexor. CONCLUSIONS We report on a novel systems-biology-based comparative framework to identify non-genetically encoded vulnerabilities in genomically quiescent pediatric cancers. These results have provided preclinical rationale for investigation of XPO1 inhibitors in an upcoming investigator-initiated clinical trial of selinexor in children with MRTs and WTs and offer opportunities for exploration of inferred XPO1 activity as a potential predictive biomarker for response. FUNDING This work was funded by CureSearch for Children's Cancer, Alan B. Slifka Foundation, NIH (U01 CA217858, S10 OD012351, and S10 OD021764), Michael's Miracle Cure, Hyundai Hope on Wheels, Cannonball Kids Cancer, Conquer Cancer the ASCO Foundation, Cycle for Survival, Paulie Strong Foundation, and the Grayson Fund.
Collapse
Affiliation(s)
- Diego F Coutinho
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Prabhjot S Mundi
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Lianna J Marks
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chelsey Burke
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael V Ortiz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daniel Diolaiti
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lauren Bird
- Cook Children's Hematology and Oncology, Fort Worth, TX 76104, USA
| | - Kelly L Vallance
- Cook Children's Hematology and Oncology, Fort Worth, TX 76104, USA
| | - Glorymar Ibáñez
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daoqi You
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew Long
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nestor Rosales
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Adina Grunn
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Andoyo Ndengu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Armaan Siddiquee
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ervin S Gaviria
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Allison R Rainey
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ladan Fazlollahi
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Hajime Hosoi
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Andrea Califano
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA.
| | - Andrew L Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Filemon S Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
27
|
Fincke VE, Krulik ME, Joshi P, Frühwald MC, Chen YB, Johann PD. Renal Medullary Carcinomas Harbor a Distinct Methylation Phenotype and Display Aberrant Methylation of Genes Related to Early Nephrogenesis. Cancers (Basel) 2022; 14:cancers14205044. [PMID: 36291828 PMCID: PMC9599670 DOI: 10.3390/cancers14205044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Renal medullary carcinomas (RMC) are rare aggressive tumors of the kidneys, characterized by a loss of SMARCB1. Characteristically, these tumors arise in patients with sickle cell trait or other hemoglobinopathies. Recent characterization efforts have unraveled oncogenic pathways that drive tumorigenesis. Among these, gene sets that characterize replicative stress and the innate immune response are upregulated in RMCs. Despite comprehensive genetic and transcriptomic characterizations, commonalities or differences to other SMARCB1 deficient entities so far have not been investigated. We analyzed the methylome of seven primary RMC and compared it to other SMARCB1 deficient entities such as rhabdoid tumors (RT) and epithelioid sarcomas using 850 K methylation arrays. Moreover, we evaluated the differential gene expression of RMC using RNA-sequencing in comparison to other rhabdoid tumors. In accordance with previous gene expression data, we found that RMCs separate from other SMARCB1 deficient entities, pointing to a potentially different cell of origin and a role of additional genetic aberrations that may drive tumorigenesis and thus alter the methylome when compared to rhabdoid tumors. In a focused analysis of genes that are important for nephrogenesis, we particularly detected genes that govern early nephrogenesis such as FOXI1 to be hypomethylated and expressed at high levels in RMC. Overall, our analyses underscore the fact that RMCs represent a separate entity with limited similarities to rhabdoid tumors, warranting specific treatment tailored to the aggressiveness of the disease.
Collapse
Affiliation(s)
- Victoria E. Fincke
- Swabian Children’s Cancer Center, University Hospital Augsburg, 86156 Augsburg, Germany
- Correspondence: (V.E.F.); (P.D.J.)
| | - Mateja E. Krulik
- Swabian Children’s Cancer Center, University Hospital Augsburg, 86156 Augsburg, Germany
| | - Piyush Joshi
- Hopp Children’s Cancer Center (KiTZ) Heidelberg, Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Michael C. Frühwald
- Swabian Children’s Cancer Center, University Hospital Augsburg, 86156 Augsburg, Germany
| | - Ying-Bei Chen
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Pascal D. Johann
- Swabian Children’s Cancer Center, University Hospital Augsburg, 86156 Augsburg, Germany
- Hopp Children’s Cancer Center (KiTZ) Heidelberg, Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence: (V.E.F.); (P.D.J.)
| |
Collapse
|
28
|
Primary cilia contribute to the aggressiveness of atypical teratoid/rhabdoid tumors. Cell Death Dis 2022; 13:806. [PMID: 36127323 PMCID: PMC9489777 DOI: 10.1038/s41419-022-05243-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 01/23/2023]
Abstract
Atypical teratoid/rhabdoid tumor (AT/RT) is a highly malignant brain tumor in infants that is characterized by loss of nuclear expression of SMARCB1 or SMARCA4 proteins. Recent studies show that AT/RTs comprise three molecular subgroups, namely AT/RT-TYR, AT/RT-MYC and AT/RT-SHH. The subgroups show distinct expression patterns of genes involved in ciliogenesis, however, little is known about the functional roles of primary cilia in the biology of AT/RT. Here, we show that primary cilia are present across all AT/RT subgroups with specific enrichment in AT/RT-TYR patient samples. Furthermore, we demonstrate that primary ciliogenesis contributes to AT/RT biology in vitro and in vivo. Specifically, we observed a significant decrease in proliferation and clonogenicity following disruption of primary ciliogenesis in AT/RT cell line models. Additionally, apoptosis was significantly increased via the induction of STAT1 and DR5 signaling, as detected by proteogenomic profiling. In a Drosophila model of SMARCB1 deficiency, concomitant knockdown of several cilia-associated genes resulted in a substantial shift of the lethal phenotype with more than 20% of flies reaching adulthood. We also found significantly extended survival in an orthotopic xenograft mouse model of AT/RT upon disruption of primary ciliogenesis. Taken together, our findings indicate that primary ciliogenesis or its downstream signaling contributes to the aggressiveness of AT/RT and, therefore, may constitute a novel therapeutic target.
Collapse
|
29
|
Cooper GW, Hong AL. SMARCB1-Deficient Cancers: Novel Molecular Insights and Therapeutic Vulnerabilities. Cancers (Basel) 2022; 14:3645. [PMID: 35892904 PMCID: PMC9332782 DOI: 10.3390/cancers14153645] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 12/27/2022] Open
Abstract
SMARCB1 is a critical component of the BAF complex that is responsible for global chromatin remodeling. Loss of SMARCB1 has been implicated in the initiation of cancers such as malignant rhabdoid tumor (MRT), atypical teratoid rhabdoid tumor (ATRT), and, more recently, renal medullary carcinoma (RMC). These SMARCB1-deficient tumors have remarkably stable genomes, offering unique insights into the epigenetic mechanisms in cancer biology. Given the lack of druggable targets and the high mortality associated with SMARCB1-deficient tumors, a significant research effort has been directed toward understanding the mechanisms of tumor transformation and proliferation. Accumulating evidence suggests that tumorigenicity arises from aberrant enhancer and promoter regulation followed by dysfunctional transcriptional control. In this review, we outline key mechanisms by which loss of SMARCB1 may lead to tumor formation and cover how these mechanisms have been used for the design of targeted therapy.
Collapse
Affiliation(s)
- Garrett W. Cooper
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Andrew L. Hong
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
30
|
Miller KE, Wheeler G, LaHaye S, Schieffer KM, Cearlock S, Venkata LPR, Bravo AO, Grischow OE, Kelly BJ, White P, Pierson CR, Boué DR, Koo SC, Klawinski D, Ranalli MA, Shaikhouni A, Salloum R, Shatara M, Leonard JR, Wilson RK, Cottrell CE, Mardis ER, Koboldt DC. Molecular Heterogeneity in Pediatric Malignant Rhabdoid Tumors in Patients With Multi-Organ Involvement. Front Oncol 2022; 12:932337. [PMID: 35912263 PMCID: PMC9326117 DOI: 10.3389/fonc.2022.932337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Rhabdoid tumors (RTs) of the brain (atypical teratoid/rhabdoid tumor; AT/RT) and extracranial sites (most often the kidney; RTK) are malignant tumors predominantly occurring in children, frequently those with SMARCB1 germline alterations. Here we present data from seven RTs from three pediatric patients who all had multi-organ involvement. The tumors were analyzed using a multimodal molecular approach, which included exome sequencing of tumor and germline comparator and RNA sequencing and DNA array-based methylation profiling of tumors. SMARCB1 germline alterations were identified in all patients and in all tumors. We observed a second hit in SMARCB1 via chr22 loss of heterozygosity. By methylation profiling, all tumors were classified as rhabdoid tumors with a corresponding subclassification within the MYC, TYR, or SHH AT/RT subgroups. Using RNA-seq gene expression clustering, we recapitulated the classification of known AT/RT subgroups. Synchronous brain and kidney tumors from the same patient showed different patterns of either copy number variants, single-nucleotide variants, and/or genome-wide DNA methylation, suggestive of non-clonal origin. Furthermore, we demonstrated that a lung and abdominal metastasis from two patients shared overlapping molecular features with the patient’s primary kidney tumor, indicating the likely origin of the metastasis. In addition to the SMARCB1 events, we identified other whole-chromosome events and single-nucleotide variants in tumors, but none were found to be prognostic, diagnostic, or offer therapeutic potential for rhabdoid tumors. While our findings are of biological interest, there may also be clinical value in comprehensive molecular profiling in patients with multiple rhabdoid tumors, particularly given the potential prognostic and therapeutic implications for different rhabdoid tumor subgroups demonstrated in recent clinical trials and other large cohort studies.
Collapse
Affiliation(s)
- Katherine E. Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
- *Correspondence: Katherine E. Miller, ; Daniel C. Koboldt,
| | - Gregory Wheeler
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Stephanie LaHaye
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Kathleen M. Schieffer
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
- Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Sydney Cearlock
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Lakshmi Prakruthi Rao Venkata
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Alejandro Otero Bravo
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Olivia E. Grischow
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Benjamin J. Kelly
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Peter White
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Christopher R. Pierson
- Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Biomedical Education and Anatomy, Division of Anatomy, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Daniel R. Boué
- Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Selene C. Koo
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Darren Klawinski
- Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children’s Hospital, Columbus, OH, United States
- Pediatric Neuro-Oncology Program, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Mark A. Ranalli
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
- Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Ammar Shaikhouni
- Department of Neurosurgery, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Ralph Salloum
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
- Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children’s Hospital, Columbus, OH, United States
- Pediatric Neuro-Oncology Program, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Margaret Shatara
- The Division of Hematology and Oncology, St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, MO, United States
| | - Jeffrey R. Leonard
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
- Department of Neurosurgery, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Richard K. Wilson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Catherine E. Cottrell
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
- Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Elaine R. Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
- Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Daniel C. Koboldt
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
- *Correspondence: Katherine E. Miller, ; Daniel C. Koboldt,
| |
Collapse
|
31
|
Long AH, Morgenstern DA, Leruste A, Bourdeaut F, Davis KL. Checkpoint Immunotherapy in Pediatrics: Here, Gone, and Back Again. Am Soc Clin Oncol Educ Book 2022; 42:1-14. [PMID: 35580293 DOI: 10.1200/edbk_349799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of immune checkpoint inhibitors (ICIs) in the treatment of pediatric cancers continues to evolve. Such therapies function by augmenting existing antitumor T-cell responses that have been rendered ineffective by inhibitory pathways. Although ICIs have proven highly effective for adult cancers, initial phase I/II clinical trials using single-agent ICIs against unselected pediatric cancers have been overall disappointing. With the exception of pediatric classic Hodgkin lymphoma, responses to ICIs have been infrequent, likely stemming from an inherent difference in the immunogenicity of childhood cancers, which, on average, have far fewer neoantigens than adult cancers. Recently, however, hope has reemerged that certain subsets of children with cancer may benefit from ICI therapies. In preliminary studies, patients with both pediatric hypermutated and SMARCB1-deficient cancers have had impressive responses to ICI therapies, likely as a result of underlying biologies that enhance neoantigen expression and tumoral inflammation. Dedicated trials are ongoing to fully evaluate the efficacy of ICIs for patients with these subsets of pediatric cancer.
Collapse
Affiliation(s)
- Adrienne H Long
- Division of Hematology, Oncology, and Stem Cell Transplant, Department of Pediatrics, Stanford University, Stanford, CA
| | - Daniel A Morgenstern
- Division of Haematology/Oncology, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Amaury Leruste
- SIREDO Oncology Center, Institut Curie, Paris Sciences et Lettres University, Paris, France
| | - Franck Bourdeaut
- SIREDO Oncology Center, Institut Curie, Laboratory of Translational Research in Pediatric Oncology, Paris, France
| | - Kara L Davis
- Division of Hematology, Oncology, and Stem Cell Transplant, Department of Pediatrics, Stanford University, Stanford, CA.,Center for Cancer Cellular Therapy, Stanford University, Stanford, CA
| |
Collapse
|
32
|
Ishi Y, Zhang Y, Zhang A, Sasaki T, Piunti A, Suri A, Watanabe J, Abe K, He X, Katagi H, Bhalla P, Natsumeda M, Zou L, Shilatifard A, Hashizume R. Therapeutic Targeting of EZH2 and BET BRD4 in Pediatric Rhabdoid Tumors. Mol Cancer Ther 2022; 21:715-726. [PMID: 35247919 PMCID: PMC9081147 DOI: 10.1158/1535-7163.mct-21-0646] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/20/2021] [Accepted: 02/10/2022] [Indexed: 11/16/2022]
Abstract
Aberrant activity of the H3K27 modifiers EZH2 and BRD4 is an important oncogenic driver for atypical teratoid/rhabdoid tumor (AT/RT), and each is potentially a possible therapeutic target for treating AT/RT. We, therefore, determined whether targeting distinct histone modifier activities was an effective approach for treating AT/RT. The effects of EZH2 and BRD4 inhibition on histone modification, cell proliferation, and cell invasion were analyzed by immunoblotting, MTS assay, colony formation assay, and cell invasion assay. RNA- and chromatin immunoprecipitation-sequencing were used to determine transcriptional and epigenetic changes in AT/RT cells treated with EZH2 and BRD4 inhibitors. We treated mice bearing human AT/RT xenografts with EZH2 and BRD4 inhibitors. Intracranial tumor growth was monitored by bioluminescence imaging, and the therapeutic response was evaluated by animal survival. AT/RT cells showed elevated levels of H3K27 trimethylation (H3K27me3) and H3K27 acetylation (H3K27ac), with expression of EZH2 and BRD4, and lack of SMARCB1 proteins. Targeted inhibition of EZH2 and BRD4 activities reduced cell proliferation and invasiveness of AT/RT in association with decreasing H3K27me3 and H3K27ac. Differential genomic occupancy of H3K27me3 and H3K27ac regulated specific gene expression in response to EZH2 and BRD4 inhibitions. A combination of EZH2 and BRD4 inhibition increased the therapeutic benefit in vitro and in vivo, outperforming either monotherapy. Overall, histones H3K27me3 and H3K27ac were elevated in AT/RT cells and distributed in distinct chromatin regions to regulate specific gene expression and to promote AT/RT growth. Targeting EZH2 and BRD4 activity is, therefore, a potential combination therapy for AT/RT.
Collapse
Affiliation(s)
- Yukitomo Ishi
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL, 60611, USA
| | - Yongzhan Zhang
- Department of Biochemistry & Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL, 60611, USA
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Ali Zhang
- Department of Neurosurgical Surgery, Northwestern University Feinberg School of Medicine, 300 East Superior Street, Chicago, IL, 60611, USA
| | - Takahiro Sasaki
- Department of Neurosurgical Surgery, Northwestern University Feinberg School of Medicine, 300 East Superior Street, Chicago, IL, 60611, USA
| | - Andrea Piunti
- Department of Biochemistry & Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL, 60611, USA
| | - Amreena Suri
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL, 60611, USA
| | - Jun Watanabe
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL, 60611, USA
- Department of Neurological Surgery, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata, Japan
| | - Kouki Abe
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL, 60611, USA
| | - Xingyao He
- Department of Neurosurgical Surgery, Northwestern University Feinberg School of Medicine, 300 East Superior Street, Chicago, IL, 60611, USA
| | - Hiroaki Katagi
- Department of Neurosurgical Surgery, Northwestern University Feinberg School of Medicine, 300 East Superior Street, Chicago, IL, 60611, USA
| | - Pankaj Bhalla
- Department of Dermatology, Northwestern University Feinberg School of Medicine, 300 East Superior Street, Chicago, IL, 60611, USA
| | - Manabu Natsumeda
- Department of Neurological Surgery, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata, Japan
| | - Lihua Zou
- Department of Biochemistry & Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL, 60611, USA
| | - Ali Shilatifard
- Department of Biochemistry & Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL, 60611, USA
| | - Rintaro Hashizume
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL, 60611, USA
- Department of Biochemistry & Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL, 60611, USA
- Neuro-Oncology and Stem Cells Transplantation, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 East Chicago Avenue, Chicago, IL, 60611, USA
| |
Collapse
|
33
|
Graf M, Interlandi M, Moreno N, Holdhof D, Göbel C, Melcher V, Mertins J, Albert TK, Kastrati D, Alfert A, Holsten T, de Faria F, Meisterernst M, Rossig C, Warmuth-Metz M, Nowak J, Meyer Zu Hörste G, Mayère C, Nef S, Johann P, Frühwald MC, Dugas M, Schüller U, Kerl K. Single-cell transcriptomics identifies potential cells of origin of MYC rhabdoid tumors. Nat Commun 2022; 13:1544. [PMID: 35318328 PMCID: PMC8941154 DOI: 10.1038/s41467-022-29152-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/26/2022] [Indexed: 11/30/2022] Open
Abstract
Rhabdoid tumors (RT) are rare and highly aggressive pediatric neoplasms. Their epigenetically-driven intertumoral heterogeneity is well described; however, the cellular origin of RT remains an enigma. Here, we establish and characterize different genetically engineered mouse models driven under the control of distinct promoters and being active in early progenitor cell types with diverse embryonic onsets. From all models only Sox2-positive progenitor cells give rise to murine RT. Using single-cell analyses, we identify distinct cells of origin for the SHH and MYC subgroups of RT, rooting in early stages of embryogenesis. Intra- and extracranial MYC tumors harbor common genetic programs and potentially originate from fetal primordial germ cells (PGCs). Using PGC specific Smarcb1 knockout mouse models we validate that MYC RT originate from these progenitor cells. We uncover an epigenetic imbalance in MYC tumors compared to PGCs being sustained by epigenetically-driven subpopulations. Importantly, treatments with the DNA demethylating agent decitabine successfully impair tumor growth in vitro and in vivo. In summary, our work sheds light on the origin of RT and supports the clinical relevance of DNA methyltransferase inhibitors against this disease. Rhabdoid tumors (RT) are aggressive paediatric cancers with yet unknown cells of origin. Here, the authors establish genetically engineered mouse models of RT and, using single-cell RNA-seq and epigenomics, identify potential cells of origin for the SHH and MYC subtypes.
Collapse
Affiliation(s)
- Monika Graf
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Marta Interlandi
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany.,Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Natalia Moreno
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Dörthe Holdhof
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Carolin Göbel
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Viktoria Melcher
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Julius Mertins
- Department of Neurology, Schlosspark-Klinik, 14059, Berlin, Germany.,Institute of Molecular Tumor Biology, University of Münster, 48149, Münster, Germany
| | - Thomas K Albert
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Dennis Kastrati
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Amelie Alfert
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Till Holsten
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.,Institute of Molecular Tumor Biology, University of Münster, 48149, Münster, Germany
| | - Flavia de Faria
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany.,Department of Pediatric Hematology and Oncology, Children's Hospital of Brasìlia, 70684-831, Brasìlia, Brazil
| | - Michael Meisterernst
- Institute of Molecular Tumor Biology, University of Münster, 48149, Münster, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Monika Warmuth-Metz
- Neuroradiological Reference Center, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Nowak
- Neuroradiological Reference Center, University Hospital Würzburg, Würzburg, Germany.,SRH Poliklinik Gera GmbH, Radiological Practice Gotha, Gotha, Germany
| | - Gerd Meyer Zu Hörste
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Chloe Mayère
- Department of Genetic Medicine and Development, University of Geneva, 1211, Geneva, Switzerland.,iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211, Geneva, Switzerland
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, 1211, Geneva, Switzerland.,iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211, Geneva, Switzerland
| | - Pascal Johann
- Swabian Children's Cancer Center, Paediatric and Adolescent Medicine, University Medical Center Augsburg, 86156, Augsburg, Germany.,Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael C Frühwald
- Swabian Children's Cancer Center, Paediatric and Adolescent Medicine, University Medical Center Augsburg, 86156, Augsburg, Germany
| | - Martin Dugas
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany.,Institute of Medical Informatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.,Research Institute Children's Cancer Center, 20251, Hamburg, Germany
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany.
| |
Collapse
|
34
|
Immunotherapy for SMARCB1-Deficient Sarcomas: Current Evidence and Future Developments. Biomedicines 2022; 10:biomedicines10030650. [PMID: 35327458 PMCID: PMC8945563 DOI: 10.3390/biomedicines10030650] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 12/13/2022] Open
Abstract
Mutations in subunits of the SWItch Sucrose Non-Fermentable (SWI/SNF) complex occur in 20% of all human tumors. Among these, the core subunit SMARCB1 is the most frequently mutated, and SMARCB1 loss represents a founder driver event in several malignancies, such as malignant rhabdoid tumors (MRT), epithelioid sarcoma, poorly differentiated chordoma, and renal medullary carcinoma (RMC). Intriguingly, SMARCB1-deficient pediatric MRT and RMC have recently been reported to be immunogenic, despite their very simple genome and low tumor mutational burden. Responses to immune checkpoint inhibitors have further been reported in some SMARCB1-deficient diseases. Here, we will review the preclinical data and clinical data that suggest that immunotherapy, including immune checkpoint inhibitors, may represent a promising therapeutic strategy for SMARCB1-defective tumors. We notably discuss the heterogeneity that exists among the spectrum of malignancies driven by SMARCB1-loss, and highlight challenges that are at stake for developing a personalized immunotherapy for these tumors, notably using molecular profiling of the tumor and of its microenvironment.
Collapse
|
35
|
Nemes K, Johann PD, Tüchert S, Melchior P, Vokuhl C, Siebert R, Furtwängler R, Frühwald MC. Current and Emerging Therapeutic Approaches for Extracranial Malignant Rhabdoid Tumors. Cancer Manag Res 2022; 14:479-498. [PMID: 35173482 PMCID: PMC8841298 DOI: 10.2147/cmar.s289544] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Extracranial malignant rhabdoid tumors (extracranial MRT) are rare, highly aggressive malignancies affecting mainly infants and children younger than 3 years. Common anatomic sites comprise the kidneys (RTK – rhabdoid tumor of kidney) and other soft tissues (eMRT – extracranial, extrarenal malignant rhabdoid tumor). The genetic origin of these diseases is linked to biallelic pathogenic variants in the genes SMARCB1, or rarely SMARCA4, encoding subunits of the SWI/SNF chromatin-remodeling complex. Even if extracranial MRT seem to be quite homogeneous, recent epigenome analyses reveal a certain degree of epigenetic heterogeneity. Use of intensified therapies has modestly improved survival for extracranial MRT. Patients at standard risk profit from conventional therapies; most high-risk patients still experience a dismal course and often therapy resistance. Discoveries of clinical and molecular hallmarks and the exploration of experimental therapeutic approaches open exciting perspectives for clinical and molecularly stratified experimental treatment approaches. To ultimately improve the outcome of patients with extracranial MRTs, they need to be characterized and stratified clinically and molecularly. High-risk patients need novel therapeutic approaches including selective experimental agents in phase I/II clinical trials.
Collapse
Affiliation(s)
- Karolina Nemes
- Paediatrics and Adolescent Medicine, Swabian Children's Cancer Center, University Medical Center Augsburg, Augsburg, Germany
| | - Pascal D Johann
- Paediatrics and Adolescent Medicine, Swabian Children's Cancer Center, University Medical Center Augsburg, Augsburg, Germany.,Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefanie Tüchert
- Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Augsburg, Germany
| | - Patrick Melchior
- Department of Radiation Oncology, University of Saarland, Homburg, Germany
| | - Christian Vokuhl
- Section of Pediatric Pathology, Department of Pathology, University Hospital Bonn, Bonn, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - Rhoikos Furtwängler
- Department of Pediatric Hematology and Oncology, University of Saarland, Homburg, Germany
| | - Michael C Frühwald
- Paediatrics and Adolescent Medicine, Swabian Children's Cancer Center, University Medical Center Augsburg, Augsburg, Germany
| |
Collapse
|
36
|
Hasselblatt M, Thomas C, Federico A, Bens S, Hellström M, Casar‐Borota O, Kordes U, Neumann JE, Dottermusch M, Rodriguez FJ, Lo AC, Cheng S, Hendson G, Hukin J, Hartmann C, Koch A, Capper D, Siebert R, Paulus W, Nemes K, Johann PD, Frühwald MC, Kool M. Low‐grade diffusely infiltrative tumour (LGDIT), SMARCB1‐mutant: a clinical and histopathological distinct entity showing epigenetic similarity with ATRT‐MYC. Neuropathol Appl Neurobiol 2022; 48:e12797. [DOI: 10.1111/nan.12797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/03/2022] [Accepted: 02/05/2022] [Indexed: 11/30/2022]
Affiliation(s)
| | - Christian Thomas
- Institute of Neuropathology University Hospital Münster Münster Germany
| | - Aniello Federico
- Hopp Children´s Cancer Center (KiTZ), Heidelberg Germany
- Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg Germany
| | - Susanne Bens
- Institute of Human Genetics Ulm University & Ulm University Medical Center Ulm Germany
| | - Mats Hellström
- Dept. of Immunology, Genetics and Pathology, Rudbeck Laboratory Uppsala University Uppsala Sweden
| | - Olivera Casar‐Borota
- Dept. of Immunology, Genetics and Pathology, Rudbeck Laboratory Uppsala University Uppsala Sweden
- Dept. of Clinical Pathology Uppsala University Hospital Uppsala Sweden
| | - Uwe Kordes
- Dept. of Pediatric Hematology and Oncology University Medical Center, Hamburg‐Eppendorf Hamburg Germany
| | - Julia E. Neumann
- Institute of Neuropathology, University Medical Center, Hamburg‐Eppendorf Hamburg Germany
- Center for Molecular Neurobiology Hamburg (ZMNH) University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Matthias Dottermusch
- Institute of Neuropathology, University Medical Center, Hamburg‐Eppendorf Hamburg Germany
- Center for Molecular Neurobiology Hamburg (ZMNH) University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Fausto J. Rodriguez
- Dept. of Pathology The Johns Hopkins University School of Medicine Baltimore MD USA
| | - Andrea C. Lo
- Radiation Oncology British Columbia Cancer and University of British Columbia Vancouver Canada
| | - Sylvia Cheng
- Division of Hematology, Oncology & BMT, Department of Pediatrics University of British Columbia Vancouver Canada
| | - Glenda Hendson
- Dept. of Pathology, BC Women and Children's Hospital Vancouver Canada
| | - Juliette Hukin
- Division of Hematology, Oncology & BMT, Department of Pediatrics University of British Columbia Vancouver Canada
| | - Christian Hartmann
- Dept. of Neuropathology Institute of Pathology, Hannover Medical School Hannover Germany
| | - Arend Koch
- Charité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Dept. of Neuropathology Berlin Germany
| | - David Capper
- Charité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Dept. of Neuropathology Berlin Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg Germany
| | - Reiner Siebert
- Institute of Human Genetics Ulm University & Ulm University Medical Center Ulm Germany
| | - Werner Paulus
- Institute of Neuropathology University Hospital Münster Münster Germany
| | - Karolina Nemes
- Pediatric and Adolescent Medicine, Swabian Childrens' Cancer Center University Childrens' Hospital Medical Center Augsburg and EU‐RHAB Registry Augsburg Germany
| | - Pascal D. Johann
- Hopp Children´s Cancer Center (KiTZ), Heidelberg Germany
- Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg Germany
- Pediatric and Adolescent Medicine, Swabian Childrens' Cancer Center University Childrens' Hospital Medical Center Augsburg and EU‐RHAB Registry Augsburg Germany
| | - Michael C. Frühwald
- Pediatric and Adolescent Medicine, Swabian Childrens' Cancer Center University Childrens' Hospital Medical Center Augsburg and EU‐RHAB Registry Augsburg Germany
| | - Marcel Kool
- Hopp Children´s Cancer Center (KiTZ), Heidelberg Germany
- Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg Germany
- Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands
| |
Collapse
|
37
|
Cotter JA, Judkins AR. Evaluation and Diagnosis of Central Nervous System Embryonal Tumors (Non-Medulloblastoma). Pediatr Dev Pathol 2022; 25:34-45. [PMID: 35168419 DOI: 10.1177/10935266211018554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Since the 1990s, the sheer number of defined central nervous system (CNS) embryonal tumor entities has continuously increased, with the trend accelerating in the most recent editions of the World Health Organization (WHO) Classification of Tumours of the CNS. The introduction of increasingly specific tumor groups is an effort to create more internally homogeneous categories, to allow more precise prognostication, and potentially to develop targeted therapies. However, these ever-smaller categories within an already rare group of tumors pose a challenge for pediatric pathologists. In this article we review the current categorization of non-medulloblastoma CNS embryonal tumors (including atypical teratoid/rhabdoid tumor, cribriform neuroepithelial tumor, embryonal tumor with multilayered rosettes, CNS neuroblastoma, FOXR2-activated, and CNS tumor with BCOR internal tandem duplication) and provide an overview of available ancillary techniques to characterize these tumors. We provide a practical approach to workup and development of an integrated diagnosis for CNS embryonal tumors.
Collapse
Affiliation(s)
- Jennifer A Cotter
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Alexander R Judkins
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
38
|
"Adult rhabdoid tumors-a riddle inside an enigma?". Mod Pathol 2022; 35:1757-1758. [PMID: 36127393 PMCID: PMC9708543 DOI: 10.1038/s41379-022-01144-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/03/2022] [Accepted: 07/15/2022] [Indexed: 12/24/2022]
|
39
|
Enault M, Minard-Colin V, Corradini N, Leverger G, Thebaud E, Rome A, Proust S, Marie-Cardine A, Defachelles AS, Sarnacki S, Philippe-Chomette P, Delattre O, Masliah-Planchon J, Lacour B, Ferrari A, Brennan B, Orbach D, Bourdeaut F. Extracranial rhabdoid tumours: Results of a SFCE series of patients treated with a dose compression strategy according to European Paediatric Soft tisue sarcoma Study Group recommendations. Eur J Cancer 2022; 161:64-78. [DOI: 10.1016/j.ejca.2021.10.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022]
|
40
|
Steinbügl M, Nemes K, Johann P, Kröncke T, Tüchert S, da Costa MJG, Ebinger M, Schüller U, Sehested A, Hauser P, Reinhard H, Sumerauer D, Hettmer S, Jakob M, Hasselblatt M, Siebert R, Witt O, Gerss J, Kerl K, Frühwald MC. Clinical evidence for a biological effect of epigenetically active decitabine in relapsed or progressive rhabdoid tumors. Pediatr Blood Cancer 2021; 68:e29267. [PMID: 34347371 DOI: 10.1002/pbc.29267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 07/09/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Refined therapy has helped to improve survival rates in rhabdoid tumors (RT). Prognosis for patients with chemoresistant, recurrent, or progressive RT remains dismal. Although decitabine, an epigenetically active agent, has mainly been evaluated in the management of hematologic malignancies in adults, safety in children has also been demonstrated repeatedly. MATERIALS AND METHODS A retrospective series of patients who received decitabine upon relapse or progression following therapy according to the EU-RHAB regimen is presented. Due to the retrospective nature of analyses, response was defined as measurable regression of at least one lesion on imaging. 850k methylation profiling was done whenever tumor tissue was available. RESULTS A total of 22 patients with RT of any anatomical localization were included. Most patients (19/22) presented with metastases. All received low-dose decitabine with or preceding conventional chemotherapy. Patients received a median of two (1-6) courses of decitabine; 27.3% (6/22) demonstrated a radiological response. Molecular analyses revealed increased methylation levels in tumors from responders. No excessive toxicity was observed. Clinical benefits for responders included eligibility for early phase trials or local therapy. Responders showed prolonged time to progression and overall survival. Due to small sample size, statistical correction for survivorship bias demonstrated no significant effect on survival for responders. CONCLUSIONS Patients with RT demonstrate promising signs of antitumor activity after multiagent relapse therapy including decitabine. Analyses of methylation data suggest a specific effect on an epigenetic level. We propose to consider decitabine and other epigenetic drugs as candidates for further clinical investigations in RT.
Collapse
Affiliation(s)
- Mona Steinbügl
- University Medical Center Augsburg, Paediatric and Adolescent Medicine, Swabian Children's Cancer Center, Augsburg, Germany
| | - Karolina Nemes
- University Medical Center Augsburg, Paediatric and Adolescent Medicine, Swabian Children's Cancer Center, Augsburg, Germany
| | - Pascal Johann
- University Medical Center Augsburg, Paediatric and Adolescent Medicine, Swabian Children's Cancer Center, Augsburg, Germany.,Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Kröncke
- Department of Diagnostic and Interventional Radiology, University Medical Center, Augsburg, Germany
| | - Stefanie Tüchert
- Department of Diagnostic and Interventional Radiology, University Medical Center, Augsburg, Germany
| | - Maria Joao Gil da Costa
- Pediatric Hematology and Oncology Division, University Hospital S. João Alameda Hernani Monteiro, Porto, Portugal
| | - Martin Ebinger
- Department of General Pediatrics, Hematology and Oncology, Children's University Hospital, Tübingen, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, Hamburg, Germany.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Astrid Sehested
- Department of Paediatrics and Adolescent Medicine Rigshospitalet, Copenhagen, Denmark
| | - Peter Hauser
- Department of Pediatric Oncology, 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Harald Reinhard
- Department of Pediatrics, Asklepios Kinderklinik Sankt Augustin, Sankt Augustin, Germany
| | - David Sumerauer
- Department of Pediatric Hematology and Oncology, University Hospital Motol, Prague, Czech Republic
| | - Simone Hettmer
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Marcus Jakob
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital of Regensburg, Regensburg, Germany
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Reiner Siebert
- Institute of Human Genetics, University of Ulm and Ulm University Hospital, Ulm, Germany
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Heidelberg, Germany
| | - Joachim Gerss
- Institute of Biostatistics and Clinical Research, University of Münster, Muenster, Germany
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Michael C Frühwald
- University Medical Center Augsburg, Paediatric and Adolescent Medicine, Swabian Children's Cancer Center, Augsburg, Germany
| |
Collapse
|
41
|
Dottermusch M, Schumann Y, Kordes U, Hasselblatt M, Neumann JE. Spatial molecular profiling of a central nervous system low-grade diffusely infiltrative tumour with INI1 deficiency featuring a high-grade atypical teratoid/rhabdoid tumour component. Neuropathol Appl Neurobiol 2021; 48:e12777. [PMID: 34820878 DOI: 10.1111/nan.12777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/29/2022]
Abstract
We performed spatial epigenetic and transcriptomic analyses of a highly unusual low-grade diffusely infiltrative tumour with INI1 deficiency (CNS LGDIT-INI1), which harboured a high-grade component corresponding to an atypical teratoid/rhabdoid tumour (AT/RT). Methylation profiles of both low-grade and high-grade components yielded high similarity with AT/RTs of the MYC subgroup, whereas RNA expression analyses revealed increased translational activity and MYC pathway activation in the high-grade component. Close follow-up of patients harbouring CNS LGDIT-INI1 is warranted.
Collapse
Affiliation(s)
- Matthias Dottermusch
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yannis Schumann
- Department of Mechanical Engineering, High Performance Computing, Helmut Schmidt University Hamburg, Hamburg, Germany
| | - Uwe Kordes
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Julia E Neumann
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
42
|
Tessier Cloutier B, Kleinman CL, Foulkes WD. SWI/SNF-deficient undifferentiated malignancies: where to draw the line †. J Pathol 2021; 256:139-142. [PMID: 34767264 DOI: 10.1002/path.5836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 11/08/2022]
Abstract
Alterations in chromatin remodelling genes are increasingly recognised as drivers of undifferentiated malignancies. In atypical teratoid/rhabdoid tumours (ATRT) and extracranial rhabdoid tumours (ECRT), inactivation of SMARCB1 underlies >95% of cases. In the remainder, the culprit is another SWI-SNF family member, SMARCA4. By contrast, in small cell carcinoma of the ovary hypercalcemic type (SCCOHT), SMARCA4 deficiency is by far the most common driver mechanism, while SMARCB1 alterations are rarely seen. It is unclear why alterations are so heavily weighted towards one or another subunit based on site alone, but both have become essential markers for the diagnosis and management of these undifferentiated lesions. Core SMARCA4-deficient undifferentiated malignancies share an aggressive clinical course and show an overlapping morphologic phenotype. In their study, Andrianteranagna and colleagues used DNA methylation and gene expression profiling to compare two subsets of SMARCA4-deficient malignancies diagnosed as SCCOHT and ECRT. Their work gives further insight into the subtle molecular spectrum of SMARCA4-deficient tumours, and their distinction from ATRT and ECRT with SMARCB1 inactivation. The characterisation of these molecular features is likely to play an important role in the future as we try to establish a clinically meaningful framework for the diagnosis and management of these lesions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Claudia L Kleinman
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - William D Foulkes
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
43
|
Melcher V, Kerl K. The Growing Relevance of Immunoregulation in Pediatric Brain Tumors. Cancers (Basel) 2021; 13:5601. [PMID: 34830753 PMCID: PMC8615622 DOI: 10.3390/cancers13225601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022] Open
Abstract
Pediatric brain tumors are genetically heterogeneous solid neoplasms. With a prevailing poor prognosis and widespread resistance to conventional multimodal therapy, these aggressive tumors are the leading cause of childhood cancer-related deaths worldwide. Advancement in molecular research revealed their unique genetic and epigenetic characteristics and paved the way for more defined prognostication and targeted therapeutic approaches. Furthermore, uncovering the intratumoral metrics on a single-cell level placed non-malignant cell populations such as innate immune cells into the context of tumor manifestation and progression. Targeting immune cells in pediatric brain tumors entails unique challenges but promising opportunities to improve outcome. Herein, we outline the current understanding of the role of the immune regulation in pediatric brain tumors.
Collapse
Affiliation(s)
- Viktoria Melcher
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Münster, 48149 Münster, Germany
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Münster, 48149 Münster, Germany
| |
Collapse
|
44
|
Marcu A, Schlosser A, Keupp A, Trautwein N, Johann P, Wölfl M, Lager J, Monoranu CM, Walz JS, Henkel LM, Krauß J, Ebinger M, Schuhmann M, Thomale UW, Pietsch T, Klinker E, Schlegel PG, Oyen F, Reisner Y, Rammensee HG, Eyrich M. Natural and cryptic peptides dominate the immunopeptidome of atypical teratoid rhabdoid tumors. J Immunother Cancer 2021; 9:jitc-2021-003404. [PMID: 34599019 PMCID: PMC8488729 DOI: 10.1136/jitc-2021-003404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2021] [Indexed: 12/30/2022] Open
Abstract
Background Atypical teratoid/rhabdoid tumors (AT/RT) are highly aggressive CNS tumors of infancy and early childhood. Hallmark is the surprisingly simple genome with inactivating mutations or deletions in the SMARCB1 gene as the oncogenic driver. Nevertheless, AT/RTs are infiltrated by immune cells and even clonally expanded T cells. However, it is unclear which epitopes T cells might recognize on AT/RT cells. Methods Here, we report a comprehensive mass spectrometry (MS)-based analysis of naturally presented human leukocyte antigen (HLA) class I and class II ligands on 23 AT/RTs. MS data were validated by matching with a human proteome dataset and exclusion of peptides that are part of the human benignome. Cryptic peptide ligands were identified using Peptide-PRISM. Results Comparative HLA ligandome analysis of the HLA ligandome revealed 55 class I and 139 class II tumor-exclusive peptides. No peptide originated from the SMARCB1 region. In addition, 61 HLA class I tumor-exclusive peptide sequences derived from non-canonically translated proteins. Combination of peptides from natural and cryptic class I and class II origin gave optimal representation of tumor cell compartments. Substantial overlap existed with the cryptic immunopeptidome of glioblastomas, but no concordance was found with extracranial tumors. More than 80% of AT/RT exclusive peptides were able to successfully prime CD8+ T cells, whereas naturally occurring memory responses in AT/RT patients could only be detected for class II epitopes. Interestingly, >50% of AT/RT exclusive class II ligands were also recognized by T cells from glioblastoma patients but not from healthy donors. Conclusions These findings highlight that AT/RTs, potentially paradigmatic for other pediatric tumors with a low mutational load, present a variety of highly immunogenic HLA class I and class II peptides from canonical as well as non-canonical protein sources. Inclusion of such cryptic peptides into therapeutic vaccines would enable an optimized mapping of the tumor cell surface, thereby reducing the likelihood of immune evasion.
Collapse
Affiliation(s)
- Ana Marcu
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tubingen, Germany
| | | | - Anne Keupp
- University Children's Hospital, University Medical Center Würzburg, Würzburg, Germany
| | - Nico Trautwein
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tubingen, Germany
| | - Pascal Johann
- Swabian Children's Cancer Center, Augsburg, Germany.,DKFZ Heidelberg, Heidelberg, Germany
| | - Matthias Wölfl
- University Children's Hospital, University Medical Center Würzburg, Würzburg, Germany
| | - Johanna Lager
- University Children's Hospital, University Medical Center Würzburg, Würzburg, Germany
| | - Camelia Maria Monoranu
- Department of Neuropathology, Institute for Pathology, University of Würzburg, Würzburg, Germany
| | - Juliane S Walz
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tubingen, Germany.,Cluster of Excellence iFIT (EXC2180), University of Tübingen, Tübingen, Germany.,Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and Robert Bosch Center for Tumor Diseases (RBCT), Stuttgart, Germany.,Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital of Tübingen, Tübingen, Germany
| | - Lisa M Henkel
- University Children's Hospital, University Medical Center Würzburg, Würzburg, Germany
| | - Jürgen Krauß
- Department of Neurosurgery, University Medical Center Würzburg, Würzburg, Germany
| | - Martin Ebinger
- University Children's Hospital, University Medical Center Tübingen, Tübingen, Germany
| | - Martin Schuhmann
- Department of Neurosurgery, University Medical Center Tübingen, Tübingen, Germany
| | | | - Torsten Pietsch
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Bonn, Germany
| | - Erdwine Klinker
- Institute for Transfusion Medicine, University Medical Center Würzburg, Würzburg, Germany
| | - Paul G Schlegel
- University Children's Hospital, University Medical Center Würzburg, Würzburg, Germany
| | - Florian Oyen
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yair Reisner
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Hans-Georg Rammensee
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tubingen, Germany
| | - Matthias Eyrich
- University Children's Hospital, University Medical Center Würzburg, Würzburg, Germany
| |
Collapse
|
45
|
Rapid and Complete Response to Combination Anti-CTLA-4 and Anti-PD-1 Checkpoint Inhibitor Therapy in a Patient With Stage IV Refractory End-stage Epithelioid Sarcoma: A Case Report. J Immunother 2021; 43:286-290. [PMID: 32815894 DOI: 10.1097/cji.0000000000000332] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Epithelioid sarcoma, in the relapse-refractory setting, has limited expected survival. SMARCB1 inactivation, common in epithelioid sarcoma, causes loss of INI1 protein expression and overexpression of the cancer cell growth promoting methyltransferase enzyme, EZH2. We treated a 19-year-old male with stage IV SMARCB1 inactivated epithelioid sarcoma presenting with recurrent end stage (Eastern Cooperative Oncology Group Performance Status 4) rapidly progressing bulky disease with combination ipilimumab and nivolumab. He failed standard therapy and an EZH2 inhibitor (tazemetostat). He presented (May 13, 2019) with a large (16.1×18.6 cm) soft tissue back mass extending from T10 to L3. Complete clinical regression of the back mass occurred within 2 weeks (May 28, 2019) of cycle 1 of combined checkpoint inhibition therapy followed by a positron emission tomography-negative complete remission (October 11, 2019). After a second negative positron emission tomography/computed tomography scan (January 13, 2020), checkpoint inhibition therapy was discontinued. He has returned to normal activities with a normal physical examination and Eastern Cooperative Oncology Group Performance Status of 0 at his last visit (June 29, 2020). In conclusion, combined checkpoint inhibition therapy warrants further study in the salvage setting in patients with epithelioid and other INI1 protein-deficient sarcomas seemingly regardless of prior therapy, extent of disease, and performance status.
Collapse
|
46
|
Andrianteranagna M, Cyrta J, Masliah-Planchon J, Nemes K, Corsia A, Leruste A, Holdhof D, Kordes U, Orbach D, Corradini N, Entz-Werle N, Pierron G, Castex MP, Brouchet A, Weingertner N, Ranchère D, Fréneaux P, Delattre O, Bush J, Leary A, Frühwald MC, Schüller U, Servant N, Bourdeaut F. SMARCA4-deficient rhabdoid tumours show intermediate molecular features between SMARCB1-deficient rhabdoid tumours and small cell carcinomas of the ovary, hypercalcaemic type. J Pathol 2021; 255:1-15. [PMID: 33999421 DOI: 10.1002/path.5705] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/19/2021] [Accepted: 05/12/2021] [Indexed: 11/11/2022]
Abstract
Extracranial rhabdoid tumours (ECRTs) are an aggressive malignancy of infancy and early childhood. The vast majority of cases demonstrate inactivation of SMARCB1 (ECRTSMARCB1 ) on a background of a remarkably stable genome, a low mutational burden, and no other recurrent mutations. Rarely, ECRTs can harbour the alternative inactivation of SMARCA4 (ECRTSMARCA4 ) instead of SMARCB1. However, very few ECRTSMARCA4 cases have been published to date, and a systematic characterization of ECRTSMARCA4 is missing from the literature. In this study, we report the clinical, pathological, and genomic features of additional cases of ECRTSMARCA4 and show that they are comparable to those of ECRTSMARCB1. We also assess whether ECRTSMARCB1 , ECRTSMARCA4 , and small cell carcinomas of the ovary, hypercalcaemic type (SCCOHT) represent distinct or overlapping entities at a molecular level. Using DNA methylation and transcriptomics-based tumour classification approaches, we demonstrate that ECRTSMARCA4 display molecular features intermediate between SCCOHT and ECRTSMARCB1 ; however, ECRTSMARCA4 appear to be more closely related to SCCOHT by DNA methylation. Conversely, both transcriptomics and DNA methylation show a larger gap between SCCOHT and ECRTSMARCB1 , potentially supporting their continuous separate classification. Lastly, we show that ECRTSMARCA4 display concomitant lack of SMARCA4 (BRG1) and SMARCA2 (BRM) expression at the protein level, similar to what is seen in SCCOHT. Overall, these results expand our knowledge on this rare tumour type and explore the similarities and differences among entities from the 'rhabdoid tumour' spectrum. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mamy Andrianteranagna
- INSERM, U830, Pediatric Translational Research, PSL Research University, Institut Curie, Paris, France
- INSERM, U900, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Joanna Cyrta
- Department of Pathology, Institut Curie, PSL Research University, Paris, France
| | - Julien Masliah-Planchon
- Genetics Unit, Department of Tumor Biology, Institut Curie, PSL Research University, Paris, France
| | - Karolina Nemes
- Paediatrics and Adolescent Medicine, Swabian Children's Cancer Center, University Medical Center Augsburg, Augsburg, Germany
| | - Alice Corsia
- INSERM, U830, Pediatric Translational Research, PSL Research University, Institut Curie, Paris, France
| | - Amaury Leruste
- INSERM, U830, Pediatric Translational Research, PSL Research University, Institut Curie, Paris, France
| | - Dörthe Holdhof
- Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Uwe Kordes
- Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Orbach
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), PSL Research University, Institut Curie, Paris, France
| | - Nadège Corradini
- Centre Léon Bérard, Institut d'Hématologie et d'Oncologie pédiatrique, Lyon, France
| | - Natacha Entz-Werle
- Pediatric and Adolescent Oncology, IHOP, Centre Léon Bérard, Lyon, France
| | - Gaëlle Pierron
- Genetics Unit, Department of Tumor Biology, Institut Curie, PSL Research University, Paris, France
| | - Marie-Pierre Castex
- Department of Pediatric and Adolescent Unity Oncology, Toulouse University Hospital, Toulouse, France
| | - Anne Brouchet
- Department of Pathology, Insititut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Noëlle Weingertner
- Department of Pathology, Strasbourg University Hospital, Strasbourg, France
| | | | - Paul Fréneaux
- Department of Pathology, Institut Curie, PSL Research University, Paris, France
| | - Olivier Delattre
- Genetics Unit, Department of Tumor Biology, Institut Curie, PSL Research University, Paris, France
| | - Jonathan Bush
- Division of Anatomical Pathology, British Columbia Children's Hospital and Women's Hospital and Health Center, Vancouver, BC, Canada
| | - Alexandra Leary
- Gynecological Cancer Unit, Department of Medicine, Gustave Roussy, Villejuif, France
- INSERM U981, Gustave Roussy, Villejuif, France
| | - Michael C Frühwald
- Paediatrics and Adolescent Medicine, Swabian Children's Cancer Center, University Medical Center Augsburg, Augsburg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
- Institute of Neuropathology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Nicolas Servant
- INSERM, U900, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
- Institut Curie, PSL Research University, Paris, France
| | - Franck Bourdeaut
- INSERM, U830, Pediatric Translational Research, PSL Research University, Institut Curie, Paris, France
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), PSL Research University, Institut Curie, Paris, France
| |
Collapse
|
47
|
Calandrini C, van Hooff SR, Paassen I, Ayyildiz D, Derakhshan S, Dolman MEM, Langenberg KPS, van de Ven M, de Heus C, Liv N, Kool M, de Krijger RR, Tytgat GAM, van den Heuvel-Eibrink MM, Molenaar JJ, Drost J. Organoid-based drug screening reveals neddylation as therapeutic target for malignant rhabdoid tumors. Cell Rep 2021; 36:109568. [PMID: 34433038 DOI: 10.1016/j.celrep.2021.109568] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/12/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022] Open
Abstract
Malignant rhabdoid tumors (MRTs) represent one of the most aggressive childhood malignancies. No effective treatment options are available, and prognosis is, therefore, dismal. Previous studies have demonstrated that tumor organoids capture the heterogeneity of patient tumors and can be used to predict patient response to therapy. Here, we perform drug screening on patient-derived normal and tumor organoids to identify MRT-specific therapeutic vulnerabilities. We identify neddylation inhibitor MLN4924 as a potential therapeutic agent. Mechanistically, we find increased neddylation in MRT organoids and tissues and show that MLN4924 induces a cytotoxic response via upregulation of the unfolded protein response. Lastly, we demonstrate in vivo efficacy in an MRT PDX mouse model, in which single-agent MLN4924 treatment significantly extends survival. Our study demonstrates that organoids can be used to find drugs selectively targeting tumor cells while leaving healthy cells unharmed and proposes neddylation inhibition as a therapeutic strategy in MRT.
Collapse
Affiliation(s)
- Camilla Calandrini
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Oncode Institute, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Sander R van Hooff
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Irene Paassen
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Oncode Institute, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Dilara Ayyildiz
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Oncode Institute, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Sepide Derakhshan
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Oncode Institute, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - M Emmy M Dolman
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Karin P S Langenberg
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Marieke van de Ven
- Preclinical Intervention Unit of the Mouse Clinic for Cancer and Ageing (MCCA), NKI, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Cecilia de Heus
- Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Nalan Liv
- Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Marcel Kool
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center DKFZ and German Cancer Consortium DKTK, 69120 Heidelberg, Germany
| | - Ronald R de Krijger
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; University Medical Center, Department of Pathology, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Godelieve A M Tytgat
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | | | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Oncode Institute, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands.
| |
Collapse
|
48
|
Nigro O, Ferrari A, Casanova M, Orbach D, Leruste A, Gatz SA, Frappaz D, Massimino M. Controversies on the possible role of immune checkpoint inhibitors in pediatric cancers: balancing irAEs and efficacy. TUMORI JOURNAL 2021; 107:276-281. [PMID: 33877022 DOI: 10.1177/03008916211010214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pediatric cancers are not the equivalent of adult cancers occurring at a younger age and the prospect of immunotherapy in children has not been received with the same enthusiasm as in the adult setting. Although most pediatric malignancies are considered immunologically cold, we are learning more about PD-L1 expression, tumor mutational burden, and microsatellite instability in several pediatric cancers. The side effects of immunotherapy are an important consideration. Immune checkpoint inhibitors (ICIs) engender a unique constellation of inflammatory toxicities known as immune-related adverse events (irAEs). Three early-phase trials-KEYNOTE-051, iMATRIX, and ADVL1412-were the first to describe irAEs in pediatric patients and ICIs were well tolerated. There was concern about unknown late irAEs in pediatric patients, as they have much more time to develop than in adult or elderly patients. Academic clinicians, biopharmaceutical companies, and parents' advocates concluded that no benefit could be expected from further monotherapy trials employing other ICIs with the same mechanism of action until more scientific knowledge becomes available. On the other hand, ICIs could be useful in combination with other therapies to prevent the functional inactivation of several pathways in the hostile microenvironment. Future clinical studies on ICIs in children need to build on strong biological premises, taking into account the distinctive immunobiology of pediatric cancers vis-à-vis ICI-responsive adult cancers. We need to gain and share experiences of new therapies for managing pediatric patients with cancer, clarifying to what extent we can extrapolate the data obtained in adults.
Collapse
Affiliation(s)
- Olga Nigro
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Andrea Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Michela Casanova
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Daniel Orbach
- SIREDO Pediatric Cancer Center, Institut Curie, PSL Research University, Paris, France
| | - Amaury Leruste
- SIREDO Pediatric Cancer Center, Institut Curie, PSL Research University, Paris, France
| | - Susanne A Gatz
- Cancer Research UK Clinical Trials Unit (CRCTU), Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Didier Frappaz
- Département de Neuro-Oncologie, Centre Léon-Bérard, Institut d'Hématologie et Oncologie Pédiatrique et Adulte, Lyon, France
| | - Maura Massimino
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| |
Collapse
|
49
|
Inhibition of nuclear export restores nuclear localization and residual tumor suppressor function of truncated SMARCB1/INI1 protein in a molecular subset of atypical teratoid/rhabdoid tumors. Acta Neuropathol 2021; 142:361-374. [PMID: 34003336 PMCID: PMC8270878 DOI: 10.1007/s00401-021-02328-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 02/08/2023]
Abstract
Loss of nuclear SMARCB1 (INI1/hSNF5/BAF47) protein expression due to biallelic mutations of the SMARCB1 tumor suppressor gene is a hallmark of atypical teratoid/rhabdoid tumors (ATRT), but the presence of cytoplasmic SMARCB1 protein in these tumors has not yet been described. In a series of 102 primary ATRT, distinct cytoplasmic SMARCB1 staining on immunohistochemistry was encountered in 19 cases (19%) and was highly over-represented in cases showing pathogenic sequence variants leading to truncation or mutation of the C-terminal part of SMARCB1 (15/19 vs. 4/83; Chi-square: 56.04, p = 1.0E−10) and, related to this, in tumors of the molecular subgroup ATRT-TYR (16/36 vs. 3/66; Chi-square: 24.47, p = 7.6E−7). Previous reports have indicated that while SMARCB1 lacks a bona fide nuclear localization signal, it harbors a masked nuclear export signal (NES) and that truncation of the C-terminal region results in unmasking of this NES leading to cytoplasmic localization. To determine if cytoplasmic localization found in ATRT is due to unmasking of NES, we generated GFP fusions of one of the SMARCB1 truncating mutations (p.Q318X) found in the tumors along with a p.L266A mutation, which was shown to disrupt the interaction of SMARCB1-NES with exportin-1. We found that while the GFP-SMARCB1(Q318X) mutant localized to the cytoplasm, the double mutant GFP-SMARCB1(Q318X;L266A) localized to the nucleus, confirming NES requirement for cytoplasmic localization. Furthermore, cytoplasmic SMARCB1(Q318X) was unable to cause senescence as determined by morphological observations and by senescence-associated β-galactosidase assay, while nuclear SMARCB1(Q318X;L266A) mutant regained this function. Selinexor, a selective exportin-1 inhibitor, was effective in inhibiting the nuclear export of SMARCB1(Q318X) and caused rapid cell death in rhabdoid tumor cells. In conclusion, inhibition of nuclear export restores nuclear localization and residual tumor suppressor function of truncated SMARCB1. Therapies aimed at preventing nuclear export of mutant SMARCB1 protein may represent a promising targeted therapy in ATRT harboring truncating C-terminal SMARCB1 mutations.
Collapse
|
50
|
Yoon SJ, Lee CB, Chae SU, Jo SJ, Bae SK. The Comprehensive "Omics" Approach from Metabolomics to Advanced Omics for Development of Immune Checkpoint Inhibitors: Potential Strategies for Next Generation of Cancer Immunotherapy. Int J Mol Sci 2021; 22:6932. [PMID: 34203237 PMCID: PMC8268114 DOI: 10.3390/ijms22136932] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022] Open
Abstract
In the past decade, immunotherapies have been emerging as an effective way to treat cancer. Among several categories of immunotherapies, immune checkpoint inhibitors (ICIs) are the most well-known and widely used options for cancer treatment. Although several studies continue, this treatment option has yet to be developed into a precise application in the clinical setting. Recently, omics as a high-throughput technique for understanding the genome, transcriptome, proteome, and metabolome has revolutionized medical research and led to integrative interpretation to advance our understanding of biological systems. Advanced omics techniques, such as multi-omics, single-cell omics, and typical omics approaches, have been adopted to investigate various cancer immunotherapies. In this review, we highlight metabolomic studies regarding the development of ICIs involved in the discovery of targets or mechanisms of action and assessment of clinical outcomes, including drug response and resistance and propose biomarkers. Furthermore, we also discuss the genomics, proteomics, and advanced omics studies providing insights and comprehensive or novel approaches for ICI development. The overview of ICI studies suggests potential strategies for the development of other cancer immunotherapies using omics techniques in future studies.
Collapse
Affiliation(s)
| | | | | | | | - Soo Kyung Bae
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon 14662, Korea; (S.J.Y.); (C.B.L.); (S.U.C.); (S.J.J.)
| |
Collapse
|