1
|
Randolph HE, Aguirre-Gamboa R, Brunet-Ratnasingham E, Nakanishi T, Locher V, Ketter E, Brandolino C, Larochelle C, Prat A, Arbour N, Dumaine A, Finzi A, Durand M, Richards JB, Kaufmann DE, Barreiro LB. Widespread gene-environment interactions shape the immune response to SARS-CoV-2 infection in hospitalized COVID-19 patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626676. [PMID: 39677792 PMCID: PMC11642875 DOI: 10.1101/2024.12.03.626676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Genome-wide association studies performed in patients with coronavirus disease 2019 (COVID-19) have uncovered various loci significantly associated with susceptibility to SARS-CoV-2 infection and COVID-19 disease severity. However, the underlying cis-regulatory genetic factors that contribute to heterogeneity in the response to SARS-CoV-2 infection and their impact on clinical phenotypes remain enigmatic. Here, we used single-cell RNA-sequencing to quantify genetic contributions to cis-regulatory variation in 361,119 peripheral blood mononuclear cells across 63 COVID-19 patients during acute infection, 39 samples collected in the convalescent phase, and 106 healthy controls. Expression quantitative trait loci (eQTL) mapping across cell types within each disease state group revealed thousands of cis-associated variants, of which hundreds were detected exclusively in immune cells derived from acute COVID-19 patients. Patient-specific genetic effects dissipated as infection resolved, suggesting that distinct gene regulatory networks are at play in the active infection state. Further, 17.2% of tested loci demonstrated significant cell state interactions with genotype, with pathways related to interferon responses and oxidative phosphorylation showing pronounced cell state-dependent variation, predominantly in CD14+ monocytes. Overall, we estimate that 25.6% of tested genes exhibit gene-environment interaction effects, highlighting the importance of environmental modifiers in the transcriptional regulation of the immune response to SARS-CoV-2. Our findings underscore the importance of expanding the study of regulatory variation to relevant cell types and disease contexts and argue for the existence of extensive gene-environment effects among patients responding to an infection.
Collapse
Affiliation(s)
- Haley E Randolph
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Raúl Aguirre-Gamboa
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | - Tomoko Nakanishi
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Kyoto-McGill International Collaborative School in Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- Research Fellow, Japan Society for the Promotion of Science, Tokyo, Japan
| | - Veronica Locher
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Ellen Ketter
- Committee on Microbiology, University of Chicago, Chicago, IL, USA
| | - Cary Brandolino
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Catherine Larochelle
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Alexandre Prat
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Nathalie Arbour
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Anne Dumaine
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Andrés Finzi
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC Canada
| | - Madeleine Durand
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - J Brent Richards
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada
- Department of Twin Research, King’s College London, London, UK
- Five Prime Sciences Inc, Montréal, QC, Canada
| | - Daniel E Kaufmann
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
- Division of Infectious Diseases, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Luis B Barreiro
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- Chan Zuckerberg Biohub Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
Dong L, Luo W, Maksym S, Robson SC, Zavialov AV. Adenosine deaminase 2 regulates the activation of the toll-like receptor 9 in response to nucleic acids. Front Med 2024; 18:814-830. [PMID: 39078537 DOI: 10.1007/s11684-024-1067-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/31/2024] [Indexed: 07/31/2024]
Abstract
Human cells contain two types of adenosine deaminases (ADA) each with unique properties: ADA1, which is present in all cells where it modulates intracellular functions and extracellular signaling, and ADA2, which is secreted by immune cells. The exact intracellular functions of ADA2 remain undetermined and less defined than those of ADA1. ADA2 has distinct characteristics, such as low adenosine affinity, heparin-binding ability, and putative lysosomal entry. Here, we confirm that ADA2 is a lysosomal protein that binds toll-like receptor 9 (TLR9) agonists, specifically CpG oligodeoxynucleotides (CpG ODNs). We show that interferon-alpha (IFN-α) is secreted in response to TLR9 activation by CpG ODNs and natural DNA and markedly increases when ADA2 expression is downregulated in plasmacytoid dendritic cells (pDCs). Additionally, the pretreatment of pDCs with RNA further stimulates IFN-α secretion by pDCs after activation with CpG ODNs. Our findings indicate that ADA2 regulates TLR9 responses to DNA in activated pDCs. In conclusion, decreasing ADA2 expression or blocking it with specific oligonucleotides can enhance IFN-α secretion from pDCs, improving immune responses against intracellular infections and cancer.
Collapse
Affiliation(s)
- Liang Dong
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Wenwen Luo
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Skaldin Maksym
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
- Joint Biotechnology Laboratory, University of Turku, Turku, 20520, Finland
| | - Simon C Robson
- Center for Inflammation Research, Departments of Anesthesia and Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, 02215, USA
| | - Andrey V Zavialov
- International Center for Aging and Cancer (ICAC), Hainan Medical University, Haikou, 571199, China.
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| |
Collapse
|
3
|
Zong L, Zheng Y, Yu X, Dai X, Huang R, Yan G, Xu Y, Zheng M. ICOS-ICOSL pathway enhances NKT-like cell antiviral function in pregnant women with COVID-19. Int J Med Sci 2024; 21:1890-1902. [PMID: 39113896 PMCID: PMC11302565 DOI: 10.7150/ijms.95952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Objective: The immune response initiated by SARS-CoV-2 infection in pregnancy is poorly elucidated. We aimed to access and compare the antiviral cellular responses and lymphocytes activation between healthy pregnancies and pregnant women infected with SARS-CoV-2. Methods: We detected the immunological changes of lymphocytes in peripheral blood of healthy non-pregnant women, non-pregnant women with COVID-19, healthy pregnant women, pregnant women with COVID-19 and convalescent group by flow cytometry. In vitro blockade was used to identify NKT-like cell activation through ICOS-ICOSL pathway. Results: We found that CD3+CD56+ NKT-like cells decreased significantly in COVID-19 positive pregnant women compared to healthy pregnant women. NKT-like cells of pregnant women expressed higher level of activating receptors CD69 and NKp46 after SARS-CoV-2 infection. Particularly, they also increased the expression of the co-stimulatory molecule ICOS. NKT-like cells of pregnant women with COVID-19 up-regulated the expression of IFN-γ, CD107a and Ki67. Meanwhile, we found that ICOSL expression was significantly increased on pDCs in pregnant women with COVID-19. Blocking ICOS in vitro significantly decreased the antiviral activity of NKT-like cells in COVID-19 positive pregnant women, suggesting that ICOS-ICOSL may play an important role in the virus clearance by NKT-like cells. Conclusions: During SARS-CoV-2 infection, NKT-like cells of pregnant women activated through ICOS-ICOSL pathway and played an important role in the antiviral response.
Collapse
Affiliation(s)
- Lu Zong
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuanling Zheng
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Xiaojing Yu
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Xiaoran Dai
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Ruoyu Huang
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Guoxiu Yan
- Department of Clinical Laboratory, Anhui Provincial Maternity and Child Health Hospital, Hefei, China
| | - Yuanhong Xu
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Meijuan Zheng
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
4
|
Bishop CR, Yan K, Nguyen W, Rawle DJ, Tang B, Larcher T, Suhrbier A. Microplastics dysregulate innate immunity in the SARS-CoV-2 infected lung. Front Immunol 2024; 15:1382655. [PMID: 38803494 PMCID: PMC11128561 DOI: 10.3389/fimmu.2024.1382655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Global microplastic (MP) pollution is now well recognized, with humans and animals consuming and inhaling MPs on a daily basis, with a growing body of concern surrounding the potential impacts on human health. Methods Using a mouse model of mild COVID-19, we describe herein the effects of azide-free 1 μm polystyrene MP beads, co-delivered into lungs with a SARS-CoV-2 omicron BA.5 inoculum. The effect of MPs on the host response to SARS-CoV-2 infection was analysed using histopathology and RNA-Seq at 2 and 6 days post-infection (dpi). Results Although infection reduced clearance of MPs from the lung, virus titres and viral RNA levels were not significantly affected by MPs, and overt MP-associated clinical or histopathological changes were not observed. However, RNA-Seq of infected lungs revealed that MP exposure suppressed innate immune responses at 2 dpi and increased pro-inflammatory signatures at 6 dpi. The cytokine profile at 6 dpi showed a significant correlation with the 'cytokine release syndrome' signature observed in some COVID-19 patients. Discussion The findings are consistent with the recent finding that MPs can inhibit phagocytosis of apoptotic cells via binding of Tim4. They also add to a growing body of literature suggesting that MPs can dysregulate inflammatory processes in specific disease settings.
Collapse
Affiliation(s)
- Cameron R. Bishop
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kexin Yan
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Wilson Nguyen
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Daniel J. Rawle
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Bing Tang
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Thibaut Larcher
- Institut National de Recherche Agronomique, Unité Mixte de Recherche, Oniris, Nantes, France
| | - Andreas Suhrbier
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Australian Infectious Disease Research Centre, Global Virus Network (GVN) Center of Excellence, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Aoki A, Iwamura C, Kiuchi M, Tsuji K, Sasaki A, Hishiya T, Hirasawa R, Kokubo K, Kuriyama S, Onodera A, Shimada T, Nagaoka T, Ishikawa S, Kojima A, Mito H, Hase R, Kasahara Y, Kuriyama N, Nakamura S, Urushibara T, Kaneda S, Sakao S, Nishida O, Takahashi K, Kimura MY, Motohashi S, Igari H, Ikehara Y, Nakajima H, Suzuki T, Hanaoka H, Nakada TA, Kikuchi T, Nakayama T, Yokote K, Hirahara K. Suppression of Type I Interferon Signaling in Myeloid Cells by Autoantibodies in Severe COVID-19 Patients. J Clin Immunol 2024; 44:104. [PMID: 38647550 PMCID: PMC11035476 DOI: 10.1007/s10875-024-01708-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE Auto-antibodies (auto-abs) to type I interferons (IFNs) have been identified in patients with life-threatening coronavirus disease 2019 (COVID-19), suggesting that the presence of auto-abs may be a risk factor for disease severity. We therefore investigated the mechanism underlying COVID-19 exacerbation induced by auto-abs to type I IFNs. METHODS We evaluated plasma from 123 patients with COVID-19 to measure auto-abs to type I IFNs. We performed single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells from the patients with auto-abs and conducted epitope mapping of the auto-abs. RESULTS Three of 19 severe and 4 of 42 critical COVID-19 patients had neutralizing auto-abs to type I IFNs. Patients with auto-abs to type I IFNs showed no characteristic clinical features. scRNA-seq from 38 patients with COVID-19 revealed that IFN signaling in conventional dendritic cells and canonical monocytes was attenuated, and SARS-CoV-2-specific BCR repertoires were decreased in patients with auto-abs. Furthermore, auto-abs to IFN-α2 from COVID-19 patients with auto-abs recognized characteristic epitopes of IFN-α2, which binds to the receptor. CONCLUSION Auto-abs to type I IFN found in COVID-19 patients inhibited IFN signaling in dendritic cells and monocytes by blocking the binding of type I IFN to its receptor. The failure to properly induce production of an antibody to SARS-CoV-2 may be a causative factor of COVID-19 severity.
Collapse
Grants
- (S) 26221305 Ministry of Education, Culture, Sports, Science and Technology (MEXT Japan) Grants-in-Aid for Scientific Research
- (B) 20H03685 Ministry of Education, Culture, Sports, Science and Technology (MEXT Japan) Grants-in-Aid for Scientific Research
- (C) 17K08876 Ministry of Education, Culture, Sports, Science and Technology (MEXT Japan) Grants-in-Aid for Scientific Research
- (C) 18K07164 Ministry of Education, Culture, Sports, Science and Technology (MEXT Japan) Grants-in-Aid for Scientific Research
- 19K16683 Ministry of Education, Culture, Sports, Science and Technology (MEXT Japan) Grants-in-Aid for Scientific Research
- (B) JP21H05120 Transformative Research Areas
- (B) JP21H05121 Transformative Research Areas
- JP21ek0410060 Practical Research Project for Allergic Diseases and Immunology (Research on Allergic Diseases and Immunology) from the Japan Agency for Medical Research and Development, AMED
- JP21ek0410082 Practical Research Project for Allergic Diseases and Immunology (Research on Allergic Diseases and Immunology) from the Japan Agency for Medical Research and Development, AMED
- JP19ek0410045 Practical Research Project for Allergic Diseases and Immunology (Research on Allergic Diseases and Immunology) from the Japan Agency for Medical Research and Development, AMED
- JP20gm6110005 AMED-PRIME
- JP21gm1210003 AMED-CREST
- JPMJFR200R JST FOREST Project
- Ministry of Education, Culture, Sports, Science and Technology (MEXT Japan) Grants-in-Aid for Scientific Research
- Transformative Research Areas
- Practical Research Project for Allergic Diseases and Immunology (Research on Allergic Diseases and Immunology) from the Japan Agency for Medical Research and Development, AMED
- JST FOREST Project
- Mochida Memorial Foundation for Medical and Pharmaceutical Research
- MSD Life Science Foundation, Public Interest Incorporated Foundation
- Japanese Respiratory Foundation
- Takeda Science Foundation
- The Japanese Association for Infectious Diseases, Grant for Clinical Research Promotion
Collapse
Affiliation(s)
- Ami Aoki
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Chiaki Iwamura
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba, Japan
| | - Masahiro Kiuchi
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Kaori Tsuji
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Atsushi Sasaki
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Takahisa Hishiya
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Rui Hirasawa
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Kota Kokubo
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Sachiko Kuriyama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Atsushi Onodera
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Tadanaga Shimada
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Tetsutaro Nagaoka
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, 113-8431, Japan
| | | | - Akira Kojima
- Funabashi Central Hospital, Chiba, 273-8556, Japan
| | - Haruki Mito
- Department of Infectious Diseases, Japanese Red Cross Narita Hospital, Chiba, 286-0041, Japan
| | - Ryota Hase
- Department of Infectious Diseases, Japanese Red Cross Narita Hospital, Chiba, 286-0041, Japan
| | - Yasunori Kasahara
- Department of Respiratory Medicine, Eastern Chiba Medical Center, Chiba, 283-8686, Japan
| | - Naohide Kuriyama
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | | | | | - Satoru Kaneda
- Department of Gastroenterology, NHO Chiba Medical Center, Chiba, 260-8606, Japan
| | - Seiichiro Sakao
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, Chiba, 286-8520, Japan
| | - Osamu Nishida
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Motoko Y Kimura
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba, Japan
- Department of Experimental Immunology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Shinichiro Motohashi
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Hidetoshi Igari
- Department of Infectious Diseases, Chiba University Hospital, Chiba, 260-8677, Japan
- COVID-19 Vaccine Center, Chiba University Hospital, Chiba, 260-8677, Japan
| | - Yuzuru Ikehara
- Department of Pathology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Hiroshi Nakajima
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba, Japan
- COVID-19 Vaccine Center, Chiba University Hospital, Chiba, 260-8677, Japan
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Takuji Suzuki
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba, Japan
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Hideki Hanaoka
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba, Japan
- Clinical Research Center, Chiba University Hospital, Chiba, 260-8677, Japan
| | - Taka-Aki Nakada
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Toshiaki Kikuchi
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.
- AMED-CREST, AMED, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba, Japan.
- AMED-CREST, AMED, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| |
Collapse
|
6
|
Andreakos E. Type I and type III interferons: From basic biology and genetics to clinical development for COVID-19 and beyond. Semin Immunol 2024; 72:101863. [PMID: 38271892 DOI: 10.1016/j.smim.2024.101863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024]
Abstract
Type I and type III interferons (IFNs) constitute a key antiviral defense systems of the body, inducing viral resistance to cells and mediating diverse innate and adaptive immune functions. Defective type I and type III IFN responses have recently emerged as the 'Achilles heel' in COVID-19, with such patients developing severe disease and exhibiting a high risk for critical pneumonia and death. Here, we review the biology of type I and type III IFNs, their similarities and important functional differences, and their roles in SARS-CoV-2 infection. We also appraise the various mechanisms proposed to drive defective IFN responses in COVID-19 with particular emphasis to the ability of SARS-CoV-2 to suppress IFN production and activities, the genetic factors involved and the presence of autoantibodies neutralizing IFNs and accounting for a large proportion of individuals with severe COVID-19. Finally, we discuss the long history of the type I IFN therapeutics for the treatment of viral diseases, cancer and multiple sclerosis, the various efforts to use them in respiratory infections, and the newly emerging type III IFN therapeutics, with emphasis to the more recent studies on COVID-19 and their potential use as broad spectrum antivirals for future epidemics or pandemics.
Collapse
Affiliation(s)
- Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, BRFAA, Athens, Greece.
| |
Collapse
|
7
|
Fernández JJ, Mancebo C, Garcinuño S, March G, Alvarez Y, Alonso S, Inglada L, Blanco J, Orduña A, Montero O, Sandoval TA, Cubillos-Ruiz JR, Bustamante-Munguira E, Fernández N, Crespo MS. Innate IRE1α-XBP1 activation by viral single-stranded RNA and its influence on lung cytokine production during SARS-CoV-2 pneumonia. Genes Immun 2024; 25:43-54. [PMID: 38146001 DOI: 10.1038/s41435-023-00243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023]
Abstract
The utilization of host-cell machinery during SARS-CoV-2 infection can overwhelm the protein-folding capacity of the endoplasmic reticulum and activate the unfolded protein response (UPR). The IRE1α-XBP1 arm of the UPR could also be activated by viral RNA via Toll-like receptors. Based on these premises, a study to gain insight into the pathogenesis of COVID-19 disease was conducted using nasopharyngeal exudates and bronchioloalveolar aspirates. The presence of the mRNA of spliced XBP1 and a high expression of cytokine mRNAs were observed during active infection. TLR8 mRNA showed an overwhelming expression in comparison with TLR7 mRNA in bronchioloalveolar aspirates of COVID-19 patients, thus suggesting the presence of monocytes and monocyte-derived dendritic cells (MDDCs). In vitro experiments in MDDCs activated with ssRNA40, a synthetic mimic of SARS-CoV-2 RNA, showed induction of XBP1 splicing and the expression of proinflammatory cytokines. These responses were blunted by the IRE1α inhibitor MKC8866, the TLR8 antagonist CU-CPT9a, and knockdown of TLR8 receptor. In contrast, the IRE1α-XBP1 activator IXA4 enhanced these responses. Based on these findings, the TLR8/IRE1α system seems to play a significant role in the induction of the proinflammatory cytokines associated with severe COVID-19 disease and might be a druggable target to control cytokine storm.
Collapse
Affiliation(s)
- José J Fernández
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003, Valladolid, Spain
| | - Cristina Mancebo
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003, Valladolid, Spain
- Departamento de Bioquímica, Biología Molecular y Fisiología, Universidad de Valladolid, 47003, Valladolid, Spain
| | - Sonsoles Garcinuño
- Servicio de Microbiología, Hospital Clínico Universitario de Valladolid, Universidad de Valladolid, 47003, Valladolid, Spain
| | - Gabriel March
- Servicio de Microbiología, Hospital Clínico Universitario de Valladolid, Universidad de Valladolid, 47003, Valladolid, Spain
| | - Yolanda Alvarez
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003, Valladolid, Spain
- Departamento de Bioquímica, Biología Molecular y Fisiología, Universidad de Valladolid, 47003, Valladolid, Spain
| | - Sara Alonso
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003, Valladolid, Spain
| | - Luis Inglada
- Servicio de Medicina Interna, Hospital Universitario Rio-Hortega, 47012, Valladolid, Spain
| | - Jesús Blanco
- Servicio de Medicina Intensiva, Hospital Universitario Rio-Hortega, 47012, Valladolid, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Orduña
- Servicio de Microbiología, Hospital Clínico Universitario de Valladolid, Universidad de Valladolid, 47003, Valladolid, Spain
| | - Olimpio Montero
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003, Valladolid, Spain
| | - Tito A Sandoval
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, 10065, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Juan R Cubillos-Ruiz
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, 10065, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Elena Bustamante-Munguira
- Servicio de Medicina Intensiva, Hospital Clínico Universitario de Valladolid, 47003, Valladolid, Spain
| | - Nieves Fernández
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003, Valladolid, Spain
- Departamento de Bioquímica, Biología Molecular y Fisiología, Universidad de Valladolid, 47003, Valladolid, Spain
| | - Mariano Sánchez Crespo
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003, Valladolid, Spain.
| |
Collapse
|
8
|
Lim KH, Wang L, Dotse E, Wang M, Tiu CY, Wijanarko KJ, Wang X, Chow KT. TLR4 sensitizes plasmacytoid dendritic cells for antiviral response against SARS-CoV-2 coronavirus. J Leukoc Biol 2024; 115:190-200. [PMID: 37747799 DOI: 10.1093/jleuko/qiad111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/04/2023] [Accepted: 08/24/2023] [Indexed: 09/27/2023] Open
Abstract
Plasmacytoid dendritic cells are a rare subset of dendritic cells that exhibit antiviral functions in response to toll-like receptor 7/8 stimulations. Alternative toll-like receptors such as TLR4 have been known to be active in plasmacytoid dendritic cells for immune regulatory functions. However, it is unclear whether these toll-like receptors differentially activate plasmacytoid dendritic cells as compared with canonical toll-like receptor 7/8 stimulation. Here, we assessed alternative plasmacytoid dendritic cell activation states mediated by toll-like receptors other than endosomal toll-like receptors via the RNA sequencing approach. We found that toll-like receptor 4 stimulation induced a high degree of similarity in gene expression pattern to toll-like receptor 7/8 stimulation in plasmacytoid dendritic cells. Despite high resemblance to toll-like receptor 7/8, we discovered unique genes that were activated under toll-like receptor 4 activation only, as well as genes that were induced at a higher magnitude in comparison to toll-like receptor 7/8 activation. In comparison between toll-like receptor 4-activated plasmacytoid dendritic cells and conventional dendritic cells, we revealed that plasmacytoid dendritic cells and conventional dendritic cells expressed distinct gene sets, whereby conventional dendritic cells mostly favored antigen presentation functions for adaptive immune response regulation while plasmacytoid dendritic cells leaned toward immune response against infectious diseases. Last, we determined that toll-like receptor 4 activation sensitized plasmacytoid dendritic cells against SARS-CoV-2 (COVID-19) single-stranded RNA by enhancing antiviral-related responses and type I interferon production. These findings provided greater insights into the toll-like receptor 4 activation state in plasmacytoid dendritic cells, which can be beneficial for alternative therapeutic interventions involving plasmacytoid dendritic cells for various diseases.
Collapse
Affiliation(s)
- King Hoo Lim
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Kowloon, Hong Kong
| | - Lishi Wang
- Department of Surgery, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong
| | - Eunice Dotse
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Kowloon, Hong Kong
| | - Meijun Wang
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Kowloon, Hong Kong
| | - Cheuk Ying Tiu
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Kowloon, Hong Kong
| | - Kevin Julio Wijanarko
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Kowloon, Hong Kong
| | - Xin Wang
- Department of Surgery, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong
| | - Kwan T Chow
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Kowloon, Hong Kong
- Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Kowloon, Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Santacroce L, Magrone T. Molluscum Contagiosum Virus: Biology and Immune Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:151-170. [PMID: 38801577 DOI: 10.1007/978-3-031-57165-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Molluscum contagiosum virus is a poxvirus belonging to the Poxviridae family, which includes Orthopoxvirus, Parapoxvirus, Yantapoxvirus, Molluscipoxvirus, Smallpox virus, Cowpox virus and Monkeypox virus. MCV belongs to the genus Molluscipoxvirus and has a tropism for skin tissue. MCV infects keratinocytes and, after an incubation period of 2 weeks to 6 weeks, causes a breakdown of the skin barrier with the development of papules of variable size depending on the proper functioning of the immune response (both adaptive and acquired). MCV only infects humans and does not cause viraemia. MCV encodes for several inhibitory proteins responsible to circumvent the immune response through different signalling pathways. Individuals who can be infected with MCV are children, immunocompromised individuals such as organ transplant recipients and Human Immunodeficiency Virus (HIV)-infected individuals. Current treatments to manage MCV-induced lesions are different and include the use of immunomodulators, which, however, do not provide an effective response.
Collapse
Affiliation(s)
- Luigi Santacroce
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari, Bari, Italy.
| | - Thea Magrone
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari, Bari, Italy
| |
Collapse
|
10
|
Roozbehani M, Razizadeh MH, Keyvani H, Nejati F, Soleymani S, Mousavizadeh L. Expression Pattern of Cholesterol 25-Hydroxylase and Serum Level of 25-Hydroxycholesterol and Relevant Inflammatory Cytokines in Patients with Varying Disease Severity of COVID-19. Viral Immunol 2023; 36:610-616. [PMID: 37831916 DOI: 10.1089/vim.2023.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023] Open
Abstract
Cholesterol 25-hydroxylase (CH25H) and its product 25-hydroxycholesterol (25HC) showed antiviral effects against various viruses in vitro. CH25H expression is regulated in mice by pro-inflammatory cytokine interferons (IFNs) in mice but data on its possible correlation with IFNs in humans are still unclear. We examined gene expression of CH25H, IFN-α, and IFN-β and serum levels of 25HC in Iranian patients with mild and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Fifty intensive care unit (ICU) patients and outpatients with SARS-CoV-2 and 25 healthy controls were studied. Gene expression of CH25H and relevant inflammatory cytokines was quantified in peripheral blood mononuclear cells by real-time polymerase chain reaction. The expression of CH25H and serum levels of 25HC were significantly higher in ICU patients with SARS-CoV-2. Notably, IFN-α levels increased in healthy controls. However, compared to healthy controls, IFN-β was considerably higher in outpatients. Finally, statistical analysis shows that no correlation was found between CH25H and IFN-α expression; nevertheless, a lower correlation was found with IFN-β. The data revealed that CH25H and 25HC levels increase after SARS-CoV-2 infection. In other words, decreased levels of those factors in severe patients compared with mild patients may indicate the importance of their function in controlling the progression of the disease.
Collapse
Affiliation(s)
- Mona Roozbehani
- Vaccine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Hossein Keyvani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nejati
- Vaccine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sharareh Soleymani
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute, ACECR, Tehran, Iran
| | - Leila Mousavizadeh
- Vaccine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Tan X, Grice LF, Tran M, Mulay O, Monkman J, Blick T, Vo T, Almeida AC, da Silva Motta J, de Moura KF, Machado-Souza C, Souza-Fonseca-Guimaraes P, Baena CP, de Noronha L, Guimaraes FSF, Luu HN, Drennon T, Williams S, Stern J, Uytingco C, Pan L, Nam A, Cooper C, Short K, Belz GT, Souza-Fonseca-Guimaraes F, Kulasinghe A, Nguyen Q. A robust platform for integrative spatial multi-omics analysis to map immune responses to SARS-CoV-2 infection in lung tissues. Immunology 2023; 170:401-418. [PMID: 37605469 DOI: 10.1111/imm.13679] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/03/2023] [Indexed: 08/23/2023] Open
Abstract
The SARS-CoV-2 (COVID-19) virus has caused a devastating global pandemic of respiratory illness. To understand viral pathogenesis, methods are available for studying dissociated cells in blood, nasal samples, bronchoalveolar lavage fluid and similar, but a robust platform for deep tissue characterization of molecular and cellular responses to virus infection in the lungs is still lacking. We developed an innovative spatial multi-omics platform to investigate COVID-19-infected lung tissues. Five tissue-profiling technologies were combined by a novel computational mapping methodology to comprehensively characterize and compare the transcriptome and targeted proteome of virus infected and uninfected tissues. By integrating spatial transcriptomics data (Visium, GeoMx and RNAScope) and proteomics data (CODEX and PhenoImager HT) at different cellular resolutions across lung tissues, we found strong evidence for macrophage infiltration and defined the broader microenvironment surrounding these cells. By comparing infected and uninfected samples, we found an increase in cytokine signalling and interferon responses at different sites in the lung and showed spatial heterogeneity in the expression level of these pathways. These data demonstrate that integrative spatial multi-omics platforms can be broadly applied to gain a deeper understanding of viral effects on cellular environments at the site of infection and to increase our understanding of the impact of SARS-CoV-2 on the lungs.
Collapse
Affiliation(s)
- Xiao Tan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Laura F Grice
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Minh Tran
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Onkar Mulay
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - James Monkman
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Tony Blick
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Tuan Vo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Ana Clara Almeida
- Pontifícia Universidade Católica do Paraná, PUCPR, Curitiba, Paraná, Brazil
- Laboratório de Patologia Experimental, PPGCS da PUCPR, Curitiba, Brazil
| | | | - Karen Fernandes de Moura
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Cleber Machado-Souza
- Faculdades Pequeno Príncipe-Instituto de Pesquisa Pelé Pequeno príncipe, Curitiba, Paraná, Brazil
| | | | | | - Lucia de Noronha
- Pontifícia Universidade Católica do Paraná, PUCPR, Curitiba, Paraná, Brazil
- Laboratório de Patologia Experimental, PPGCS da PUCPR, Curitiba, Brazil
| | | | - Hung N Luu
- UMPC Hillman Cancer Center & School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | - Liuliu Pan
- NanoString Technologies Inc, Seattle, Washington, USA
| | - Andy Nam
- NanoString Technologies Inc, Seattle, Washington, USA
| | - Caroline Cooper
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Kirsty Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Gabrielle T Belz
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Queensland, Australia
| | | | - Arutha Kulasinghe
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Quan Nguyen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- QIMR Berghofer Medical Reseach Institute, Queensland, Australia
| |
Collapse
|
12
|
Nowill AE, Caruso M, de Campos-Lima PO. T-cell immunity to SARS-CoV-2: what if the known best is not the optimal course for the long run? Adapting to evolving targets. Front Immunol 2023; 14:1133225. [PMID: 37388738 PMCID: PMC10303130 DOI: 10.3389/fimmu.2023.1133225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/11/2023] [Indexed: 07/01/2023] Open
Abstract
Humanity did surprisingly well so far, considering how unprepared it was to respond to the coronavirus disease 2019 (COVID-19) threat. By blending old and ingenious new technology in the context of the accumulated knowledge on other human coronaviruses, several vaccine candidates were produced and tested in clinical trials in record time. Today, five vaccines account for the bulk of the more than 13 billion doses administered worldwide. The ability to elicit biding and neutralizing antibodies most often against the spike protein is a major component of the protection conferred by immunization but alone it is not enough to limit virus transmission. Thus, the surge in numbers of infected individuals by newer variants of concern (VOCs) was not accompanied by a proportional increase in severe disease and death rate. This is likely due to antiviral T-cell responses, whose evasion is more difficult to achieve. The present review helps navigating the very large literature on T cell immunity induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination. We examine the successes and shortcomings of the vaccinal protection in the light of the emergence of VOCs with breakthrough potential. SARS-CoV-2 and human beings will likely coexist for a long while: it will be necessary to update existing vaccines to improve T-cell responses and attain better protection against COVID-19.
Collapse
Affiliation(s)
- Alexandre E. Nowill
- Integrated Center for Pediatric OncoHaematological Research, State University of Campinas, Campinas, SP, Brazil
| | - Manuel Caruso
- CHU de Québec-Université Laval Research Center (Oncology Division), Université Laval Cancer Research Center, Québec, QC, Canada
| | - Pedro O. de Campos-Lima
- Boldrini Children’s Center, Campinas, SP, Brazil
- Molecular and Morphofunctional Biology Graduate Program, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
13
|
García-Nicolás O, Godel A, Zimmer G, Summerfield A. Macrophage phagocytosis of SARS-CoV-2-infected cells mediates potent plasmacytoid dendritic cell activation. Cell Mol Immunol 2023:10.1038/s41423-023-01039-4. [PMID: 37253946 DOI: 10.1038/s41423-023-01039-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/06/2023] [Indexed: 06/01/2023] Open
Abstract
Early and strong interferon type I (IFN-I) responses are usually associated with mild COVID-19 disease, whereas persistent or unregulated proinflammatory cytokine responses are associated with severe disease outcomes. Previous work suggested that monocyte-derived macrophages (MDMs) are resistant and unresponsive to SARS-CoV-2 infection. Here, we demonstrate that upon phagocytosis of SARS-CoV-2-infected cells, MDMs are activated and secrete IL-6 and TNF. Importantly, activated MDMs in turn mediate strong activation of plasmacytoid dendritic cells (pDCs), leading to the secretion of high levels of IFN-α and TNF. Furthermore, pDC activation promoted IL-6 production by MDMs. This kind of pDC activation was dependent on direct integrin-mediated cell‒cell contacts and involved stimulation of the TLR7 and STING signaling pathways. Overall, the present study describes a novel and potent pathway of pDC activation that is linked to the macrophage-mediated clearance of infected cells. These findings suggest that a high infection rate by SARS-CoV-2 may lead to exaggerated cytokine responses, which may contribute to tissue damage and severe disease.
Collapse
Affiliation(s)
- O García-Nicolás
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland.
| | - A Godel
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - G Zimmer
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - A Summerfield
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
14
|
Akbari H, Taghizadeh-Hesary F. COVID-19 induced liver injury from a new perspective: Mitochondria. Mitochondrion 2023; 70:103-110. [PMID: 37054906 PMCID: PMC10088285 DOI: 10.1016/j.mito.2023.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/27/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023]
Abstract
Liver damage is a common sequela of COVID-19 (coronavirus disease 2019), worsening the clinical outcomes. However, the underlying mechanism of COVID-induced liver injury (CiLI) is still not determined. Given the crucial role of mitochondria in hepatocyte metabolism and the emerging evidence denoting SARS-CoV-2 can damage human cell mitochondria, in this mini-review, we hypothesized that CiLI happens following hepatocytes' mitochondrial dysfunction. To this end, we evaluated the histologic, pathophysiologic, transcriptomic, and clinical features of CiLI from the mitochondria' eye view. Severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2), the causative agent of COVID-19, can damage hepatocytes through direct cytopathic effects or indirectly after the profound inflammatory response. Upon entering the hepatocytes, the RNA and RNA transcripts of SARS-CoV-2 engages the mitochondria. This interaction can disrupt the mitochondrial electron transport chain. In other words, SARS-CoV-2 hijacks the hepatocytes' mitochondria to support its replication. In addition, this process can lead to an improper immune response against SARS-CoV-2. Besides, this review outlines how mitochondrial dysfunction can serve as a prelude to the COVID-associated cytokine storm. Thereafter, we indicate how the nexus between COVID-19 and mitochondria can fill the gap linking CiLI and its risk factors, including old age, male sex, and comorbidities. In conclusion, this concept stresses the importance of mitochondrial metabolism in hepatocyte damage in the context of COVID-19. It notes that boosting mitochondria biogenesis can possibly serve as a prophylactic and therapeutic approach for CiLI. Further studies can reveal this notion.
Collapse
Affiliation(s)
- Hassan Akbari
- Department of Pathology, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Traditional Medicine School, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Baldari CT, Onnis A, Andreano E, Del Giudice G, Rappuoli R. Emerging roles of SARS-CoV-2 Spike-ACE2 in immune evasion and pathogenesis. Trends Immunol 2023; 44:424-434. [PMID: 37137805 PMCID: PMC10076505 DOI: 10.1016/j.it.2023.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023]
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, has caused an estimated 5 billion infections and 20 million deaths by respiratory failure. In addition to the respiratory disease, SARS-CoV-2 infection has been associated with many extrapulmonary complications not easily explainable by the respiratory infection. A recent study showed that the SARS-CoV-2 spike protein, which mediates cell entry by binding to the angiotensin-converting enzyme 2 (ACE2) receptor, signals through ACE2 to change host cell behavior. In CD8+ T cells, spike-dependent ACE2-mediated signaling suppresses immunological synapse (IS) formation and impairs their killing ability, leading to immune escape of virus-infected cells. In this opinion article, we discuss the consequences of ACE2 signaling on the immune response and propose that it contributes to the extrapulmonary manifestations of COVID-19.
Collapse
Affiliation(s)
| | - Anna Onnis
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Emanuele Andreano
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | | | - Rino Rappuoli
- Fondazione Biotecnopolo di Siena, Siena, Italy; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy.
| |
Collapse
|
16
|
Sun X, Gao C, Zhao K, Yang Y, Rassadkina Y, Fajnzylber J, Regan J, Li JZ, Lichterfeld M, Yu XG. Immune-profiling of SARS-CoV-2 viremic patients reveals dysregulated innate immune responses. Front Immunol 2022; 13:984553. [PMID: 36439166 PMCID: PMC9682031 DOI: 10.3389/fimmu.2022.984553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/01/2022] [Indexed: 09/08/2024] Open
Abstract
SARS-CoV-2 plasma viremia has been associated with severe disease and death in COVID-19. However, the effects of viremia on immune responses in blood cells remain unclear. The current study comprehensively examined transcriptional signatures of PBMCs involving T cells, B cells, NK cells, monocytes, myeloid dendritic cells (mDCs), and plasmacytoid dendritic cells (pDCs) respectively, from three different groups including individuals with moderate (nM), or severe disease with (vS) or without (nS) detectable plasma viral load. Whole transcriptome analysis demonstrated that all seven immune cell subsets were associated with disease severity regardless of cell type. Supervised clustering analysis demonstrated that mDCs and pDCs gene signatures could distinguish disease severity. Notably, transcriptional signatures of the vS group were enriched in pathways related to DNA repair, E2F targets, and G2M checkpoints; in contrast, transcriptional signatures of the nM group were enriched in interferon responses. Moreover, we observed an impaired induction of interferon responses accompanied by imbalanced cell-intrinsic immune sensing and an excessive inflammatory response in patients with severe disease (nS and vS). In sum, our study provides detailed insights into the systemic immune response to SARS-CoV-2 infection and reveals profound alterations in seven major immune cells in COVID-19 patients.
Collapse
Affiliation(s)
- Xiaoming Sun
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, United States
| | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, United States
- Infectious Disease Division, Massachusetts General Hospital, Boston, MA, United States
| | - Ke Zhao
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yanhui Yang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | | | - Jesse Fajnzylber
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, United States
| | - James Regan
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, United States
| | - Jonathan Z. Li
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, United States
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, United States
- Infectious Disease Division, Massachusetts General Hospital, Boston, MA, United States
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, United States
| | - Xu G. Yu
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, United States
- Infectious Disease Division, Massachusetts General Hospital, Boston, MA, United States
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, United States
| |
Collapse
|
17
|
Single-Cell Gene Expression Analysis Revealed Immune Cell Signatures of Delta COVID-19. Cells 2022; 11:cells11192950. [PMID: 36230912 PMCID: PMC9563974 DOI: 10.3390/cells11192950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/04/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) is accompanied by a cytokine storm with the release of many proinflammatory factors and development of respiratory syndrome. Several SARS-CoV-2 lineages have been identified, and the Delta variant (B.1.617), linked with high mortality risk, has become dominant in many countries. Understanding the immune responses associated with COVID-19 lineages may therefore aid the development of therapeutic and diagnostic strategies. Multiple single-cell gene expression studies revealed innate and adaptive immunological factors and pathways correlated with COVID-19 severity. Additional investigations covering host–pathogen response characteristics for infection caused by different lineages are required. Here, we performed single-cell transcriptome profiling of blood mononuclear cells from the individuals with different severity of the COVID-19 and virus lineages to uncover variant specific molecular factors associated with immunity. We identified significant changes in lymphoid and myeloid cells. Our study highlights that an abundant population of monocytes with specific gene expression signatures accompanies Delta lineage of SARS-CoV-2 and contributes to COVID-19 pathogenesis inferring immune components for targeted therapy.
Collapse
|
18
|
Bencze D, Fekete T, Pázmándi K. Correlation between Type I Interferon Associated Factors and COVID-19 Severity. Int J Mol Sci 2022; 23:ijms231810968. [PMID: 36142877 PMCID: PMC9506204 DOI: 10.3390/ijms231810968] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
Antiviral type I interferons (IFN) produced in the early phase of viral infections effectively inhibit viral replication, prevent virus-mediated tissue damages and promote innate and adaptive immune responses that are all essential to the successful elimination of viruses. As professional type I IFN producing cells, plasmacytoid dendritic cells (pDC) have the ability to rapidly produce waste amounts of type I IFNs. Therefore, their low frequency, dysfunction or decreased capacity to produce type I IFNs might increase the risk of severe viral infections. In accordance with that, declined pDC numbers and delayed or inadequate type I IFN responses could be observed in patients with severe coronavirus disease (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as compared to individuals with mild or no symptoms. Thus, besides chronic diseases, all those conditions, which negatively affect the antiviral IFN responses lengthen the list of risk factors for severe COVID-19. In the current review, we would like to briefly discuss the role and dysregulation of pDC/type I IFN axis in COVID-19, and introduce those type I IFN-dependent factors, which account for an increased risk of COVID-19 severity and thus are responsible for the different magnitude of individual immune responses to SARS-CoV-2.
Collapse
Affiliation(s)
- Dóra Bencze
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
| | - Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
- Correspondence: ; Tel./Fax: +36-52-417-159
| |
Collapse
|