1
|
Bhutta NK, Xu X, Jian C, Wang Y, Liu Y, Sun J, Han B, Wu S, Javeed A. Gut microbiota mediated T cells regulation and autoimmune diseases. Front Microbiol 2024; 15:1477187. [PMID: 39749132 PMCID: PMC11694513 DOI: 10.3389/fmicb.2024.1477187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Gut microbiota regulates the immune system, the development and progression of autoimmune diseases (AIDs) and overall health. Recent studies have played a crucial part in understanding the specific role of different gut bacterial strains and their metabolites in different AIDs. Microbial signatures in AIDs are revealed by advanced sequencing and metabolomics studies. Microbes such as Faecalibacterium prausnitzii, Akkermansia muciniphila, Anaerostipes caccae, Bacteroides sp., Roseburia sp., Blautia sp., Blautia faecis, Clostridium lavalense, Christensenellaceae sp., Coprococcus sp., Firmicutes sp., Ruminococcaceae sp., Lachnospiraceae sp., Megamonas sp., Monoglobus sp., Streptococcus pneumoniae and Bifidobacterium sp. help maintain immune homeostasis; whereas, Prevotella copri, Ruminococcus gnavus, Lactobacillus salivarius, Enterococcus gallinarum, Elizabeth menigoseptica, Collinsella sp., Escherichia sp., Fusobacterium sp., Enterobacter ludwigii, Enterobacteriaceae sp., Proteobacteria, Porphyromonas gingivalis, Porphyromonas nigrescens, Dorea sp., and Clostridium sp. cause immuno-pathogenesis. A complex web of interactions is revealed by understanding the influence of gut microbiota on immune cells and various T cell subsets such as CD4+ T cells, CD8+ T cells, natural killer T cells, γδ T cells, etc. Certain AIDs, including rheumatoid arthritis, diabetes mellitus, atopic asthma, inflammatory bowel disease and non-alcoholic fatty liver disease exhibit a state of dysbiosis, characterized by alterations in microbial diversity and relative abundance of specific taxa. This review summarizes recent developments in understanding the role of certain microbiota composition in specific AIDs, and the factors affecting specific regulatory T cells through certain microbial metabolites and also focuses the potential application and therapeutic significance of gut microbiota-based interventions as novel adjunctive therapies for AIDs. Further research to determine the precise association of each gut bacterial strain in specific diseases is required.
Collapse
Affiliation(s)
- Nabeel Khalid Bhutta
- Laboratory of Anti-allergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiujin Xu
- Laboratory of Anti-allergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Cuiqin Jian
- Laboratory of Anti-allergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yifan Wang
- Laboratory of Anti-allergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yi Liu
- Hangzhou Zheda Dixun Biological Gene Engineering Co., Ltd., Hangzhou, China
| | - Jinlyu Sun
- Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, Department of Allergy, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Bingnan Han
- Laboratory of Anti-allergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Shandong Wu
- Hangzhou Zheda Dixun Biological Gene Engineering Co., Ltd., Hangzhou, China
| | - Ansar Javeed
- Laboratory of Anti-allergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
2
|
Zhang QW, Yang MJ, Liao CY, Taha R, Li QY, Abdelmotalab MI, Zhao SY, Xu Y, Jiang ZZ, Chu CH, Huang X, Jiao CH, Sun LX. Atractylodes macrocephala Koidz polysaccharide ameliorates DSS-induced colitis in mice by regulating the gut microbiota and tryptophan metabolism. Br J Pharmacol 2024. [PMID: 39667762 DOI: 10.1111/bph.17409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 07/07/2024] [Accepted: 09/12/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND AND PURPOSE Ulcerative colitis (UC) is an idiopathic inflammatory bowel disease, and the range of current clinical treatments is not ideal. We previously found that polysaccharide of Atractylodes macrocephala Koidz (PAMK) is beneficial in DSS-induced colitis, and we aimed to investigate the underlying mechanisms in this study. EXPERIMENTAL APPROACH PAMK was used to treat DSS-induced colitis in mice, 16S rRNA sequencing analysis was used to detect changes in the intestinal microbiota, targeted metabolomics analysis was used to determine the content of tryptophan-metabolizing bacteria, and western blotting was used to determine aryl hydrocarbon receptor (AhR) and pregnane X receptor (PXR) levels. Furthermore, antibiotic-mediated depletion of gut microbiota and faecal microbiota transplantation were performed to assess the role of the gut microbiota in PAMK alleviation of colitis. KEY RESULTS PAMK treatment relieved intestinal microbiota dysbiosis in mice with colitis, contributed to the proliferation of tryptophan-metabolizing bacteria, and increased the levels of tryptophan metabolites, resulting in a significant increase in the nuclear translocation of PXR and expression of PXR and its target genes, but not AhR. The gut microbiota is important in PAMK treatment of colitis, including in the alleviation of symptoms, inhibition of inflammation, maintenance of the integrity of the intestinal barrier, and the regulation of the Th17/Treg cell balance. CONCLUSION AND IMPLICATIONS Based on our findings, we elucidate a novel mechanism by which PAMK alleviates DSS-induced colitis and thus provides evidence to support the potential development of PAMK as a new clinical drug against UC.
Collapse
Affiliation(s)
- Qian-Wen Zhang
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Meng-Jiao Yang
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Chun-Yu Liao
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Reham Taha
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Qing-Yu Li
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Mohammed Ismail Abdelmotalab
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Si-Yu Zhao
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Yan Xu
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Zhen-Zhou Jiang
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Cheng-Han Chu
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Xin Huang
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Chun-Hua Jiao
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li-Xin Sun
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
3
|
Chen Z, Zhang S, Sun X, Meng D, Lai C, Zhang M, Wang P, Huang X, Gao X. Rosa roxburghii fermented juice mitigates LPS-induced acute lung injury by modulation of intestinal flora and metabolites. Front Microbiol 2024; 15:1447735. [PMID: 39355423 PMCID: PMC11442212 DOI: 10.3389/fmicb.2024.1447735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/27/2024] [Indexed: 10/03/2024] Open
Abstract
Acute lung injury (ALI) is a severe pulmonary condition with high mortality and morbidity, lacking effective pharmacotherapeutic options. Rosa roxburghii Tratt, a unique fruit from southwestern China, is valued for its rich nutritional content and functional properties. Fermentation is known to enhance the nutritional value, flavor, and shelf life of foods. In this study, we investigated the effects of fermented Rosa roxburghii juice (RRFJ) on gut microbiota, metabolites, and the levels of short-chain fatty acids in the intestines, as well as its impact on lung tissue and intestine tissue injury, inflammation, and oxidative stress in murine models. The results showed that RRFJ modulated gut microbiota and metabolites, increased short-chain fatty acid levels, and consequently reduced lung tissue injury, inflammation, and oxidative stress in mice with ALI. These findings suggest that RRFJ has the potential to serve as a functional dietary adjunct in the management of acute lung injury, providing a scientific basis for its therapeutic role.
Collapse
Affiliation(s)
- Zhiyu Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Science, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| | - Shuo Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Science, Guizhou Medical University, Guiyang, China
- Experimental Animal Center of Guizhou Medical University, Guiyang, China
| | - Xiaodong Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Science, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| | - Duo Meng
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Science, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| | - Chencen Lai
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Science, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| | - Min Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Science, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| | - Pengjiao Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Science, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| | - Xuncai Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Science, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| | - Xiuli Gao
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Science, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guizhou Medical University, Guiyang, China
| |
Collapse
|
4
|
Zhao C, Chen G, Huang Y, Zhang Y, Li S, Jiang Z, Peng H, Wang J, Li D, Hou R, Peng C, Wan X, Cai H. Alleviation of fluoride-induced colitis by tea polysaccharides: Insights into the role of Limosilactobacillus vaginalis and butyric acid. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134858. [PMID: 38905983 DOI: 10.1016/j.jhazmat.2024.134858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/23/2024] [Accepted: 06/06/2024] [Indexed: 06/23/2024]
Abstract
Endemic fluorosis has gained increasing attention as a public health concern, and the escalating risk of colitis resulting from excessive fluoride intake calls for effective mitigation strategies. This study aimed to investigate the potential mechanisms underlying the alleviation of fluoride-induced colitis by Tea polysaccharides (TPS). Under conditions of excessive fluoride intake, significant changes were observed in the gut microbiota of rats, leading to aggravated colitis. However, the intervention of TPS exerted a notable alleviating effect on colitis symptoms. Antibiotic intervention and fecal microbiota transplantation (FMT) experiments provided evidence that TPS-mediated relief of fluoride-induced colitis is mediated through its effects on the gut microbiota. Furthermore, TPS supplementation was found to modulate the structure of gut microbiota, enhance the relative abundance of Limosilactobacillus vaginalis in the gut microbiota, and promote the expression of short-chain fatty acid (SCFAs) receptors in colonic tissue. Notably, L. vaginalis played a significant role in alleviating fluoride-induced colitis and facilitating the absorption of butyric acid in the rat colon. Subsequent butyric acid intervention experiments confirmed its remarkable alleviating effect on fluoride-induced colitis. Overall, these findings provide a potential preventive strategy for fluoride-induced colitis by TPS intervention, which is mediated by L. vaginalis and butyric acid.
Collapse
Affiliation(s)
- Chenjun Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Guijie Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Ying Huang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Yuxuan Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Sichen Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Zhiliang Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Huihui Peng
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Juan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Chuanyi Peng
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China.
| | - Huimei Cai
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China.
| |
Collapse
|
5
|
Li Y, Wang W, Liu Y, Li S, Wang J, Hou L. Diminished Immune Response and Elevated Abundance in Gut Microbe Dubosiella in Mouse Models of Chronic Colitis with GBP5 Deficiency. Biomolecules 2024; 14:873. [PMID: 39062588 PMCID: PMC11274912 DOI: 10.3390/biom14070873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Guanylate binding protein 5 (GBP5) is an emerging immune component that has been increasingly recognized for its involvement in autoimmune diseases, particularly inflammatory bowel disease (IBD). IBD is a complex disease involving inflammation of the gastrointestinal tract. Here, we explored the functional significance of GBP5 using Gbp5 knockout mice and wildtype mice exposed to dextran sulfate sodium (DSS) to generate chronic colitis model. We found that Gbp5 deficiency protected mice from DSS-induced chronic colitis. Transcriptome analysis of colon tissues showed reduced immune responses in Gbp5 knockout mice compared to those in corresponding wildtype mice. We further observed that after repeated DSS exposure, the gut microbiota was altered, both in wildtype mice and Gbp5 knockout mice; however, the gut microbiome health index was higher in the Gbp5 knockout mice. Notably, a probiotic murine commensal bacterium, Dubosiella, was predominantly enriched in these knockout mice. Our findings suggest that GBP5 plays an important role in promoting inflammation and dysbiosis in the intestine, the prevention of which might therefore be worth exploring in regards to IBD treatment.
Collapse
Affiliation(s)
- Yichen Li
- Medical College, Jiaying University, Meizhou 514031, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China;
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, Department of General Surgery, The Six Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Wenxia Wang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China;
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, Department of General Surgery, The Six Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Yuxuan Liu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Y.L.); (S.L.); (J.W.)
| | - Senru Li
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Y.L.); (S.L.); (J.W.)
| | - Jingyu Wang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Y.L.); (S.L.); (J.W.)
| | - Linlin Hou
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Y.L.); (S.L.); (J.W.)
| |
Collapse
|
6
|
Zhang X, Wang J, Liu Y, Wang H, Li B, Li Q, Wang Y, Zong Y, Wang J, Meng Q, Wu S, Hao R, Li X, Chen R, Chen H. In situ profiling reveals spatially metabolic injury in the initiation of polystyrene nanoplastic-derived intestinal epithelial injury in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172037. [PMID: 38575003 DOI: 10.1016/j.scitotenv.2024.172037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Despite increasing concerns regarding the harmful effects of plastic-induced gut injury, mechanisms underlying the initiation of plastic-derived intestinal toxicity remain unelucidated. Here, mice were subjected to long-term exposure to polystyrene nanoplastics (PS-NPs) of varying sizes (80, 200, and 1000 nm) at doses relevant to human dietary exposure. PS-NPs exposure did not induce a significant inflammatory response, histopathological damage, or intestinal epithelial dysfunction in mice at a dosage of 0.5 mg/kg/day for 28 days. However, PS-NPs were detected in the mouse intestine, coupled with observed microstructural changes in enterocytes, including mild villous lodging, mitochondrial membrane rupture, and endoplasmic reticulum (ER) dysfunction, suggesting that intestinal-accumulating PS-NPs resulted in the onset of intestinal epithelial injury in mice. Mechanistically, intragastric PS-NPs induced gut microbiota dysbiosis and specific bacteria alterations, accompanied by abnormal metabolic fingerprinting in the plasma. Furthermore, integrated data from mass spectrometry imaging-based spatial metabolomics and metallomics revealed that PS-NPs exposure led to gut dysbiosis-associated host metabolic reprogramming and initiated intestinal injury. These findings provide novel insights into the critical gut microbial-host metabolic remodeling events vital to nanoplastic-derived-initiated intestinal injury.
Collapse
Affiliation(s)
- Xianan Zhang
- School of Public Health, Capital Medical University, Beijing 100069, China; Yanjing Medical College, Capital Medical University, Beijing 101300, China
| | - Jing Wang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yuansheng Liu
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Hemin Wang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Bin Li
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Qing Li
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yi Wang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yuru Zong
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jiajia Wang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Qingtao Meng
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing 100069, China
| | - Shenshen Wu
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing 100069, China
| | - Rongzhang Hao
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Xiaobo Li
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing 100069, China.
| | - Rui Chen
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing 100069, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China; Department of Occupational and Environmental Health, Fourth Military Medical University, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an 710032, China.
| | - Hanqing Chen
- School of Public Health, Capital Medical University, Beijing 100069, China; Department of Nutrition & Food Hygiene, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
7
|
Zhang Y, Tu S, Ji X, Wu J, Meng J, Gao J, Shao X, Shi S, Wang G, Qiu J, Zhang Z, Hua C, Zhang Z, Chen S, Zhang L, Zhu SJ. Dubosiella newyorkensis modulates immune tolerance in colitis via the L-lysine-activated AhR-IDO1-Kyn pathway. Nat Commun 2024; 15:1333. [PMID: 38351003 PMCID: PMC10864277 DOI: 10.1038/s41467-024-45636-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Commensal bacteria generate immensely diverse active metabolites to maintain gut homeostasis, however their fundamental role in establishing an immunotolerogenic microenvironment in the intestinal tract remains obscure. Here, we demonstrate that an understudied murine commensal bacterium, Dubosiella newyorkensis, and its human homologue Clostridium innocuum, have a probiotic immunomodulatory effect on dextran sulfate sodium-induced colitis using conventional, antibiotic-treated and germ-free mouse models. We identify an important role for the D. newyorkensis in rebalancing Treg/Th17 responses and ameliorating mucosal barrier injury by producing short-chain fatty acids, especially propionate and L-Lysine (Lys). We further show that Lys induces the immune tolerance ability of dendritic cells (DCs) by enhancing Trp catabolism towards the kynurenine (Kyn) pathway through activation of the metabolic enzyme indoleamine-2,3-dioxygenase 1 (IDO1) in an aryl hydrocarbon receptor (AhR)-dependent manner. This study identifies a previously unrecognized metabolic communication by which Lys-producing commensal bacteria exert their immunoregulatory capacity to establish a Treg-mediated immunosuppressive microenvironment by activating AhR-IDO1-Kyn metabolic circuitry in DCs. This metabolic circuit represents a potential therapeutic target for the treatment of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Yanan Zhang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Shuyu Tu
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510080, PR China
| | - Xingwei Ji
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Jianan Wu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, PR China
| | - Jinxin Meng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, 266109, PR China
| | - Jinsong Gao
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Xian Shao
- Shaoxing People's Hospital, Zhejiang University Shaoxing Hospital, Shaoxing, Zhejiang, 312000, PR China
| | - Shuai Shi
- Shaoxing People's Hospital, Zhejiang University Shaoxing Hospital, Shaoxing, Zhejiang, 312000, PR China
| | - Gan Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Jingjing Qiu
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, 130118, PR China
| | - Zhuobiao Zhang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Chengang Hua
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Ziyi Zhang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Shuxian Chen
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510080, PR China
| | - Shu Jeffrey Zhu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, PR China.
- Shaoxing People's Hospital, Zhejiang University Shaoxing Hospital, Shaoxing, Zhejiang, 312000, PR China.
| |
Collapse
|
8
|
Liu X, Li Y, Gu M, Xu T, Wang C, Chang P. Radiation enteropathy-related depression: A neglectable course of disease by gut bacterial dysbiosis. Cancer Med 2024; 13:e6865. [PMID: 38457257 PMCID: PMC10923036 DOI: 10.1002/cam4.6865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 03/10/2024] Open
Abstract
Radiation enteropathy (RE) is common in patients treated with radiotherapy for pelvic-abdominal cancers. Accumulating data indicate that gut commensal bacteria determine intestinal radiosensitivity. Radiotherapy can result in gut bacterial dysbiosis. Gut bacterial dysbiosis contributes to the pathogenesis of RE. Mild to moderate depressive symptoms can be observed in patients with RE in clinical settings; however, the rate of these symptoms has not been reported. Studies have demonstrated that gut bacterial dysbiosis induces depression. In the state of comorbidity, RE and depression may be understood as local and abscopal manifestations of gut bacterial disorders. The ability of comorbid depression to worsen inflammatory bowel disease (IBD) has long been demonstrated and is associated with dysfunction of cholinergic neural anti-inflammatory pathways. There is a lack of direct evidence for RE comorbid with depression. It is widely accepted that RE shares similar pathophysiologic mechanisms with IBD. Therefore, we may be able to draw on the findings of the relationship between IBD and depression. This review will explore the relationship between gut bacteria, RE, and depression in light of the available evidence and indicate a method for investigating the mechanisms of RE combined with depression. We will also describe new developments in the treatment of RE with probiotics, prebiotics, and fecal microbial transplantation.
Collapse
Affiliation(s)
- Xinliang Liu
- Department of Radiation Oncology and TherapyThe First Hospital of Jilin UniversityChangchunChina
| | - Ying Li
- Department of Radiation Oncology and TherapyThe First Hospital of Jilin UniversityChangchunChina
| | - Meichen Gu
- Department of Radiation Oncology and TherapyThe First Hospital of Jilin UniversityChangchunChina
| | - Tiankai Xu
- Department of Radiation Oncology and TherapyThe First Hospital of Jilin UniversityChangchunChina
| | - Chuanlei Wang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Pengyu Chang
- Department of Radiation Oncology and TherapyThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
9
|
Deng S, Pei C, Cai K, Huang W, Xiao X, Zhang X, Liang R, Chen Y, Xie Z, Li P, Liao Q. Lactobacillus acidophilus and its metabolite ursodeoxycholic acid ameliorate ulcerative colitis by promoting Treg differentiation and inhibiting M1 macrophage polarization. Front Microbiol 2024; 15:1302998. [PMID: 38292253 PMCID: PMC10825044 DOI: 10.3389/fmicb.2024.1302998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
Lactobacillus acidophilus (LA) is a common clinical probiotic that improves ulcerative colitis (UC) by restoring intestinal immune balance. However, the interaction of LA with the gut microbiota and its metabolites in the treatment of UC remains unknown. Therefore, this study seeks to elucidate whether the gut microbiota and its metabolites act as pivotal effectors in LA's therapeutic mechanisms and how precisely they modulate intestinal immunity. In this study, we verified that LA can obviously ameliorate the disease severity, and regulate intestinal immune disorders in UC mice. Subsequently, antibiotic (ABX)-mediated depletion of the gut microflora demonstrated that the therapeutic efficiency of LA was closely associated with gut microbiota. In addition, the results of metabolomics revealed that ursodeoxycholic acid (UDCA), a metabolite of intestinal flora, may be a potential effector molecule mediating therapeutic effects of LA. Indeed, we found that UDCA can improve the macro pathological characteristics of UC mice, and through a comprehensive set of in vivo and in vitro experiments, we discovered that UDCA exerts dual effects on immune regulation. Firstly, it promotes the differentiation of Treg cells, resulting in increased secretion of anti-inflammatory cytokines. Secondly, UDCA inhibits the polarization of M1 macrophages, effectively reducing the secretion of pro-inflammatory cytokines. Moreover, we found that UDCA regulation of immune response is directly related to the RapGap/PI3K-AKT/NF-κB signaling pathway. In conclusion, LA and its metabolite, UDCA, may treat UC by activating the RapGap/PI3K-AKT/NF-κB signaling pathway and modulating Treg cells and M1 macrophages. All in all, our findings highlight the potential of microbial metabolites in enhancing probiotic for UC treatment.
Collapse
Affiliation(s)
- Song Deng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chaoying Pei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kaiwei Cai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenyi Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyi Xiao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xingyuan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rongyao Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Pei Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
10
|
Krause FF, Mangold KI, Ruppert AL, Leister H, Hellhund-Zingel A, Lopez Krol A, Pesek J, Watzer B, Winterberg S, Raifer H, Binder K, Kinscherf R, Walker A, Nockher WA, Taudte RV, Bertrams W, Schmeck B, Kühl AA, Siegmund B, Romero R, Luu M, Göttig S, Bekeredjian-Ding I, Steinhoff U, Schütz B, Visekruna A. Clostridium sporogenes-derived metabolites protect mice against colonic inflammation. Gut Microbes 2024; 16:2412669. [PMID: 39397690 PMCID: PMC11485882 DOI: 10.1080/19490976.2024.2412669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024] Open
Abstract
Gut microbiota-derived metabolites play a pivotal role in the maintenance of intestinal immune homeostasis. Here, we demonstrate that the human commensal Clostridium sporogenes possesses a specific metabolic fingerprint, consisting predominantly of the tryptophan catabolite indole-3-propionic acid (IPA), the branched-chain acids (BCFAs) isobutyrate and isovalerate and the short-chain fatty acids (SCFAs) acetate and propionate. Mono-colonization of germ-free mice with C. sporogenes (CS mice) affected colonic mucosal immune cell phenotypes, including up-regulation of Il22 gene expression, and increased abundance of transcriptionally active colonic tuft cells and Foxp3+ regulatory T cells (Tregs). In DSS-induced colitis, conventional mice suffered severe inflammation accompanied by loss of colonic crypts. These symptoms were absent in CS mice. In conventional, but not CS mice, bulk RNAseq analysis of the colon revealed an increase in inflammatory and Th17-related gene signatures. C. sporogenes-derived IPA reduced IL-17A protein expression by suppressing mTOR activity and by altering ribosome-related pathways in Th17 cells. Additionally, BCFAs and SCFAs generated by C. sporogenes enhanced the activity of Tregs and increased the production of IL-22, which led to protection from colitis. Collectively, we identified C. sporogenes as a therapeutically relevant probiotic bacterium that might be employed in patients with inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Felix F. Krause
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Kira I. Mangold
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Anna-Lena Ruppert
- Institute of Anatomy and Cell Biology, Philipps-University, Marburg, Germany
| | - Hanna Leister
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Anne Hellhund-Zingel
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Aleksandra Lopez Krol
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Jelena Pesek
- Core Facility for Metabolomics, Department of Medicine, Philipps-University, Marburg, Germany
| | - Bernhard Watzer
- Core Facility for Metabolomics, Department of Medicine, Philipps-University, Marburg, Germany
| | - Sarah Winterberg
- Institute of Anatomy and Cell Biology, Philipps-University, Marburg, Germany
| | - Hartmann Raifer
- Flow Cytometry Core Facility, Philipps-University, Marburg, Germany
| | - Kai Binder
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Ralf Kinscherf
- Institute of Anatomy and Cell Biology, Philipps-University, Marburg, Germany
| | - Alesia Walker
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum, München, Germany
| | - Wolfgang A. Nockher
- Core Facility for Metabolomics, Department of Medicine, Philipps-University, Marburg, Germany
| | - R. Verena Taudte
- Core Facility for Metabolomics, Department of Medicine, Philipps-University, Marburg, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research, Philipps-University, Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Philipps-University, Marburg, Germany
- Department for Respiratory and Critical Care Medicine, Philipps-University, Marburg, Germany
- Member of the German Center for Lung Research (DZL/UGMLC, ) and German Center for Infectious Disease Research (DZIF), Marburg, Germany
| | - Anja A. Kühl
- iPATH.Berlin, Core Unit of Charité-Universitätsmedizin Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Britta Siegmund
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rossana Romero
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Maik Luu
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Stephan Göttig
- Institute of Medical Microbiology and Infection Control, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | | | - Ulrich Steinhoff
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Burkhard Schütz
- Institute of Anatomy and Cell Biology, Philipps-University, Marburg, Germany
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| |
Collapse
|
11
|
Yu K, Li Q, Sun X, Peng X, Tang Q, Chu H, Zhou L, Wang B, Zhou Z, Deng X, Yang J, Lv J, Liu R, Miao C, Zhao W, Yao Z, Wang Q. Bacterial indole-3-lactic acid affects epithelium-macrophage crosstalk to regulate intestinal homeostasis. Proc Natl Acad Sci U S A 2023; 120:e2309032120. [PMID: 37903267 PMCID: PMC10636326 DOI: 10.1073/pnas.2309032120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/27/2023] [Indexed: 11/01/2023] Open
Abstract
Tryptophan and its derivatives perform a variety of biological functions; however, the role and specific mechanism of many tryptophan derivatives in intestinal inflammation remain largely unclear. Here, we identified that an Escherichia coli strain (Ec-TMU) isolated from the feces of tinidazole-treated individuals, and indole-3-lactic acid (ILA) in its supernatant, decreased the susceptibility of mice to dextran sulfate sodium-induced colitis. Ec-TMU and ILA contribute to the relief of colitis by inhibiting the production of epithelial CCL2/7, thereby reducing the accumulation of inflammatory macrophages in vitro and in vivo. Mechanistically, ILA downregulates glycolysis, NF-κB, and HIF signaling pathways via the aryl hydrocarbon receptor, resulting in decreased CCL2/7 production in epithelial cells. Clinical evidence suggests that the fecal ILA level is negatively correlated with the progression indicator of inflammatory bowel diseases. These results demonstrate that ILA has the potential to regulate intestinal homeostasis by modulating epithelium-macrophage interactions.
Collapse
Affiliation(s)
- Kaiyuan Yu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin300070, China
| | - Qianqian Li
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin300070, China
| | - Xuan Sun
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin300070, China
| | - Xianping Peng
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin300070, China
| | - Qiang Tang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin300070, China
| | - Hongyu Chu
- Department of gastroenterology and hepatology, Tianjin Medical University general hospital, Tianjin Medical University, Tianjin300070, China
| | - Lu Zhou
- Department of gastroenterology and hepatology, Tianjin Medical University general hospital, Tianjin Medical University, Tianjin300070, China
| | - Bangmao Wang
- Department of gastroenterology and hepatology, Tianjin Medical University general hospital, Tianjin Medical University, Tianjin300070, China
| | - Zhemin Zhou
- Pasteurien College, Suzhou Medical College of Soochow University, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Suzhou, Jiangsu215123, China
| | - Xueqin Deng
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin300070, China
| | - Jianming Yang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin300070, China
| | - Junqiang Lv
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin300070, China
| | - Ran Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin300070, China
| | - Chunhui Miao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin300070, China
| | - Wei Zhao
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin300070, China
| | - Zhi Yao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin300070, China
| | - Quan Wang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin300070, China
| |
Collapse
|
12
|
Guo L, Chen Q, Gao Y, Jiang H, Zhou F, Zhang F, Xu M. CDP-choline modulates cholinergic signaling and gut microbiota to alleviate DSS-induced inflammatory bowel disease. Biochem Pharmacol 2023; 217:115845. [PMID: 37827341 DOI: 10.1016/j.bcp.2023.115845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
Inflammatory bowel diseases (IBD) represent chronic gastrointestinal inflammatory disorders characterized by a complex and underexplored pathogenic mechanism. Previous research has revealed that IBD patients often have a deficiency of choline and its metabolites, including acetylcholine (ACh) and phosphatidylcholine (PC), within the colon. However, a comprehensive study linking these three substances and their mechanistic implications in IBD remains lacking. This study aimed to investigate the efficacy and underlying mechanism of cytidine diphosphate (CDP)-choline (citicoline), an intermediate product of choline metabolism, in a mouse model of IBD induced by dextran sulfate sodium salt (DSS). The results demonstrated that CDP-choline effectively alleviated colonic inflammation and deficiencies in choline, ACh, and PC by increasing the raw material. Further detection showed that CDP-choline also increased the ACh content by altering the expression of high-affinity choline transporter (ChT1) and acetylcholinesterase (AChE) in DSS-induced mice colon. Moreover, CDP-choline increased the expression of alpha7 nicotinic acetylcholine receptor (α7 nAChR) and activated the cholinergic anti-inflammatory pathway (CAP), leading to reduced colon macrophage activation and proinflammatory M1 polarization in IBD mice, thus reducing the levels of TNF-α and IL-6. In addition, CDP-choline reduced intestinal ecological imbalance and increased the content of hexanoic acid in short-chain fatty acids (SCFAs) in mice. In conclusion, this study elucidates the ability of CDP-choline to mitigate DSS-induced colon inflammation by addressing choline and its metabolites deficiencies, activating the CAP, and regulating the composition of the intestinal microbiome and SCFAs content, providing a potential prophylactic and therapeutic approach for IBD.
Collapse
Affiliation(s)
- Lingnan Guo
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| | - Qiang Chen
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Yiyuan Gao
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| | - Hao Jiang
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| | - Feini Zhou
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| | - Fan Zhang
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China.
| | - Maosheng Xu
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China.
| |
Collapse
|
13
|
Kang MG, Kwak MJ, Kim Y. Polystyrene microplastics biodegradation by gut bacterial Enterobacter hormaechei from mealworms under anaerobic conditions: Anaerobic oxidation and depolymerization. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132045. [PMID: 37480606 DOI: 10.1016/j.jhazmat.2023.132045] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
Synthetic plastic is used throughout daily life and industry, threatening organisms with microplastic pollution. Polystyrene is a major plastic polymer and also widely found sources of plastic wastes and microplastics. Here, we report that Enterobacter hormaechei LG3 (CP118279.1), a facultative anaerobic bacterial strain isolated from the gut of Tenebrio molitor larvae (mealworms) can oxidize and depolymerize polystyrene under anaerobic conditions. LG3 performed biodegradation while forming a biofilm on the plastic surface. PS biodegradation was characterized by analyses of surface oxidation, change in morphology and molecular weights, and production of biodegraded derivative. The biodegradation performance by LG3 was compared with PS biodegradation by Bacillus amyloliquefaciens SCGB1 under both anaerobic and aerobic conditions. In addition, through nanopore sequencing technology, we identified degradative enzymes, including thiol peroxidase (tpx), alkyl hydroperoxide reductase C (ahpC) and bacterioferritin comigratory protein (bcp). Along with the upregulation of degradative enzymes for biodegradation, changes in lipid A and biofilm-associated proteins were also observed after the cells were incubated with polystyrene microplastics. Our results provide evidence for anaerobic biodegradation by polystyrene-degrading bacteria and show alterations in gene expression patterns after polystyrene microplastics treatment in the opportunistic pathogen Enterobacter hormaechei.
Collapse
Affiliation(s)
- Min-Geun Kang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Jin Kwak
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
14
|
Guo N, Lv L. Mechanistic insights into the role of probiotics in modulating immune cells in ulcerative colitis. Immun Inflamm Dis 2023; 11:e1045. [PMID: 37904683 PMCID: PMC10571014 DOI: 10.1002/iid3.1045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/15/2023] [Accepted: 09/29/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is a persistent inflammatory disorder that affects the gastrointestinal tract, mainly the colon, which is defined by inflammatory responses and the formation of ulcers. Probiotics have been shown to directly impact various immune cells, including dendritic cells (DCs), macrophages, natural killer (NK) cells, and T and B cells. By interacting with cell surface receptors, they regulate immune cell activity, produce metabolites that influence immune responses, and control the release of cytokines and chemokines. METHODS This article is a comprehensive review wherein we conducted an exhaustive search across published literature, utilizing reputable databases like PubMed and Web of Science. Our focus centered on pertinent keywords, such as "UC," 'DSS," "TNBS," "immune cells," and "inflammatory cytokines," to compile the most current insights regarding the therapeutic potential of probiotics in managing UC. RESULTS This overview aims to provide readers with a comprehensive understanding of the effects of probiotics on immune cells in relation to UC. Probiotics have a crucial role in promoting the proliferation of regulatory T cells (Tregs), which are necessary for preserving immunological homeostasis and regulating inflammatory responses. They also decrease the activation of pro-inflammatory cells like T helper 1 (Th1) and Th17 cells, contributing to UC development. Thus, probiotics significantly impact both direct and indirect pathways of immune cell regulation in UC, promoting Treg differentiation, inhibiting pro-inflammatory cell activation, and regulating cytokine and chemokine release. CONCLUSION Probiotics demonstrate significant potential in modulating the immune reactions in UC. Their capacity to modulate different immune cells and inflammation-related processes makes them a promising therapeutic approach for managing UC. However, further studies are warranted to optimize their use and fully elucidate the molecular mechanisms underlying their beneficial effects in UC treatment.
Collapse
Affiliation(s)
- Ni Guo
- Department of GastroenterologyShengzhou People's Hospital (The First Affiliated Hospital of Zhejiang University Shengzhou Branch)ShengzhouZhejiang ProvinceChina
| | - Lu‐lu Lv
- Department of GastroenterologyShengzhou People's Hospital (The First Affiliated Hospital of Zhejiang University Shengzhou Branch)ShengzhouZhejiang ProvinceChina
| |
Collapse
|
15
|
He Z, Liu J, Liu Y. Daphnetin attenuates intestinal inflammation, oxidative stress, and apoptosis in ulcerative colitis via inhibiting REG3A-dependent JAK2/STAT3 signaling pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:2132-2142. [PMID: 37209277 DOI: 10.1002/tox.23837] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
Daphnetin is a natural coumarin compound with anti-inflammatory, anti-oxidant, and anti-apoptotic effects, which has been previously demonstrated to ameliorate DSS-induced ulcerative colitis (UC). However, the molecular mechanism involved in the daphnetin-mediated pathological process of UC remains unclarified. The current study used DSS-induced mice and LPS-challenged Caco-2 cells as UC models. Bodyweight, disease activity index (DAI) score, and colon length were used to evaluate the severity of colitis. The histological changes in colon tissues were observed using H&E and PAS staining. Protein levels were detected by western blot. The malondialdehyde (MDA) and superoxide dismutase (SOD) activities were used to assess oxidative stress. Inflammatory responses were evaluated by detecting the levels of inflammatory cytokines (IFN-r, IL-1β, IL-6, and TNF-α) using flow cytometry. CCK-8 and TUNEL assay were employed to determine cell growth and cell death, respectively. The results showed that daphnetin could ameliorate the severity of colitis and attenuate the damage to intestinal structure in DSS-induced mice. Compared with the DSS group, the expression of ZO-1, occludin, and anti-apoptotic protein (BCL-2) was increased while the level of pro-apoptotic proteins (Bax and cleaved caspase 3) was decreased in DSS + daphnetin group. The activity of MDA and SOD, as well as the levels of inflammatory cytokines were substantially suppressed by daphnetin. In consistency, in vitro assays indicated that daphnetin protected Caco-2 cells from LPS-stimulated viability impairment, apoptosis, oxidative stress, and inflammation. Furthermore, daphnetin suppressed the activity of JAK2/STAT signaling in LPS-induced Caco-2 cells in a REG3A-dependent manner. REG3A overexpression abated the ameliorative effects of daphnetin while JAK2/STAT signaling inhibition functioned synergically with daphnetin in LPS-stimulated Caco-2 cells. Collectively, this study deepened the understanding of the therapeutic effects of daphnetin on UC and uncovered for the first time that daphnetin functioned through REG3A-activated JAK2/STAT3 signaling in UC, which may provide novel insights for the treatment of UC.
Collapse
Affiliation(s)
- Zhi He
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jingjing Liu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yang Liu
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
16
|
Yu K, Tang Q, Yao Z, Wang Q. A mouse model to test the anti-inflammatory effect of facultative anaerobes on dextran sulfate sodium-induced colitis. STAR Protoc 2023; 4:101988. [PMID: 36602904 PMCID: PMC9826967 DOI: 10.1016/j.xpro.2022.101988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/23/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
The role of facultative anaerobic bacteria in colitis remains to be elucidated. We have adapted a mouse model to explore the effect of individual facultative anaerobic bacteria on colitis, focusing on adapting a cocktail of antibiotics and multiple instillations by gavage. Weight, disease activity index, colon length, and histological score are used to assess the severity of colitis. We also describe anaerobic processing protocols of preparing facultative anaerobes. For complete details on the use and execution of this protocol, please refer to Li et al. (2022).1.
Collapse
Affiliation(s)
- Kaiyuan Yu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, Tianjin Institute of Urology, Department of Immunology, School of Basic Medical Sciences, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China
| | - Qiang Tang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, Tianjin Institute of Urology, Department of Immunology, School of Basic Medical Sciences, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China
| | - Zhi Yao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, Tianjin Institute of Urology, Department of Immunology, School of Basic Medical Sciences, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China.
| | - Quan Wang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, Tianjin Institute of Urology, Department of Immunology, School of Basic Medical Sciences, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
17
|
Haneishi Y, Furuya Y, Hasegawa M, Picarelli A, Rossi M, Miyamoto J. Inflammatory Bowel Diseases and Gut Microbiota. Int J Mol Sci 2023; 24:ijms24043817. [PMID: 36835245 PMCID: PMC9958622 DOI: 10.3390/ijms24043817] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an inflammatory disease of the gastrointestinal tract, the incidence of which has rapidly increased worldwide, especially in developing and Western countries. Recent research has suggested that genetic factors, the environment, microbiota, and immune responses are involved in the pathogenesis; however, the underlying causes of IBD are unclear. Recently, gut microbiota dysbiosis, especially a decrease in the abundance and diversity of specific genera, has been suggested as a trigger for IBD-initiating events. Improving the gut microbiota and identifying the specific bacterial species in IBD are essential for understanding the pathogenesis and treatment of IBD and autoimmune diseases. Here, we review the different aspects of the role played by gut microbiota in the pathogenesis of IBD and provide a theoretical basis for modulating gut microbiota through probiotics, fecal microbiota transplantation, and microbial metabolites.
Collapse
Affiliation(s)
- Yuri Haneishi
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Tokyo, Japan
| | - Yuma Furuya
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Tokyo, Japan
| | - Mayu Hasegawa
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Tokyo, Japan
| | - Antonio Picarelli
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Mauro Rossi
- Institute of Food Sciences, National Research Council (CNR), Via Roma 64, 83100 Avellino, Italy
| | - Junki Miyamoto
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Tokyo, Japan
- Correspondence: ; Tel.: +81-42-367-5684
| |
Collapse
|
18
|
Liang B, Wu C, Wang C, Sun W, Chen W, Hu X, Liu N, Xing D. New insights into bacterial mechanisms and potential intestinal epithelial cell therapeutic targets of inflammatory bowel disease. Front Microbiol 2022; 13:1065608. [PMID: 36590401 PMCID: PMC9802581 DOI: 10.3389/fmicb.2022.1065608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
The global incidence of inflammatory bowel disease (IBD) has increased rapidly in recent years, but its exact etiology remains unclear. In the past decade, IBD has been reported to be associated with dysbiosis of gut microbiota. Although not yet proven to be a cause or consequence of IBD, the common hypothesis is that at least some alterations in the microbiome are protective or pathogenic. Furthermore, intestinal epithelial cells (IECs) serve as a protective physical barrier for gut microbiota, essential for maintaining intestinal homeostasis and actively contributes to the mucosal immune system. Thus, dysregulation within the intestinal epithelium increases intestinal permeability, promotes the entry of bacteria, toxins, and macromolecules, and disrupts intestinal immune homeostasis, all of which are associated with the clinical course of IBD. This article presents a selective overview of recent studies on bacterial mechanisms that may be protective or promotive of IBD in biological models. Moreover, we summarize and discuss the recent discovery of key modulators and signaling pathways in the IECs that could serve as potential IBD therapeutic targets. Understanding the role of the IECs in the pathogenesis of IBD may help improve the understanding of the inflammatory process and the identification of potential therapeutic targets to help ameliorate this increasingly common disease.
Collapse
Affiliation(s)
- Bing Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Changhao Wu
- Department of Biochemistry and Physiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Chao Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenshe Sun
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaokun Hu
- Intervention Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ning Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China,*Correspondence: Ning Liu, ; Dongming Xing,
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China,School of Life Sciences, Tsinghua University, Beijing, China,*Correspondence: Ning Liu, ; Dongming Xing,
| |
Collapse
|