1
|
Dittrich A, Andersson SA, Busk M, Hansen K, Foldager CB, Palmfeldt J, Andersen A, Pedersen M, Vendelbo M, Nielsen KL, Lauridsen H. Metabolic changes during cardiac regeneration in the axolotl. Dev Dyn 2025. [PMID: 40119743 DOI: 10.1002/dvdy.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 01/11/2025] [Accepted: 02/26/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND The axolotl is a prominent model organism of heart regeneration due to its ability to anatomically and functionally repair the heart after an injury that mimics human myocardial infarction. In humans, such an injury leads to permanent scarring. Cardiac regeneration has been linked to metabolism and the oxygenation state, but so far, these factors remain to be detailed in the axolotl model. In this descriptive study, we have investigated metabolic changes that occurred during cardiac regeneration in the axolotl. RESULTS We describe systemic and local cardiac metabolic changes after injury involving an early upregulation of glucose uptake and nucleotide biosynthesis followed by a later increase in acetate uptake. We detect several promising factors and metabolites for future studies and show that, unlike other popular animal models capable of intrinsic regeneration, the axolotl maintains its cardiac regenerative ability under hyperoxic conditions. CONCLUSIONS Axolotls undergo dynamic metabolic changes during the process of heart regeneration and display a robust reparative response to cardiac cryo-injury, which is unaffected by hyperoxia.
Collapse
Affiliation(s)
- Anita Dittrich
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sofie Amalie Andersson
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Morten Busk
- Department of Clinical Medicine, Experimental Clinical Oncology, Aarhus University, Aarhus, Denmark
| | - Kasper Hansen
- Department of Forensic Medicine, Aarhus University, Aarhus, Denmark
| | - Casper Bindzus Foldager
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Orthopaedic Research Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Asger Andersen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Pedersen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mikkel Vendelbo
- Department of Nuclear Medicine and PET-Center, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Henrik Lauridsen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
He K, Tao F, Lu Y, Fang M, Huang H, Zhou Y. The Role of HK2 in Tumorigenesis and Development: Potential for Targeted Therapy with Natural Products. Int J Med Sci 2025; 22:790-805. [PMID: 39991762 PMCID: PMC11843137 DOI: 10.7150/ijms.105553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/11/2025] [Indexed: 02/25/2025] Open
Abstract
Hexokinase 2 (HK2) is widely distributed in various tissues, particularly showing significantly elevated expression levels in tumor tissues. As the initial rate-limiting enzyme in the glycolysis process, HK2 is believed to directly participate in the metabolic reprogramming of tumor cells. This phenomenon, known as the "Warburg effect," provides the energy and substances necessary for the rapid proliferation, growth, and division of tumor cells. Furthermore, by enhancing glycolysis, HK2 exerts its influence on various metabolic pathways in tumor cells, such as pentose phosphate metabolism, glutamine metabolism, serine metabolism, and glycine metabolism, thereby playing a role in the occurrence and development of cancer. Therefore, HK2 represents a promising target for cancer therapy. Simultaneously, natural products with effects on inhibiting the expression or activity of HK2, have already been discovered to exhibit significant anticancer potential. Flavonoids, pentacyclic triterpenoids, phenolic compounds, and lignans constitute the majority of these natural products, directly inhibiting HK2 or indirectly downregulating it through protein kinase B (AKT), hypoxia-inducible factor 1 alpha (HIF-1α), and c-Myc signaling pathways. However, several challenges remain, such as further screening for natural products that directly target and inhibit HK2, optimizing the selection of natural product inhibitors for HK2, and elucidating the molecular mechanisms by which natural products indirectly inhibit HK2. In conclusion, the potential of targeting HK2 for cancer therapy is promising, and with these challenges addressed, natural products inhibiting HK2 will play an even greater role in the fight against cancer.
Collapse
Affiliation(s)
- Keren He
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangfang Tao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yangyuxiao Lu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengqi Fang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hong Huang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuan Zhou
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
3
|
Peng L, Xiang S, Wang T, Yang M, Duan Y, Ma X, Li S, Yu C, Zhang X, Hu H, Liu Z, Sun J, Sun C, Wang C, Liu B, Wang Z, Qian M. The hepatic clock synergizes with HIF-1α to regulate nucleotide availability during liver damage repair. Nat Metab 2025; 7:148-165. [PMID: 39775529 DOI: 10.1038/s42255-024-01184-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 11/18/2024] [Indexed: 01/11/2025]
Abstract
Nucleotide availability is crucial for DNA replication and repair; however, the coordinating mechanisms in vivo remain unclear. Here, we show that the circadian clock in the liver controls the activity of the pentose phosphate pathway (PPP) to support de novo nucleotide biosynthesis for DNA synthesis demands. We demonstrate that disrupting the hepatic clock by genetic manipulation or mistimed feeding impairs PPP activity in male mice, leading to nucleotide imbalance. Such defects not only elicit DNA replication stress to limit liver regeneration after resection but also allow genotoxin-induced hepatocyte senescence and STING signalling-dependent inflammation. Mechanistically, the molecular clock activator BMAL1 synergizes with hypoxia-inducible factor-1α (HIF-1α) to regulate the transcription of the PPP rate-limiting enzyme glucose-6-phosphate dehydrogenase (G6PD), which is enhanced during liver regeneration. Overexpressing G6PD restores the compromised regenerative capacity of the BMAL1- or HIF-1α-deficient liver. Moreover, boosting G6PD expression genetically or through preoperative intermittent fasting potently facilitates liver repair in normal mice. Hence, our findings highlight the physiological importance of the hepatic clock and suggest a promising pro-regenerative strategy.
Collapse
Affiliation(s)
- Linyuan Peng
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Siliang Xiang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Center for Anti-aging and Regenerative Medicine, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Tianzhi Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Mei Yang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yajun Duan
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiaoyu Ma
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Su Li
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Cong Yu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Center for Anti-aging and Regenerative Medicine, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Xin Zhang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Haiyang Hu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, China
| | - Jie Sun
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Center for Anti-aging and Regenerative Medicine, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Chunmeng Sun
- State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chen Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Baohua Liu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Center for Anti-aging and Regenerative Medicine, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, China.
| | - Zhongyuan Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| | - Minxian Qian
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
4
|
DeLuca S, Strash N, Chen Y, Patsy M, Myers A, Tejeda L, Broders S, Miranda A, Jiang X, Bursac N. Engineered Cardiac Tissues as a Platform for CRISPR-Based Mitogen Discovery. Adv Healthc Mater 2025; 14:e2402201. [PMID: 39508305 PMCID: PMC11695184 DOI: 10.1002/adhm.202402201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/23/2024] [Indexed: 11/15/2024]
Abstract
Improved understanding of cardiomyocyte (CM) cell cycle regulation may allow researchers to stimulate pro-regenerative effects in injured hearts or promote maturation of human stem cell-derived CMs. Gene therapies, in particular, hold promise to induce controlled proliferation of endogenous or transplanted CMs via transient activation of mitogenic processes. Methods to identify and characterize candidate cardiac mitogens in vitro can accelerate translational efforts and contribute to the understanding of the complex regulatory landscape of CM proliferation and postnatal maturation. In this study, A CRISPR knockout-based screening strategy using in vitro neonatal rat ventricular myocyte (NRVM) monolayers is established, followed by candidate mitogen validation in mature 3-D engineered cardiac tissues (ECTs). This screen identified knockout of the purine metabolism enzyme adenosine deaminase (ADA-KO) as an effective pro-mitogenic stimulus. RNA-sequencing of ECTs further reveals increased pentose phosphate pathway (PPP) activity as the primary driver of ADA-KO-induced CM cycling. Inhibition of the pathway's rate limiting enzyme, glucose-6-phosphate dehydrogenase (G6PD), prevented ADA-KO induced CM cycling, while increasing PPP activity via G6PD overexpression increased CM cycling. Together, this study demonstrates the development and application of a genetic/tissue engineering platform for in vitro discovery and validation of new candidate mitogens affecting regenerative or maturation states of cardiomyocytes.
Collapse
Affiliation(s)
- Sophia DeLuca
- Department of Biomedical Engineering
- Department of Cell Biology, Duke University, Durham, NC, 27708, USA
| | - Nicholas Strash
- Department of Biomedical Engineering
- Department of Cell Biology, Duke University, Durham, NC, 27708, USA
| | | | | | | | | | | | | | | | - Nenad Bursac
- Department of Biomedical Engineering
- Department of Cell Biology, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
5
|
Wang S, Fu L, Wang B, Cai Y, Jiang J, Shi YB. Thyroid hormone receptor- and stage-dependent transcriptome changes affect the initial period of Xenopus tropicalis tail regeneration. BMC Genomics 2024; 25:1260. [PMID: 39736516 DOI: 10.1186/s12864-024-11175-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/20/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Thyroid hormone (T3) has an inhibitory effect on tissue/organ regeneration. It is still elusive how T3 regulates this process. It is well established that the developmental effects of T3 are primarily mediated through transcriptional regulation by thyroid hormone receptors (TRs). Here we have taken advantage of mutant tadpoles lacking both TRα and TRβ (TRDKO), the only receptor genes in vertebrates, for RNA-seq analyses to investigate the transcriptome changes underlying the initiation of tail regeneration, i.e., wound healing and blastema formation, because this crucial initial step determines the extent of the functional regeneration in the later phase of tissue regrowth. RESULTS We discovered that GO (gene ontology) terms related to inflammatory response, metabolic process, cell apoptosis, and epithelial cell migration were highly enriched among commonly regulated genes during wound healing at either stage 56 or 61 or with either wild type (WT) or TRDKO tadpoles, consistent with the morphological changes associated with wound healing occurring in both regenerative (WT stage 56, TRDKO stage 56, TRDKO stage 61) and nonregenerative (WT stage 61) animals. Interestingly, ECM-receptor interaction and cytokine-cytokine receptor interaction, which are essential for blastema formation and regeneration, were significantly enriched among regulated genes in the 3 regenerative groups but not the non-regenerative group at the blastema formation period. In addition, the regulated genes specific to the nonregenerative group were highly enriched with genes involved in cellular senescence. Finally, T3 treatment at stage 56, while not inducing any measurable tail resorption, inhibited tail regeneration in the wild type but not TRDKO tadpoles. CONCLUSIONS Our study suggests that TR-mediated, T3-induced gene regulation changed the permissive environment during the initial period of regeneration and affected the subsequent patterning/outgrowth period of the regeneration process. Specifically, T3 signaling via TRs inhibits the expression of ECM-related genes while promoting the expression of inflammation-related genes during the blastema formation period. Interestingly, our findings indicate that amputation-induced changes in DNA replication-related pathways can occur during this nonregenerative period. Further studies, particularly on the regenerative microenvironment that may depend on ECM-receptor interaction and cytokine-cytokine receptor interaction, should provide important insights on the regulation of regenerative capacity during vertebrate development.
Collapse
Affiliation(s)
- Shouhong Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Liezhen Fu
- Section On Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bin Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yanmei Cai
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Jianping Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yun-Bo Shi
- Section On Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Serafimov K, Lämmerhofer M. Comprehensive Coverage of Glycolysis and Pentose Phosphate Metabolic Pathways by Isomer-Selective Accurate Targeted Hydrophilic Interaction Liquid Chromatography-Tandem Mass Spectrometry Assay. Anal Chem 2024; 96:17271-17279. [PMID: 39425639 DOI: 10.1021/acs.analchem.4c03490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
The accurate liquid chromatography-tandem mass spectrometry analysis of phosphorylated isomers from glycolysis and pentose phosphate pathways is a challenging analytical problem in metabolomics due to extraction problems from the biological matrix, adherence to stainless steel surfaces leading to tailing in LC, and incomplete separation of hexose and pentose phosphate isomers. In this study, we present a targeted HILIC-ESI-MS/MS method based on a BEH amide fully porous 1.7 μm particle column with an inert surface coating of column hardware and multiple reaction monitoring (MRM) acquisition fully covering the glycolysis and pentose phosphate pathway metabolites. To minimize contact of the phosphorylated analytes with stainless steel surfaces, a μ-ESI-MS probe with a hybrid electrode made of PEEKsil was employed. Optimized HILIC gradient elution conditions with 100 mM ammonium formate (pH 11) provided the separation of hexose monophosphate and pentose phosphate isomers. To ensure good retention time repeatability in HILIC, perfluoroalkoxy alkane bottles were used for the mobile phase (with sd over 60 runs between 0.01 and 0.02 min). For the quantitative assay, the U-13C-labeled cell extract was spiked prior to extraction by metal oxide-based affinity chromatography (MOAC) with TiO2 beads. The concentrations of the 24 targets were quantified in HeLa and human embryonic kidney (HEK293) cells. Erastin-induced ferroptosis in HEK293 cells was accompanied by enhanced levels of fructose-1,6-bis-phosphate, 2- and 3-phosphoglycerate, and 2,3-bis-phosphoglycerate.
Collapse
Affiliation(s)
- Kristian Serafimov
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
7
|
Ping M, Li G, Li Q, Fang Y, Fan T, Wu J, Zhang R, Zhang L, Shen B, Guo J. The NRF2-CARM1 axis links glucose sensing to transcriptional and epigenetic regulation of the pentose phosphate pathway in gastric cancer. Cell Death Dis 2024; 15:670. [PMID: 39266534 PMCID: PMC11393079 DOI: 10.1038/s41419-024-07052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024]
Abstract
Cancer cells autonomously alter metabolic pathways in response to dynamic nutrient conditions in the microenvironment to maintain cell survival and proliferation. A better understanding of these adaptive alterations may reveal the vulnerabilities of cancer cells. Here, we demonstrate that coactivator-associated arginine methyltransferase 1 (CARM1) is frequently overexpressed in gastric cancer and predicts poor prognosis of patients with this cancer. Gastric cancer cells sense a reduced extracellular glucose content, leading to activation of nuclear factor erythroid 2-related factor 2 (NRF2). Subsequently, NRF2 mediates the classic antioxidant pathway to eliminate the accumulation of reactive oxygen species induced by low glucose. We found that NRF2 binds to the CARM1 promoter, upregulating its expression and triggering CARM1-mediated hypermethylation of histone H3 methylated at R arginine 17 (H3R17me2) in the glucose-6-phosphate dehydrogenase gene body. The upregulation of this dehydrogenase, driven by the H3R17me2 modification, redirects glucose carbon flux toward the pentose phosphate pathway. This redirection contributes to nucleotide synthesis (yielding nucleotide precursors, such as ribose-5-phosphate) and redox homeostasis and ultimately facilitates cancer cell survival and growth. NRF2 or CARM1 knockdown results in decreased H3R17me2a accompanied by the reduction of glucose-6-phosphate dehydrogenase under low glucose conditions. Collectively, this study reveals a significant role of CARM1 in regulating the tumor metabolic switch and identifies CARM1 as a potential therapeutic target for gastric cancer treatment.
Collapse
Affiliation(s)
- Miaomiao Ping
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Guangyao Li
- Department of Gastrointestinal Surgery, The Second People's Hospital of Wuhu, Wuhu, China
| | - Qijiao Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yang Fang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Taotao Fan
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Jing Wu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruiyi Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Lesha Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Jizheng Guo
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
8
|
Metzger BM, Özpolat BD. Developmental stage dependent effects of posterior and germline regeneration on sexual maturation in Platynereis dumerilii. Dev Biol 2024; 513:33-49. [PMID: 38797257 PMCID: PMC11211637 DOI: 10.1016/j.ydbio.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/22/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Regeneration, regrowing lost and injured body parts, is an ability that generally declines with age or developmental transitions (i.e. metamorphosis, sexual maturation). Regeneration is also an energetically costly process, and trade-offs occur between regeneration and other costly processes such as growth, or sexual reproduction. Here we investigate the interplay of regeneration, reproduction, and developmental stage in the segmented worm Platynereis dumerilii. P. dumerilii can regenerate its whole posterior body axis, along with its reproductive cells, thereby having to carry out the two costly processes (somatic and germ cell regeneration) after injury. We specifically examine how developmental stage affects the success of germ cell regeneration and sexual maturation in developmentally young versus developmentally old organisms. We hypothesized that developmentally younger individuals (i.e. with gametes in early mitotic stages) will have higher regeneration success than the individuals at developmentally older stages (i.e. with gametes undergoing meiosis and maturation). Surprisingly, older amputated worms grew faster and matured earlier than younger amputees. To analyze germ cell regeneration during and after posterior regeneration, we used Hybridization Chain Reaction for the germline marker vasa. We found that regenerated worms start repopulating new segments with germ cell clusters as early as 14 days post amputation. In addition, vasa expression is observed in a wide region of newly-regenerated segments, which appears different from expression patterns during normal growth or regeneration in worms before gonial cluster expansion.
Collapse
Affiliation(s)
- Bria M Metzger
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA; Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, USA.
| | - B Duygu Özpolat
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA; Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, USA.
| |
Collapse
|
9
|
McCartney ME, Wheeler GM, O’Neill AG, Patel JH, Litt ZR, Calise SJ, Kollman JM, Wills AE. Appendage regeneration requires IMPDH2 and creates a sensitized environment for enzyme filament formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605679. [PMID: 39131357 PMCID: PMC11312571 DOI: 10.1101/2024.07.29.605679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Regeneration of lost tissue requires biosynthesis of metabolites needed for cell proliferation and growth. Among these are the critical purine nucleotides ATP and GTP. The abundance and balance of these purines is regulated by inosine monophosphate dehydrogenase 2 (IMPDH2), which catalyzes the committing step of GTP synthesis. IMPDH2 assembles into filaments that resist allosteric inhibition under conditions of high GTP demand. Here we asked whether IMPDH2 is required in the highly proliferative context of regeneration, and whether its assembly into filaments takes place in regenerating tissue. We find that inhibition of IMPDH2 leads to impaired tail regeneration and reduced cell proliferation in the tadpole Xenopus tropicalis. We find that both endogenous and fluorescent fusions of IMPDH2 robustly assemble into filaments throughout the tadpole tail, and that the regenerating tail creates a sensitized condition for filament formation. These findings clarify the role of purine biosynthesis in regeneration and reveal that IMPDH2 enzyme filament formation is a biologically relevant mechanism of regulation in vertebrate regeneration.
Collapse
Affiliation(s)
| | - Gavin M. Wheeler
- Department of Biochemistry. University of Washington, Seattle WA
| | - Audrey G. O’Neill
- Department of Biochemistry. University of Washington, Seattle WA
- Program in Biological Physics, Structure, and Design. University of Washington, Seattle WA
| | - Jeet H. Patel
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia PA
| | - Zoey R. Litt
- Department of Biochemistry. University of Washington, Seattle WA
| | - S. John Calise
- Department of Biochemistry. University of Washington, Seattle WA
| | | | - Andrea E. Wills
- Department of Biochemistry. University of Washington, Seattle WA
| |
Collapse
|
10
|
Aztekin C. Mechanisms of regeneration: to what extent do they recapitulate development? Development 2024; 151:dev202541. [PMID: 39045847 DOI: 10.1242/dev.202541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
One of the enduring debates in regeneration biology is the degree to which regeneration mirrors development. Recent technical advances, such as single-cell transcriptomics and the broad applicability of CRISPR systems, coupled with new model organisms in research, have led to the exploration of this longstanding concept from a broader perspective. In this Review, I outline the historical parallels between development and regeneration before focusing on recent research that highlights how dissecting the divergence between these processes can uncover previously unreported biological mechanisms. Finally, I discuss how these advances position regeneration as a more dynamic and variable process with expanded possibilities for morphogenesis compared with development. Collectively, these insights into mechanisms that orchestrate morphogenesis may reshape our understanding of the evolution of regeneration, reveal hidden biology activated by injury, and offer non-developmental strategies for restoring lost or damaged organs and tissues.
Collapse
Affiliation(s)
- Can Aztekin
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne, EPFL, 1015 Lausanne, Switzerland
| |
Collapse
|
11
|
Morelli AM, Scholkmann F. Should the standard model of cellular energy metabolism be reconsidered? Possible coupling between the pentose phosphate pathway, glycolysis and extra-mitochondrial oxidative phosphorylation. Biochimie 2024; 221:99-109. [PMID: 38307246 DOI: 10.1016/j.biochi.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
The process of cellular respiration occurs for energy production through catabolic reactions, generally with glucose as the first process step. In the present work, we introduce a novel concept for understanding this process, based on our conclusion that glucose metabolism is coupled to the pentose phosphate pathway (PPP) and extra-mitochondrial oxidative phosphorylation in a closed-loop process. According to the current standard model of glycolysis, glucose is first converted to glucose 6-phosphate (glucose 6-P) and then to fructose 6-phosphate, glyceraldehyde 3-phosphate and pyruvate, which then enters the Krebs cycle in the mitochondria. However, it is more likely that the pyruvate will be converted to lactate. In the PPP, glucose 6-P is branched off from glycolysis and used to produce NADPH and ribulose 5-phosphate (ribulose 5-P). Ribulose 5-P can be converted to fructose 6-P and glyceraldehyde 3-P. In our view, a circular process can take place in which the ribulose 5-P produced by the PPP enters the glycolysis pathway and is then retrogradely converted to glucose 6-P. This process is repeated several times until the complete degradation of glucose 6-P. The role of mitochondria in this process is to degrade lipids by beta-oxidation and produce acetyl-CoA; the function of producing ATP appears to be only secondary. This proposed new concept of cellular bioenergetics allows the resolution of some previously unresolved controversies related to cellular respiration and provides a deeper understanding of metabolic processes in the cell, including new insights into the Warburg effect.
Collapse
Affiliation(s)
| | - Felix Scholkmann
- Neurophotonics and Biosignal Processing Research Group, Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
Zheng Y, Huang Y, Li W, Cheng H. MRTO4 Enhances Glycolysis to Facilitate HCC Progression by Inhibiting ALDOB. Med Sci Monit 2024; 30:e944685. [PMID: 38778508 PMCID: PMC11131431 DOI: 10.12659/msm.944685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND MRT4 Homolog, Ribosome Maturation Factor (MRTO4) is often upregulated in cancer cells. However, its impact in hepatocellular carcinoma (HCC) is less well understood. Herein, we explored the prognostic and energy metabolism reprogramming role of MRTO4 in HCC. MATERIAL AND METHODS Clinical data were obtained from The Cancer Genome Atlas (TCGA), and the expression of MRTO4 in clinical samples was analyzed. The association between different variables and overall survival (OS) was studied, as well as their potential as independent prognostic factors, using Cox regression analysis. We constructed a nomogram including clinical pathological variables and MRTO4 expression to provide a predictive model for prognosis. Heatmaps, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed the relationship between energy metabolism pathways and MRTO4. We used classic molecular biology research methods, including RT-qPCR, Western blotting, CCK8, TUNEL, Clone formation, Transwell assay, ELISA, and immunohistochemistry, to study the role of MRTO4 in promoting the progression of HCC through glycolysis regulation. RESULTS Our study showed that MRTO4 is an independent prognostic risk factor for HCC and that MRTO4 accelerates glycolysis of HCC cells, promotes proliferation and invasion, and suppresses apoptosis of HCC cells. The underlying mechanism involves MRTO4 promoting glycolysis and accelerating HCC by inhibiting ALDOB. CONCLUSIONS Our study revealed a novel mechanism by which MRTO4 promotes glycolysis and accelerates HCC progression, and suggests that inhibiting MRTO4 could be a potential therapeutic strategy for HCC.
Collapse
|
13
|
Lu YA, Liu SJ, Hou SY, Ge YY, Xia BH, Xie MX. Metabolomics distinguishes different grades of Scrophularia ningpoensis hemsl: Towards a biomarker discovery and quality evaluation. Heliyon 2024; 10:e28458. [PMID: 38601543 PMCID: PMC11004711 DOI: 10.1016/j.heliyon.2024.e28458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
In managing unique complexities associated with Chinese medicinal quality assessment, metabolomics serves as an innovative tool. This study proposes an analytical approach to assess differing qualities of Scrophularia ningpoensis (S. ningpoensis)Hemsl by identifying potential biomarker metabolites and their activity with the corresponding secondary metabolites. The methodology includes four steps; first, a GC-MS based metabolomics exploration of the Scrophularia ningpoensis Hemsl. Second, a multivariate statistical analysis (PCA, PLS-DA, OPLS-DA) for quality assessment and biomarker identification. Third, the application of ROC analysis and pathway analysis based on identified biomarkers. Finally, validation of the associated active ingredients by HPLC. The analysis showed distinct metabolite profiles across varying grades of S. ningpoensis Hemsl, establishing a grading dependency relationship. Select biomarkers (gluconic Acid, d-xylulose, sucrose, etc.) demonstrated robust grading performances. Further, the Pentose Phosphate Pathway, deemed as most influential in grading, was tied to the synthesis of key constituents (iridoids, phenylpropanoids). HPLC validation tests affirm a decreasing trend in harpagoside and cinnamic acid levels between first and third-grade samples. In conclusion, this GC-MS based metabolomics combined HPLC method offers a sound approach to assess and distinguish quality variations in S. ningpoensis Hemsl samples.
Collapse
Affiliation(s)
- Yu-Ai Lu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Shi-Jun Liu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Shi-Yi Hou
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Yu-Ying Ge
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Bo-Hou Xia
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Ming-Xia Xie
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, PR China
| |
Collapse
|
14
|
Tan VWT, Salmi TM, Karamalakis AP, Gillespie A, Ong AJS, Balic JJ, Chan YC, Bladen CE, Brown KK, Dawson MA, Cox AG. SLAM-ITseq identifies that Nrf2 induces liver regeneration through the pentose phosphate pathway. Dev Cell 2024; 59:898-910.e6. [PMID: 38366599 DOI: 10.1016/j.devcel.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/07/2023] [Accepted: 01/24/2024] [Indexed: 02/18/2024]
Abstract
The liver exhibits a remarkable capacity to regenerate following injury. Despite this unique attribute, toxic injury is a leading cause of liver failure. The temporal processes by which the liver senses injury and initiates regeneration remain unclear. Here, we developed a transgenic zebrafish model wherein hepatocyte-specific expression of uracil phosphoribosyltransferase (UPRT) enabled the implementation of SLAM-ITseq to investigate the nascent transcriptome during initiation of liver injury and regeneration. Using this approach, we identified a rapid metabolic transition from the fed to the fasted state that was followed by induction of the nuclear erythroid 2-related factor (Nrf2) antioxidant program. We find that activation of Nrf2 in hepatocytes is required to induce the pentose phosphate pathway (PPP) and improve survival following liver injury. Mechanistically, we demonstrate that inhibition of the PPP disrupts nucleotide biosynthesis to prevent liver regeneration. Together, these studies provide fundamental insights into the mechanism by which early metabolic adaptation to injury facilitates tissue regeneration.
Collapse
Affiliation(s)
- Vicky W T Tan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Talhah M Salmi
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Anthony P Karamalakis
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Andrea Gillespie
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Athena Jessica S Ong
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jesse J Balic
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Yih-Chih Chan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Cerys E Bladen
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kristin K Brown
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mark A Dawson
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia; Department of Clinical Haematology, Peter MacCallum Cancer Centre & Royal Melbourne Hospital, Melbourne, VIC 3000, Australia; Centre for Cancer Research, The University of Melbourne, Melbourne, VIC 3000, Australia.
| | - Andrew G Cox
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
15
|
Patel JH, Angell Swearer A, Kakebeen AD, Loh LR, Wills AE. Protocol for tail vein injection in Xenopus tropicalis tadpoles. STAR Protoc 2024; 5:102895. [PMID: 38367232 PMCID: PMC10882117 DOI: 10.1016/j.xpro.2024.102895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/18/2023] [Accepted: 01/31/2024] [Indexed: 02/19/2024] Open
Abstract
Functional studies in post-embryonic Xenopus tadpoles are challenging because embryonic perturbations often lead to developmental consequences, such as lethality. Here, we describe a high-throughput protocol for tail vein injection to introduce fluorescent tracers into tadpoles, which we have previously used to effectively inject morpholinos and molecular antagonists. We describe steps for safely positioning tadpoles onto agarose double-coated plates, draining media, injecting into the ventral tail vein, rehydrating plates, and sorting tadpoles by fluorescence with minimal injury for high-throughput experiments. For complete details on the use and execution of this protocol, please refer to Kakebeen et al.,1 Patel et al.,2 and Patel et al.3.
Collapse
Affiliation(s)
- Jeet H Patel
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA; Program in Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, WA 98105, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98105, USA
| | - Avery Angell Swearer
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA; Program in Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, WA 98105, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98105, USA
| | - Anneke D Kakebeen
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98105, USA
| | - Lauren Rajchel Loh
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA; Program in Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, WA 98105, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98105, USA
| | - Andrea E Wills
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA; Program in Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, WA 98105, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
16
|
Li J, Li X, Fu S, Meng Y, Lv X, Zhang X, Liu G, Sun J. Adaptation of Glucose Metabolism to Limb Autotomy and Regeneration in the Chinese Mitten Crab. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:205-213. [PMID: 38227174 DOI: 10.1007/s10126-024-10290-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
Limb autotomy and regeneration represent distinctive responses of crustaceans to environmental stress. Glucose metabolism plays a pivotal role in energy generation for tissue development and regeneration across various species. However, the relationship between glucose metabolism and tissue regeneration in crustaceans remains elusive. Therefore, this study is aimed at analyzing the alterations of glucose metabolic profile during limb autotomy and regeneration in Eriocheir sinensis, while also evaluating the effects of carbohydrate supplementation on limb regeneration. The results demonstrated that limb autotomy triggered a metabolic profile adaption at the early stage of regeneration. Hemolymph glucose levels were elevated, and multiple glucose catabolic pathways were enhanced in the hepatopancreas. Additionally, glucose and ATP levels in the regenerative limb were upregulated, along with increased expression of glucose transporters. Furthermore, the gene expression and activity of enzymes involved in gluconeogenesis were repressed in the hepatopancreas. These findings indicate that limb regeneration triggers metabolic profile adaptations to meet the elevated energy requirements. Moreover, the study observed that supplementation with corn starch enhanced limb regeneration capacity by promoting wound healing and blastema growth. Interestingly, dietary carbohydrate addition influenced limb regeneration by stimulating gluconeogenesis rather than glycolysis in the regenerative limb. Thus, these results underscore the adaptation of glucose metabolism during limb autotomy and regeneration, highlighting its essential role in the limb regeneration process of E. sinensis.
Collapse
Affiliation(s)
- Ju Li
- College of Life Science, Tianjin Normal University, Tianjin, 300387, China.
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, People's Republic of China.
| | - Xiaohong Li
- College of Life Science, Tianjin Normal University, Tianjin, 300387, China
| | - Simiao Fu
- College of Life Science, Tianjin Normal University, Tianjin, 300387, China
| | - Yuxuan Meng
- College of Life Science, Tianjin Normal University, Tianjin, 300387, China
| | - Xiaoyan Lv
- College of Life Science, Tianjin Normal University, Tianjin, 300387, China
| | - Xin Zhang
- College of Life Science, Tianjin Normal University, Tianjin, 300387, China
| | - Guozheng Liu
- College of Life Science, Tianjin Normal University, Tianjin, 300387, China
| | - Jinsheng Sun
- College of Life Science, Tianjin Normal University, Tianjin, 300387, China.
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, People's Republic of China.
| |
Collapse
|
17
|
Metzger B, Özpolat BD. The cost and payout of age on germline regeneration and sexual maturation in Platynereis dumerilii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576726. [PMID: 38328233 PMCID: PMC10849560 DOI: 10.1101/2024.01.22.576726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Regeneration, regrowing lost and injured body parts, is an ability that generally declines with age or developmental transitions (i.e. metamorphosis, sexual maturation) in many organisms. Regeneration is also energetically a costly process, and trade-offs occur between regeneration and other costly processes such as somatic growth, or sexual reproduction. Here we investigate the interplay of regeneration, reproduction, and age in the segmented worm Platynereis dumerilii. P. dumerilii can regenerate its whole posterior body axis, along with its reproductive cells, thereby having to carry out the two costly processes (somatic and germ cell regeneration) after injury. We specifically examine how age affects the success of germ cell regeneration and sexual maturation in developmentally young versus old organisms. We hypothesized that developmentally younger individuals (i.e. lower investment state, with gametes in early mitotic stages) will have higher regeneration success and reach sexual maturation faster than the individuals at developmentally older stages (i.e. higher investment state, with gametes in the process of maturation). Surprisingly, older amputated worms grew faster and matured earlier than younger amputees, even though they had to regenerate more segments and recuperate the more costly germ cells which were already starting to undergo gametogenesis. To analyze germ cell regeneration across stages, we used Hybridization Chain Reaction for the germline marker vasa. We found that regenerated worms start repopulating new segments with germ cell clusters as early as 14 days post amputation. In addition, vasa expression is observed in a wide region of newly-regenerated segments, which appears different from expression patterns during normal growth or regeneration in worms before gonial cluster expansion. Future studies will focus on determining the exact sources of gonial clusters in regeneration.
Collapse
Affiliation(s)
- Bria Metzger
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA USA
- Department of Biology, Washington University in Saint Louis, MO, USA
- Currently at University of Washington, Seattle, WA, USA
| | - B Duygu Özpolat
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA USA
- Department of Biology, Washington University in Saint Louis, MO, USA
| |
Collapse
|
18
|
Mishra A, Tavasoli M, Sokolenko S, McMaster CR, Pasumarthi KB. Atrial natriuretic peptide signaling co-regulates lipid metabolism and ventricular conduction system gene expression in the embryonic heart. iScience 2024; 27:108748. [PMID: 38235330 PMCID: PMC10792247 DOI: 10.1016/j.isci.2023.108748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/15/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024] Open
Abstract
It has been shown that atrial natriuretic peptide (ANP) and its high affinity receptor (NPRA) are involved in the formation of ventricular conduction system (VCS). Inherited genetic variants in fatty acid oxidation (FAO) genes are known to cause conduction abnormalities in newborn children. Although the effect of ANP on energy metabolism in noncardiac cell types is well documented, the role of lipid metabolism in VCS cell differentiation via ANP/NPRA signaling is not known. In this study, histological sections and primary cultures obtained from E11.5 mouse ventricles were analyzed to determine the role of metabolic adaptations in VCS cell fate determination and maturation. Exogenous treatment of E11.5 ventricular cells with ANP revealed a significant increase in lipid droplet accumulation, FAO and higher expression of VCS marker Cx40. Using specific inhibitors, we further identified PPARγ and FAO as critical downstream regulators of ANP-mediated regulation of metabolism and VCS formation.
Collapse
Affiliation(s)
- Abhishek Mishra
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Mahtab Tavasoli
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Stanislav Sokolenko
- Department of Process Engineering and Applied Science, Dalhousie University, Halifax, NS, Canada
| | | | | |
Collapse
|
19
|
O'Sullivan JDB, Blacker TS, Scott C, Chang W, Ahmed M, Yianni V, Mann ZF. Gradients of glucose metabolism regulate morphogen signalling required for specifying tonotopic organisation in the chicken cochlea. eLife 2023; 12:e86233. [PMID: 37539863 PMCID: PMC10425173 DOI: 10.7554/elife.86233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/03/2023] [Indexed: 08/05/2023] Open
Abstract
In vertebrates with elongated auditory organs, mechanosensory hair cells (HCs) are organised such that complex sounds are broken down into their component frequencies along a proximal-to-distal long (tonotopic) axis. Acquisition of unique morphologies at the appropriate position along the chick cochlea, the basilar papilla, requires that nascent HCs determine their tonotopic positions during development. The complex signalling within the auditory organ between a developing HC and its local niche along the cochlea is poorly understood. Using a combination of live imaging and NAD(P)H fluorescence lifetime imaging microscopy, we reveal that there is a gradient in the cellular balance between glycolysis and the pentose phosphate pathway in developing HCs along the tonotopic axis. Perturbing this balance by inhibiting different branches of cytosolic glucose catabolism disrupts developmental morphogen signalling and abolishes the normal tonotopic gradient in HC morphology. These findings highlight a causal link between graded morphogen signalling and metabolic reprogramming in specifying the tonotopic identity of developing HCs.
Collapse
Affiliation(s)
- James DB O'Sullivan
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry Oral and Craniofacial Sciences, King's College LondonLondonUnited Kingdom
| | - Thomas S Blacker
- Research Department of Structural and Molecular Biology, University College LondonLondonUnited Kingdom
| | - Claire Scott
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry Oral and Craniofacial Sciences, King's College LondonLondonUnited Kingdom
| | - Weise Chang
- National Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Mohi Ahmed
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry Oral and Craniofacial Sciences, King's College LondonLondonUnited Kingdom
| | - Val Yianni
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry Oral and Craniofacial Sciences, King's College LondonLondonUnited Kingdom
| | - Zoe F Mann
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry Oral and Craniofacial Sciences, King's College LondonLondonUnited Kingdom
| |
Collapse
|
20
|
Ahmed SBM, Radwan N, Amer S, Saheb Sharif-Askari N, Mahdami A, Samara KA, Halwani R, Jelinek HF. Assessing the Link between Diabetic Metabolic Dysregulation and Breast Cancer Progression. Int J Mol Sci 2023; 24:11816. [PMID: 37511575 PMCID: PMC10380477 DOI: 10.3390/ijms241411816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetes mellitus is a burdensome disease that affects various cellular functions through altered glucose metabolism. Several reports have linked diabetes to cancer development; however, the exact molecular mechanism of how diabetes-related traits contribute to cancer progression is not fully understood. The current study aimed to explore the molecular mechanism underlying the potential effect of hyperglycemia combined with hyperinsulinemia on the progression of breast cancer cells. To this end, gene dysregulation induced by the exposure of MCF7 breast cancer cells to hyperglycemia (HG), or a combination of hyperglycemia and hyperinsulinemia (HGI), was analyzed using a microarray gene expression assay. Hyperglycemia combined with hyperinsulinemia induced differential expression of 45 genes (greater than or equal to two-fold), which were not shared by other treatments. On the other hand, in silico analysis performed using a publicly available dataset (GEO: GSE150586) revealed differential upregulation of 15 genes in the breast tumor tissues of diabetic patients with breast cancer when compared with breast cancer patients with no diabetes. SLC26A11, ALDH1A3, MED20, PABPC4 and SCP2 were among the top upregulated genes in both microarray data and the in silico analysis. In conclusion, hyperglycemia combined with hyperinsulinemia caused a likely unique signature that contributes to acquiring more carcinogenic traits. Indeed, these findings might potentially add emphasis on how monitoring diabetes-related metabolic alteration as an adjunct to diabetes therapy is important in improving breast cancer outcomes. However, further detailed studies are required to decipher the role of the highlighted genes, in this study, in the pathogenesis of breast cancer in patients with a different glycemic index.
Collapse
Affiliation(s)
- Samrein B M Ahmed
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Health, Wellbeing and Life Sciences, Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Nada Radwan
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Sara Amer
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Narjes Saheb Sharif-Askari
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Amena Mahdami
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Kamel A Samara
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Rabih Halwani
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Herbert F Jelinek
- Department of Biomedical Engineering and Health Engineering Innovation Center, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|