1
|
Matsuoka S, Eguchi T, Iwaya M, Seshimoto M, Mishima S, Hara D, Kumeda H, Miura K, Hamanaka K, Uehara T, Shimizu K. Prognostic significance of immune-cell distribution and tumoral spread through air spaces - Multiplex spatial immunophenotyping analysis. Heliyon 2024; 10:e37412. [PMID: 39296057 PMCID: PMC11408789 DOI: 10.1016/j.heliyon.2024.e37412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024] Open
Abstract
Objectives Spread through air spaces (STAS) is a form of lung cancer invasion that extends beyond the tumor edge and is associated with a worse prognosis. Recent advances in immunotherapy highlight the importance of understanding the tumor microenvironment. This study aimed to investigate the prognostic significance of immune-cell distribution in lung cancer, focusing on the association with STAS. Materials and methods We retrospectively analyzed 283 patients who underwent curative-intent lung resection for primary lung cancer. Multiplex immunofluorescence staining/phenotyping was performed on tissue microarrays to assess the distribution of CD4, CD8, CD20, CD68, and FoxP3 immune cells within the center and tumor edge. We defined the delta-Edge value (Δ) as the difference in the number of immune cells between the tumor edge and center. Recurrence-free probability (RFP) was analyzed using Kaplan-Meier and Cox proportional hazard models. Results High ΔCD4 and ΔCD8 values were significantly associated with worse RFP. In stage I adenocarcinoma patients, STAS, and high ΔCD8 were independent risk factors for recurrence. Effect modification analysis revealed that high ΔFoxP3 was significantly associated with worse RFP in patients with STAS, but not in those without STAS. Patients with STAS and high Δimmune cell values had the lowest RFP among all groups. Conclusion Immune-cell distribution, particularly CD4, CD8, and FoxP3, is a crucial prognostic factor in lung cancer. STAS and specific immune cell distribution patterns can be used to further stratify patient prognosis. Understanding these interactions may provide insights into potential therapeutic targets for personalized lung cancer treatment.
Collapse
Affiliation(s)
- Shunichiro Matsuoka
- Division of General Thoracic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takashi Eguchi
- Division of General Thoracic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Mai Iwaya
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Maho Seshimoto
- Division of General Thoracic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shuji Mishima
- Division of General Thoracic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Daisuke Hara
- Division of General Thoracic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hirotaka Kumeda
- Division of General Thoracic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kentaro Miura
- Division of General Thoracic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kazutoshi Hamanaka
- Division of General Thoracic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kimihiro Shimizu
- Division of General Thoracic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
2
|
Moghaddam SJ, Savai R, Salehi-Rad R, Sengupta S, Kammer MN, Massion P, Beane JE, Ostrin EJ, Priolo C, Tennis MA, Stabile LP, Bauer AK, Sears CR, Szabo E, Rivera MP, Powell CA, Kadara H, Jenkins BJ, Dubinett SM, Houghton AM, Kim CF, Keith RL. Premalignant Progression in the Lung: Knowledge Gaps and Novel Opportunities for Interception of Non-Small Cell Lung Cancer. An Official American Thoracic Society Research Statement. Am J Respir Crit Care Med 2024; 210:548-571. [PMID: 39115548 PMCID: PMC11389570 DOI: 10.1164/rccm.202406-1168st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Indexed: 08/13/2024] Open
Abstract
Rationale: Despite significant advances in precision treatments and immunotherapy, lung cancer is the most common cause of cancer death worldwide. To reduce incidence and improve survival rates, a deeper understanding of lung premalignancy and the multistep process of tumorigenesis is essential, allowing timely and effective intervention before cancer development. Objectives: To summarize existing information, identify knowledge gaps, formulate research questions, prioritize potential research topics, and propose strategies for future investigations into the premalignant progression in the lung. Methods: An international multidisciplinary team of basic, translational, and clinical scientists reviewed available data to develop and refine research questions pertaining to the transformation of premalignant lung lesions to advanced lung cancer. Results: This research statement identifies significant gaps in knowledge and proposes potential research questions aimed at expanding our understanding of the mechanisms underlying the progression of premalignant lung lesions to lung cancer in an effort to explore potential innovative modalities to intercept lung cancer at its nascent stages. Conclusions: The identified gaps in knowledge about the biological mechanisms of premalignant progression in the lung, together with ongoing challenges in screening, detection, and early intervention, highlight the critical need to prioritize research in this domain. Such focused investigations are essential to devise effective preventive strategies that may ultimately decrease lung cancer incidence and improve patient outcomes.
Collapse
|
3
|
Huo H, Feng Y, Tang Q. Effect of ZIC2 on immune infiltration and ceRNA axis regulation in lung adenocarcinoma via bioinformatics and experimental studies. Mol Cell Probes 2024; 76:101971. [PMID: 38977039 DOI: 10.1016/j.mcp.2024.101971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/16/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
OBJECTIVE This study aimed to conclude the effect and mechanism of ZIC2 on immune infiltration in lung adenocarcinoma (LUAD). METHODS Expression of ZIC2 in several kinds of normal tissues of TCGA data was analyzed and its correlation with the baseline characteristic of LUAD patients were analyzed. The immune infiltration analysis of LUAD patients was performed by CIBERSORT algorithm. The correlation analysis between ZIC2 and immune cell composition was performed. Additionally, the potential upstream regulatory mechanisms of ZIC2 were predicted to identify the possible miRNAs and lncRNAs that regulated ZIC2 in LUAD. In vitro and in vivo experiments were also conducted to confirm the potential effect of ZIC2 on cell proliferation and invasion ability of LUAD cells. RESULTS ZIC2 expression was decreased in various normal tissues, but increased in multiple tumors, including LUAD, and correlated with the prognosis of LUAD patients. Enrichment by GO and KEGG suggested the possible association of ZIC2 with cell cycle and p53 signal pathway. ZIC2 expression was significantly correlated with T cells CD4 memory resting, Macrophages M1, and plasma cells, indicating that dysregulated ZIC2 expression in LUAD may directly influence immune infiltration. ZIC2 might be regulated by several different lncRNA-mediated ceRNA mechanisms. In vitro experiments validated the promotive effect of ZIC2 on cell viability and invasion ability of LUAD cells. In vivo experiments validated ZIC2 can accelerate tumor growth in nude mouse. CONCLUSION ZIC2 regulated by different lncRNA-mediated ceRNA mechanisms may play a critical regulatory role in LUAD through mediating the composition of immune cells in tumor microenvironment.
Collapse
Affiliation(s)
- Hongjie Huo
- Department of Respiratory Medicine, Tianjin Union Medical Center, Tianjin, 300121, PR China
| | - Yu Feng
- Department of Respiratory Medicine, Tianjin Union Medical Center, Tianjin, 300121, PR China
| | - Qiong Tang
- Department of Respiratory Medicine, Tianjin Union Medical Center, Tianjin, 300121, PR China.
| |
Collapse
|
4
|
Zhao C, Xiao R, Jin H, Li X. The immune microenvironment of lung adenocarcinoma featured with ground-glass nodules. Thorac Cancer 2024; 15:1459-1470. [PMID: 38923346 PMCID: PMC11219292 DOI: 10.1111/1759-7714.15380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
Early-stage lung cancer is now more commonly identified in the form of ground-glass nodules (GGNs). Presently, the treatment of lung cancer with GGNs mainly depends on surgery; however, issues still exist such as overtreatment and delayed treatment due to the nonuniform standard of follow-up. Therefore, the discovery of a noninvasive treatment could expand the treatment repertoire of ground-glass nodular lung cancer and benefit the prognosis of patients. Immunotherapy has recently emerged as a new promising approach in the field of lung cancer treatment. Thus, this study presents a comprehensive review of the immune microenvironment of lung cancer with GGNs and describes the functions and characteristics of various immune cells involved, aiming to provide guidance for the clinical identification of novel immunotherapeutic targets.
Collapse
Affiliation(s)
- Changtai Zhao
- Department of Thoracic SurgeryThoracic Oncology Institute, Peking University People's HospitalBeijingChina
| | - Rongxin Xiao
- Department of Thoracic SurgeryThoracic Oncology Institute, Peking University People's HospitalBeijingChina
| | - Hongming Jin
- Department of Thoracic SurgeryThoracic Oncology Institute, Peking University People's HospitalBeijingChina
| | - Xiao Li
- Department of Thoracic SurgeryThoracic Oncology Institute, Peking University People's HospitalBeijingChina
| |
Collapse
|
5
|
Chen M, Ding L, Deng S, Li J, Li X, Jian M, Xu Y, Chen Z, Yan C. Differentiating the Invasiveness of Lung Adenocarcinoma Manifesting as Ground Glass Nodules: Combination of Dual-energy CT Parameters and Quantitative-semantic Features. Acad Radiol 2024; 31:2962-2972. [PMID: 38508939 DOI: 10.1016/j.acra.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 03/22/2024]
Abstract
RATIONALE AND OBJECTIVES To evaluate the diagnostic performance of dual-energy CT (DECT) parameters and quantitative-semantic features for differentiating the invasiveness of lung adenocarcinoma manifesting as ground glass nodules (GGNs). MATERIALS AND METHODS Between June 2022 and September 2023, 69 patients with 74 surgically resected GGNs who underwent DECT examinations were included. CT numbers on virtual monochromatic images were calculated at 40-130 keV generated from DECT. Quantitative morphological measurements and semantic features were evaluated on unenhanced CT images and compared between pathologically confirmed adenocarcinoma in situ (AIS)-minimally invasive adenocarcinoma (MIA) and invasive lung adenocarcinoma (IAC). Multivariable logistic regression analysis was used to identify independent predictors. The diagnostic performance was assessed by the area under the receiver operating characteristic curve (AUC) and compared using DeLong's test. RESULTS Monochromatic CT numbers at 40-130 keV were significantly higher in IAC than in AIS-MIA (all P < 0.05). Multivariate logistic analysis revealed that CT number of 130 keV (odds ratio [OR] = 1.02, P = 0.013), maximum cross-sectional long diameter (OR =1.40, P = 0.014), deep or moderate lobulation sign (OR =19.88, P = 0.005), and abnormal intranodular vessel morphology (OR = 25.57, P = 0.017) were independent predictors of IAC. The combined prediction model showed a favorable differentiation performance with an AUC of 0.966 (95.2% sensitivity, 94.3% specificity, 94.8% accuracy), which was significantly higher than that for each risk factor (AUC = 0.791-0.822, all P < 0.05). CONCLUSION A multi-parameter combined prediction model integrating monochromatic CT numbers from DECT and quantitative-semantic features is promising for the preoperative discrimination of IAC and AIS-MIA in GGN-predominant lung adenocarcinoma.
Collapse
Affiliation(s)
- Mingwang Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Li Ding
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Shuting Deng
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Jingxu Li
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.
| | - Xiaomei Li
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Mingjue Jian
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Zhao Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Chenggong Yan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
6
|
Cheng Y, Song Z. The identification of hub genes associated with pure ground glass nodules using weighted gene co-expression network analysis. BMC Pulm Med 2024; 24:275. [PMID: 38858671 PMCID: PMC11165796 DOI: 10.1186/s12890-024-03072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/21/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Whether there are invasive components in pure ground glass nodules(pGGNs) in the lungs is still a huge challenge to forecast. The objective of our study is to investigate and identify the potential biomarker genes for pure ground glass nodule(pGGN) based on the method of bioinformatics analysis. METHODS To investigate differentially expressed genes (DEGs), firstly the data obtained from the gene expression omnibus (GEO) database was used.Next Weighted gene co-expression network analysis (WGCNA) investigate the co-expression network of DEGs. The black key module was chosen as the key one in correlation with pGGN. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analyses were done. Then STRING was uesd to create a protein-protein interaction (PPI) network, and the chosen module genes were analyzed by Cytoscape software.In addition the polymerase chain reaction (PCR) was used to evaluate the value of these hub genes in pGGN patients' tumor tissues compared to controls. RESULTS A total of 4475 DEGs were screened out from GSE193725, then 225 DEGs were identified in black key module, which were found to be enriched for various functions and pathways, such as extracellular exosome, vesicle, ribosome and so on. Among these DEGs, 6 overlapped hub genes with high degrees of stress method were selected. These hub genes include RPL4, RPL8, RPLP0, RPS16, RPS2 and CCT3.At last relative expression levels of CCT3 and RPL8 mRNA were both regulated in pGGN patients' tumor tissues compared to controls. CONCLUSIONS To summarize, the determined DEGs, pathways, modules, and overlapped hub genes can throw light on the potential molecular mechanisms of pGGN.
Collapse
Affiliation(s)
- Yuan Cheng
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Department of Thoracic Surgery, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, 063000, China
| | - Zuoqing Song
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
7
|
Chen F, Li J, Li L, Tong L, Wang G, Zou X. Multidimensional biological characteristics of ground glass nodules. Front Oncol 2024; 14:1380527. [PMID: 38841161 PMCID: PMC11150621 DOI: 10.3389/fonc.2024.1380527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024] Open
Abstract
The detection rate of ground glass nodules (GGNs) has increased in recent years because of their malignant potential but relatively indolent biological behavior; thus, correct GGN recognition and management has become a research focus. Many scholars have explored the underlying mechanism of the indolent progression of GGNs from several perspectives, such as pathological type, genomic mutational characteristics, and immune microenvironment. GGNs have different major mutated genes at different stages of development; EGFR mutation is the most common mutation in GGNs, and p53 mutation is the most abundant mutation in the invasive stage of GGNs. Pure GGNs have fewer genomic alterations and a simpler genomic profile and exhibit a gradually evolving genomic mutation profile as the pathology progresses. Compared to advanced lung adenocarcinoma, GGN lung adenocarcinoma has a higher immune cell percentage, is under immune surveillance, and has less immune escape. However, as the pathological progression and solid component increase, negative immune regulation and immune escape increase gradually, and a suppressive immune environment is established gradually. Currently, regular computer tomography monitoring and surgery are the main treatment strategies for persistent GGNs. Stereotactic body radiotherapy and radiofrequency ablation are two local therapeutic alternatives, and systemic therapy has been progressively studied for lung cancer with GGNs. In the present review, we discuss the characterization of the multidimensional molecular evolution of GGNs that could facilitate more precise differentiation of such highly heterogeneous lesions, laying a foundation for the development of more effective individualized treatment plans.
Collapse
Affiliation(s)
- Furong Chen
- Department of Oncology, The First People’s Hospital of Shuangliu District/West China (Airport) Hospital, Sichuan University, Chengdu, China
| | - Jiangtao Li
- Department of Oncology, The First People’s Hospital of Shuangliu District/West China (Airport) Hospital, Sichuan University, Chengdu, China
| | - Lei Li
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
- Department of State Key Laboratory of Respiratory Health and Multimobidity, West China Hospital, Sichuan University, Chengdu, China
| | - Lunbing Tong
- Department of Respiratory Medicine, Chengdu Seventh People’s Hospital/Affiliated Cancer Hospital of Chengdu Medical College, Chengdu, China
| | - Gang Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
- Department of State Key Laboratory of Respiratory Health and Multimobidity, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelin Zou
- Department of Respiratory Medicine, Chengdu Seventh People’s Hospital/Affiliated Cancer Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
8
|
Blomberg R, Sompel K, Hauer C, Smith AJ, Peña B, Driscoll J, Hume PS, Merrick DT, Tennis MA, Magin CM. Hydrogel-Embedded Precision-Cut Lung Slices Model Lung Cancer Premalignancy Ex Vivo. Adv Healthc Mater 2024; 13:e2302246. [PMID: 37953708 PMCID: PMC10872976 DOI: 10.1002/adhm.202302246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/17/2023] [Indexed: 11/14/2023]
Abstract
Lung cancer is the leading global cause of cancer-related deaths. Although smoking cessation is the best prevention, 50% of lung cancer diagnoses occur in people who have quit smoking. Research into treatment options for high-risk patients is constrained to rodent models, which are time-consuming, expensive, and require large cohorts. Embedding precision-cut lung slices (PCLS) within an engineered hydrogel and exposing this tissue to vinyl carbamate, a carcinogen from cigarette smoke, creates an in vitro model of lung cancer premalignancy. Hydrogel formulations are selected to promote early lung cancer cellular phenotypes and extend PCLS viability to six weeks. Hydrogel-embedded PCLS are exposed to vinyl carbamate, which induces adenocarcinoma in mice. Analysis of proliferation, gene expression, histology, tissue stiffness, and cellular content after six weeks reveals that vinyl carbamate induces premalignant lesions with a mixed adenoma/squamous phenotype. Putative chemoprevention agents diffuse through the hydrogel and induce tissue-level changes. The design parameters selected using murine tissue are validated with hydrogel-embedded human PCLS and results show increased proliferation and premalignant lesion gene expression patterns. This tissue-engineered model of human lung cancer premalignancy is the foundation for more sophisticated ex vivo models that enable the study of carcinogenesis and chemoprevention strategies.
Collapse
Affiliation(s)
- Rachel Blomberg
- Department of Bioengineering, University of Colorado, Denver |Anschutz, Aurora, CO, 80045, USA
| | - Kayla Sompel
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Caroline Hauer
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Alex J Smith
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Brisa Peña
- Department of Bioengineering, University of Colorado, Denver |Anschutz, Aurora, CO, 80045, USA
- Cardiovascular Institute & Adult Medical Genetics, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Jennifer Driscoll
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Patrick S Hume
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Daniel T Merrick
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Meredith A Tennis
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Chelsea M Magin
- Department of Bioengineering, University of Colorado, Denver |Anschutz, Aurora, CO, 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
9
|
Villa Hernandez F, Tolunay UT, Demblowski LA, Wang H, Carr SR, Hoang CD, Choo-Wosoba H, Steinberg SM, Zeiger MA, Schrump DS. Current status of National Institutes of Health funding for thoracic surgeons in the United States: Beacon of hope or candle in the wind? J Thorac Cardiovasc Surg 2024; 167:271-280.e4. [PMID: 36456359 PMCID: PMC10704923 DOI: 10.1016/j.jtcvs.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Increasing forces threaten the viability of thoracic surgeon-initiated research, a core component of our academic mission. National Institutes of Health funding is a benchmark of research productivity and innovation. This study examined the current status of National Institutes of Health funding for thoracic surgeons. METHODS Thoracic surgeon principal investigators on National Institutes of Health-funded grants during June 2010, June 2015, and June 2020 were identified using National Institutes of Health iSearchGrants (version 2.4). American Association of Medical Colleges data were used to identify all surgeons in the United States. Types and total costs of National Institutes of Health-funded grants were compared relative to other surgical specialties. RESULTS A total of 61 of 4681 (1.3%), 63 of 4484 (1.4%), and 60 of 4497 (1.3%) thoracic surgeons were principal investigators on 79, 76, and 87 National Institutes of Health-funded grants in 2010, 2015, and 2020, respectively; these rates were higher than those for most other surgical specialties (P ≤ .0001). Total National Institutes of Health costs for Thoracic Surgeon-initiated grants increased 57% from 2010 to 2020, outpacing the 33% increase in total National Institutes of Health budget. Numbers and types of grants varied among cardiovascular, transplant, and oncology subgroups. Although the majority of grants and costs were cardiovascular related, increased National Institutes of Health expenditures primarily were due to funding for transplant and oncology grants. Per-capita costs were highest for transplant-related grants during both years. Percentages of R01-to-total costs were constant at 55%. Rates and levels of funding for female versus male thoracic surgeons were comparable. Awards to 5 surgeons accounted for 33% of National Institutes of Health costs for thoracic surgeon principal investigators in 2020; a similar phenomenon was observed for 2010 and 2015. CONCLUSIONS Long-term structural changes must be implemented to more effectively nurture the next generation of thoracic surgeon scientists.
Collapse
Affiliation(s)
- Frank Villa Hernandez
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Md; Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, Md
| | - Umay Tuana Tolunay
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Md
| | - Lindsay A Demblowski
- Office of Surgeon Scientists Programs, Center for Cancer Research, National Cancer Institute, Bethesda, Md
| | - Haitao Wang
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Md
| | - Shamus R Carr
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Md
| | - Chuong D Hoang
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Md
| | - Hyoyoung Choo-Wosoba
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, Md
| | - Seth M Steinberg
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, Md
| | - Martha A Zeiger
- Office of Surgeon Scientists Programs, Center for Cancer Research, National Cancer Institute, Bethesda, Md
| | - David S Schrump
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Md.
| |
Collapse
|
10
|
Zhang R, Hong M, Cai H, Liang Y, Chen X, Liu Z, Wu M, Zhou C, Bao C, Wang H, Yang S, Hu Q. Predicting the pathological invasiveness in patients with a solitary pulmonary nodule via Shapley additive explanations interpretation of a tree-based machine learning radiomics model: a multicenter study. Quant Imaging Med Surg 2023; 13:7828-7841. [PMID: 38106261 PMCID: PMC10722047 DOI: 10.21037/qims-23-615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/08/2023] [Indexed: 12/19/2023]
Abstract
Background Radiomics models could help assess the benign and malignant invasiveness and prognosis of pulmonary nodules. However, the lack of interpretability limits application of these models. We thus aimed to construct and validate an interpretable and generalized computed tomography (CT) radiomics model to evaluate the pathological invasiveness in patients with a solitary pulmonary nodule in order to improve the management of these patients. Methods We retrospectively enrolled 248 patients with CT-diagnosed solitary pulmonary nodules. Radiomic features were extracted from nodular region and perinodular regions of 3 and 5 mm. After coarse-to-fine feature selection, the radiomics score (radscore) was calculated using the least absolute shrinkage and selection operator logistic method. Univariate and multivariate logistic regression analyses were performed to determine the invasiveness-related clinicoradiological factors. The clinical-radiomics model was then constructed using the logistic and extreme gradient boosting (XGBoost) algorithms. The Shapley additive explanations (SHAP) method was then used to explain the contributions of the features. After removing batch effects with the ComBat algorithm, we assessed the generalization of the explainable clinical-radiomics model in two independent external validation cohorts (n=147 and n=149). Results The clinical-radiomic XGBoost model integrating the radscore, CT value, nodule length, and crescent sign demonstrated better predictive performance than did the clinical-radiomics logistic model in assessing pulmonary nodule invasiveness, with an area under the receiver operating characteristic (ROC) curve (AUC) of 0.889 [95% confidence interval (CI), 0.848-0.927] in the training cohort. The SHAP algorithm illustrates the contribution of each feature in the final model. The specific model decision process was visualized using a tree-based decision heatmap. Satisfactory generalization performance was shown with AUCs of 0.889 (95% CI, 0.823-0.942) and 0.915 (95% CI, 0.851-0.963) in the two external validation cohorts. Conclusions An interpretable and generalized clinical-radiomics model for predicting pulmonary nodule invasibility was constructed to help clinicians determine the invasiveness of pulmonary nodules and devise assessment strategies in an easily understandable manner.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Minping Hong
- Department of Radiology, Jiaxing TCM Hospital Affiliated to Zhejiang Chinese Medical University, Jiaxing, China
| | - Hongjie Cai
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanting Liang
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xinjie Chen
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Ziwei Liu
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Meilian Wu
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Cuiru Zhou
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Chenzhengren Bao
- Department of Radiology, The Affiliated Chencun Hospital of Shunde Hospital, Southern Medical University (The Affiliated Chencun Hospital of The First People’s Hospital of Shunde), Foshan, China
| | - Huafeng Wang
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Shaomin Yang
- Department of Radiology, Lecong Hospital of Shunde, Foshan, China
| | - Qiugen Hu
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| |
Collapse
|
11
|
Villena-Vargas J. Sowing the Seeds of Evasion: Lung Adenocarcinoma Plans Its Escape. Ann Surg Oncol 2023; 30:6972-6973. [PMID: 37556012 DOI: 10.1245/s10434-023-14048-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023]
Affiliation(s)
- Jonathan Villena-Vargas
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Weill Cornell Medicine/New York Presbyterian Hospital, New York, NY, USA.
| |
Collapse
|
12
|
Dantas E, Murthy A, Ahmed T, Ahmed M, Ramsamooj S, Hurd MA, Lam T, Malbari M, Agrusa C, Elemento O, Zhang C, Pappin DJ, McGraw TE, Stiles BM, Altorki NK, Goncalves MD. TIMP1 is an early biomarker for detection and prognosis of lung cancer. Clin Transl Med 2023; 13:e1391. [PMID: 37759102 PMCID: PMC10533479 DOI: 10.1002/ctm2.1391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Lung cancer remains the major cause of cancer-related deaths worldwide. Early stages of lung cancer are characterized by long asymptomatic periods that are ineffectively identified with the current screening programs. This deficiency represents a lost opportunity to improve the overall survival of patients. Serum biomarkers are among the most effective strategies for cancer screening and follow up. METHODS Using bead-based multiplexing assays we screened plasma and tumours of the KrasG12D/+; Lkb1f/f (KL) mouse model of lung cancer for cytokines that could be used as biomarkers. We identified tissue inhibitor of metalloproteinase 1 (TIMP1) as an early biomarker and validated this finding in the plasma of lung cancer patients. We used immunohistochemistry (IHC), previously published single-cell RNA-seq and bulk RNA-seq data to assess the source and expression of TIMP1in the tumour. The prognostic value of TIMP1 was assessed using publicly available human proteomic and transcriptomic databases. RESULTS We found that TIMP1 is a tumour-secreted protein with high sensitivity and specificity for aggressive cancer, even at early stages in mice. We showed that TIMP1 levels in the tumour and serum correlate with tumour burden and worse survival in mice. We validated this finding using clinical samples from our institution and publicly available human proteomic and transcriptomic databases. These data support the finding that high tumour expression of TIMP1 correlates with an unfavorable prognosis in lung cancer patients. CONCLUSION TIMP1 is a suitable biomarker for lung cancer detection.
Collapse
Affiliation(s)
- Ezequiel Dantas
- Division of EndocrinologyDepartment of MedicineWeill Cornell MedicineNew YorkNew YorkUSA
- Meyer Cancer CenterWeill Cornell MedicineNew YorkNew YorkUSA
| | - Anirudh Murthy
- Division of EndocrinologyDepartment of MedicineWeill Cornell MedicineNew YorkNew YorkUSA
- Meyer Cancer CenterWeill Cornell MedicineNew YorkNew YorkUSA
| | - Tanvir Ahmed
- Division of EndocrinologyDepartment of MedicineWeill Cornell MedicineNew YorkNew YorkUSA
- Meyer Cancer CenterWeill Cornell MedicineNew YorkNew YorkUSA
| | - Mujmmail Ahmed
- Division of EndocrinologyDepartment of MedicineWeill Cornell MedicineNew YorkNew YorkUSA
- Meyer Cancer CenterWeill Cornell MedicineNew YorkNew YorkUSA
| | - Shakti Ramsamooj
- Division of EndocrinologyDepartment of MedicineWeill Cornell MedicineNew YorkNew YorkUSA
- Meyer Cancer CenterWeill Cornell MedicineNew YorkNew YorkUSA
| | - Maurice A. Hurd
- Division of EndocrinologyDepartment of MedicineWeill Cornell MedicineNew YorkNew YorkUSA
- Meyer Cancer CenterWeill Cornell MedicineNew YorkNew YorkUSA
| | - Tiffany Lam
- Weill Cornell Medical College, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Murtaza Malbari
- Division of Thoracic SurgeryWeill Cornell MedicineNew YorkNew YorkUSA
| | - Christopher Agrusa
- Weill Cornell Medical College, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Olivier Elemento
- Meyer Cancer CenterWeill Cornell MedicineNew YorkNew YorkUSA
- Englander Institute for Precision MedicineInstitute for Computational BiomedicineWeill Cornell MedicineNew YorkNew YorkUSA
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNew YorkUSA
| | - Chen Zhang
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkNew YorkUSA
| | | | - Timothy E. McGraw
- Meyer Cancer CenterWeill Cornell MedicineNew YorkNew YorkUSA
- Englander Institute for Precision MedicineInstitute for Computational BiomedicineWeill Cornell MedicineNew YorkNew YorkUSA
- Department of BiochemistryWeill Cornell MedicineNew YorkNew YorkUSA
| | - Brendon M. Stiles
- Department of Cardiothoracic and Vascular SurgeryAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Nasser K. Altorki
- Meyer Cancer CenterWeill Cornell MedicineNew YorkNew YorkUSA
- Englander Institute for Precision MedicineInstitute for Computational BiomedicineWeill Cornell MedicineNew YorkNew YorkUSA
| | - Marcus D. Goncalves
- Division of EndocrinologyDepartment of MedicineWeill Cornell MedicineNew YorkNew YorkUSA
- Meyer Cancer CenterWeill Cornell MedicineNew YorkNew YorkUSA
| |
Collapse
|
13
|
Khan NA, Asim M, Biswas KH, Alansari AN, Saman H, Sarwar MZ, Osmonaliev K, Uddin S. Exosome nanovesicles as potential biomarkers and immune checkpoint signaling modulators in lung cancer microenvironment: recent advances and emerging concepts. J Exp Clin Cancer Res 2023; 42:221. [PMID: 37641132 PMCID: PMC10463467 DOI: 10.1186/s13046-023-02753-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/08/2023] [Indexed: 08/31/2023] Open
Abstract
Lung cancer remains the leading cause of cancer-related deaths globally, and the survival rate remains low despite advances in diagnosis and treatment. The progression of lung cancer is a multifaceted and dynamic phenomenon that encompasses interplays among cancerous cells and their microenvironment, which incorporates immune cells. Exosomes, which are small membrane-bound vesicles, are released by numerous cell types in normal and stressful situations to allow communication between cells. Tumor-derived exosomes (TEXs) possess diverse neo-antigens and cargoes such as proteins, RNA, and DNA and have a unique molecular makeup reflecting tumor genetic complexity. TEXs contain both immunosuppressive and immunostimulatory factors and may play a role in immunomodulation by influencing innate and adaptive immune components. Moreover, they transmit signals that contribute to the progression of lung cancer by promoting metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, and immunosuppression. This makes them a valuable resource for investigating the immune environment of tumors, which could pave the way for the development of non-invasive biomarkers that could aid in the prognosis, diagnosis, and immunotherapy of lung cancer. While immune checkpoint inhibitor (ICI) immunotherapy has shown promising results in treating initial-stage cancers, most patients eventually develop adaptive resistance over time. Emerging evidence demonstrates that TEXs could serve as a prognostic biomarker for immunotherapeutic response and have a significant impact on both systemic immune suppression and tumor advancement. Therefore, understanding TEXs and their role in lung cancer tumorigenesis and their response to immunotherapies is an exciting research area and needs further investigation. This review highlights the role of TEXs as key contributors to the advancement of lung cancer and their clinical significance in lung immune-oncology, including their possible use as biomarkers for monitoring disease progression and prognosis, as well as emerging shreds of evidence regarding the possibility of using exosomes as targets to improve lung cancer therapy.
Collapse
Affiliation(s)
- Naushad Ahmad Khan
- Department of Surgery, Trauma and Vascular Surgery Clinical Research, Hamad General Hospital, 3050, Doha, Qatar.
- Faculty of Medical Sciences, Ala-Too International University, Bishkek, Kyrgyzstan.
| | - Mohammad Asim
- Department of Surgery, Trauma and Vascular Surgery Clinical Research, Hamad General Hospital, 3050, Doha, Qatar
| | - Kabir H Biswas
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Amani N Alansari
- Department of Surgery, Trauma and Vascular Surgery Clinical Research, Hamad General Hospital, 3050, Doha, Qatar
| | - Harman Saman
- Department of Medicine, Hazm Maubrairek Hospital, Al-Rayyan, Doha, 3050, Qatar
| | | | | | - Shahab Uddin
- Translational Research Institute & Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar.
- Department of Biosciences, Integral University, Lucknow, 226026, UP, India.
| |
Collapse
|
14
|
Shang J, Jiang H, Zhao Y, Lai J, Shi L, Yang J, Chen H, Zheng Y. Differences of molecular events driving pathological and radiological progression of lung adenocarcinoma. EBioMedicine 2023; 94:104728. [PMID: 37506543 PMCID: PMC10406962 DOI: 10.1016/j.ebiom.2023.104728] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Ground-glass opacity (GGO)-like lung adenocarcinoma (LUAD) has been detected increasingly in the clinic and its inert property and superior survival indicate unique biological characteristics. However, we do not know much about them, which hampers identification of key reasons for the inert property of GGO-like LUAD. METHODS Using whole-exome sequencing and RNA sequencing, taking into account both radiological and pathological classifications of the same 197 patients concomitantly, we systematically interrogate genes driving the progression from GGO to solid nodule and potential reasons for the inertia of GGO. Using flow cytometry and IHC, we validated the abundance of immune cells and activity of cell proliferation. FINDINGS Identifying the differences between GGO and solid nodule, we found adenocarcinoma in situ/minimally invasive adenocarcinoma (AIS/MIA) and GGO-like LUAD exhibited lower TP53 mutation frequency and less active cell proliferation-related pathways than solid nodule in LUAD. Identifying the differences in GGO between AIS/MIA and LUAD, we noticed that EGFR mutation frequency and CNV load were significantly higher in LUAD than in AIS/MIA. Regulatory T cell was also higher in LUAD, while CD8+ T cell decreased from AIS/MIA to LUAD. Finally, we constructed a transcriptomic signature to quantify the development from GGO to solid nodule, which was an independent predictor of patients' prognosis in 11 external LUAD datasets. INTERPRETATION Our results provide deeper insights into the indolent nature of GGO and provide a molecular basis for the treatment of GGO-like LUAD. FUNDING This study was supported in part by the National Natural Science Foundation of China (32170657), the National Natural Science Foundation of China (82203037), and Shanghai Sailing Program (22YF1408900).
Collapse
Affiliation(s)
- Jun Shang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - He Jiang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Yue Zhao
- Department of Thoracic Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China; Institute of Thoracic Oncology, Fudan University, Shanghai, China
| | - Jinglei Lai
- Department of Thoracic Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China; Institute of Thoracic Oncology, Fudan University, Shanghai, China
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China; Institute of Thoracic Oncology, Fudan University, Shanghai, China
| | - Jingcheng Yang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China; Greater Bay Area Institute of Precision Medicine, 115 Jiaoxi Road, Guangzhou, China.
| | - Haiquan Chen
- Department of Thoracic Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China; Institute of Thoracic Oncology, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Yuanting Zheng
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Almagro J, Messal HA. Volume imaging to interrogate cancer cell-tumor microenvironment interactions in space and time. Front Immunol 2023; 14:1176594. [PMID: 37261345 PMCID: PMC10228654 DOI: 10.3389/fimmu.2023.1176594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/26/2023] [Indexed: 06/02/2023] Open
Abstract
Volume imaging visualizes the three-dimensional (3D) complexity of tumors to unravel the dynamic crosstalk between cancer cells and the heterogeneous landscape of the tumor microenvironment (TME). Tissue clearing and intravital microscopy (IVM) constitute rapidly progressing technologies to study the architectural context of such interactions. Tissue clearing enables high-resolution imaging of large samples, allowing for the characterization of entire tumors and even organs and organisms with tumors. With IVM, the dynamic engagement between cancer cells and the TME can be visualized in 3D over time, allowing for acquisition of 4D data. Together, tissue clearing and IVM have been critical in the examination of cancer-TME interactions and have drastically advanced our knowledge in fundamental cancer research and clinical oncology. This review provides an overview of the current technical repertoire of fluorescence volume imaging technologies to study cancer and the TME, and discusses how their recent applications have been utilized to advance our fundamental understanding of tumor architecture, stromal and immune infiltration, vascularization and innervation, and to explore avenues for immunotherapy and optimized chemotherapy delivery.
Collapse
Affiliation(s)
- Jorge Almagro
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, United States
| | - Hendrik A. Messal
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan, Amsterdam, Netherlands
| |
Collapse
|
16
|
Matarrese P, Vona R, Ascione B, Cittadini C, Tocci A, Mileo AM. Tumor Microenvironmental Cytokines Drive NSCLC Cell Aggressiveness and Drug-Resistance via YAP-Mediated Autophagy. Cells 2023; 12:cells12071048. [PMID: 37048121 PMCID: PMC10093141 DOI: 10.3390/cells12071048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Dynamic reciprocity between cellular components of the tumor microenvironment and tumor cells occurs primarily through the interaction of soluble signals, i.e., cytokines produced by stromal cells to support cancer initiation and progression by regulating cell survival, differentiation and immune cell functionality, as well as cell migration and death. In the present study, we focused on the analysis of the functional response of non-small cell lung cancer cell lines elicited by the treatment with some crucial stromal factors which, at least in part, mimic the stimulus exerted in vivo on tumor cells by microenvironmental components. Our molecular and functional results highlight the role played by the autophagic machinery in the cellular response in terms of the invasive capacity, stemness and drug resistance of two non-small lung cancer cell lines treated with stromal cytokines, also highlighting the emerging role of the YAP pathway in the mutual and dynamic crosstalk between tumor cells and tumor microenvironment elements. The results of this study provide new insights into the YAP-mediated autophagic mechanism elicited by microenvironmental cytokines on non-small cell lung cancer cell lines and may suggest new potential strategies for future cancer therapeutic interventions.
Collapse
Affiliation(s)
- Paola Matarrese
- Oncology Unit, Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena, 299-00161 Rome, Italy
- Correspondence: (P.M.); (A.M.M.)
| | - Rosa Vona
- Oncology Unit, Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena, 299-00161 Rome, Italy
| | - Barbara Ascione
- Oncology Unit, Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena, 299-00161 Rome, Italy
| | - Camilla Cittadini
- Oncology Unit, Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena, 299-00161 Rome, Italy
| | - Annalisa Tocci
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144 Rome, Italy
| | - Anna Maria Mileo
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144 Rome, Italy
- Correspondence: (P.M.); (A.M.M.)
| |
Collapse
|
17
|
Blomberg R, Sompel K, Hauer C, Pe A B, Driscoll J, Hume PS, Merrick DT, Tennis MA, Magin CM. Tissue-engineered models of lung cancer premalignancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532835. [PMID: 36993773 PMCID: PMC10055140 DOI: 10.1101/2023.03.15.532835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Lung cancer is the leading global cause of cancer-related deaths. Although smoking cessation is the best preventive action, nearly 50% of all lung cancer diagnoses occur in people who have already quit smoking. Research into treatment options for these high-risk patients has been constrained to rodent models of chemical carcinogenesis, which are time-consuming, expensive, and require large numbers of animals. Here we show that embedding precision-cut lung slices within an engineered hydrogel and exposing this tissue to a carcinogen from cigarette smoke creates an in vitro model of lung cancer premalignancy. Hydrogel formulations were selected to promote early lung cancer cellular phenotypes and extend PCLS viability up to six weeks. In this study, hydrogel-embedded lung slices were exposed to the cigarette smoke derived carcinogen vinyl carbamate, which induces adenocarcinoma in mice. At six weeks, analysis of proliferation, gene expression, histology, tissue stiffness, and cellular content revealed that vinyl carbamate induced the formation of premalignant lesions with a mixed adenoma/squamous phenotype. Two putative chemoprevention agents were able to freely diffuse through the hydrogel and induce tissue-level changes. The design parameters selected using murine tissue were validated with hydrogel-embedded human PCLS and results showed increased proliferation and premalignant lesion gene expression patterns. This tissue-engineered model of human lung cancer premalignancy is the starting point for more sophisticated ex vivo models and a foundation for the study of carcinogenesis and chemoprevention strategies.
Collapse
|
18
|
Zhou J, Lin H, Ni Z, Luo R, Yang D, Feng M, Zhang Y. Expression of PD-L1 through evolution phase from pre-invasive to invasive lung adenocarcinoma. BMC Pulm Med 2023; 23:18. [PMID: 36647116 PMCID: PMC9841649 DOI: 10.1186/s12890-023-02310-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND This study evaluated programmed cell death-ligand 1 (PD-L1) expression from pre-invasive adenocarcinoma to invasive lung adenocarcinoma, aimed to investigate the potential association of PD-L1 pathway with lung adenocarcinoma early evolution. METHODS We evaluated PD-L1 expression in 1123 resected lung specimens of adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA) and invasive adenocarcinoma (IAC) of stage IA1-IA3. PD-L1 expression was defined based on the proportion of stained tumor cells using the tumor proportion score: < 1% (negative), ≥ 1% (positive) and ≥ 50% (strongly positive). Correlations between PD-L1 expression and T stage, pathological subtype, adenocarcinoma grade, spread through air space (STAS), vascular invasion, lymphatic invasion and driven genes were analyzed. RESULTS There was almost no PD-L1 expression in AIS or MIA. However, PD-L1 expression was correlated with invasiveness of lung adenocarcinoma. The percentages of PD-L1 positive in IA1-IA3 were 7.22%, 11.29%, and 14.20%, respectively. The strongly positive rates of PD-L1 were 0.38%, 1.64%, and 3.70% in IA1-IA3, respectively. PD-L1 expression and positive rate were also associated with poor pathological subtype and poor biological behavior, such as adenocarcinoma Grade 3, micropapillary or solid dominant subtype, STAS and vascular invasion. Finally, PD-L1 positive rate seems also corrected with driven gene ALK, ROS-1 and KRAS. CONCLUSIONS PD-L1 expression was positively correlated with the emergence of invasiveness and poor pathological subtype or biological behavior of early-stage lung adenocarcinoma. PD-L1 pathway may be involved in the early evolution of lung adenocarcinoma from AIS to IAC.
Collapse
Affiliation(s)
- Jiebai Zhou
- grid.8547.e0000 0001 0125 2443Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huo Lin
- Department of Pulmonary and Critical Care Medicine, Shishi County Hospital, Shishi, Fujian China
| | - Zheng Ni
- grid.8547.e0000 0001 0125 2443Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rongkui Luo
- grid.8547.e0000 0001 0125 2443Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dawei Yang
- grid.8547.e0000 0001 0125 2443Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mingxiang Feng
- grid.8547.e0000 0001 0125 2443Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong Zhang
- grid.8547.e0000 0001 0125 2443Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Crowley MJP, Bhinder B, Markowitz GJ, Martin M, Verma A, Sandoval TA, Chae CS, Yomtoubian S, Hu Y, Chopra S, Tavarez DA, Giovanelli P, Gao D, McGraw TE, Altorki NK, Elemento O, Cubillos-Ruiz JR, Mittal V. Tumor-intrinsic IRE1α signaling controls protective immunity in lung cancer. Nat Commun 2023; 14:120. [PMID: 36624093 PMCID: PMC9829901 DOI: 10.1038/s41467-022-35584-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/13/2022] [Indexed: 01/11/2023] Open
Abstract
IRE1α-XBP1 signaling is emerging as a central orchestrator of malignant progression and immunosuppression in various cancer types. Employing a computational XBP1s detection method applied to TCGA datasets, we demonstrate that expression of the XBP1s mRNA isoform predicts poor survival in non-small cell lung cancer (NSCLC) patients. Ablation of IRE1α in malignant cells delays tumor progression and extends survival in mouse models of NSCLC. This protective effect is accompanied by alterations in intratumoral immune cell subsets eliciting durable adaptive anti-cancer immunity. Mechanistically, cancer cell-intrinsic IRE1α activation sustains mPGES-1 expression, enabling production of the immunosuppressive lipid mediator prostaglandin E2. Accordingly, restoring mPGES-1 expression in IRE1αKO cancer cells rescues normal tumor progression. We have developed an IRE1α gene signature that predicts immune cell infiltration and overall survival in human NSCLC. Our study unveils an immunoregulatory role for cancer cell-intrinsic IRE1α activation and suggests that targeting this pathway may help enhance anti-tumor immunity in NSCLC.
Collapse
Affiliation(s)
- Michael J P Crowley
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
| | - Bhavneet Bhinder
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 413 East 69th street, New York, NY, 10065, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
| | - Geoffrey J Markowitz
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 525 East 68th street, New York, NYk, 10065, USA
| | - Mitchell Martin
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
| | - Akanksha Verma
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 413 East 69th street, New York, NY, 10065, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Volastra Therapeutics, New York, NY, 10027, USA
| | - Tito A Sandoval
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 413 East 69th street, New York, NY, 10065, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
| | - Chang-Suk Chae
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 413 East 69th street, New York, NY, 10065, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
| | - Shira Yomtoubian
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Salk Institute for Biological Studies, San Diego, CA, USA
| | - Yang Hu
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 413 East 69th street, New York, NY, 10065, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
| | - Sahil Chopra
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Vertex Ventures HC, 345 California Avenue, Palo Alto, CA, 94306, USA
| | - Diamile A Tavarez
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY, 10591, USA
| | - Paolo Giovanelli
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
| | - Dingcheng Gao
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 525 East 68th street, New York, NYk, 10065, USA
| | - Timothy E McGraw
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 413 East 69th street, New York, NY, 10065, USA
- Department of Biochemistry, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
| | - Nasser K Altorki
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 413 East 69th street, New York, NY, 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 413 East 69th street, New York, NY, 10065, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 413 East 69th street, New York, NY, 10065, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 413 East 69th street, New York, NY, 10065, USA
| | - Juan R Cubillos-Ruiz
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 413 East 69th street, New York, NY, 10065, USA.
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA.
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA.
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA.
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA.
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 413 East 69th street, New York, NY, 10065, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 525 East 68th street, New York, NYk, 10065, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 413 East 69th street, New York, NY, 10065, USA.
| |
Collapse
|
20
|
Millar FR, Pennycuick A, Muir M, Quintanilla A, Hari P, Freyer E, Gautier P, Meynert A, Grimes G, Coll CS, Zdral S, Victorelli S, Teixeira VH, Connelly J, Passos JF, Ros MA, Wallace WAH, Frame MC, Sims AH, Boulter L, Janes SM, Wilkinson S, Acosta JC. Toll-like receptor 2 orchestrates a tumor suppressor response in non-small cell lung cancer. Cell Rep 2022; 41:111596. [PMID: 36351380 PMCID: PMC10197427 DOI: 10.1016/j.celrep.2022.111596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/08/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
Abstract
Targeting early-stage lung cancer is vital to improve survival. However, the mechanisms and components of the early tumor suppressor response in lung cancer are not well understood. In this report, we study the role of Toll-like receptor 2 (TLR2), a regulator of oncogene-induced senescence, which is a key tumor suppressor response in premalignancy. Using human lung cancer samples and genetically engineered mouse models, we show that TLR2 is active early in lung tumorigenesis, where it correlates with improved survival and clinical regression. Mechanistically, TLR2 impairs early lung cancer progression via activation of cell intrinsic cell cycle arrest pathways and the proinflammatory senescence-associated secretory phenotype (SASP). The SASP regulates non-cell autonomous anti-tumor responses, such as immune surveillance of premalignant cells, and we observe impaired myeloid cell recruitment to lung tumors after Tlr2 loss. Last, we show that administration of a TLR2 agonist reduces lung tumor growth, highlighting TLR2 as a possible therapeutic target.
Collapse
Affiliation(s)
- Fraser R Millar
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK.
| | - Adam Pennycuick
- Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E 6JF, UK
| | - Morwenna Muir
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Andrea Quintanilla
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK; Instituto de Biomedicina y Biotecnologia de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), C/ Albert Einstein 22, 39011 Santander, Spain
| | - Priya Hari
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Elisabeth Freyer
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Philippe Gautier
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Alison Meynert
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Graeme Grimes
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Carla Salomo Coll
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Sofia Zdral
- Instituto de Biomedicina y Biotecnologia de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), C/ Albert Einstein 22, 39011 Santander, Spain
| | - Stella Victorelli
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Vitor H Teixeira
- Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E 6JF, UK
| | - John Connelly
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK; Department of Pathology, NHS Lothian, Edinburgh EH16 4SA, UK
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Marian A Ros
- Instituto de Biomedicina y Biotecnologia de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), C/ Albert Einstein 22, 39011 Santander, Spain
| | | | - Margaret C Frame
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Andrew H Sims
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E 6JF, UK
| | - Simon Wilkinson
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK.
| | - Juan Carlos Acosta
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK; Instituto de Biomedicina y Biotecnologia de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), C/ Albert Einstein 22, 39011 Santander, Spain.
| |
Collapse
|
21
|
Distinct cellular immune profiles in lung adenocarcinoma manifesting as pure ground glass opacity versus solid nodules. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04289-3. [DOI: 10.1007/s00432-022-04289-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022]
|