1
|
Lim Y, Cho YB, Seo YJ. Emerging roles of cytoskeletal transport and scaffold systems in human viral propagation. Anim Cells Syst (Seoul) 2024; 28:506-518. [PMID: 39439927 PMCID: PMC11494721 DOI: 10.1080/19768354.2024.2418332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/13/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Viruses have long been recognized as significant pathogens, contributing to multiple global pandemics throughout human history. Recent examples include the 2009 influenza pandemic and the COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019. Despite ongoing experimental and clinical efforts, the development of effective antiviral treatments and vaccines remains challenging due to the high mutation rates of many human pathogenic viruses including influenza virus and SARS-CoV-2. As an alternative approach, antiviral strategies targeting host factors shared by multiple viruses could provide a more universally applicable solution. Emerging evidence suggests that viruses exploit the host cytoskeletal network to facilitate efficient viral replication and propagation. Therefore, a comprehensive understanding of the interactions between viral components and the cytoskeletal machinery may offer valuable insights for the development of broad-spectrum antiviral therapeutics. This review compiles and discusses current knowledge on the interactions between viruses and cytoskeletal elements, including kinesin, dynein, myosin, and vimentin, and explores their potential as therapeutic targets. The potential for these cytoskeletal components to serve as targets for new antiviral interventions is discussed in the context of diverse human viruses, including influenza virus, SARS-CoV-2, herpes simplex virus, human papillomavirus, and human immunodeficiency virus.
Collapse
Affiliation(s)
- Younghyun Lim
- Department of Life Science, Chung-Ang University, Dongjak-gu, Republic of Korea
| | - Yong-Bin Cho
- Department of Life Science, Chung-Ang University, Dongjak-gu, Republic of Korea
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, Dongjak-gu, Republic of Korea
| |
Collapse
|
2
|
Mukherjee A, Lo M, Chandra P, Datta Chaudhuri R, De P, Dutta S, Chawla-Sarkar M. SARS-CoV-2 nucleocapsid protein promotes self-deacetylation by inducing HDAC6 to facilitate viral replication. Virol J 2024; 21:186. [PMID: 39135075 PMCID: PMC11321199 DOI: 10.1186/s12985-024-02460-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND The global outbreak of COVID-19 caused by the SARS-CoV-2 has led to millions of deaths. This unanticipated emergency has prompted virologists across the globe to delve deeper into the intricate dynamicity of the host-virus interface with an aim to identify antiviral targets and elucidate host and viral determinants of severe disease. AIM The present study was undertaken to analyse the role of histone deacetylase 6 (HDAC6) in regulating SARS-CoV-2 infection. RESULTS Gradual increase in HDAC6 expression was observed in different SARS-CoV-2-permissive cell lines following SARS-CoV-2 infection. The SARS-CoV-2 nucleocapsid protein (N protein) was identified as the primary viral factor responsible for upregulating HDAC6 expression. Downregulation of HDAC6 using shRNA or a specific inhibitor tubacin resulted in reduced viral replication suggesting proviral role of its deacetylase activity. Further investigations uncovered the interaction of HDAC6 with stress granule protein G3BP1 and N protein during infection. HDAC6-mediated deacetylation of SARS-CoV-2 N protein was found to be crucial for its association with G3BP1. CONCLUSION This study provides valuable insights into the molecular mechanisms underlying the disruption of cytoplasmic stress granules during SARS-CoV-2 infection and highlights the significance of HDAC6 in the process.
Collapse
Affiliation(s)
- Arpita Mukherjee
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal, 700010, India
| | - Mahadeb Lo
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal, 700010, India
| | - Pritam Chandra
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal, 700010, India
| | - Ratul Datta Chaudhuri
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal, 700010, India
| | - Papiya De
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal, 700010, India
| | - Shanta Dutta
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal, 700010, India
| | - Mamta Chawla-Sarkar
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal, 700010, India.
| |
Collapse
|
3
|
Xie ZQ, Chen DF, He J, Zhong L, Luo G, Fang M. MiR-371-5p regulates trophoblast cell proliferation, migration, and invasion by directly targeting ZNF516. Aging (Albany NY) 2024; 16:8585-8598. [PMID: 38761180 PMCID: PMC11164490 DOI: 10.18632/aging.205826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/08/2024] [Indexed: 05/20/2024]
Abstract
Despite its prevalence, preeclampsia (PE) remains unclear as to its etiology. Here, we aimed to investigate the mechanisms regulating differences in the gene expression of zinc-finger protein 516 (ZNF516) in the placenta. The expression of the placental ZNF516 gene and its association with critical clinical markers were verified, and a rigorous correlation analysis was conducted. With a dual-luciferase reporter gene assay, microRNA targeting the ZNF516 gene was predicted and confirmed. Finally, the molecular processes associated with ZNF516 were explored via microarray and bioinformatic analyses. In hypoxic conditions, miR-371-5p expression was reduced, resulting in ZNF516 expression being induced. Moreover, ZNF516 was shown to hinder trophoblast cell migration and invasion while enhancing trophoblast cell death in various in vitro cellular assays, such as cell counting kit-8, colony formation, wound healing, and Transwell assays. Our findings reveal a new regulatory network facilitated by ZNF516. ZNF516 overexpression inhibits trophoblast growth, movement, and penetration, potentially causing problems with placenta formation with the help of miR-371-5p suppression.
Collapse
Affiliation(s)
- Zhi Qiu Xie
- Electrocardiogram Room, Guangdong Women and Children Hospital, Guangzhou 511442, China
| | - De Fang Chen
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
| | - Jie He
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
| | - Linsheng Zhong
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
| | - Guanzheng Luo
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
| | - Ming Fang
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
- University of South China’s Teaching Hospital, Guangdong Second Provincial General Hospital, Hengyang 421000, China
| |
Collapse
|
4
|
Pérez-Yanes S, Lorenzo-Sánchez I, Cabrera-Rodríguez R, García-Luis J, Trujillo-González R, Estévez-Herrera J, Valenzuela-Fernández A. The ZIKV NS5 Protein Aberrantly Alters the Tubulin Cytoskeleton, Induces the Accumulation of Autophagic p62 and Affects IFN Production: HDAC6 Has Emerged as an Anti-NS5/ZIKV Factor. Cells 2024; 13:598. [PMID: 38607037 PMCID: PMC11011779 DOI: 10.3390/cells13070598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Zika virus (ZIKV) infection and pathogenesis are linked to the disruption of neurogenesis, congenital Zika syndrome and microcephaly by affecting neural progenitor cells. Nonstructural protein 5 (NS5) is the largest product encoded by ZIKV-RNA and is important for replication and immune evasion. Here, we studied the potential effects of NS5 on microtubules (MTs) and autophagy flux, together with the interplay of NS5 with histone deacetylase 6 (HDAC6). Fluorescence microscopy, biochemical cell-fractionation combined with the use of HDAC6 mutants, chemical inhibitors and RNA interference indicated that NS5 accumulates in nuclear structures and strongly promotes the acetylation of MTs that aberrantly reorganize in nested structures. Similarly, NS5 accumulates the p62 protein, an autophagic-flux marker. Therefore, NS5 alters events that are under the control of the autophagic tubulin-deacetylase HDAC6. HDAC6 appears to degrade NS5 by autophagy in a deacetylase- and BUZ domain-dependent manner and to control the cytoplasmic expression of NS5. Moreover, NS5 inhibits RNA-mediated RIG-I interferon (IFN) production, resulting in greater activity when autophagy is inhibited (i.e., effect correlated with NS5 stability). Therefore, it is conceivable that NS5 contributes to cell toxicity and pathogenesis, evading the IFN-immune response by overcoming HDAC6 functions. HDAC6 has emerged as an anti-ZIKV factor by targeting NS5.
Collapse
Affiliation(s)
- Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain; (S.P.-Y.); (I.L.-S.); (R.C.-R.); (J.G.-L.)
| | - Iria Lorenzo-Sánchez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain; (S.P.-Y.); (I.L.-S.); (R.C.-R.); (J.G.-L.)
| | - Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain; (S.P.-Y.); (I.L.-S.); (R.C.-R.); (J.G.-L.)
| | - Jonay García-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain; (S.P.-Y.); (I.L.-S.); (R.C.-R.); (J.G.-L.)
| | - Rodrigo Trujillo-González
- Department of Análisis Matemático, Facultad de Ciencias, Universidad de La Laguna, 38296 La Laguna, Spain;
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain; (S.P.-Y.); (I.L.-S.); (R.C.-R.); (J.G.-L.)
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain; (S.P.-Y.); (I.L.-S.); (R.C.-R.); (J.G.-L.)
| |
Collapse
|
5
|
Ivanova JR, Benk AS, Schaefer JV, Dreier B, Hermann LO, Plückthun A, Missirlis D, Spatz JP. Designed Ankyrin Repeat Proteins as Actin Labels of Distinct Cytoskeletal Structures in Living Cells. ACS NANO 2024; 18:8919-8933. [PMID: 38489155 DOI: 10.1021/acsnano.3c12265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
The orchestrated assembly of actin and actin-binding proteins into cytoskeletal structures coordinates cell morphology changes during migration, cytokinesis, and adaptation to external stimuli. The accurate and unbiased visualization of the diverse actin assemblies within cells is an ongoing challenge. We describe here the identification and use of designed ankyrin repeat proteins (DARPins) as synthetic actin binders. Actin-binding DARPins were identified through ribosome display and validated biochemically. When introduced or expressed inside living cells, fluorescently labeled DARPins accumulated at actin filaments, validated through phalloidin colocalization on fixed cells. Nevertheless, different DARPins displayed different actin labeling patterns: some DARPins labeled efficiently dynamic structures, such as filopodia, lamellipodia, and blebs, while others accumulated primarily in stress fibers. This differential intracellular distribution correlated with DARPin-actin binding kinetics, as measured by fluorescence recovery after photobleaching experiments. Moreover, the rapid arrest of actin dynamics induced by pharmacological treatment led to the fast relocalization of DARPins. Our data support the hypothesis that the localization of actin probes depends on the inherent dynamic movement of the actin cytoskeleton. Compared to the widely used LifeAct probe, one DARPin exhibited enhanced signal-to-background ratio while retaining a similar ability to label stress fibers. In summary, we propose DARPins as promising actin-binding proteins for labeling or manipulation in living cells.
Collapse
Affiliation(s)
- Julia R Ivanova
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
- Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany
- Max Planck School Matter to Life, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Amelie S Benk
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | - Jonas V Schaefer
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- CSL Behring AG, 3014 Bern, Switzerland
| | - Birgit Dreier
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Leon O Hermann
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Dimitris Missirlis
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, INF 225, D-69120 Heidelberg, Germany
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, INF 225, D-69120 Heidelberg, Germany
- Max Planck School Matter to Life, Jahnstrasse 29, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Sun C, Xie K, Yang L, Cai S, Wang M, Zhu Y, Tao B, Zhu Y. HDAC6 Enhances Endoglin Expression through Deacetylation of Transcription Factor SP1, Potentiating BMP9-Induced Angiogenesis. Cells 2024; 13:490. [PMID: 38534334 DOI: 10.3390/cells13060490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Histone deacetylase 6 (HDAC6) plays a crucial role in the acetylation of non-histone proteins and is notably implicated in angiogenesis, though its underlying mechanisms were previously not fully understood. This study conducted transcriptomic and proteomic analyses on vascular endothelial cells with HDAC6 knockdown, identifying endoglin (ENG) as a key downstream protein regulated by HDAC6. This protein is vital for maintaining vascular integrity and plays a complex role in angiogenesis, particularly in its interaction with bone morphogenetic protein 9 (BMP9). In experiments using human umbilical vein endothelial cells (HUVECs), the pro-angiogenic effects of BMP9 were observed, which diminished following the knockdown of HDAC6 and ENG. Western blot analysis revealed that BMP9 treatment increased SMAD1/5/9 phosphorylation, a process hindered by HDAC6 knockdown, correlating with reduced ENG expression. Mechanistically, our study indicates that HDAC6 modulates ENG transcription by influencing promoter activity, leading to increased acetylation of transcription factor SP1 and consequently altering its transcriptional activity. Additionally, the study delves into the structural role of HDAC6, particularly its CD2 domain, in regulating SP1 acetylation and subsequently ENG expression. In conclusion, the present study underscores the critical function of HDAC6 in modulating SP1 acetylation and ENG expression, thereby significantly affecting BMP9-mediated angiogenesis. This finding highlights the potential of HDAC6 as a therapeutic target in angiogenesis-related processes.
Collapse
Affiliation(s)
- Chen Sun
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Avenida WaiLong, Taipa, Macau 999078, China
| | - Kuifang Xie
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Lejie Yang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Shengyang Cai
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Mingjie Wang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Yizhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Avenida WaiLong, Taipa, Macau 999078, China
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 200433, China
| | - Beibei Tao
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Yichun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
| |
Collapse
|
7
|
Li Z, Xiao W, Yang Z, Guo J, Zhou J, Xiao S, Fang P, Fang L. Cleavage of HDAC6 to dampen its antiviral activity by nsp5 is a common strategy of swine enteric coronaviruses. J Virol 2024; 98:e0181423. [PMID: 38289103 PMCID: PMC10878235 DOI: 10.1128/jvi.01814-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/21/2023] [Indexed: 02/21/2024] Open
Abstract
HDAC6, a structurally and functionally unique member of the histone deacetylase (HDAC) family, is an important host factor that restricts viral infection. The broad-spectrum antiviral activity of HDAC6 makes it a potent antiviral agent. Previously, we found that HDAC6 functions to antagonize porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus with zoonotic potential. However, the final outcome is typically a productive infection that materializes as cells succumb to viral infection, indicating that the virus has evolved sophisticated mechanisms to combat the antiviral effect of HDAC6. Here, we demonstrate that PDCoV nonstructural protein 5 (nsp5) can cleave HDAC6 at glutamine 519 (Q519), and cleavage of HDAC6 was also detected in the context of PDCoV infection. More importantly, the anti-PDCoV activity of HDAC6 was damaged by nsp5 cleavage. Mechanistically, the cleaved HDAC6 fragments (amino acids 1-519 and 520-1159) lost the ability to degrade PDCoV nsp8 due to their impaired deacetylase activity. Furthermore, nsp5-mediated cleavage impaired the ability of HDAC6 to activate RIG-I-mediated interferon responses. We also tested three other swine enteric coronaviruses (transmissible gastroenteritis virus, porcine epidemic diarrhea virus, and swine acute diarrhea syndrome-coronavirus) and found that all these coronaviruses have adopted similar mechanisms to cleave HDAC6 in both an overexpression system and virus-infected cells, suggesting that cleavage of HDAC6 is a common strategy utilized by swine enteric coronaviruses to antagonize the host's antiviral capacity. Together, these data illustrate how swine enteric coronaviruses antagonize the antiviral function of HDAC6 to maintain their infection, providing new insights to the interaction between virus and host.IMPORTANCEViral infections and host defenses are in constant opposition. Once viruses combat or evade host restriction, productive infection is achieved. HDAC6 is a broad-spectrum antiviral protein that has been demonstrated to inhibit many viruses, including porcine deltacoronavirus (PDCoV). However, whether HDAC6 is reciprocally targeted and disabled by viruses remains unclear. In this study, we used PDCoV as a model and found that HDAC6 is targeted and cleaved by nsp5, a viral 3C-like protease. The cleaved HDAC6 loses its deacetylase activity as well as its ability to degrade viral proteins and activate interferon responses. Furthermore, this cleavage mechanism is shared among other swine enteric coronaviruses. These findings shed light on the intricate interplay between viruses and HDAC6, highlighting the strategies employed by viruses to evade host antiviral defenses.
Collapse
Affiliation(s)
- Zhuang Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Wenwen Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhixiang Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jiahui Guo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Junwei Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Puxian Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
8
|
Rodríguez-Salazar CA, van Tol S, Mailhot O, Gonzalez-Orozco M, Galdino GT, Warren AN, Teruel N, Behera P, Afreen KS, Zhang L, Juelich TL, Smith JK, Zylber MI, Freiberg AN, Najmanovich RJ, Giraldo MI, Rajsbaum R. Ebola virus VP35 interacts non-covalently with ubiquitin chains to promote viral replication. PLoS Biol 2024; 22:e3002544. [PMID: 38422166 PMCID: PMC10942258 DOI: 10.1371/journal.pbio.3002544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/15/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
Ebolavirus (EBOV) belongs to a family of highly pathogenic viruses that cause severe hemorrhagic fever in humans. EBOV replication requires the activity of the viral polymerase complex, which includes the cofactor and Interferon antagonist VP35. We previously showed that the covalent ubiquitination of VP35 promotes virus replication by regulating interactions with the polymerase complex. In addition, VP35 can also interact non-covalently with ubiquitin (Ub); however, the function of this interaction is unknown. Here, we report that VP35 interacts with free (unanchored) K63-linked polyUb chains. Ectopic expression of Isopeptidase T (USP5), which is known to degrade unanchored polyUb chains, reduced VP35 association with Ub and correlated with diminished polymerase activity in a minigenome assay. Using computational methods, we modeled the VP35-Ub non-covalent interacting complex, identified the VP35-Ub interacting surface, and tested mutations to validate the interface. Docking simulations identified chemical compounds that can block VP35-Ub interactions leading to reduced viral polymerase activity. Treatment with the compounds reduced replication of infectious EBOV in cells and in vivo in a mouse model. In conclusion, we identified a novel role of unanchored polyUb in regulating Ebola virus polymerase function and discovered compounds that have promising anti-Ebola virus activity.
Collapse
Affiliation(s)
- Carlos A. Rodríguez-Salazar
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Molecular Biology and Virology Laboratory, Faculty of Medicine and Health Sciences, Corporación Universitaria Empresarial Alexander von Humboldt, Armenia, Colombia
| | - Sarah van Tol
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Olivier Mailhot
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Maria Gonzalez-Orozco
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Gabriel T. Galdino
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Abbey N. Warren
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Virus-Host-Innate Immunity and Department of Medicine; Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, New Jersey, United States of America
| | - Natalia Teruel
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Padmanava Behera
- Center for Virus-Host-Innate Immunity and Department of Medicine; Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, New Jersey, United States of America
| | - Kazi Sabrina Afreen
- Center for Virus-Host-Innate Immunity and Department of Medicine; Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, New Jersey, United States of America
| | - Lihong Zhang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Terry L. Juelich
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jennifer K. Smith
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - María Inés Zylber
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Alexander N. Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Rafael J. Najmanovich
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Maria I. Giraldo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Virus-Host-Innate Immunity and Department of Medicine; Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, New Jersey, United States of America
| |
Collapse
|
9
|
Wang L, Shi S, Unterreiner A, Kapetanovic R, Ghosh S, Sanchez J, Aslani S, Xiong Y, Hsu CL, Donovan KA, Farady CJ, Fischer ES, Bornancin F, Matthias P. HDAC6/aggresome processing pathway importance for inflammasome formation is context-dependent. J Biol Chem 2024; 300:105638. [PMID: 38199570 PMCID: PMC10850954 DOI: 10.1016/j.jbc.2024.105638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/19/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
The inflammasome is a large multiprotein complex that assembles in the cell cytoplasm in response to stress or pathogenic infection. Its primary function is to defend the cell and promote the secretion of pro-inflammatory cytokines, including IL-1β and IL-18. Previous research has shown that in immortalized bone marrow-derived macrophages (iBMDMs) inflammasome assembly is dependent on the deacetylase HDAC6 and the aggresome processing pathway (APP), a cellular pathway involved in the disposal of misfolded proteins. Here we used primary BMDMs from mice in which HDAC6 is ablated or impaired and found that inflammasome activation was largely normal. We also used human peripheral blood mononuclear cells and monocyte cell lines expressing a synthetic protein blocking the HDAC6-ubiquitin interaction and impairing the APP and found that inflammasome activation was moderately affected. Finally, we used a novel HDAC6 degrader and showed that inflammasome activation was partially impaired in human macrophage cell lines with depleted HDAC6. Our results therefore show that HDAC6 importance in inflammasome activation is context-dependent.
Collapse
Affiliation(s)
- Longlong Wang
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| | - Shihua Shi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | - Ronan Kapetanovic
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Sucheta Ghosh
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Faculty of Sciences, University of Basel, Basel, Switzerland
| | - Jacint Sanchez
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Selma Aslani
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Yuan Xiong
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Chi-Lin Hsu
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Eric S Fischer
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Faculty of Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
10
|
Artcibasova A, Wang L, Anchisi S, Yamauchi Y, Schmolke M, Matthias P, Stelling J. A quantitative model for virus uncoating predicts influenza A infectivity. Cell Rep 2023; 42:113558. [PMID: 38103200 DOI: 10.1016/j.celrep.2023.113558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/13/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
For virus infection of new host cells, the disassembly of the protective outer protein shell (capsid) is a critical step, but the mechanisms and host-virus interactions underlying the dynamic, active, and regulated uncoating process are largely unknown. Here, we develop an experimentally supported, multiscale kinetics model that elucidates mechanisms of influenza A virus (IAV) uncoating in cells. Biophysical modeling demonstrates that interactions between capsid M1 proteins, host histone deacetylase 6 (HDAC6), and molecular motors can physically break the capsid in a tug-of-war mechanism. Biochemical analysis and biochemical-biophysical modeling identify unanchored ubiquitin chains as essential and allow robust prediction of uncoating efficiency in cells. Remarkably, the different infectivity of two clinical strains can be ascribed to a single amino acid variation in M1 that affects binding to HDAC6. By identifying crucial modules of viral infection kinetics, the mechanisms and models presented here could help formulate novel strategies for broad-range antiviral treatment.
Collapse
Affiliation(s)
- Alina Artcibasova
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, 4058 Basel, Switzerland
| | - Longlong Wang
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4031 Basel, Switzerland
| | - Stephanie Anchisi
- Department of Microbiology and Molecular Medicine and Geneva Center of Inflammation Research, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Yohei Yamauchi
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Mirco Schmolke
- Department of Microbiology and Molecular Medicine and Geneva Center of Inflammation Research, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4031 Basel, Switzerland.
| | - Jörg Stelling
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, 4058 Basel, Switzerland.
| |
Collapse
|
11
|
Castro V, Pérez-Berna AJ, Calvo G, Pereiro E, Gastaminza P. Three-Dimensional Remodeling of SARS-CoV2-Infected Cells Revealed by Cryogenic Soft X-ray Tomography. ACS NANO 2023; 17:22708-22721. [PMID: 37939169 PMCID: PMC10690842 DOI: 10.1021/acsnano.3c07265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Plus-strand RNA viruses are proficient at remodeling host cell membranes for optimal viral genome replication and the production of infectious progeny. These ultrastructural alterations result in the formation of viral membranous organelles and may be observed by different imaging techniques, providing nanometric resolution. Guided by confocal and electron microscopy, this study describes the generation of wide-field volumes using cryogenic soft-X-ray tomography (cryo-SXT) on SARS-CoV-2-infected human lung adenocarcinoma cells. Confocal microscopy showed accumulation of double-stranded RNA (dsRNA) and nucleocapsid (N) protein in compact perinuclear structures, preferentially found around centrosomes at late stages of the infection. Transmission electron microscopy (TEM) showed accumulation of membranous structures in the vicinity of the infected cell nucleus, forming a viral replication organelle containing characteristic double-membrane vesicles and virus-like particles within larger vesicular structures. Cryo-SXT revealed viral replication organelles very similar to those observed by TEM but indicated that the vesicular organelle observed in TEM sections is indeed a vesiculo-tubular network that is enlarged and elongated at late stages of the infection. Overall, our data provide additional insight into the molecular architecture of the SARS-CoV-2 replication organelle.
Collapse
Affiliation(s)
- Victoria Castro
- Centro
Nacional de Biotecnología. Calle Darwin, 3, 28049 Madrid, Spain
| | | | - Gema Calvo
- Centro
Nacional de Biotecnología. Calle Darwin, 3, 28049 Madrid, Spain
| | - Eva Pereiro
- ALBA
Synchrotron Light Source, Carrer de la Llum 2-26, 08290 Cerdanyola del Valles, Spain
| | - Pablo Gastaminza
- Centro
Nacional de Biotecnología. Calle Darwin, 3, 28049 Madrid, Spain
| |
Collapse
|
12
|
Mikami T, Majima S, Song H, Bode JW. Biocompatible Lysine Protecting Groups for the Chemoenzymatic Synthesis of K48/K63 Heterotypic and Branched Ubiquitin Chains. ACS CENTRAL SCIENCE 2023; 9:1633-1641. [PMID: 37637747 PMCID: PMC10450881 DOI: 10.1021/acscentsci.3c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 08/29/2023]
Abstract
The elucidation of emerging biological functions of heterotypic and branched ubiquitin (Ub) chains requires new strategies for their preparation with defined lengths and connectivity. While in vitro enzymatic assembly using expressed E1-activating and E2-conjugating enzymes can deliver homotypic chains, the synthesis of branched chains typically requires extensive mutations of lysines or other sequence modifications. The combination of K48- and K63-biased E2-conjugating enzymes and two new carbamate protecting groups-pyridoxal 5'-phosphate (PLP)-cleavable aminobutanamide carbamate (Abac group) and periodate-cleavable aminobutanol carbamate (Aboc group)-provides a strategy for the synthesis of heterotypic and branched Ub trimers, tetramers, and pentamers. The Abac- and Aboc-protected lysines are readily prepared and incorporated into synthetic ubiquitin monomers. As these masking groups contain a basic amine, they preserve the overall charge and properties of the Ub structure, facilitating folding and enzymatic conjugations. These protecting groups can be chemoselectively removed from folded Ub chains and monomers by buffered solutions of PLP or NaIO4. Through the incorporation of a cleavable C-terminal His-tag on the Ub acceptor, the entire process of chain building, iterative Abac deprotections, and global Aboc cleavage can be conducted on a resin support, obviating the need for handling and purification of the intermediate oligomers. Simple modulation of the Ub monomers affords various K48/K63 branched chains, including tetramers and pentamers not previously accessible by synthetic or biochemical methods.
Collapse
Affiliation(s)
- Toshiki Mikami
- Laboratory
for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Sohei Majima
- Laboratory
for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Haewon Song
- Laboratory
for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Jeffrey W. Bode
- Laboratory
for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| |
Collapse
|
13
|
Zhang X, Zheng R, Li Z, Ma J. Liquid-liquid Phase Separation in Viral Function. J Mol Biol 2023; 435:167955. [PMID: 36642156 DOI: 10.1016/j.jmb.2023.167955] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
An emerging set of results suggests that liquid-liquid phase separation (LLPS) is the basis for the formation of membrane-less compartments in cells. Evidence is now mounting that various types of virus-induced membrane-less compartments and organelles are also assembled via LLPS. Specifically, viruses appear to use intracellular phase transitions to form subcellular microenvironments known as viral factories, inclusion bodies, or viroplasms. These compartments - collectively referred to as viral biomolecular condensates - can be used to concentrate replicase proteins, viral genomes, and host proteins that are required for virus replication. They can also be used to subvert or avoid the intracellular immune response. This review examines how certain DNA or RNA viruses drive the formation of viral condensates, the possible biological functions of those condensates, and the biophysical and biochemical basis for their assembly.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Run Zheng
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Zhengshuo Li
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Jian Ma
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China.
| |
Collapse
|
14
|
Wang L, Unterreiner A, Kapetanovic R, Aslani S, Xiong Y, Donovan KA, Farady CJ, Fischer ES, Bornancin F, Matthias P. HDAC6/aggresome processing pathway importance for inflammasome formation is context dependent. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553363. [PMID: 37645730 PMCID: PMC10461986 DOI: 10.1101/2023.08.15.553363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The inflammasome is a large multiprotein complex that assembles in the cell cytoplasm in response to stress or pathogenic infection. Its primary function is to defend the cell and promote the secretion of pro-inflammatory cytokines, including IL-1β and IL-18. It was shown that in immortalized bone marrow derived macrophages (iBMDMs) inflammasome assembly is dependent on the deacetylase HDAC6 and the aggresome processing pathway (APP), a cellular pathway involved in the disposal of misfolded proteins. Here we used primary BMDMs from mice in which HDAC6 is ablated or impaired and found that inflammasome activation was largely normal. We also used human peripheral blood mononuclear cells and monocytes cell lines expressing a synthetic protein blocking HDAC6-ubiquitin interaction and impairing the APP and found that inflammasome activation was moderately affected. Finally, we used a novel HDAC6 degrader and showed that inflammasome activation was partially impaired in human macrophage cell lines with depleted HDAC6. Our results therefore show that HDAC6 importance in inflammasome activation is context dependent.
Collapse
Affiliation(s)
- Longlong Wang
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | | | - Ronan Kapetanovic
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Selma Aslani
- Novartis Institutes for Biomedical Research, 4056 Basel Switzerland
| | - Yuan Xiong
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, United States
| | - Katherine A Donovan
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, United States
| | | | - Eric S Fischer
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, United States
| | | | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Faculty of Sciences, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
15
|
Qu M, Zhang H, Cheng P, Wubshet AK, Yin X, Wang X, Sun Y. Histone deacetylase 6's function in viral infection, innate immunity, and disease: latest advances. Front Immunol 2023; 14:1216548. [PMID: 37638049 PMCID: PMC10450946 DOI: 10.3389/fimmu.2023.1216548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/14/2023] [Indexed: 08/29/2023] Open
Abstract
In the family of histone-deacetylases, histone deacetylase 6 (HDAC6) stands out. The cytoplasmic class IIb histone deacetylase (HDAC) family is essential for many cellular functions. It plays a crucial and debatable regulatory role in innate antiviral immunity. This review summarises the current state of our understanding of HDAC6's structure and function in light of the three mechanisms by which it controls DNA and RNA virus infection: cytoskeleton regulation, host innate immune response, and autophagy degradation of host or viral proteins. In addition, we summed up how HDAC6 inhibitors are used to treat a wide range of diseases, and how its upstream signaling plays a role in the antiviral mechanism. Together, the findings of this review highlight HDAC6's importance as a new therapeutic target in antiviral immunity, innate immune response, and some diseases, all of which offer promising new avenues for the development of drugs targeting the immune response.
Collapse
Affiliation(s)
- Min Qu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huijun Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengyuan Cheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ashenafi Kiros Wubshet
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Basic and Diagnostic Sciences, College of Veterinary Science, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Xiangping Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuefeng Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
16
|
Harding R, Franzoni I, Mann MK, Szewczyk MM, Mirabi B, Ferreira de Freitas R, Owens DDG, Ackloo S, Scheremetjew A, Juarez-Ornelas KA, Sanichar R, Baker RJ, Dank C, Brown PJ, Barsyte-Lovejoy D, Santhakumar V, Schapira M, Lautens M, Arrowsmith CH. Discovery and Characterization of a Chemical Probe Targeting the Zinc-Finger Ubiquitin-Binding Domain of HDAC6. J Med Chem 2023; 66:10273-10288. [PMID: 37499118 PMCID: PMC10424181 DOI: 10.1021/acs.jmedchem.3c00314] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Indexed: 07/29/2023]
Abstract
Histone deacetylase 6 (HDAC6) inhibition is an attractive strategy for treating numerous cancers, and HDAC6 catalytic inhibitors are currently in clinical trials. The HDAC6 zinc-finger ubiquitin-binding domain (UBD) binds free C-terminal diglycine motifs of unanchored ubiquitin polymer chains and protein aggregates, playing an important role in autophagy and aggresome assembly. However, targeting this domain with small molecule antagonists remains an underdeveloped avenue of HDAC6-focused drug discovery. We report SGC-UBD253 (25), a chemical probe potently targeting HDAC6-UBD in vitro with selectivity over nine other UBDs, except for weak USP16 binding. In cells, 25 is an effective antagonist of HDAC6-UBD at 1 μM, with marked proteome-wide selectivity. We identified SGC-UBD253N (32), a methylated derivative of 25 that is 300-fold less active, serving as a negative control. Together, 25 and 32 could enable further exploration of the biological function of the HDAC6-UBD and investigation of the therapeutic potential of targeting this domain.
Collapse
Affiliation(s)
- Rachel
J. Harding
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department
of Pharmacology & Toxicology, University
of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ivan Franzoni
- Davenport
Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Valence
Discovery Inc., 6666
Rue St-Urbain, Suite 200, Montreal, Quebec H2S 3H1, Canada
| | - Mandeep K. Mann
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Magdalena M. Szewczyk
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Bijan Mirabi
- Davenport
Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | | | - Dominic D. G. Owens
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Suzanne Ackloo
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Alexej Scheremetjew
- Davenport
Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Kevin A. Juarez-Ornelas
- Davenport
Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Randy Sanichar
- Davenport
Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Rachel J. Baker
- Davenport
Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Christian Dank
- Davenport
Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Peter J. Brown
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Dalia Barsyte-Lovejoy
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department
of Pharmacology & Toxicology, University
of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | - Matthieu Schapira
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department
of Pharmacology & Toxicology, University
of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Mark Lautens
- Davenport
Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Cheryl H. Arrowsmith
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Princess
Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
17
|
Rodríguez-Salazar CA, van Tol S, Mailhot O, Galdino G, Teruel N, Zhang L, Warren AN, González-Orozco M, Freiberg AN, Najmanovich RJ, Giraldo MI, Rajsbaum R. Ebola Virus VP35 Interacts Non-Covalently with Ubiquitin Chains to Promote Viral Replication Creating New Therapeutic Opportunities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.549057. [PMID: 37503276 PMCID: PMC10369991 DOI: 10.1101/2023.07.14.549057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Ebolavirus (EBOV) belongs to a family of highly pathogenic viruses that cause severe hemorrhagic fever in humans. EBOV replication requires the activity of the viral polymerase complex, which includes the co-factor and Interferon antagonist VP35. We previously showed that the covalent ubiquitination of VP35 promotes virus replication by regulating interactions with the polymerase complex. In addition, VP35 can also interact non-covalently with ubiquitin (Ub); however, the function of this interaction is unknown. Here, we report that VP35 interacts with free (unanchored) K63-linked polyUb chains. Ectopic expression of Isopeptidase T (USP5), which is known to degrade unanchored polyUb chains, reduced VP35 association with Ub and correlated with diminished polymerase activity in a minigenome assay. Using computational methods, we modeled the VP35-Ub non-covalent interacting complex, identified the VP35-Ub interacting surface and tested mutations to validate the interface. Docking simulations identified chemical compounds that can block VP35-Ub interactions leading to reduced viral polymerase activity that correlated with reduced replication of infectious EBOV. In conclusion, we identified a novel role of unanchored polyUb in regulating Ebola virus polymerase function and discovered compounds that have promising anti-Ebola virus activity.
Collapse
Affiliation(s)
- Carlos A. Rodríguez-Salazar
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston 77555, Texas, USA
- Molecular Biology and Virology Laboratory, Faculty of Medicine and Health Sciences, Corporación Universitaria Empresarial Alexander von Humboldt, Armenia 630003, Colombia
| | - Sarah van Tol
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston 77555, Texas, USA
| | - Olivier Mailhot
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Gabriel Galdino
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Natalia Teruel
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Lihong Zhang
- Department of Pathology, University of Texas Medical Branch, Galveston 77555, Texas, USA
| | - Abbey N. Warren
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston 77555, Texas, USA
- Center for Virus-Host-Innate Immunity and Department of Medicine; Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, New Jersey 07103
| | - María González-Orozco
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston 77555, Texas, USA
| | - Alexander N. Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston 77555, Texas, USA
| | - Rafael J. Najmanovich
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - María I. Giraldo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston 77555, Texas, USA
| | - Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston 77555, Texas, USA
- Center for Virus-Host-Innate Immunity and Department of Medicine; Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, New Jersey 07103
| |
Collapse
|
18
|
Hou XN, Tang C. The pros and cons of ubiquitination on the formation of protein condensates. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1084-1098. [PMID: 37294105 PMCID: PMC10423694 DOI: 10.3724/abbs.2023096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/19/2023] [Indexed: 06/10/2023] Open
Abstract
Ubiquitination, a post-translational modification that attaches one or more ubiquitin (Ub) molecules to another protein, plays a crucial role in the phase-separation processes. Ubiquitination can modulate the formation of membrane-less organelles in two ways. First, a scaffold protein drives phase separation, and Ub is recruited to the condensates. Second, Ub actively phase-separates through the interactions with other proteins. Thus, the role of ubiquitination and the resulting polyUb chains ranges from bystanders to active participants in phase separation. Moreover, long polyUb chains may be the primary driving force for phase separation. We further discuss that the different roles can be determined by the lengths and linkages of polyUb chains which provide preorganized and multivalent binding platforms for other client proteins. Together, ubiquitination adds a new layer of regulation for the flow of material and information upon cellular compartmentalization of proteins.
Collapse
Affiliation(s)
- Xue-Ni Hou
- Beijing National Laboratory for Molecular SciencesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Chun Tang
- Beijing National Laboratory for Molecular SciencesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
- Center for Quantitate BiologyPKU-Tsinghua Center for Life ScienceAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
| |
Collapse
|
19
|
Zhu Y, Feng M, Wang B, Zheng Y, Jiang D, Zhao L, Mamun MAA, Kang H, Nie H, Zhang X, Guo N, Qin S, Wang N, Liu H, Gao Y. New insights into the non-enzymatic function of HDAC6. Biomed Pharmacother 2023; 161:114438. [PMID: 37002569 DOI: 10.1016/j.biopha.2023.114438] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
Histone deacetylase 6 (HDAC6) is a class IIb histone deacetylase that contains two catalytic domains and a zinc-finger ubiquitin binding domain (ZnF-UBP) domain. The deacetylation function of HDAC6 has been extensively studied with common substrates such as α-tubulin, cortactin, and Hsp90. Apart from its deacetylase activity, HDAC6 ZnF-UBP binds to unanchored ubiquitin of specific sequences and serves as a carrier for transporting aggregated proteins. As a result, aggresomes are formed and protein degradation is facilitated by the autophagy-lysosome pathway. This HDAC6-dependent microtubule transport can be used by cells to assemble and activate inflammasomes, which play a critical role in immune regulation. Even viruses can benefit from the carrier of HDAC6 to assist in uncoating their surfaces during their infection cycle. However, HDAC6 is also capable of blocking virus invasion and replication in a non-enzymatic manner. Given these non-enzymatic functions, HDAC6 is closely associated with various diseases, including neurodegeneration, inflammasome-associated diseases, cancer, and viral infections. Small molecule inhibitors targeting the ubiquitin binding pocket of HDAC6 have been investigated. In this review, we focus on mechanisms in non-enzymatic functions of HDAC6 and discuss the rationality and prospects of therapeutic strategies by intervening the activation of HDAC6 ZnF-UBP in concrete diseases.
Collapse
Affiliation(s)
- Yuanzai Zhu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Mengkai Feng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Bo Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Yichao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Dandan Jiang
- Department of Pharmacy, People's Hospital of Henan Province, Zhengzhou University, Henan 450001, China
| | - Lijuan Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - M A A Mamun
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Huiqin Kang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Haiqian Nie
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Xiya Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ningjie Guo
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Shangshang Qin
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ning Wang
- The School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hongmin Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
20
|
Abstract
Zika virus (ZIKV) is an emerging virus from the Flaviviridae family that is transmitted to humans by mosquito vectors and represents an important health problem. Infections in pregnant women are of major concern because of potential devastating consequences during pregnancy and have been associated with microcephaly in newborns. ZIKV has a unique ability to use the host machinery to promote viral replication in a tissue-specific manner, resulting in characteristic pathological disorders. Recent studies have proposed that the host ubiquitin system acts as a major determinant of ZIKV tropism by providing the virus with an enhanced ability to enter new cells. In addition, ZIKV has developed mechanisms to evade the host immune response, thereby allowing the establishment of viral persistence and enhancing viral pathogenesis. We discuss recent reports on the mechanisms used by ZIKV to replicate efficiently, and we highlight potential new areas of research for the development of therapeutic approaches.
Collapse
Affiliation(s)
- Maria I Giraldo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA; ,
| | - Maria Gonzalez-Orozco
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA; ,
| | - Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA; ,
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
- Current affiliation: Center for Virus-Host-Innate-Immunity; Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases; and Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA;
| |
Collapse
|
21
|
Miyake Y, Hara Y, Umeda M, Banerjee I. Influenza A Virus: Cellular Entry. Subcell Biochem 2023; 106:387-401. [PMID: 38159235 DOI: 10.1007/978-3-031-40086-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The frequent emergence of pathogenic viruses with pandemic potential has posed a significant threat to human health and economy, despite enormous advances in our understanding of infection mechanisms and devising countermeasures through developing various prophylactic and therapeutic strategies. The recent coronavirus disease (COVID-19) pandemic has re-emphasised the importance of rigorous research on virus infection mechanisms and highlighted the need for our preparedness for potential pandemics. Although viruses cannot self-replicate, they tap into host cell factors and processes for their entry, propagation and dissemination. Upon entering the host cells, viruses ingeniously utilise the innate biological functions of the host cell to replicate themselves and maintain their existence in the hosts. Influenza A virus (IAV), which has a negative-sense, single-stranded RNA as its genome, is no exception. IAVs are enveloped viruses with a lipid bilayer derived from the host cell membrane and have a surface covered with the spike glycoprotein haemagglutinin (HA) and neuraminidase (NA). Viral genome is surrounded by an M1 shell, forming a "capsid" in the virus particle. IAV particles use HA to recognise sialic acids on the cell surface of lung epithelial cells for their attachment. After attachment to the cell surface, IAV particles are endocytosed and sorted into the early endosomes. Subsequently, as the early endosomes mature into late endosomes, the endosomal lumen becomes acidified, and the low pH of the late endosomes induces conformational reaggangements in the HA to initiate fusion between the endosomal and viral membranes. Upon fusion, the viral capsid disintegrates and the viral ribonucleoprotein (vRNP) complexes containing the viral genome are released into the cytosol. The process of viral capsid disintegration is called "uncoating". After successful uncoating, the vRNPs are imported into the nucleus by importin α/β (IMP α/β), where viral replication and transcription take place and the new vRNPs are assembled. Recently, we have biochemically elucidated the molecular mechanisms of the processes of viral capsid uncoating subsequent viral genome dissociation. In this chapter, we present the molecular details of the viral uncoating process.
Collapse
Affiliation(s)
- Yasuyuki Miyake
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Institute for Advanced Research (IAR), Nagoya University, Nagoya, Japan.
| | - Yuya Hara
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Miki Umeda
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Indranil Banerjee
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali (IISER Mohali), Mohali, India.
| |
Collapse
|
22
|
Walser M, Mayor J, Rothenberger S. Designed Ankyrin Repeat Proteins: A New Class of Viral Entry Inhibitors. Viruses 2022; 14:2242. [PMID: 36298797 PMCID: PMC9611651 DOI: 10.3390/v14102242] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 08/08/2023] Open
Abstract
Designed ankyrin repeat proteins (DARPins) are engineered proteins comprising consensus designed ankyrin repeats as scaffold. Tightly packed repeats form a continuous hydrophobic core and a large groove-like solvent-accessible surface that creates a binding surface. DARPin domains recognizing a target of interest with high specificity and affinity can be generated using a synthetic combinatorial library and in vitro selection methods. They can be linked together in a single molecule to build multispecific and multifunctional proteins without affecting expression or function. The modular architecture of DARPins offers unprecedented possibilities of design and opens avenues for innovative antiviral strategies.
Collapse
Affiliation(s)
- Marcel Walser
- Molecular Partners AG, Wagistrasse 14, 8952 Zurich-Schlieren, Switzerland
| | - Jennifer Mayor
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, 3700 Spiez, Switzerland
- Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, 1011 Lausanne, Switzerland
| | - Sylvia Rothenberger
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, 3700 Spiez, Switzerland
- Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, 1011 Lausanne, Switzerland
| |
Collapse
|