1
|
Zhu H, Meng M, Luo H, Distler JHW. The Dual Roles of Leucine-Rich Repeat-Containing Protein 15 Positive Fibroblasts: From Cancer to Tissue Repair. J Invest Dermatol 2025; 145:200-204.e2. [PMID: 38987016 DOI: 10.1016/j.jid.2024.06.1279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024]
Affiliation(s)
- Honglin Zhu
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| | - Meng Meng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Hui Luo
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jörg H W Distler
- Department of Rheumatology, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, Düsseldorf, Germany; Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
2
|
Liu Z, Bian X, Luo L, Björklund ÅK, Li L, Zhang L, Chen Y, Guo L, Gao J, Cao C, Wang J, He W, Xiao Y, Zhu L, Annusver K, Gopee NH, Basurto-Lozada D, Horsfall D, Bennett CL, Kasper M, Haniffa M, Sommar P, Li D, Landén NX. Spatiotemporal single-cell roadmap of human skin wound healing. Cell Stem Cell 2024:S1934-5909(24)00412-0. [PMID: 39729995 DOI: 10.1016/j.stem.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/24/2024] [Accepted: 11/22/2024] [Indexed: 12/29/2024]
Abstract
Wound healing is vital for human health, yet the details of cellular dynamics and coordination in human wound repair remain largely unexplored. To address this, we conducted single-cell multi-omics analyses on human skin wound tissues through inflammation, proliferation, and remodeling phases of wound repair from the same individuals, monitoring the cellular and molecular dynamics of human skin wound healing at an unprecedented spatiotemporal resolution. This singular roadmap reveals the cellular architecture of the wound margin and identifies FOSL1 as a critical driver of re-epithelialization. It shows that pro-inflammatory macrophages and fibroblasts sequentially support keratinocyte migration like a relay race across different healing stages. Comparison with single-cell data from venous and diabetic foot ulcers uncovers a link between failed keratinocyte migration and impaired inflammatory response in chronic wounds. Additionally, comparing human and mouse acute wound transcriptomes underscores the indispensable value of this roadmap in bridging basic research with clinical innovations.
Collapse
Affiliation(s)
- Zhuang Liu
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Xiaowei Bian
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Lihua Luo
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Åsa K Björklund
- Department of Life Science, National Bioinformatics Infrastructure Sweden, Göteborg, Sweden; Science for Life Laboratory, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Li Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Letian Zhang
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Yongjian Chen
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Lei Guo
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Juan Gao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Chunyan Cao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Jiating Wang
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Wenjun He
- The first affiliated hospital of Soochow University, Department of Plastic and Burn Surgery. NO.188, Shizi Street, Suzhou, Jiangsu, China
| | - Yunting Xiao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Liping Zhu
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Karl Annusver
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | - Daniela Basurto-Lozada
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - David Horsfall
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Clare L Bennett
- Department of Haematology, University College London (UCL) Cancer Institute, London WC1E 6DD, UK
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Pehr Sommar
- Department of Plastic and Reconstructive Surgery, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Dongqing Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China.
| | - Ning Xu Landén
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden.
| |
Collapse
|
3
|
Wei W, Qu ZL, Lei L, Zhang P. TREM2-mediated Macrophage Glycolysis Promotes Skin Wound Angiogenesis via the Akt/mTOR/HIF-1α Signaling Axis. Curr Med Sci 2024; 44:1280-1292. [PMID: 39672999 DOI: 10.1007/s11596-024-2946-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/30/2024] [Indexed: 12/15/2024]
Abstract
OBJECTIVE The trigger receptor expressed on myeloid cells-2 (TREM2) pathway in myeloid cells is a key disease-inducing immune signaling hub that is essential for detecting tissue damage and limiting its pathological spread. However, the role and potential mechanisms of TREM2 in wound repair remain unclear. The purpose of this study was to determine the role and mechanism of TREM2 in skin wound healing in mice. METHODS Immunofluorescence staining was used to determine the expression and cellular localization of TREM2 and test the effects of TREM2 knockout on angiogenesis, glycolysis, and lactylation in skin tissue. Western blotting was used to analyze the expression of the Akt/mTOR/HIF-1α signaling pathway in the wounded skin tissues of wild-type (WT) and TREM2 knockout mice. A coimmunoprecipitation assay was used to determine whether HIF-1α, which mediates angiogenesis, is modified by lactylation. RESULTS The number of TREM2+ macrophages was increased, and TREM2+ macrophages mediated angiogenesis after skin injury. TREM2 promoted glycolysis and lactylation in macrophages during wound healing. Mechanistically, TREM2 promoted macrophage glycolysis and angiogenesis in wounded skin tissues by activating the Akt/mTOR/HIF-1α signaling pathway. HIF-1α colocalized with Klac to mediate lactylation in macrophages, and lactate could stabilize the expression of the HIF-1α protein through lactylation. Lactate treatment ameliorated the impaired angiogenesis and delayed wound healing in wounded skin in TREM2 knockout mice. CONCLUSION TREM2+ macrophage-mediated glycolysis can promote angiogenesis and wound healing. Our findings provide an effective strategy and target for promoting skin wound healing.
Collapse
Affiliation(s)
- Wei Wei
- Department of Dermatology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Key Laboratory of Skin Infection and Immunity, Wuhan No. 1 Hospital, Wuhan, 430022, China
| | - Zi-Lu Qu
- Department of Dermatology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Key Laboratory of Skin Infection and Immunity, Wuhan No. 1 Hospital, Wuhan, 430022, China
| | - Li Lei
- Department of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210000, China
| | - Ping Zhang
- Department of Dermatology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Provincial Key Laboratory of Skin Infection and Immunity, Wuhan No. 1 Hospital, Wuhan, 430022, China.
| |
Collapse
|
4
|
Amuso VM, Haas MR, Cooper PO, Chatterjee R, Hafiz S, Salameh S, Gohel C, Mazumder MF, Josephson V, Kleb SS, Khorsandi K, Horvath A, Rahnavard A, Shook BA. Fibroblast-Mediated Macrophage Recruitment Supports Acute Wound Healing. J Invest Dermatol 2024:S0022-202X(24)02956-7. [PMID: 39581458 DOI: 10.1016/j.jid.2024.10.609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024]
Abstract
Epithelial and immune cells have long been appreciated for their contribution to the early immune response after injury; however, much less is known about the role of mesenchymal cells. Using single-nuclei RNA sequencing, we defined changes in gene expression associated with inflammation 1 day after wounding in mouse skin. Compared with those in keratinocytes and myeloid cells, we detected enriched expression of proinflammatory genes in fibroblasts associated with deeper layers of the skin. In particular, SCA1+ fibroblasts were enriched for numerous chemokines, including CCL2, CCL7, and IL-33, compared with SCA1- fibroblasts. Genetic deletion of Ccl2 in fibroblasts resulted in fewer wound-bed macrophages and monocytes during injury-induced inflammation, with reduced revascularization and re-epithelialization during the proliferation phase of healing. These findings highlight the important contribution of fibroblast-derived factors to injury-induced inflammation and the impact of immune cell dysregulation on subsequent tissue repair.
Collapse
Affiliation(s)
- Veronica M Amuso
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - MaryEllen R Haas
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Paula O Cooper
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Ranojoy Chatterjee
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, District of Columbia, USA
| | - Sana Hafiz
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Shatha Salameh
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Chiraag Gohel
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, District of Columbia, USA
| | - Miguel F Mazumder
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Violet Josephson
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Sarah S Kleb
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Khatereh Khorsandi
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Anelia Horvath
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Ali Rahnavard
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, District of Columbia, USA
| | - Brett A Shook
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA; The Department of Dermatology, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA.
| |
Collapse
|
5
|
Meng L, Tang Q, Zhou W, Wei D, Zhao J, Shen J, Yang M, He S, Huang S, Qin Y, Song J, Luo L, Tang Q. Contributions of T Cell Signaling for Wound Healing. J Burn Care Res 2024; 45:1513-1519. [PMID: 39110034 DOI: 10.1093/jbcr/irae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
It has long been known that T cells participate in wound healing; however, the landscape of the signaling derived from T cells in the process of wound healing is still enigmatic. With the advantages of scRNA-seq, in combination with immunofluorescent imaging, we identified activated T cells, cytotoxic T cells (CTLs), exhausting T cells, and Tregs existing in the inflammation phase of wound healing. Further analysis revealed each T cell population possess distinguished signals contributed to wound healing, some are critical for improving the wound healing quality. Besides, this study discovered and validated the existence of exhausting T cells among the T cells accumulated in the skin during wound healing, and the molecular mechanism(s) and contribution of exhausting T cells to wound healing deserve extensive studies in the future.
Collapse
Affiliation(s)
- Lingzhang Meng
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
- Center for Systemic Inflammation Research (CSIR), School of Preclinical Medicine, Youjiang Medical University for Nationalities, Baise, 533000, China
- Institute of Cardiovascular Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - Qiang Tang
- Key Laboratory of Medical Research Basic Guarantee for Immune-related Diseases Research of Guangxi (Cultivation), Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
- Burn Plastic & Trauma Surgery Department, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Wei Zhou
- School of Nursing, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Dalong Wei
- Key Laboratory of Medical Research Basic Guarantee for Immune-related Diseases Research of Guangxi (Cultivation), Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
- Burn Plastic & Trauma Surgery Department, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Jingjie Zhao
- Life Science and Clinical Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Jiajia Shen
- Department of Laboratory Medicine, Nanning Maternity and Child Health Hospital & Nanning Women and Children's Hospital, Nanning, 530011, China
| | - Mingyue Yang
- Department of Pharmacy, Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Siyuan He
- Graduate School, Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Shaoang Huang
- Graduate School, Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Yujuan Qin
- Graduate School, Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Jian Song
- Institute of Cardiovascular Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - Liangping Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
- Department of Radiology, The Fifth Affiliated Hospital of Jinan University (Shenhe People's Hospital), Heyuan, 517000, China
| | - Qianli Tang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
- School of Nursing, Guangxi University of Chinese Medicine, Nanning, 530200, China
- Life Science and Clinical Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| |
Collapse
|
6
|
Porter DF, Meyers RM, Miao W, Reynolds DL, Hong AW, Yang X, Mondal S, Siprashvili Z, Srinivasan S, Ducoli L, Meyers JM, Nguyen DT, Ko LA, Kellman L, Elfaki I, Guo M, Winge MC, Lopez-Pajares V, Porter IE, Tao S, Khavari PA. Disease-Linked Regulatory DNA Variants and Homeostatic Transcription Factors in Epidermis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622542. [PMID: 39605549 PMCID: PMC11601284 DOI: 10.1101/2024.11.07.622542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Identifying noncoding single nucleotide variants ( SNVs ) in regulatory DNA linked to polygenic disease risk, the transcription factors ( TFs ) they bind, and the target genes they dysregulate is a goal in polygenic disease research. Massively parallel reporter gene analysis ( MPRA ) of 3,451 SNVs linked to risk for polygenic skin diseases characterized by disrupted epidermal homeostasis identified 355 differentially active SNVs ( daSNVs ). daSNV target gene analysis, combined with daSNV editing, underscored dysregulated epidermal differentiation as a pathomechanism shared across common polygenic skin diseases. CRISPR knockout screens of 1772 human TFs revealed 108 TFs essential for epidermal progenitor differentiation, uncovering novel roles for ZNF217, CXXC1, FOXJ2, IRX2 and NRF1. Population sampling CUT&RUN of 27 homeostatic TFs identified allele-specific DNA binding ( ASB ) differences at daSNVs enriched near epidermal homeostasis and monogenic skin disease genes, with notable representation of SP/KLF and AP-1/2 TFs. This resource implicates dysregulated differentiation in risk for diverse polygenic skin diseases.
Collapse
|
7
|
Vallmajo-Martin Q, Ma Z, Srinivasan S, Murali D, Dravis C, Mukund K, Subramaniam S, Wahl GM, Lytle NK. The molecular chronology of mammary epithelial cell fate switching. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617155. [PMID: 39415993 PMCID: PMC11482796 DOI: 10.1101/2024.10.08.617155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The adult mammary gland is maintained by lineage-restricted progenitor cells through pregnancy, lactation, involution, and menopause. Injury resolution, transplantation-associated mammary gland reconstitution, and tumorigenesis are unique exceptions, wherein mammary basal cells gain the ability to reprogram to a luminal state. Here, we leverage newly developed cell-identity reporter mouse strains, and time-resolved single-cell epigenetic and transcriptomic analyses to decipher the molecular programs underlying basal-to-luminal fate switching in vivo. We demonstrate that basal cells rapidly reprogram toward plastic cycling intermediates that appear to hijack molecular programs we find in bipotent fetal mammary stem cells and puberty-associatiated cap cells. Loss of basal-cell specifiers early in dedifferentiation coincides with activation of Notch and BMP, among others. Pharmacologic blockade of each pathway disrupts basal-to-luminal transdifferentiation. Our studies provide a comprehensive map and resource for understanding the coordinated molecular changes enabling terminally differentiated epithelial cells to transition between cell lineages and highlights the stunning rapidity by which epigenetic reprogramming can occur in response to disruption of tissue structure.
Collapse
Affiliation(s)
- Queralt Vallmajo-Martin
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- These authors contributed equally
| | - Zhibo Ma
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- These authors contributed equally
| | - Sumana Srinivasan
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- These authors contributed equally
| | - Divya Murali
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- These authors contributed equally
| | - Christopher Dravis
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Kavitha Mukund
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Geoffrey M. Wahl
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nikki K. Lytle
- Department of Surgery, Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
- These authors contributed equally
| |
Collapse
|
8
|
Gadre P, Markova P, Ebrahimkutty M, Jiang Y, Bouzada FM, Watt FM. Emergence and properties of adult mammalian epidermal stem cells. Dev Biol 2024; 515:129-138. [PMID: 39059680 DOI: 10.1016/j.ydbio.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/08/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
In this review we discuss how the mammalian interfollicular epidermis forms during development, maintains homeostasis, and is repaired following wounding. Recent studies have provided new insights into the relationship between the stem cell compartment and the differentiating cell layers; the ability of differentiated cells to dedifferentiate into stem cells; and the epigenetic memory of epidermal cells following wounding.
Collapse
Affiliation(s)
- Purna Gadre
- Directors' Unit, EMBL-Heidelberg, Meyerhofstr. 1, 69117, Heidelberg, Germany
| | - Pavlina Markova
- Directors' Unit, EMBL-Heidelberg, Meyerhofstr. 1, 69117, Heidelberg, Germany
| | | | - Yidan Jiang
- Directors' Unit, EMBL-Heidelberg, Meyerhofstr. 1, 69117, Heidelberg, Germany
| | - Francisco M Bouzada
- Directors' Unit, EMBL-Heidelberg, Meyerhofstr. 1, 69117, Heidelberg, Germany
| | - Fiona M Watt
- Directors' Unit, EMBL-Heidelberg, Meyerhofstr. 1, 69117, Heidelberg, Germany.
| |
Collapse
|
9
|
Wang M, Zhang J, Qiao C, Yan S, Wu G. Comparative analysis of human and mouse transcriptomes during skin wound healing. Front Cell Dev Biol 2024; 12:1486493. [PMID: 39534398 PMCID: PMC11554618 DOI: 10.3389/fcell.2024.1486493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Skin wound healing is a complex process which involves multiple molecular events and the underlying mechanism is not fully understood. We presented a comparative transcriptomic analysis of skin wound healing in humans and mice to identify shared molecular mechanisms across species. We analyzed transcriptomes from three distinct stages of the healing process and constructed protein-protein interaction networks to elucidate commonalities in the healing process. A substantial number of differentially expressed genes (DEGs) were identified in human transcriptomes, particularly upregulated genes before and after wound injury, and enriched in processes related to extracellular matrix organization and leukocyte migration. Similarly, the mouse transcriptome revealed thousands of DEGs, with shared biological processes and enriched KEGG pathways, highlighting a conserved molecular signature in skin wound healing. A total of 21 common DEGs were found across human comparisons, and 591 in mouse comparisons, with four genes (KRT2, MARCKSL1, MMP1, and TNC) consistently differentially expressed in both species, suggesting critical roles in mammalian skin wound healing. The expression trends of these genes were consistent, indicating their potential as therapeutic targets. The molecular network analysis identified five subnetworks associated with collagen synthesis, immunity, cell-cell adhesion, and extracellular matrix, with hub genes such as COL4A1, TLR7, TJP3, MMP13, and HIF1A exhibited significant expression changes before and after wound injury in humans and mice. In conclusion, our study provided a detailed molecular network for understanding the healing process in humans and mice, revealing conserved mechanisms that could help the development of targeted therapies across species.
Collapse
Affiliation(s)
- Maochun Wang
- Department of Plastic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | | | | - Guoping Wu
- Department of Plastic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Cheng XC, Tong WZ, Rui W, Feng Z, Shuai H, Zhe W. Single-cell sequencing technology in skin wound healing. BURNS & TRAUMA 2024; 12:tkae043. [PMID: 39445224 PMCID: PMC11497848 DOI: 10.1093/burnst/tkae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 10/25/2024]
Abstract
Skin wound healing is a complicated biological process that mainly occurs in response to injury, burns, or diabetic ulcers. It can also be triggered by other conditions such as dermatitis and melanoma-induced skin cancer. Delayed healing or non-healing after skin injury presents an important clinical issue; therefore, further explorations into the occurrence and development of wound healing at the cellular and molecular levels are necessary. Single-cell sequencing (SCS) is used to sequence and analyze the genetic messages of a single cell. Furthermore, SCS can accurately detect cell expression and gene sequences. The use of SCS technology has resulted in the emergence of new concepts pertaining to wound healing, making it an important tool for studying the relevant mechanisms and developing treatment strategies. This article discusses the application value of SCS technology, the effects of the latest research on skin wound healing, and the value of SCS technology in clinical applications. Using SCS to determine potential biomarkers for wound repair will serve to accelerate wound healing, reduce scar formation, optimize drug delivery, and facilitate personalized treatments.
Collapse
Affiliation(s)
- Xu Cheng Cheng
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang 110004, China
| | - Wang Zi Tong
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang 110004, China
| | - Wang Rui
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang 110004, China
| | - Zhao Feng
- Department of Stem Cells and Regenerative Medicine, China Medical University, No. 77 Puhe Road, Shenyang 110013, China
| | - Hou Shuai
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang 110004, China
| | - Wang Zhe
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang 110004, China
| |
Collapse
|
11
|
Chen T, Zhang B, Xie H, Huang C, Wu Q. GRHL2 regulates keratinocyte EMT-MET dynamics and scar formation during cutaneous wound healing. Cell Death Dis 2024; 15:748. [PMID: 39402063 PMCID: PMC11473813 DOI: 10.1038/s41419-024-07121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/17/2024]
Abstract
After cutaneous wounds successfully heal, keratinocytes that underwent the epithelial-mesenchymal transition (EMT) regain their epithelial characteristics, while in scar tissue, epidermal cells persist in a mesenchymal state. However, the regulatory mechanisms governing this reversion are poorly understood, and the impact of persistent mesenchymal-like epidermal cells in scar tissue remains unclear. In the present study, we found that during wound healing, the regulatory factor GRHL2 is highly expressed in normal epidermal cells, downregulated in EMT epidermal cells, and upregulated again during the process of mesenchymal-epithelial transition (MET). We further demonstrated that interfering with GRHL2 expression in epidermal cells can effectively induce the EMT. Conversely, the overexpression of GRHL2 in EMT epidermal cells resulted in partial reversion of the EMT to an epithelial state. To investigate the effects of failed MET in epidermal cells on skin wound healing, we interfered with GRHL2 expression in epidermal cells surrounding the cutaneous wound. The results demonstrated that the persistence of epidermal cells in the mesenchymal state promoted fibrosis in scar tissue, manifested by increased thickness of scar tissue, deposition of collagen and fibronectin, as well as the activation of myofibroblasts. Furthermore, the miR-200s/Zeb1 axis was perturbed in GRHL2 knockdown keratinocytes, and transfection with miR-200s analogs promoted the reversion of EMT in epidermal cells, which indicates that they mediate the EMT process in keratinocytes. These results suggest that restoration of the epithelial state in epidermal cells following the EMT is essential to wound healing, providing potential therapeutic targets for preventing scar formation.
Collapse
Affiliation(s)
- Tianying Chen
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bo Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hanqi Xie
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chenyu Huang
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China.
| | - Qiong Wu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
12
|
Li D, Liu Z, Zhang L, Bian X, Wu J, Li L, Chen Y, Luo L, Pan L, Kong L, Xiao Y, Wang J, Zhang X, Wang W, Toma M, Piipponen M, Sommar P, Xu Landén N. The lncRNA SNHG26 drives the inflammatory-to-proliferative state transition of keratinocyte progenitor cells during wound healing. Nat Commun 2024; 15:8637. [PMID: 39366968 PMCID: PMC11452505 DOI: 10.1038/s41467-024-52783-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 09/18/2024] [Indexed: 10/06/2024] Open
Abstract
The cell transition from an inflammatory phase to a subsequent proliferative phase is crucial for wound healing, yet the driving mechanism remains unclear. By profiling lncRNA expression changes during human skin wound healing and screening lncRNA functions, we identify SNHG26 as a pivotal regulator in keratinocyte progenitors underpinning this phase transition. Snhg26-deficient mice exhibit impaired wound repair characterized by delayed re-epithelization accompanied by exacerbated inflammation. Single-cell transcriptome analysis combined with gain-of-function and loss-of-function of SNHG26 in vitro and ex vivo reveals its specific role in facilitating inflammatory-to-proliferative state transition of keratinocyte progenitors. A mechanistic study unravels that SNHG26 interacts with and relocates the transcription factor ILF2 from inflammatory genomic loci, such as JUN, IL6, IL8, and CCL20, to the genomic locus of LAMB3. Collectively, our findings suggest that lncRNAs play cardinal roles in expediting tissue repair and regeneration and may constitute an invaluable reservoir of therapeutic targets in reparative medicine.
Collapse
Affiliation(s)
- Dongqing Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China.
| | - Zhuang Liu
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Letian Zhang
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Xiaowei Bian
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Jianmin Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, Wenzhou Medical University, 325035, Wenzhou, China
| | - Li Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Yongjian Chen
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Lihua Luo
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Ling Pan
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Lingzhuo Kong
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Yunting Xiao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Jiating Wang
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Xiya Zhang
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Wang Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Maria Toma
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Minna Piipponen
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Pehr Sommar
- Department of Plastic and Reconstructive Surgery, Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Ning Xu Landén
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden.
| |
Collapse
|
13
|
Sol S, Boncimino F, Todorova K, Mandinova A. Unraveling the Functional Heterogeneity of Human Skin at Single-Cell Resolution. Hematol Oncol Clin North Am 2024; 38:921-938. [PMID: 38839486 DOI: 10.1016/j.hoc.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The skin consists of several cell populations, including epithelial, immune, and stromal cells. Recently, there has been a significant increase in single-cell RNA-sequencing studies, contributing to the development of a consensus Human Skin Cell Atlas. The aim is to understand skin biology better and identify potential therapeutic targets. The present review utilized previously published single-cell RNA-sequencing datasets to explore human skin's cellular and functional heterogeneity. Additionally, it summarizes the functional significance of newly identified cell subpopulations in processes such as wound healing and aging.
Collapse
Affiliation(s)
- Stefano Sol
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Fabiana Boncimino
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Kristina Todorova
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Anna Mandinova
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard and MIT, 7 Cambridge Center, MA 02142, USA; Harvard Stem Cell Institute, 7 Divinity Avenue Cambridge, MA 02138, USA.
| |
Collapse
|
14
|
Qin X, Tape CJ. Functional analysis of cell plasticity using single-cell technologies. Trends Cell Biol 2024; 34:854-864. [PMID: 38355348 DOI: 10.1016/j.tcb.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 02/16/2024]
Abstract
Metazoan organisms are heterocellular systems composed of hundreds of different cell types, which arise from an isogenic genome through differentiation. Cellular 'plasticity' further enables cells to alter their fate in response to exogenous cues and is involved in a variety of processes, such as wound healing, infection, and cancer. Recent advances in cellular model systems, high-dimensional single-cell technologies, and lineage tracing have sparked a renaissance in plasticity research. Here, we discuss the definition of cell plasticity, evaluate state-of-the-art model systems and techniques to study cell-fate dynamics, and explore the application of single-cell technologies to obtain functional insights into cell plasticity in healthy and diseased tissues. The integration of advanced biomimetic model systems, single-cell technologies, and high-throughput perturbation studies is enabling a new era of research into non-genetic plasticity in metazoan systems.
Collapse
Affiliation(s)
- Xiao Qin
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Oxford, OX3 9DS, UK.
| | - Christopher J Tape
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London, WC1E 6DD, UK.
| |
Collapse
|
15
|
Xuanyuan X, Zhang L, Zheng Y, Jiang R, Ma Y, Liu R, Hou P, Lei M, Xu H, Zeng H. SPRR1B+ keratinocytes prime oral mucosa for rapid wound healing via STAT3 activation. Commun Biol 2024; 7:1155. [PMID: 39300285 PMCID: PMC11413210 DOI: 10.1038/s42003-024-06864-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 09/06/2024] [Indexed: 09/22/2024] Open
Abstract
Oral mucosal wounds exhibit accelerated healing with reduced scarring compared to cutaneous wounds, representing an optimal wound healing paradigm. However, the specific cellular subtypes orchestrating the efficient healing of mucosal tissues remain elusive. Through a comprehensive analysis integrating bulk-mRNA and single-cell sequencing data during the wound healing process in oral mucosa and skin, we have delineated a distinct set of genes markedly upregulated during tissue repair. This collection of wound healing-associated genesets was highly enriched in a specific keratinocyte subpopulation identified as STAT3-activated SPRR1B+ keratinocytes. Notably, despite the inherent rapidity of oral mucosal healing, the induction of SPRR1B+ keratinocytes is evident in both skin and mucosal wound healing processes in murine model. Intriguingly, these wound healing-promoting SPRR1B+ keratinocytes, which are induced via STAT3 activation, inherently abundant in unwounded normal mucosa but absent in normal skin. SPRR1B knockdown significantly inhibits mucosal keratinocyte migration, a critical attribute for effective wound healing. In summary, through analysis of human oral and skin wound healing processes at single-cell resolution, coupled with validation in murine model, suggests STAT3-activated SPRR1B+ keratinocytes are associated with the rapid mucosal repair process. This discovery underscores the potential application of SPRR1B+ keratinocytes in the therapeutic management of chronic or non-healing wounds.
Collapse
Affiliation(s)
- Xinyang Xuanyuan
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Li Zhang
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yang Zheng
- Department of Oral & Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Ruixin Jiang
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yanni Ma
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Ruixin Liu
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Pengcong Hou
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Ming Lei
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Hui Xu
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Hanlin Zeng
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
16
|
Zhou M, Shi ZX, Liu Z, Ke SR, Wang CY, Liang XL, Hu QL, Zhang QK, Wang DL, Sun L, Lin YH, Dai Q, Zheng YF. Single-Cell Transcriptomic Analysis Reveals Dynamic Cellular Processes in Corneal Epithelium During Wound Healing in Cynomolgus Monkeys. Invest Ophthalmol Vis Sci 2024; 65:43. [PMID: 39330987 PMCID: PMC11437678 DOI: 10.1167/iovs.65.11.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Purpose Corneal wounding healing is critical for maintaining clear vision, however, a complete understanding of its dynamic regulatory mechanisms remains elusive. Here, we used single-cell RNA sequencing (scRNA-seq) to analyze the cellular activities and transcriptional changes of corneal limbal epithelial cells at different stages after wound healing in cynomolgus monkeys, which exhibit a closer transcriptomic similarity to humans. Methods Corneal limbal tissues were collected during uninjured, 1-day and 3-day healing stages, dissociated into single cells, and subjected to scRNA-seq using the 10× Genomics platform. Cell types were clustered by graph-based visualization methods and unbiased computational analysis. Additionally, cell migration assays and immunofluorescent staining were performed on cultured human corneal epithelial cells. Results We characterized nine cell clusters by scRNA-seq analysis of the cynomolgus monkey corneal epithelium. By comparing heterogeneous transcriptional changes in major cell types during corneal healing, we highlighted the importance of limbal epithelial cells (LEPCs) and basal epithelial cells (BEPCs) in extracellular matrix (ECM) formation and wound healing, as well as suprabasal epithelial cells (SEPCs) in epithelial differentiation during the healing processes. We further identified five different sub-clusters in LEPC, including the transit amplifying cell (TAC) sub-cluster that promotes early healing through the activation of thrombospondin-1 (THBS1) expression. Conclusions Our study represents the first comprehensive exploration of the detailed transcriptome profile of individual corneal cells during the wound healing process in nonhuman primates. We demonstrate the intricate mechanisms involved in corneal healing and provide a promising avenue for potential therapies in corneal wound healing.
Collapse
Affiliation(s)
- Ming Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhuo-Xing Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhong Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Shu-Rui Ke
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Chao-Yang Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiao-Lin Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qiu-Ling Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qi-Kai Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Dong-Liang Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Li Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yu-Heng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qi Dai
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ying-Feng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Ramirez DA, Lu M. Dissecting reversible and irreversible single cell state transitions from gene regulatory networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610498. [PMID: 39257745 PMCID: PMC11384016 DOI: 10.1101/2024.08.30.610498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Understanding cell state transitions and their governing regulatory mechanisms remains one of the fundamental questions in biology. We develop a computational method, state transition inference using cross-cell correlations (STICCC), for predicting reversible and irreversible cell state transitions at single-cell resolution by using gene expression data and a set of gene regulatory interactions. The method is inspired by the fact that the gene expression time delays between regulators and targets can be exploited to infer past and future gene expression states. From applications to both simulated and experimental single-cell gene expression data, we show that STICCC-inferred vector fields capture basins of attraction and irreversible fluxes. By connecting regulatory information with systems' dynamical behaviors, STICCC reveals how network interactions influence reversible and irreversible state transitions. Compared to existing methods that infer pseudotime and RNA velocity, STICCC provides complementary insights into the gene regulation of cell state transitions.
Collapse
Affiliation(s)
- Daniel A. Ramirez
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02115, USA
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Mingyang Lu
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02115, USA
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
18
|
Youssef KK, Nieto MA. Epithelial-mesenchymal transition in tissue repair and degeneration. Nat Rev Mol Cell Biol 2024; 25:720-739. [PMID: 38684869 DOI: 10.1038/s41580-024-00733-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Epithelial-mesenchymal transitions (EMTs) are the epitome of cell plasticity in embryonic development and cancer; during EMT, epithelial cells undergo dramatic phenotypic changes and become able to migrate to form different tissues or give rise to metastases, respectively. The importance of EMTs in other contexts, such as tissue repair and fibrosis in the adult, has become increasingly recognized and studied. In this Review, we discuss the function of EMT in the adult after tissue damage and compare features of embryonic and adult EMT. Whereas sustained EMT leads to adult tissue degeneration, fibrosis and organ failure, its transient activation, which confers phenotypic and functional plasticity on somatic cells, promotes tissue repair after damage. Understanding the mechanisms and temporal regulation of different EMTs provides insight into how some tissues heal and has the potential to open new therapeutic avenues to promote repair or regeneration of tissue damage that is currently irreversible. We also discuss therapeutic strategies that modulate EMT that hold clinical promise in ameliorating fibrosis, and how precise EMT activation could be harnessed to enhance tissue repair.
Collapse
Affiliation(s)
| | - M Angela Nieto
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d'Alacant, Spain.
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain.
| |
Collapse
|
19
|
Tang X, Wang J, Chen J, Liu W, Qiao P, Quan H, Li Z, Dang E, Wang G, Shao S. Epidermal stem cells: skin surveillance and clinical perspective. J Transl Med 2024; 22:779. [PMID: 39169334 PMCID: PMC11340167 DOI: 10.1186/s12967-024-05600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
The skin epidermis is continually influenced by a myriad of internal and external elements. At its basal layer reside epidermal stem cells, which fuels epidermal renovation and hair regeneration with powerful self-renewal ability, as well as keeping diverse signals that direct their activity under surveillance with quick response. The importance of epidermal stem cells in wound healing and immune-related skin conditions has been increasingly recognized, and their potential for clinical applications is attracting attention. In this review, we delve into recent advancements and the various physiological and psychological factors that govern distinct epidermal stem cell populations, including psychological stress, mechanical forces, chronic aging, and circadian rhythm, as well as providing an overview of current methodological approaches. Furthermore, we discuss the pathogenic role of epidermal stem cells in immune-related skin disorders and their potential clinical applications.
Collapse
Affiliation(s)
- Xin Tang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Jiaqi Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Jiaoling Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Wanting Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Pei Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Huiyi Quan
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Zhiguo Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China.
| | - Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China.
| |
Collapse
|
20
|
Sun P, Kraus CN, Zhao W, Xu J, Suh S, Nguyen Q, Jia Y, Nair A, Oakes M, Tinoco R, Shiu J, Sun B, Elsensohn A, Atwood SX, Nie Q, Dai X. Single-cell and spatial transcriptomics of vulvar lichen sclerosus reveal multi-compartmental alterations in gene expression and signaling cross-talk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607986. [PMID: 39211101 PMCID: PMC11361165 DOI: 10.1101/2024.08.14.607986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Vulvar diseases are a critical yet often neglected area of women's health, profoundly affecting patients' quality of life and frequently resulting in long-term physical and psychological challenges. Lichen sclerosus (LS) is a chronic inflammatory skin disorder that predominantly affects the vulva, leading to severe itching, pain, scarring, and an increased risk of malignancy. Despite its profound impact on affected individuals, the molecular pathogenesis of vulvar LS (VLS) is not well understood, hindering the development of FDA-approved therapies. Here, we utilize single-cell and spatial transcriptomics to analyze lesional and non-lesional skin from VLS patients, as well as healthy control vulvar skin. Our findings demonstrate histologic, cellular, and molecular heterogeneities within VLS, yet highlight unifying molecular changes across keratinocytes, fibroblasts, immune cells, and melanocytes in lesional skin. They reveal cellular stress and damage in fibroblasts and keratinocytes, enhanced T cell activation and cytotoxicity, aberrant cell-cell signaling, and increased activation of the IFN, JAK/STAT, and p53 pathways in specific cell types. Using both monolayer and organotypic culture models, we also demonstrate that knockdown of select genes, which are downregulated in VLS lesional keratinocytes, partially recapitulates VLS-like stress-associated changes. Collectively, these data provide novel insights into the pathogenesis of VLS, identifying potential biomarkers and therapeutic targets for future research.
Collapse
|
21
|
Krause W, King D, Horsley V. Transcriptional analysis of efferocytosis in mouse skin wounds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607219. [PMID: 39185146 PMCID: PMC11343138 DOI: 10.1101/2024.08.12.607219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Defects in apoptotic cell clearance, or efferocytosis, can cause inflammatory diseases and prevent tissue repair due in part to inducing a pro-repair transcriptional program in phagocytic cells like macrophages. While the cellular machinery and metabolic pathways involved in efferocytosis have been characterized, the precise efferocytic response of macrophages is dependent on the identity and macromolecular cues of apoptotic cells, and the complex tissue microenvironment in which efferocytosis occurs. Here, we find that macrophages undergoing active efferocytosis in mid-stage mouse skin wounds in vivo display a pro-repair gene program, while efferocytosis of apoptotic skin fibroblasts in vitro also induces an inflammatory transcription response. These data provide a resource for understanding how the skin wound environment influences macrophage efferocytosis and will be useful for future investigations that define the role of efferocytosis during tissue repair.
Collapse
Affiliation(s)
- Will Krause
- Dept. of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Diane King
- SunnyCrest Bioinformatics, Flemington, New Jersey, USA
| | - Valerie Horsley
- Dept. of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Dept. of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
22
|
Peña OA, Martin P. Cellular and molecular mechanisms of skin wound healing. Nat Rev Mol Cell Biol 2024; 25:599-616. [PMID: 38528155 DOI: 10.1038/s41580-024-00715-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/27/2024]
Abstract
Wound healing is a complex process that involves the coordinated actions of many different tissues and cell lineages. It requires tight orchestration of cell migration, proliferation, matrix deposition and remodelling, alongside inflammation and angiogenesis. Whereas small skin wounds heal in days, larger injuries resulting from trauma, acute illness or major surgery can take several weeks to heal, generally leaving behind a fibrotic scar that can impact tissue function. Development of therapeutics to prevent scarring and successfully repair chronic wounds requires a fuller knowledge of the cellular and molecular mechanisms driving wound healing. In this Review, we discuss the current understanding of the different phases of wound healing, from clot formation through re-epithelialization, angiogenesis and subsequent scar deposition. We highlight the contribution of different cell types to skin repair, with emphasis on how both innate and adaptive immune cells in the wound inflammatory response influence classically studied wound cell lineages, including keratinocytes, fibroblasts and endothelial cells, but also some of the less-studied cell lineages such as adipocytes, melanocytes and cutaneous nerves. Finally, we discuss newer approaches and research directions that have the potential to further our understanding of the mechanisms underpinning tissue repair.
Collapse
Affiliation(s)
- Oscar A Peña
- School of Biochemistry, University of Bristol, Bristol, UK.
| | - Paul Martin
- School of Biochemistry, University of Bristol, Bristol, UK.
| |
Collapse
|
23
|
Thompson T, Flanagan S, Ortega-Gonzalez D, Zhu T, Yuan X. Immediate but Temporal Response: The Role of Distal Epithelial Cells in Wound Healing. Stem Cell Rev Rep 2024; 20:1587-1598. [PMID: 38760627 PMCID: PMC11323234 DOI: 10.1007/s12015-024-10734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
Efficient oral mucosal wound healing requires coordinated responses from epithelial progenitor cells, yet their spatiotemporal recruitment and activation remain unclear. Using a mouse model of palatal mucosal wound healing, we investigated the dynamics of epithelial cells during this process. Proliferation analysis revealed that, in addition to the expected proliferation center near the wound edge, distal cell populations rapidly activated post-injury by elevating their mitotic activity. These distal cells displayed predominant lateral expansion in the basal layer, suggesting roles beyond just tissue renewal. However, while proximal proliferation center cells sustained heightened proliferation until re-epithelialization was completed, distal cells restored basal turnover rates before wound closure, indicating temporally confined contributions. Lineage tracing of Wnt-responsive epithelial cells showed remarkable clone expansion in basal layers both proximally and distally after wounding, contrasting with gradual clone expansion in homeostasis. Although prioritizing tissue repair, epithelial progenitor cells maintained differentiation programs and barrier functions, with the exception of the leading edge. At the leading edge, we found accelerated cell turnover, but the differentiation program was suspended. In summary, our findings uncovered that oral wound re-epithelialization involves two phases: an initial widespread response with proliferation of proximal and distal cells, followed by proliferation confined to the wound proximal region. Uncovering these stage-specific healing mechanisms provides insights for developing targeted therapeutic strategies to improve wound care.
Collapse
Affiliation(s)
- Tyler Thompson
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Shannan Flanagan
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Dayane Ortega-Gonzalez
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Tianli Zhu
- Department of Biomedical Sciences and Comprehensive Care, School of Dentistry, Indiana University, Indianapolis, IN, USA
| | - Xue Yuan
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, Indiana University, Indianapolis, IN, USA.
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
24
|
Almet AA, Liu Y, Nie Q, Plikus MV. Integrated Single-Cell Analysis Reveals Spatially and Temporally Dynamic Heterogeneity in Fibroblast States During Wound Healing. J Invest Dermatol 2024:S0022-202X(24)01884-0. [PMID: 39019149 DOI: 10.1016/j.jid.2024.06.1281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/19/2024]
Abstract
Wound healing is a dynamic process over temporal and spatial scales. Key to repair outcomes are fibroblasts, yet how they modulate healing across time and in different wound regions remains incompletely understood. By integrating single-cell RNA-sequencing datasets of mouse skin and wounds, we infer that fibroblasts are the most transcriptionally dynamic skin-resident cells, evolving during postnatal skin maturation, and rapidly after injury towards distinct late scar states. We show that transcriptional dynamics in fibroblasts are largely driven by genes encoding extracellular matrix and signaling factors. Lineage trajectory inference and spatial gene mapping reveal that Prg4-expressing fibroblasts transiently emerge along early wound edges. Within days, they become replaced by long-lasting and likely non-interconverting fibroblast populations, including Col25a1-expressing and Pamr1-expressing fibroblasts that occupy subepidermal and deep scar regions, respectively, where they engage in reciprocal signaling with immune cells. Signaling inference shows that fibroblast-immune crosstalk repeatedly uses some signaling pathways across wound healing time, while use of other signaling pathways is time- and space-limited. Collectively, we uncovered high transcriptional plasticity by wound fibroblasts, with early states transiently forming distinct micro-niches along wound edges and in the fascia, followed by stable states, that stratify scar tissue into molecularly dissimilar upper and lower layers.
Collapse
Affiliation(s)
- Axel A Almet
- Department of Mathematics, University of California, Irvine, Irvine, CA 92617, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92617, USA
| | - Yingzi Liu
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92617, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92617, USA
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, Irvine, CA 92617, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92617, USA; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92617, USA.
| | - Maksim V Plikus
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92617, USA; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92617, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92617, USA.
| |
Collapse
|
25
|
Solis ER, Jameson JM. Skin deep: Epithelial cell metabolism and chronic skin inflammation. Immunity 2024; 57:1451-1453. [PMID: 38986439 DOI: 10.1016/j.immuni.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
Skin inflammation is potentiated by coordinated epithelial and immune cell metabolism. In this issue of Immunity, Subudhi and Konieczny et al. delineate how HIF1α regulates epithelial cell glycolysis during psoriasis. In turn, lactate is a byproduct that augments type 17 γδ T cell responses to sustain inflammatory skin disease.
Collapse
Affiliation(s)
- Eliana R Solis
- Department of Biological Sciences, California State University, San Marcos, CA 92096, USA
| | - Julie M Jameson
- Department of Biological Sciences, California State University, San Marcos, CA 92096, USA.
| |
Collapse
|
26
|
Subudhi I, Konieczny P, Prystupa A, Castillo RL, Sze-Tu E, Xing Y, Rosenblum D, Reznikov I, Sidhu I, Loomis C, Lu CP, Anandasabapathy N, Suárez-Fariñas M, Gudjonsson JE, Tsirigos A, Scher JU, Naik S. Metabolic coordination between skin epithelium and type 17 immunity sustains chronic skin inflammation. Immunity 2024; 57:1665-1680.e7. [PMID: 38772365 PMCID: PMC11236527 DOI: 10.1016/j.immuni.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/11/2024] [Accepted: 04/24/2024] [Indexed: 05/23/2024]
Abstract
Inflammatory epithelial diseases are spurred by the concomitant dysregulation of immune and epithelial cells. How these two dysregulated cellular compartments simultaneously sustain their heightened metabolic demands is unclear. Single-cell and spatial transcriptomics (ST), along with immunofluorescence, revealed that hypoxia-inducible factor 1α (HIF1α), downstream of IL-17 signaling, drove psoriatic epithelial remodeling. Blocking HIF1α in human psoriatic lesions ex vivo impaired glycolysis and phenocopied anti-IL-17 therapy. In a murine model of skin inflammation, epidermal-specific loss of HIF1α or its target gene, glucose transporter 1, ameliorated epidermal, immune, vascular, and neuronal pathology. Mechanistically, glycolysis autonomously fueled epithelial pathology and enhanced lactate production, which augmented the γδ T17 cell response. RORγt-driven genetic deletion or pharmacological inhibition of either lactate-producing enzymes or lactate transporters attenuated epithelial pathology and IL-17A expression in vivo. Our findings identify a metabolic hierarchy between epithelial and immune compartments and the consequent coordination of metabolic processes that sustain inflammatory disease.
Collapse
Affiliation(s)
- Ipsita Subudhi
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Piotr Konieczny
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA.
| | - Aleksandr Prystupa
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA; Applied Bioinformatics Laboratories, NYU Langone Health, New York, NY 10016, USA
| | - Rochelle L Castillo
- Division of Rheumatology, Department of Medicine, NYU Langone Health, New York, NY 10016, USA; Psoriatic Arthritis Center, NYU Langone Health, New York, NY 10016, USA
| | - Erica Sze-Tu
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Yue Xing
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Daniel Rosenblum
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Ilana Reznikov
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Ikjot Sidhu
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA; Applied Bioinformatics Laboratories, NYU Langone Health, New York, NY 10016, USA
| | - Cynthia Loomis
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Catherine P Lu
- The Hansjörg Wyss Department of Plastic Surgery and Department of Cell Biology, NYU Langone Health, New York, NY 10016, USA
| | | | - Mayte Suárez-Fariñas
- Department of Genetics and Genomic Science, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Aristotelis Tsirigos
- Applied Bioinformatics Laboratories, NYU Langone Health, New York, NY 10016, USA; Precision Medicine Institute, Department of Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Jose U Scher
- Division of Rheumatology, Department of Medicine, NYU Langone Health, New York, NY 10016, USA; NYU Colton Center for Autoimmunity, Department of Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Shruti Naik
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA; NYU Colton Center for Autoimmunity, Department of Medicine, NYU Langone Health, New York, NY 10016, USA; Ronald O. Perelman Department of Dermatology, Department of Medicine, Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA.
| |
Collapse
|
27
|
Ghuwalewala S, Jiang K, Ragi S, Shalloway D, Tumbar T. A transit-amplifying progenitor with biphasic behavior contributes to epidermal renewal. Development 2024; 151:dev202389. [PMID: 38934416 PMCID: PMC11234368 DOI: 10.1242/dev.202389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
Transit-amplifying (TA) cells are progenitors that undergo an amplification phase followed by transition into an extinction phase. A long postulated epidermal TA progenitor with biphasic behavior has not yet been experimentally observed in vivo. Here, we identify such a TA population using clonal analysis of Aspm-CreER genetic cell-marking in mice, which uncovers contribution to both homeostasis and injury repair of adult skin. This TA population is more frequently dividing than a Dlx1-CreER-marked long-term self-renewing (e.g. stem cell) population. Newly developed generalized birth-death modeling of long-term lineage tracing data shows that both TA progenitors and stem cells display neutral competition, but only the stem cells display neutral drift. The quantitative evolution of a nascent TA cell and its direct descendants shows that TA progenitors indeed amplify the basal layer before transition and that the homeostatic TA population is mostly in extinction phase. This model will be broadly useful for analyzing progenitors whose behavior changes with their clone age. This work identifies a long-missing class of non-self-renewing biphasic epidermal TA progenitors and has broad implications for understanding tissue renewal mechanisms.
Collapse
Affiliation(s)
- Sangeeta Ghuwalewala
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Kevin Jiang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Sara Ragi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - David Shalloway
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Tudorita Tumbar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
28
|
Jussila AR, Haensel D, Gaddam S, Oro AE. Acquisition of Drug Resistance in Basal Cell Nevus Syndrome Tumors through Basal to Squamous Cell Carcinoma Transition. J Invest Dermatol 2024; 144:1368-1377.e6. [PMID: 38157930 PMCID: PMC11116079 DOI: 10.1016/j.jid.2023.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 01/03/2024]
Abstract
Although basal cell carcinomas arise from ectopic Hedgehog pathway activation and can be treated with pathway inhibitors, sporadic basal cell carcinomas display high resistance rates, whereas tumors arising in patients with Gorlin syndrome with germline Patched (PTCH1) alterations are uniformly suppressed by inhibitor therapy. In rare cases, patients with Gorlin syndrome on long-term inhibitor therapy will develop individual resistant tumor clones that rapidly progress, but the basis of this resistance remains unstudied. In this study, we report a case of an SMO inhibitor-resistant tumor arising in a patient with Gorlin syndrome on suppressive SMO inhibitor for nearly a decade. Using a combination of multiomics and spatial transcriptomics, we define the tumor populations at the cellular and tissue level to conclude that Gorlin tumors can develop resistance to SMO inhibitors through the previously described basal to squamous cell carcinoma transition. Intriguingly, through spatial whole-exome genomic analysis, we nominate PCYT2, ETNK1, and the phosphatidylethanolamine biosynthetic pathway as genetic suppressors of basal to squamous cell carcinoma transition resistance. These observations provide a general framework for studying tumor evolution and provide important clinical insight into mechanisms of resistance to SMO inhibitors for not only Gorlin syndrome but also sporadic basal cell carcinomas.
Collapse
Affiliation(s)
- Anna R Jussila
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Daniel Haensel
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Sadhana Gaddam
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Anthony E Oro
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA.
| |
Collapse
|
29
|
Wang W, Cen Y, Lu Z, Xu Y, Sun T, Xiao Y, Liu W, Li JJ, Wang C. scCDC: a computational method for gene-specific contamination detection and correction in single-cell and single-nucleus RNA-seq data. Genome Biol 2024; 25:136. [PMID: 38783325 PMCID: PMC11112958 DOI: 10.1186/s13059-024-03284-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
In droplet-based single-cell and single-nucleus RNA-seq assays, systematic contamination of ambient RNA molecules biases the quantification of gene expression levels. Existing methods correct the contamination for all genes globally. However, there lacks specific evaluation of correction efficacy for varying contamination levels. Here, we show that DecontX and CellBender under-correct highly contaminating genes, while SoupX and scAR over-correct lowly/non-contaminating genes. Here, we develop scCDC as the first method to detect the contamination-causing genes and only correct expression levels of these genes, some of which are cell-type markers. Compared with existing decontamination methods, scCDC excels in decontaminating highly contaminating genes while avoiding over-correction of other genes.
Collapse
Affiliation(s)
- Weijian Wang
- Centre of Biomedical Systems and Informatics, International Campus, ZJU-UoE Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, 314400, China
| | - Yihui Cen
- Centre of Biomedical Systems and Informatics, International Campus, ZJU-UoE Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, 314400, China
| | - Zezhen Lu
- Centre of Biomedical Systems and Informatics, International Campus, ZJU-UoE Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, 314400, China
| | - Yueqing Xu
- Centre of Biomedical Systems and Informatics, International Campus, ZJU-UoE Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, 314400, China
| | - Tianyi Sun
- Department of Statistics and Data Science, University of California, Los Angeles, CA, 90095, USA
| | - Ying Xiao
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310020, China
| | - Wanlu Liu
- Centre of Biomedical Systems and Informatics, International Campus, ZJU-UoE Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, 314400, China
| | - Jingyi Jessica Li
- Department of Statistics and Data Science, University of California, Los Angeles, CA, 90095, USA.
| | - Chaochen Wang
- Centre of Biomedical Systems and Informatics, International Campus, ZJU-UoE Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, 314400, China.
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310020, China.
- Biomedical and Health Translational Research Centre, Zhejiang University, Haining, Zhejiang, 314400, China.
| |
Collapse
|
30
|
Celik C, Lee STT, Tanoto FR, Veleba M, Kline K, Thibault G. Decoding the complexity of delayed wound healing following Enterococcus faecalis infection. eLife 2024; 13:RP95113. [PMID: 38767331 PMCID: PMC11105157 DOI: 10.7554/elife.95113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Wound infections are highly prevalent and can lead to delayed or failed healing, causing significant morbidity and adverse economic impacts. These infections occur in various contexts, including diabetic foot ulcers, burns, and surgical sites. Enterococcus faecalis is often found in persistent non-healing wounds, but its contribution to chronic wounds remains understudied. To address this, we employed single-cell RNA sequencing (scRNA-seq) on infected wounds in comparison to uninfected wounds in a mouse model. Examining over 23,000 cells, we created a comprehensive single-cell atlas that captures the cellular and transcriptomic landscape of these wounds. Our analysis revealed unique transcriptional and metabolic alterations in infected wounds, elucidating the distinct molecular changes associated with bacterial infection compared to the normal wound healing process. We identified dysregulated keratinocyte and fibroblast transcriptomes in response to infection, jointly contributing to an anti-inflammatory environment. Notably, E. faecalis infection prompted a premature, incomplete epithelial-mesenchymal transition in keratinocytes. Additionally, E. faecalis infection modulated M2-like macrophage polarization by inhibiting pro-inflammatory resolution in vitro, in vivo, and in our scRNA-seq atlas. Furthermore, we discovered macrophage crosstalk with neutrophils, which regulates chemokine signaling pathways, while promoting anti-inflammatory interactions with endothelial cells. Overall, our findings offer new insights into the immunosuppressive role of E. faecalis in wound infections.
Collapse
Affiliation(s)
- Cenk Celik
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Stella Tue Ting Lee
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Frederick Reinhart Tanoto
- Singapore Centre for Environmental Life Science Engineering, Nanyang Technological UniversitySingaporeSingapore
| | - Mark Veleba
- Singapore Centre for Environmental Life Science Engineering, Nanyang Technological UniversitySingaporeSingapore
| | - Kimberly Kline
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
- Singapore Centre for Environmental Life Science Engineering, Nanyang Technological UniversitySingaporeSingapore
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of GenevaGenevaSwitzerland
| | - Guillaume Thibault
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
- Mechanobiology Institute, National University of SingaporeSingaporeSingapore
| |
Collapse
|
31
|
Luan J, Truong C, Vuchkovska A, Guo W, Good J, Liu B, Gang A, Infarinato N, Stewart K, Polak L, Pasolli HA, Andretta E, Rudensky AY, Fuchs E, Miao Y. CD80 on skin stem cells promotes local expansion of regulatory T cells upon injury to orchestrate repair within an inflammatory environment. Immunity 2024; 57:1071-1086.e7. [PMID: 38677291 PMCID: PMC11265648 DOI: 10.1016/j.immuni.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024]
Abstract
Following tissue damage, epithelial stem cells (SCs) are mobilized to enter the wound, where they confront harsh inflammatory environments that can impede their ability to repair the injury. Here, we investigated the mechanisms that protect skin SCs within this inflammatory environment. Characterization of gene expression profiles of hair follicle SCs (HFSCs) that migrated into the wound site revealed activation of an immune-modulatory program, including expression of CD80, major histocompatibility complex class II (MHCII), and CXC motif chemokine ligand 5 (CXCL5). Deletion of CD80 in HFSCs impaired re-epithelialization, reduced accumulation of peripherally generated Treg (pTreg) cells, and increased infiltration of neutrophils in wounded skin. Importantly, similar wound healing defects were also observed in mice lacking pTreg cells. Our findings suggest that upon skin injury, HFSCs establish a temporary protective network by promoting local expansion of Treg cells, thereby enabling re-epithelialization while still kindling inflammation outside this niche until the barrier is restored.
Collapse
Affiliation(s)
- Jingyun Luan
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60615, USA
| | - Cynthia Truong
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Aleksandra Vuchkovska
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60615, USA
| | - Weijie Guo
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60615, USA
| | - Jennifer Good
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60615, USA
| | - Bijun Liu
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60615, USA
| | - Audrey Gang
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60615, USA
| | - Nicole Infarinato
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Katherine Stewart
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Lisa Polak
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Hilda Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Emma Andretta
- Howard Hughes Medical Institute, Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute, Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, The Rockefeller University, New York, NY 10065, USA.
| | - Yuxuan Miao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60615, USA.
| |
Collapse
|
32
|
Kuan CH, Tai KY, Lu SC, Wu YF, Wu PS, Kwang N, Wang WH, Mai-Yi Fan S, Wang SH, Chien HF, Lai HS, Lin MH, Plikus MV, Lin SJ. Delayed Collagen Production without Myofibroblast Formation Contributes to Reduced Scarring in Adult Skin Microwounds. J Invest Dermatol 2024; 144:1124-1133.e7. [PMID: 38036291 DOI: 10.1016/j.jid.2023.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/02/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
In adult mammals, wound healing predominantly follows a fibrotic pathway, culminating in scar formation. However, cutaneous microwounds generated through fractional photothermolysis, a modality that produces a constellation of microthermal zones, exhibit a markedly different healing trajectory. Our study delineates the cellular attributes of these microthermal zones, underscoring a temporally limited, subclinical inflammatory milieu concomitant with rapid re-epithelialization within 24 hours. This wound closure is facilitated by the activation of genes associated with keratinocyte migration and differentiation. In contrast to macrothermal wounds, which predominantly heal through a robust myofibroblast-mediated collagen deposition, microthermal zones are characterized by absence of wound contraction and feature delayed collagen remodeling, initiating 5-6 weeks after injury. This distinct wound healing is characterized by a rapid re-epithelialization process and a muted inflammatory response, which collectively serve to mitigate excessive myofibroblast activation. Furthermore, we identify an initial reparative phase characterized by a heterogeneous extracellular matrix protein composition, which precedes the delayed collagen remodeling. These findings extend our understanding of cutaneous wound healing and may have significant implications for the optimization of therapeutic strategies aimed at mitigating scar formation.
Collapse
Affiliation(s)
- Chen-Hsiang Kuan
- Graduate Institute of Clinical Research, College of Medicine, National Taiwan University, Taipei, Taiwan; Division of Plastic Surgery, Department of Surgery, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Kang-Yu Tai
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Shao-Chi Lu
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Yueh-Feng Wu
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Pei-Shan Wu
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Nellie Kwang
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California, USA
| | - Wei-Hung Wang
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Sabrina Mai-Yi Fan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Shiou-Han Wang
- Department of Dermatology, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan
| | - Hsiung-Fei Chien
- Division of Plastic Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan; TMU Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hong-Shiee Lai
- Department of Surgery, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan; Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Miao-Hsia Lin
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California, USA
| | - Sung-Jan Lin
- Graduate Institute of Clinical Research, College of Medicine, National Taiwan University, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan; Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; Center for Frontier Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
33
|
Cao Y, Zhao X, Tang S, Jiang Q, Li S, Li S, Chen S. scButterfly: a versatile single-cell cross-modality translation method via dual-aligned variational autoencoders. Nat Commun 2024; 15:2973. [PMID: 38582890 PMCID: PMC10998864 DOI: 10.1038/s41467-024-47418-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 03/28/2024] [Indexed: 04/08/2024] Open
Abstract
Recent advancements for simultaneously profiling multi-omics modalities within individual cells have enabled the interrogation of cellular heterogeneity and molecular hierarchy. However, technical limitations lead to highly noisy multi-modal data and substantial costs. Although computational methods have been proposed to translate single-cell data across modalities, broad applications of the methods still remain impeded by formidable challenges. Here, we propose scButterfly, a versatile single-cell cross-modality translation method based on dual-aligned variational autoencoders and data augmentation schemes. With comprehensive experiments on multiple datasets, we provide compelling evidence of scButterfly's superiority over baseline methods in preserving cellular heterogeneity while translating datasets of various contexts and in revealing cell type-specific biological insights. Besides, we demonstrate the extensive applications of scButterfly for integrative multi-omics analysis of single-modality data, data enhancement of poor-quality single-cell multi-omics, and automatic cell type annotation of scATAC-seq data. Moreover, scButterfly can be generalized to unpaired data training, perturbation-response analysis, and consecutive translation.
Collapse
Affiliation(s)
- Yichuan Cao
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 300071, China
| | - Xiamiao Zhao
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 300071, China
| | - Songming Tang
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 300071, China
| | - Qun Jiang
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division of BNRIST, Department of Automation, Tsinghua University, 100084, Beijing, China
| | - Sijie Li
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 300071, China
| | - Siyu Li
- School of Statistics and Data Science, Nankai University, Tianjin, 300071, China
| | - Shengquan Chen
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
34
|
Thalheim T, Schneider MR. Skin single-cell transcriptomics reveals a core of sebaceous gland-relevant genes shared by mice and humans. BMC Genomics 2024; 25:137. [PMID: 38310227 PMCID: PMC10837983 DOI: 10.1186/s12864-024-10008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/11/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Single-cell RNA sequencing (scRNA-seq) has been widely applied to dissect cellular heterogeneity in normal and diseased skin. Sebaceous glands, essential skin components with established functions in maintaining skin integrity and emerging roles in systemic energy metabolism, have been largely neglected in scRNA-seq studies. METHODS Departing from mouse and human skin scRNA-seq datasets, we identified gene sets expressed especially in sebaceous glands with the open-source R-package oposSOM. RESULTS The identified gene sets included sebaceous gland-typical genes as Scd3, Mgst1, Cidea, Awat2 and KRT7. Surprisingly, however, there was not a single overlap among the 100 highest, exclusively in sebaceous glands expressed transcripts in mouse and human samples. Notably, both species share a common core of only 25 transcripts, including mitochondrial and peroxisomal genes involved in fatty acid, amino acid, and glucose processing, thus highlighting the intense metabolic rate of this gland. CONCLUSIONS This study highlights intrinsic differences in sebaceous lipid synthesis between mice and humans, and indicates an important role for peroxisomal processes in this context. Our data also provides attractive starting points for experimentally addressing novel candidates regulating sebaceous gland homeostasis.
Collapse
Affiliation(s)
- Torsten Thalheim
- Interdisciplinary Institute for Bioinformatics (IZBI), University of Leipzig, Härtelstr. 16-18, 04107, Leipzig, Germany
- Present Address: Deutsches Biomasseforschungszentrum gGmbH, Torgauer Str. 116, 04347, Leipzig, Germany
| | - Marlon R Schneider
- Institute of Veterinary Physiology, University of Leipzig, An den Tierkliniken 7, Leipzig, 04103, Germany.
| |
Collapse
|
35
|
Thiery JP, Sheng G, Shu X, Runyan R. How studies in developmental epithelial-mesenchymal transition and mesenchymal-epithelial transition inspired new research paradigms in biomedicine. Development 2024; 151:dev200128. [PMID: 38300897 DOI: 10.1242/dev.200128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Epithelial-mesenchymal transition (EMT) and its reverse mechanism, mesenchymal-epithelial transition (MET), are evolutionarily conserved mechanisms initially identified in studies of early metazoan development. EMT may even have been established in choanoflagellates, the closest unicellular relative of Metazoa. These crucial morphological transitions operate during body plan formation and subsequently in organogenesis. These findings have prompted an increasing number of investigators in biomedicine to assess the importance of such mechanisms that drive epithelial cell plasticity in multiple diseases associated with congenital disabilities and fibrosis, and, most importantly, in the progression of carcinoma. EMT and MET also play crucial roles in regenerative medicine, notably by contributing epigenetic changes in somatic cells to initiate reprogramming into stem cells and their subsequent differentiation into distinct lineages.
Collapse
Affiliation(s)
| | - Guojun Sheng
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Xiaodong Shu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Raymond Runyan
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
36
|
Duan S, Li Q, Wang F, Kuang W, Dong Y, Liu D, Wang J, Li W, Chen Q, Zeng X, Li T. Single-Cell Transcriptomes and Immune Repertoires Reveal the Cell State and Molecular Changes in Pemphigus Vulgaris. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:375-388. [PMID: 38117802 DOI: 10.4049/jimmunol.2300312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/05/2023] [Indexed: 12/22/2023]
Abstract
The etiology and pathogenesis of pemphigus vulgaris (PV) entail intricate interactions between immune cells and epithelial cells. However, the specific subtypes of immune cells involved in PV, along with their respective roles, remain elusive. Likewise, the precise functions and mechanisms by which glucocorticoids affect cell types within the disease context require further elucidation. To address these knowledge gaps, we performed 5' single-cell RNA sequencing, combined with V(D)J enrichment on buccal mucosal lesions and peripheral blood samples from treatment-naive patients with PV, in conjunction with post-treatment peripheral blood samples obtained after oral prednisone treatment. Our findings suggest that the IL-1α signaling pathway, myeloid APCs, inflammatory CD8+ resident memory T cells, and dysfunctional CD4+ regulatory T cells are involved in the pathogenesis of PV. Part of these findings were validated by immunohistochemical assays and multiplex immunofluorescence assays. Furthermore, our results highlight the significant impact of prednisone treatment on monocytes and mucosal-associated invariant T cells while revealing a limited effect on CD4+ regulatory T cells. Additionally, we present the CDR3 amino acid sequence of BCR related to PV disease and investigate the characteristics of TCR/BCR clonotypes. In conclusion, our study provides a comprehensive understanding of PV, particularly focusing on the mucosal-dominant type, and sheds light on the effects of glucocorticoids within the PV context. These insights hold promise for the development of new therapeutic strategies in this autoimmune disorder.
Collapse
Affiliation(s)
- Shumin Duan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Qionghua Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Fei Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Wenjing Kuang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yunmei Dong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Dan Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jiongke Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Wei Li
- Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Taiwen Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
37
|
Chen Z, Dragan M, Sun P, Haensel D, Vu R, Cui L, Shi Y, Dai X. An AhR-Ovol1-Id1 regulatory axis in keratinocytes promotes skin homeostasis against atopic dermatitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577821. [PMID: 38352592 PMCID: PMC10862726 DOI: 10.1101/2024.01.29.577821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Skin is our outer permeability and immune defense barrier against myriad external assaults. Aryl hydrocarbon receptor (AhR) senses environmental factors and regulates barrier robustness and immune homeostasis. AhR agonist is in clinical trial for atopic dermatitis (AD) treatment, but the underlying mechanism of action remains ill-defined. Here we report OVOL1/Ovol1 as a conserved and direct transcriptional target of AhR in epidermal keratinocytes. We show that OVOL1/Ovol1 impacts AhR regulation of keratinocyte gene expression, and Ovol1 deletion in keratinocytes hampers AhR's barrier promotion function and worsens AD-like inflammation. Mechanistically, we identify Ovol1's direct downstream targets genome-wide, and provide in vivo evidence for Id1's critical role in barrier maintenance and disease suppression. Furthermore, our findings reveal an IL-1/dermal γδT cell axis exacerbating both type 2 and type 3 immune responses downstream of barrier perturbation in Ovol1 -deficient AD skin. Finally, we present data suggesting the clinical relevance of OVOL1 and ID1 function in human AD. Our study highlights a keratinocyte-intrinsic AhR-Ovol1-Id1 regulatory axis that promotes both epidermal and immune homeostasis against AD-like inflammation, implicating new therapeutic targets for AD.
Collapse
|
38
|
Justynski O, Bridges K, Krause W, Forni MF, Phan QM, Sandoval-Schaefer T, Carter K, King DE, Hsia HC, Gazes MI, Vyce SD, Driskell RR, Miller-Jensen K, Horsley V. Apoptosis recognition receptors regulate skin tissue repair in mice. eLife 2023; 12:e86269. [PMID: 38127424 PMCID: PMC10735221 DOI: 10.7554/elife.86269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Apoptosis and clearance of apoptotic cells via efferocytosis are evolutionarily conserved processes that drive tissue repair. However, the mechanisms by which recognition and clearance of apoptotic cells regulate repair are not fully understood. Here, we use single-cell RNA sequencing to provide a map of the cellular dynamics during early inflammation in mouse skin wounds. We find that apoptotic pathways and efferocytosis receptors are elevated in fibroblasts and immune cells, including resident Lyve1+ macrophages, during inflammation. Interestingly, human diabetic foot wounds upregulate mRNAs for efferocytosis pathway genes and display altered efferocytosis signaling via the receptor Axl and its ligand Gas6. During early inflammation in mouse wounds, we detect upregulation of Axl in dendritic cells and fibroblasts via TLR3-independent mechanisms. Inhibition studies in vivo in mice reveal that Axl signaling is required for wound repair but is dispensable for efferocytosis. By contrast, inhibition of another efferocytosis receptor, Timd4, in mouse wounds decreases efferocytosis and abrogates wound repair. These data highlight the distinct mechanisms by which apoptotic cell detection coordinates tissue repair and provides potential therapeutic targets for chronic wounds in diabetic patients.
Collapse
Affiliation(s)
- Olivia Justynski
- Dept. of Molecular Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Kate Bridges
- Dept. of Biomedical Engineering, Yale University, New Haven, United States
| | - Will Krause
- Dept. of Molecular Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Maria Fernanda Forni
- Dept. of Molecular Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Quan M Phan
- Washington State University, SMB, Pullman, United States
| | - Teresa Sandoval-Schaefer
- Dept. of Molecular Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Kristyn Carter
- Dept. of Molecular Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Diane E King
- Sunnycrest Bioinformatics, Flemington, United States
| | - Henry C Hsia
- Dept. of Surgery (Plastic), Yale School of Medicine, New Haven, United States
| | - Michael I Gazes
- Dept of Podiatric Surgery, Yale New Haven Hospital, New Haven, United States
| | - Steven D Vyce
- Dept of Podiatric Surgery, Yale New Haven Hospital, New Haven, United States
| | | | - Kathryn Miller-Jensen
- Dept. of Molecular Cellular and Developmental Biology, Yale University, New Haven, United States
- Dept. of Biomedical Engineering, Yale University, New Haven, United States
| | - Valerie Horsley
- Dept. of Molecular Cellular and Developmental Biology, Yale University, New Haven, United States
- Dept. of Dermatology, Yale School of Medicine, New Haven, United States
| |
Collapse
|
39
|
Maldonado H, Savage BD, Barker HR, May U, Vähätupa M, Badiani RK, Wolanska KI, Turner CMJ, Pemmari T, Ketomäki T, Prince S, Humphries MJ, Ruoslahti E, Morgan MR, Järvinen TAH. Systemically administered wound-homing peptide accelerates wound healing by modulating syndecan-4 function. Nat Commun 2023; 14:8069. [PMID: 38057316 PMCID: PMC10700342 DOI: 10.1038/s41467-023-43848-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/19/2023] [Indexed: 12/08/2023] Open
Abstract
CAR (CARSKNKDC) is a wound-homing peptide that recognises angiogenic neovessels. Here we discover that systemically administered CAR peptide has inherent ability to promote wound healing: wounds close and re-epithelialise faster in CAR-treated male mice. CAR promotes keratinocyte migration in vitro. The heparan sulfate proteoglycan syndecan-4 regulates cell migration and is crucial for wound healing. We report that syndecan-4 expression is restricted to epidermis and blood vessels in mice skin wounds. Syndecan-4 regulates binding and internalisation of CAR peptide and CAR-mediated cytoskeletal remodelling. CAR induces syndecan-4-dependent activation of the small GTPase ARF6, via the guanine nucleotide exchange factor cytohesin-2, and promotes syndecan-4-, ARF6- and Cytohesin-2-mediated keratinocyte migration. Finally, we show that genetic ablation of syndecan-4 in male mice eliminates CAR-induced wound re-epithelialisation following systemic administration. We propose that CAR peptide activates syndecan-4 functions to selectively promote re-epithelialisation. Thus, CAR peptide provides a therapeutic approach to enhance wound healing in mice; systemic, yet target organ- and cell-specific.
Collapse
Affiliation(s)
- Horacio Maldonado
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Bryan D Savage
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Harlan R Barker
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland
| | - Ulrike May
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland
| | - Maria Vähätupa
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland
| | - Rahul K Badiani
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Katarzyna I Wolanska
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Craig M J Turner
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Toini Pemmari
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland
| | - Tuomo Ketomäki
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland
| | - Stuart Prince
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland
| | - Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Erkki Ruoslahti
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA and Center for Nanomedicine, University of California (UCSB), Santa Barbara, CA, USA
| | - Mark R Morgan
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK.
| | - Tero A H Järvinen
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland.
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA and Center for Nanomedicine, University of California (UCSB), Santa Barbara, CA, USA.
| |
Collapse
|
40
|
Tahara U, Matsui T, Atsugi T, Fukuda K, Terooatea TW, Minoda A, Kubo A, Amagai M. Keratinocytes of the Upper Epidermis and Isthmus of Hair Follicles Express Hemoglobin mRNA and Protein. J Invest Dermatol 2023; 143:2346-2355.e10. [PMID: 37981423 DOI: 10.1016/j.jid.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 11/21/2023]
Abstract
The epidermis, the keratinized stratified squamous epithelium surrounding the body surface, offers a valuable framework to investigate how terrestrial animals overcome environmental stresses. However, the mechanisms underlying epidermal barrier function remain nebulous. In this study, we examined genes highly expressed in the human and mouse upper epidermis, the outer frontier that induces various barrier-related genes. Transcriptome analysis revealed that the messenger RNA level of hemoglobin α (HBA), an oxygen carrier in erythroid cells, was enriched in the upper epidermis compared with that in the whole epidermis. Immunostaining analysis confirmed HBA protein expression in human and mouse keratinocytes (KCs) of the stratum spinosum and stratum granulosum. HBA was also expressed in hair follicle KCs in the isthmus region; its expression levels were more prominent than those in interfollicular KCs. HBA expression was not observed in noncutaneous keratinized stratified squamous epithelia of mice, for example, the vagina, esophagus, and forestomach. HBA expression was upregulated in human epidermal KC cultures after UV irradiation, a major cause of skin-specific oxidative stress. Furthermore, HBA knockdown increased UV-induced production of ROS in primary KCs. Our findings suggest that epidermal HBA expression is induced by oxidative stress and acts as an antioxidant, contributing to skin barrier function.
Collapse
Affiliation(s)
- Umi Tahara
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Takeshi Matsui
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Department of Dermatology, Keio University School of Medicine, Tokyo, Japan; Laboratory for Evolutionary Cell Biology of the Skin, School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Japan
| | - Toru Atsugi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Keitaro Fukuda
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Tommy W Terooatea
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Aki Minoda
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Department of Cell Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Akiharu Kubo
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan; Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masayuki Amagai
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Department of Dermatology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
41
|
Kim C, Kim Y, Lim JY, Kim M, Zheng H, Kim M, Hwang SW. Pamoic acid-induced peripheral GPR35 activation improves pruritus and dermatitis. Br J Pharmacol 2023; 180:3059-3070. [PMID: 37501600 DOI: 10.1111/bph.16201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Pruritic dermatitis is a disease with a considerable unmet need for treatment and appears to present with not only epidermal but also peripheral neuronal complications. Here, we propose a novel pharmacological modulation targeting both peripheral dorsal root ganglion (DRG) sensory neurons and skin keratinocytes. GPR35 is an orphan G-protein-coupled receptor expressed in DRG neurons and has been predicted to downregulate neuronal excitability when activated. Modulator information is currently increasing for GPR35, and pamoic acid (PA), a salt-forming agent for drugs, has been shown to be an activator solely specific for GPR35. Here, we investigated its effects on dermatitic pathology. EXPERIMENTAL APPROACH We confirmed GPR35 expression in peripheral neurons and tissues. The effect of PA treatment was pharmacologically evaluated in cultured cells in vitro and in in vivo animal models for acute and chronic pruritus. KEY RESULTS Local PA application mitigated acute non-histaminergic itch and, consistently, obstructed DRG neuronal responses. Keratinocyte fragmentation under dermatitic simulation was also dampened following PA incubation. Chronic pruritus in 1-chloro-2,4-dinitrobenzene and psoriasis models were also moderately but significantly reversed by the repeated applications of PA. Dermatitic scores in the 1-chloro-2,4-dinitrobenzene and psoriatic models were also improved by its application, indicating that it is beneficial for mitigating disease pathology. CONCLUSION AND IMPLICATIONS Our findings suggest that pamoic acid activation of peripheral GPR35 can contribute to the improvement of pruritus and its associated diseases.
Collapse
Affiliation(s)
- Chaeeun Kim
- Department of Biomedical Sciences and Department of Physiology, College of Medicine, Korea University, Seoul, Korea
| | - Yerin Kim
- Department of Biomedical Sciences and Department of Physiology, College of Medicine, Korea University, Seoul, Korea
| | - Ji Yeon Lim
- Department of Biomedical Sciences and Department of Physiology, College of Medicine, Korea University, Seoul, Korea
| | - Minseok Kim
- Department of Biomedical Sciences and Department of Physiology, College of Medicine, Korea University, Seoul, Korea
| | - Haiyan Zheng
- Department of Biomedical Sciences and Department of Physiology, College of Medicine, Korea University, Seoul, Korea
| | - Miri Kim
- Department of Biomedical Sciences and Department of Physiology, College of Medicine, Korea University, Seoul, Korea
| | - Sun Wook Hwang
- Department of Biomedical Sciences and Department of Physiology, College of Medicine, Korea University, Seoul, Korea
| |
Collapse
|
42
|
Yusupova M, Ankawa R, Yosefzon Y, Meiri D, Bachelet I, Fuchs Y. Apoptotic dysregulation mediates stem cell competition and tissue regeneration. Nat Commun 2023; 14:7547. [PMID: 37985759 PMCID: PMC10662150 DOI: 10.1038/s41467-023-41684-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/14/2023] [Indexed: 11/22/2023] Open
Abstract
Since adult stem cells are responsible for replenishing tissues throughout life, it is vital to understand how failure to undergo apoptosis can dictate stem cell behavior both intrinsically and non-autonomously. Here, we report that depletion of pro-apoptotic Bax protein bestows hair follicle stem cells with the capacity to eliminate viable neighboring cells by sequestration of TNFα in their membrane. This in turn induces apoptosis in "loser" cells in a contact-dependent manner. Examining the underlying mechanism, we find that Bax loss-of-function competitive phenotype is mediated by the intrinsic activation of NFκB. Notably, winner stem cells differentially respond to TNFα, owing to their elevated expression of TNFR2. Finally, we report that in vivo depletion of Bax results in an increased stem cell pool, accelerating wound-repair and de novo hair follicle regeneration. Collectively, we establish a mechanism of mammalian cell competition, which can have broad therapeutic implications for tissue regeneration and tumorigenesis.
Collapse
Affiliation(s)
- Marianna Yusupova
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Roi Ankawa
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
- Augmanity, Rehovot, Israel
| | - Yahav Yosefzon
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - David Meiri
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Yaron Fuchs
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
- Augmanity, Rehovot, Israel.
| |
Collapse
|
43
|
Theil AF, Pines A, Kalayci T, Heredia‐Genestar JM, Raams A, Rietveld MH, Sridharan S, Tanis SEJ, Mulder KW, Büyükbabani N, Karaman B, Uyguner ZO, Kayserili H, Hoeijmakers JHJ, Lans H, Demmers JAA, Pothof J, Altunoglu U, El Ghalbzouri A, Vermeulen W. Trichothiodystrophy-associated MPLKIP maintains DBR1 levels for proper lariat debranching and ectodermal differentiation. EMBO Mol Med 2023; 15:e17973. [PMID: 37800682 PMCID: PMC10630875 DOI: 10.15252/emmm.202317973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023] Open
Abstract
The brittle hair syndrome Trichothiodystrophy (TTD) is characterized by variable clinical features, including photosensitivity, ichthyosis, growth retardation, microcephaly, intellectual disability, hypogonadism, and anaemia. TTD-associated mutations typically cause unstable mutant proteins involved in various steps of gene expression, severely reducing steady-state mutant protein levels. However, to date, no such link to instability of gene-expression factors for TTD-associated mutations in MPLKIP/TTDN1 has been established. Here, we present seven additional TTD individuals with MPLKIP mutations from five consanguineous families, with a newly identified MPLKIP variant in one family. By mass spectrometry-based interaction proteomics, we demonstrate that MPLKIP interacts with core splicing factors and the lariat debranching protein DBR1. MPLKIP-deficient primary fibroblasts have reduced steady-state DBR1 protein levels. Using Human Skin Equivalents (HSEs), we observed impaired keratinocyte differentiation associated with compromised splicing and eventually, an imbalanced proteome affecting skin development and, interestingly, also the immune system. Our data show that MPLKIP, through its DBR1 stabilizing role, is implicated in mRNA splicing, which is of particular importance in highly differentiated tissue.
Collapse
Affiliation(s)
- Arjan F Theil
- Department of Molecular GeneticsErasmus MC Cancer InstituteRotterdamThe Netherlands
| | - Alex Pines
- Department of Molecular GeneticsErasmus MC Cancer InstituteRotterdamThe Netherlands
| | - Tuğba Kalayci
- Department of Medical Genetics, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
| | | | - Anja Raams
- Department of Molecular GeneticsErasmus MC Cancer InstituteRotterdamThe Netherlands
| | - Marion H Rietveld
- Department of DermatologyLeiden University Medical Center (LUMC)LeidenThe Netherlands
| | - Sriram Sridharan
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Sabine EJ Tanis
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life SciencesRadboud UniversityNijmegenThe Netherlands
| | - Klaas W Mulder
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life SciencesRadboud UniversityNijmegenThe Netherlands
| | - Nesimi Büyükbabani
- Department of Pathology, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
- Department of Medical GeneticsKoc University HospitalIstanbulTurkey
| | - Birsen Karaman
- Department of Medical Genetics, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
- Department of Pediatric Basic Sciences, Child Health InstituteIstanbul UniversityIstanbulTurkey
| | - Zehra O Uyguner
- Department of Medical Genetics, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
| | - Hülya Kayserili
- Department of Medical Genetics, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
- Department of Medical GeneticsKoc University School of Medicine (KUSOM)IstanbulTurkey
| | - Jan HJ Hoeijmakers
- Department of Molecular GeneticsErasmus MC Cancer InstituteRotterdamThe Netherlands
- Institute for Genome Stability in Aging and Disease, CECAD ForschungszentrumUniversity Hospital of CologneKölnGermany
- Princess Máxima Center for Pediatric OncologyONCODE InstituteUtrechtThe Netherlands
| | - Hannes Lans
- Department of Molecular GeneticsErasmus MC Cancer InstituteRotterdamThe Netherlands
| | | | - Joris Pothof
- Department of Molecular GeneticsErasmus MC Cancer InstituteRotterdamThe Netherlands
| | - Umut Altunoglu
- Department of Medical Genetics, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
- Department of Medical GeneticsKoc University School of Medicine (KUSOM)IstanbulTurkey
| | | | - Wim Vermeulen
- Department of Molecular GeneticsErasmus MC Cancer InstituteRotterdamThe Netherlands
| |
Collapse
|
44
|
Helm M, Schmidt M, Del Duca E, Liu Y, Mortensen LS, Loui J, Zheng Y, Binder H, Guttman-Yassky E, Cotsarelis G, Simon JC, Ferrer RA. Repurposing DPP4 Inhibition to Improve Hair Follicle Activation and Regeneration. J Invest Dermatol 2023; 143:2132-2144.e15. [PMID: 37236597 DOI: 10.1016/j.jid.2023.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Skin injury and several diseases elicit fibrosis and induce hair follicle (HF) growth arrest and loss. The resulting alopecia and disfiguration represent a severe burden for patients, both physically and psychologically. Reduction of profibrotic factors such as dipeptidyl peptidase 4 (DPP4) might be a strategy to tackle this issue. We show DPP4 overrepresentation in settings with HF growth arrest (telogen), HF loss, and nonregenerative wound areas in mouse skin and human scalp. Topical DPP4 inhibition with Food and Drug Administration/European Medicines Agency-approved sitagliptin on preclinical models of murine HF activation/regeneration results in accelerated anagen progress, whereas treatment of wounds with sitagliptin results in reduced expression of fibrosis markers, increased induction of anagen around wounds, and HF regeneration in the wound center. These effects are associated with higher expression of Wnt target Lef1, known to be required for HF anagen/HF-activation and regeneration. Sitagliptin treatment decreases profibrotic signaling in the skin, induces a differentiation trajectory of HF cells, and activates Wnt targets related to HF activation/growth but not those supporting fibrosis. Taken together, our study shows a role for DPP4 in HF biology and shows how DPP4 inhibition, currently used as oral medication to treat diabetes, could be repurposed into a topical treatment agent to potentially reverse HF loss in alopecia and after injury.
Collapse
Affiliation(s)
- Maria Helm
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Center, University Leipzig, Leipzig, Germany
| | - Maria Schmidt
- Interdisciplinary Center for Bioinformatics, University Leipzig, Leipzig, Germany
| | - Ester Del Duca
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, Mount Sinai, New York City, New York, USA
| | - Ying Liu
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, Mount Sinai, New York City, New York, USA
| | - Lena Sünke Mortensen
- Interdisciplinary Center for Bioinformatics, University Leipzig, Leipzig, Germany
| | - Juliane Loui
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Center, University Leipzig, Leipzig, Germany
| | - Ying Zheng
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hans Binder
- Interdisciplinary Center for Bioinformatics, University Leipzig, Leipzig, Germany
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, Mount Sinai, New York City, New York, USA
| | - George Cotsarelis
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jan C Simon
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Center, University Leipzig, Leipzig, Germany
| | - Rubén A Ferrer
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Center, University Leipzig, Leipzig, Germany.
| |
Collapse
|
45
|
Thrane K, Winge MCG, Wang H, Chen L, Guo MG, Andersson A, Abalo XM, Yang X, Kim DS, Longo SK, Soong BY, Meyers JM, Reynolds DL, McGeever A, Demircioglu D, Hasson D, Mirzazadeh R, Rubin AJ, Bae GH, Karkanias J, Rieger K, Lundeberg J, Ji AL. Single-Cell and Spatial Transcriptomic Analysis of Human Skin Delineates Intercellular Communication and Pathogenic Cells. J Invest Dermatol 2023; 143:2177-2192.e13. [PMID: 37142187 PMCID: PMC10592679 DOI: 10.1016/j.jid.2023.02.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/26/2023] [Accepted: 02/16/2023] [Indexed: 05/06/2023]
Abstract
Epidermal homeostasis is governed by a balance between keratinocyte proliferation and differentiation with contributions from cell-cell interactions, but conserved or divergent mechanisms governing this equilibrium across species and how an imbalance contributes to skin disease are largely undefined. To address these questions, human skin single-cell RNA sequencing and spatial transcriptomics data were integrated and compared with mouse skin data. Human skin cell-type annotation was improved using matched spatial transcriptomics data, highlighting the importance of spatial context in cell-type identity, and spatial transcriptomics refined cellular communication inference. In cross-species analyses, we identified a human spinous keratinocyte subpopulation that exhibited proliferative capacity and a heavy metal processing signature, which was absent in mouse and may account for species differences in epidermal thickness. This human subpopulation was expanded in psoriasis and zinc-deficiency dermatitis, attesting to disease relevance and suggesting a paradigm of subpopulation dysfunction as a hallmark of the disease. To assess additional potential subpopulation drivers of skin diseases, we performed cell-of-origin enrichment analysis within genodermatoses, nominating pathogenic cell subpopulations and their communication pathways, which highlighted multiple potential therapeutic targets. This integrated dataset is encompassed in a publicly available web resource to aid mechanistic and translational studies of normal and diseased skin.
Collapse
Affiliation(s)
- Kim Thrane
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Solna, Sweden
| | - Mårten C G Winge
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Hongyu Wang
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Black Family Stem Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Larry Chen
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Black Family Stem Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Margaret G Guo
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA; Biomedical Informatics Program, Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California, USA
| | - Alma Andersson
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Solna, Sweden
| | - Xesús M Abalo
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Solna, Sweden
| | - Xue Yang
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Daniel S Kim
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA; Biomedical Informatics Program, Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California, USA
| | - Sophia K Longo
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Brian Y Soong
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Black Family Stem Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jordan M Meyers
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - David L Reynolds
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Aaron McGeever
- Chan Zuckerberg Biohub San Francisco, San Francisco, California, USA
| | - Deniz Demircioglu
- Bioinformatics for Next Generation Sequencing Core, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dan Hasson
- Bioinformatics for Next Generation Sequencing Core, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Reza Mirzazadeh
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Solna, Sweden
| | - Adam J Rubin
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Gordon H Bae
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Jim Karkanias
- Chan Zuckerberg Biohub San Francisco, San Francisco, California, USA
| | - Kerri Rieger
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Joakim Lundeberg
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Solna, Sweden
| | - Andrew L Ji
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Black Family Stem Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
46
|
Manchanda M, Torres M, Inuossa F, Bansal R, Kumar R, Hunt M, Wheelock CE, Bachar-Wikstrom E, Wikstrom JD. Metabolic Reprogramming and Reliance in Human Skin Wound Healing. J Invest Dermatol 2023; 143:2039-2051.e10. [PMID: 37061123 DOI: 10.1016/j.jid.2023.02.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 01/18/2023] [Accepted: 02/01/2023] [Indexed: 04/17/2023]
Abstract
Impaired skin wound healing is a significant global health issue, especially among the elderly. Wound healing is a well-orchestrated process involving the sequential phases of inflammation, proliferation, and tissue remodeling. Although wound healing is a highly dynamic and energy-requiring process, the role of metabolism remains largely unexplored. By combining transcriptomics and metabolomics of human skin biopsy samples, we mapped the core bioenergetic and metabolic changes in normal acute as well as chronic wounds in elderly subjects. We found upregulation of glycolysis, the tricarboxylic acid cycle, glutaminolysis, and β-oxidation in the later stages of acute wound healing and in chronic wounds. To ascertain the role of these metabolic pathways on wound healing, we targeted each pathway in a wound healing assay as well as in a human skin explant model using metabolic inhibitors and stimulants. Enhancement or inhibition of glycolysis and, to a lesser extent, glutaminolysis had a far greater impact on wound healing than similar manipulations of oxidative phosphorylation and fatty acid β-oxidation. These findings increase the understanding of wound metabolism and identify glycolysis and glutaminolysis as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Mansi Manchanda
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Monica Torres
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden; Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Farydah Inuossa
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Ritu Bansal
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Rahul Kumar
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, India
| | - Matthew Hunt
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Research Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden; Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan
| | - Etty Bachar-Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Jakob D Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden; Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
47
|
Veniaminova NA, Jia YY, Hartigan AM, Huyge TJ, Tsai SY, Grachtchouk M, Nakagawa S, Dlugosz AA, Atwood SX, Wong SY. Distinct mechanisms for sebaceous gland self-renewal and regeneration provide durability in response to injury. Cell Rep 2023; 42:113121. [PMID: 37715952 PMCID: PMC10591672 DOI: 10.1016/j.celrep.2023.113121] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/01/2023] [Accepted: 08/25/2023] [Indexed: 09/18/2023] Open
Abstract
Sebaceous glands (SGs) release oils that protect our skin, but how these glands respond to injury has not been previously examined. Here, we report that SGs are largely self-renewed by dedicated stem cell pools during homeostasis. Using targeted single-cell RNA sequencing, we uncovered both direct and indirect paths by which resident SG progenitors ordinarily differentiate into sebocytes, including transit through a Krt5+PPARγ+ transitional basal cell state. Upon skin injury, however, SG progenitors depart their niche, reepithelialize the wound, and are replaced by hair-follicle-derived stem cells. Furthermore, following targeted genetic ablation of >99% of SGs from dorsal skin, these glands unexpectedly regenerate within weeks. This regenerative process is mediated by alternative stem cells originating from the hair follicle bulge, is dependent upon FGFR2 signaling, and can be accelerated by inducing hair growth. Altogether, our studies demonstrate that stem cell plasticity promotes SG durability following injury.
Collapse
Affiliation(s)
- Natalia A Veniaminova
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yunlong Y Jia
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Adrien M Hartigan
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas J Huyge
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shih-Ying Tsai
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marina Grachtchouk
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Seitaro Nakagawa
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Dermatology, Department of Cutaneous Immunology and Microbiology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Andrzej A Dlugosz
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Scott X Atwood
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA.
| | - Sunny Y Wong
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
48
|
Raja E, Clarin MTRDC, Yanagisawa H. Matricellular Proteins in the Homeostasis, Regeneration, and Aging of Skin. Int J Mol Sci 2023; 24:14274. [PMID: 37762584 PMCID: PMC10531864 DOI: 10.3390/ijms241814274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Matricellular proteins are secreted extracellular proteins that bear no primary structural functions but play crucial roles in tissue remodeling during development, homeostasis, and aging. Despite their low expression after birth, matricellular proteins within skin compartments support the structural function of many extracellular matrix proteins, such as collagens. In this review, we summarize the function of matricellular proteins in skin stem cell niches that influence stem cells' fate and self-renewal ability. In the epidermal stem cell niche, fibulin 7 promotes epidermal stem cells' heterogeneity and fitness into old age, and the transforming growth factor-β-induced protein ig-h3 (TGFBI)-enhances epidermal stem cell growth and wound healing. In the hair follicle stem cell niche, matricellular proteins such as periostin, tenascin C, SPARC, fibulin 1, CCN2, and R-Spondin 2 and 3 modulate stem cell activity during the hair cycle and may stabilize arrector pili muscle attachment to the hair follicle during piloerections (goosebumps). In skin wound healing, matricellular proteins are upregulated, and their functions have been examined in various gain-and-loss-of-function studies. However, much remains unknown concerning whether these proteins modulate skin stem cell behavior, plasticity, or cell-cell communications during wound healing and aging, leaving a new avenue for future studies.
Collapse
Affiliation(s)
- Erna Raja
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; (E.R.); (M.T.R.D.C.C.)
| | - Maria Thea Rane Dela Cruz Clarin
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; (E.R.); (M.T.R.D.C.C.)
- Ph.D. Program in Humanics, School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba 305-8577, Japan
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; (E.R.); (M.T.R.D.C.C.)
| |
Collapse
|
49
|
Hunt M, Torres M, Bachar-Wikström E, Wikström JD. Multifaceted roles of mitochondria in wound healing and chronic wound pathogenesis. Front Cell Dev Biol 2023; 11:1252318. [PMID: 37771375 PMCID: PMC10523588 DOI: 10.3389/fcell.2023.1252318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Mitochondria are intracellular organelles that play a critical role in numerous cellular processes including the regulation of metabolism, cellular stress response, and cell fate. Mitochondria themselves are subject to well-orchestrated regulation in order to maintain organelle and cellular homeostasis. Wound healing is a multifactorial process that involves the stringent regulation of several cell types and cellular processes. In the event of dysregulated wound healing, hard-to-heal chronic wounds form and can place a significant burden on healthcare systems. Importantly, treatment options remain limited owing to the multifactorial nature of chronic wound pathogenesis. One area that has received more attention in recent years is the role of mitochondria in wound healing. With regards to this, current literature has demonstrated an important role for mitochondria in several areas of wound healing and chronic wound pathogenesis including metabolism, apoptosis, and redox signalling. Additionally, the influence of mitochondrial dynamics and mitophagy has also been investigated. However, few studies have utilised patient tissue when studying mitochondria in wound healing, instead using various animal models. In this review we dissect the current knowledge of the role of mitochondria in wound healing and discuss how future research can potentially aid in the progression of wound healing research.
Collapse
Affiliation(s)
- Matthew Hunt
- Dermatology and Venerology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Monica Torres
- Dermatology and Venerology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Etty Bachar-Wikström
- Dermatology and Venerology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Jakob D. Wikström
- Dermatology and Venerology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
50
|
Sawaya AP, Vecin NM, Burgess JL, Ojeh N, DiBartolomeo G, Stone RC, Pastar I, Tomic-Canic M. Calreticulin: a multifunctional protein with potential therapeutic applications for chronic wounds. Front Med (Lausanne) 2023; 10:1207538. [PMID: 37692787 PMCID: PMC10484228 DOI: 10.3389/fmed.2023.1207538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Calreticulin is recognized as a multifunctional protein that serves an essential role in diverse biological processes that include wound healing, modification and folding of proteins, regulation of the secretory pathway, cell motility, cellular metabolism, protein synthesis, regulation of gene expression, cell cycle regulation and apoptosis. Although the role of calreticulin as an endoplasmic reticulum-chaperone protein has been well described, several studies have demonstrated calreticulin to be a highly versatile protein with an essential role during wound healing. These features make it an ideal molecule for treating a complex, multifactorial diseases that require fine tuning, such as chronic wounds. Indeed, topical application of recombinant calreticulin to wounds in multiple models of wound healing has demonstrated remarkable pro-healing effects. Among them include enhanced keratinocyte and fibroblast migration and proliferation, induction of extracellular matrix proteins, recruitment of macrophages along with increased granulation tissue formation, all of which are important functions in promoting wound healing that are deregulated in chronic wounds. Given the high degree of diverse functions and pro-healing effects, application of exogenous calreticulin warrants further investigation as a potential novel therapeutic option for chronic wound patients. Here, we review and highlight the significant effects of topical application of calreticulin on enhancing wound healing and its potential as a novel therapeutic option to shift chronic wounds into healing, acute-like wounds.
Collapse
Affiliation(s)
- Andrew P. Sawaya
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nicole M. Vecin
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jamie L. Burgess
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nkemcho Ojeh
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Faculty of Medical Sciences, The University of the West Indies, Bridgetown, Barbados
| | - Gabrielle DiBartolomeo
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Rivka C. Stone
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|