1
|
Souza M, Al-Sharif L, Diaz I, Mantovani A, Villela-Nogueira CA. Global Epidemiology and Implications of PNPLA3 I148M Variant in Metabolic Dysfunction-Associated Steatotic Liver Disease: A Systematic Review and Meta-analysis. J Clin Exp Hepatol 2025; 15:102495. [PMID: 39882540 PMCID: PMC11773032 DOI: 10.1016/j.jceh.2024.102495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 12/18/2024] [Indexed: 01/31/2025] Open
Abstract
Background & Aims PNPLA3 rs738409 variant is a risk factor for onset and progression of metabolic dysfunction-associated steatotic liver disease (MASLD). We aimed to assess its global prevalence, clinical and histological characteristics, and long-term outcomes in patients with MASLD. Methods PubMed and Embase databases were searched until December 30, 2023, for observational studies on PNPLA3 genotyped adults with MASLD. Proportions were pooled using a generalized linear mixed model with Clopper-Pearson intervals. Continuous and dichotomous variables were analyzed using the DerSimonian-Laird method. International Prospective Register of Systematic Reviews registration number: CRD42023449838. Results A total of 109 studies involving 118,302 individuals with MASLD were identified. The overall minor allele frequency of the G allele [MAF(G)] at PNPLA3 was 0.45 (95% confidence interval [CI]: 0.43; 0.48) with high heterogeneity (I2 = 98%). The highest MAF(G) was found in Latin America (0.63) and the lowest in Europe (0.38). No African countries were identified. Carriers of the PNPLA3 variant had reduced adiposity, altered fat metabolism, and worse liver damage/histology than noncarriers. There was significant heterogeneity in the clinical/histological analyses (I2 > 50%). Only the PNPLA3 GG genotype was associated with higher mortality and liver-related events with no heterogeneity (I2 = 0%). Metaregressions showed the influence of adiposity, age, diabetes mellitus, and glucose on some PNPLA3 expression parameters. Overall, there was a moderate risk of bias in the included studies. Conclusions This study reveals the global pattern of PNPLA3 and its clinical, histological, and outcome implications in MASLD. Patients with MASLD and PNPLA3 variant have different clinical features and worse liver severity, and only PNPLA3 GG has a higher risk of mortality and liver outcomes. Our findings highlight the importance of PNPLA3 genotyping in clinical trials and advocate for personalized medicine approaches.
Collapse
Affiliation(s)
- Matheus Souza
- Department of Internal Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ivanna Diaz
- Department of Internal Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, United States
| | - Alessandro Mantovani
- Section of Endocrinology, Diabetes and Metabolism, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | | |
Collapse
|
2
|
Wood GC, Hoovler A, Luthra R, Still CD, Shariff H, Still M, Hayes J, Benotti P, Uzoigwe C. Noninvasive identification of metabolic dysfunction-associated steatohepatitis (INFORM MASH): a retrospective cohort and disease modeling study. Expert Rev Gastroenterol Hepatol 2025; 19:427-435. [PMID: 40067340 DOI: 10.1080/17474124.2025.2477249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Using common clinical parameters, we aimed to noninvasively identify and predict metabolic dysfunction-associated steatohepatitis (MASH)/MASH with clinically significant fibrosis. RESEARCH DESIGN AND METHODS Patients aged ≥18 with electronic health record (EHR) documented liver function tests and liver biopsies between 2016 and 2021 were retrospectively identified from the Geisinger Health System Research Liver Registry. MASH cases were confirmed using the nonalcoholic fatty liver disease (NAFLD) activity score. Training and validation datasets were used to create an algorithm/predictive model assessing EHR-derived predictors of MASH/MASH with clinically significant fibrosis (fibrosis stage F2-F4). Predictive accuracy was evaluated using the area under the curve. RESULTS The analysis included 2698 patients. We created a composite likelihood score using variables significant for MASH and/or MASH with clinically significant fibrosis: liver enzymes (alanine aminotransferase [ALT], aspartate aminotransferase [AST]), prior year AST, metabolic disease, pulse (heart rate), and body mass index. The score had higher sensitivity and specificity for predicting MASH than Fibrosis-4 (FIB-4) Index, AST to platelet ratio index (APRI), and NAFLD fibrosis score (NFS); sensitivity and specificity were comparable to FIB-4 and APRI for predicting MASH with clinically significant fibrosis but superior to NFS. CONCLUSION The composite likelihood score could potentially be a tool for early MASH screening.
Collapse
Affiliation(s)
- G Craig Wood
- Geisinger Health System Center for Obesity and Metabolic Research, Danville, PA, USA
| | | | | | - Christopher D Still
- Geisinger Health System Center for Obesity and Metabolic Research, Danville, PA, USA
| | - Hamzah Shariff
- Geisinger Health System Center for Obesity and Metabolic Research, Danville, PA, USA
| | - Matthew Still
- Geisinger Health System Center for Obesity and Metabolic Research, Danville, PA, USA
| | - Jonathan Hayes
- Geisinger Health System Center for Obesity and Metabolic Research, Danville, PA, USA
| | - Peter Benotti
- Geisinger Health System Center for Obesity and Metabolic Research, Danville, PA, USA
| | | |
Collapse
|
3
|
Chen VL, Vespasiani-Gentilucci U. Integrating PNPLA3 into clinical risk prediction. Liver Int 2025; 45:e16103. [PMID: 39282715 DOI: 10.1111/liv.16103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 02/05/2025]
Abstract
The PNPLA3-rs738409-G variant was the first common variant associated with hepatic fat accumulation and progression of metabolic dysfunction-associated steatotic liver disease (MASLD). Nevertheless, to date, the clinical translation of this discovery has been minimal because it has not yet been clearly demonstrated where the genetic information may play an independent and additional role in clinical risk prediction. In this mini-review, we will discuss the most relevant evidence regarding the potential integration of the PNPLA3 variant into scores and algorithms for liver disease diagnostics and risk stratification, specifically focusing on MASLD but also extending to liver diseases of other etiologies. The PNPLA3 variant adds little in diagnosing the current state of the disease, whether in terms of presence/absence of metabolic dysfunction-associated steatohepatitis or the stage of fibrosis. While it can play an important role in prediction, allowing for the early definition of risk profiles that enable tailored monitoring and interventions over time, this is most valuable when applied to populations with relatively high pre-test probability of having significant fibrosis based on either non-invasive tests (e.g. Fibrosis-4) or demographics (e.g. diabetes). Indeed, in this context, integrating FIB4 with the PNPLA3 genotype can refine risk stratification, though there is still no evidence that genetic information adds to liver stiffness determined by elastography. Similarly, in patients with known liver cirrhosis, knowing the PNPLA3 genotype can play a role in predicting the risk of hepatocellular carcinoma, while more doubts remain about the risk of decompensation.
Collapse
Affiliation(s)
- Vincent L Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Umberto Vespasiani-Gentilucci
- Research Unit of Hepatology, Università Campus Bio-Medico di Rome, Rome, Italy
- Hepatology and Clinical Medicine Unit, Fondazione Policlinico Universitario Campus-Biomedico di Roma, Rome, Italy
| |
Collapse
|
4
|
Cho Y. Evaluation of Liver Fibrosis through Noninvasive Tests in Steatotic Liver Disease. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2024; 84:215-222. [PMID: 39582309 DOI: 10.4166/kjg.2024.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 11/26/2024]
Abstract
Liver fibrosis, a critical predictor of the prognosis of metabolic dysfunction-associated steatotic liver disease (MASLD), is traditionally diagnosed via biopsy. Nevertheless, non-invasive alternatives, such as serum biomarkers, vibration-controlled transient elastography, and magnetic resonance elastography, have become prominent because of the limitations of biopsies. Serum biomarkers, such as fibrosis-4 index and NFS Score, are also used widely, offering reliable diagnostic performance for advanced fibrosis. Vibration-controlled transient elastography and shear wave elastography provide further non-invasive evaluations with high diagnostic accuracy, particularly for advanced fibrosis, but the results may be affected by factors such as obesity. Magnetic resonance elastography, with superior diagnostic accuracy and operator independence, is a promising method, but its high cost and limited availability restrict its widespread use. Emerging algorithms, such as NIS4, FAST, or MAST score, have strong potential in identifying high-risk metabolic dysfunction-associated steatohepatitis patients. The integration of multiple non-invasive methods can optimize diagnostic accuracy, reducing the need for invasive biopsies while identifying patients at risk of liver-related complications. Further research is needed to refine these diagnostic tools and improve accessibility.
Collapse
Affiliation(s)
- Yuri Cho
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Korea
| |
Collapse
|
5
|
Kim MN, Han JW, An J, Kim BK, Jin YJ, Kim SS, Lee M, Lee HA, Cho Y, Kim HY, Shin YR, Yu JH, Kim MY, Choi Y, Chon YE, Cho EJ, Lee EJ, Kim SG, Kim W, Jun DW, Kim SU. KASL clinical practice guidelines for noninvasive tests to assess liver fibrosis in chronic liver disease. Clin Mol Hepatol 2024; 30:S5-S105. [PMID: 39159947 PMCID: PMC11493350 DOI: 10.3350/cmh.2024.0506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024] Open
Affiliation(s)
- Mi Na Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Ji Won Han
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jihyun An
- Department of Gastroenterology and Hepatology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Beom Kyung Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Young-Joo Jin
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
| | - Seung-seob Kim
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Minjong Lee
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Han Ah Lee
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Yuri Cho
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Korea
| | - Hee Yeon Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yu Rim Shin
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Hwan Yu
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
| | - Moon Young Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - YoungRok Choi
- Department of Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Young Eun Chon
- Department of Internal Medicine, Institute of Gastroenterology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Eun Ju Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Joo Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Gyune Kim
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Won Kim
- Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Dae Won Jun
- Department of Internal Medicine, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Korea
| | - Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - on behalf of The Korean Association for the Study of the Liver (KASL)
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Gastroenterology and Hepatology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Institute of Gastroenterology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
- Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Tulone A, Pennisi G, Ciccioli C, Infantino G, La Mantia C, Cannella R, Mercurio F, Petta S. Are we ready for genetic testing in metabolic dysfunction-associated steatotic liver disease? United European Gastroenterol J 2024; 12:638-648. [PMID: 38659291 PMCID: PMC11176907 DOI: 10.1002/ueg2.12556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/18/2024] [Indexed: 04/26/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), with its steadily increasing prevalence, represents now a major problem in public health. A proper referral could benefit from tools allowing more precise risk stratification. To this end, in recent decades, several genetic variants that may help predict and refine the risk of development and progression of MASLD have been investigated. In this review, we aim to discuss the role genetics in MASLD plays in everyday clinical practice. We performed a comprehensive literature search of PubMed for relevant publications. Available evidence highlights the emergence of genetic-based noninvasive algorithms for diagnosing fatty liver, metabolic dysfunction-associated steatohepatitis, fibrosis progression and occurrence of liver-related outcomes including hepatocellular carcinoma. Nevertheless, their accuracy is not optimal and application in everyday clinical practice remains challenging. Furthermore, susceptible genetic markers have recently become subjects of great scientific interest as therapeutic targets in precision medicine. In conclusion, decisional algorithms based on genetic testing in MASLD to facilitate the clinician decisions on management and treatment are under growing investigation and could benefit from artificial intelligence methodology.
Collapse
Affiliation(s)
- Adele Tulone
- Sezione di GastroenterologiaPROMISEUniversity of PalermoPalermoItaly
| | - Grazia Pennisi
- Sezione di GastroenterologiaPROMISEUniversity of PalermoPalermoItaly
| | - Carlo Ciccioli
- Sezione di GastroenterologiaPROMISEUniversity of PalermoPalermoItaly
| | | | - Claudia La Mantia
- Sezione di GastroenterologiaPROMISEUniversity of PalermoPalermoItaly
| | - Roberto Cannella
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata (BIND)University of PalermoPalermoItaly
| | | | - Salvatore Petta
- Sezione di GastroenterologiaPROMISEUniversity of PalermoPalermoItaly
| |
Collapse
|
7
|
Bril F. Nonalcoholic fatty liver disease: What comes before and what are the consequences? CHRONIC COMPLICATIONS OF DIABETES MELLITUS 2024:185-206. [DOI: 10.1016/b978-0-323-88426-6.00017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Goble S, Akambase J, Prieto J, Balderramo D, Ferrer JD, Mattos AZ, Arrese M, Carrera E, Groothuismink ZMA, Oliveira J, Boonstra A, Debes JD. MBOAT7 rs641738 Variant Is Not Associated with an Increased Risk of Hepatocellular Carcinoma in a Latin American Cohort. Dig Dis Sci 2023; 68:4212-4220. [PMID: 37684433 PMCID: PMC10570183 DOI: 10.1007/s10620-023-08104-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND The rs641738 C > T single-nucleotide polymorphism of MBOAT7 has been associated with hepatocellular carcinoma (HCC) and nonalcoholic fatty liver disease (NAFLD). Latin Americans have high rates of HCC and NAFLD, but no assessment between MBOAT7 and HCC has been performed in this population. AIMS We provide the first assessment of the impact of MBOAT7 on HCC risk in Latin Americans. METHODS Patients were prospectively recruited into the ESCALON network, designed to collect samples from Latin American patients with HCC in 6 South American countries (Argentina, Ecuador, Brazil, Chile, Peru, and Colombia). A European cohort and the general Hispanic population of gnomAD database were included for comparison. Associations between HCC and MBOAT7 were evaluated using logistic regression. RESULTS In total, 310 cases of HCC and 493 cases of cirrhosis without HCC were assessed. The MBOAT7 TT genotype was not predictive of HCC in Latin Americans (TT vs CC OR adjusted = 1.15, 95% CI 0.66-2.01, p = 0.610) or Europeans (TT vs CC OR adjusted = 1.20, 95% CI 0.59-2.43, p = 0.621). No significant association was noted on subgroup analysis for NAFLD, viral hepatitis, or alcohol-related liver disease. The TT genotype was increased in the NAFLD-cirrhosis cohort of Latin Americans compared to a non-cirrhotic NAFLD cohort (TT vs CC + CT OR = 2.75, 95% CI 1.10-6.87, p = 0.031). CONCLUSION The rs631738 C > T allele of MBOAT7 was not associated with increased risk of HCC in Latin Americans or Europeans. An increase in the risk of cirrhosis was noted with the TT genotype in Latin Americans with NAFLD.
Collapse
Affiliation(s)
| | | | - Jhon Prieto
- Centro de Enfermedades Hepaticas y Digestives, Bogotá, Colombia
| | - Domingo Balderramo
- Department of Gastroenterology, Hospital Privado Universitario de Córdoba, Instituto Universitario de Ciencias Biomédicas de Córdoba, Córdoba, Argentina
| | | | - Angelo Z Mattos
- Graduate Program in Medicine: Hepatology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Marco Arrese
- Department of Gastroenterology, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Enrique Carrera
- Departamento de Gastroenterologia y Hepatologia, Hospital Eugenio Espejo, Quito, Ecuador
| | - Zwier M A Groothuismink
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jeffrey Oliveira
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jose D Debes
- Hennepin Healthcare, Minneapolis, MN, USA.
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands.
- Department of Medicine, University of Minnesota, Mayo Memorial Building, MMC 250, 420 Delaware Street S.E., Minneapolis, MN, 55455, USA.
| |
Collapse
|
9
|
Okekunle AP, Youn J, Song S, Chung GE, Yang SY, Kim YS, Lee JE. Predicted pro-inflammatory hs-CRP score and non-alcoholic fatty liver disease. Gastroenterol Rep (Oxf) 2023; 11:goad059. [PMID: 37842198 PMCID: PMC10568523 DOI: 10.1093/gastro/goad059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/07/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a major contributor to liver diseases globally, yet there are limited studies investigating the impact of diet and lifestyle factors on its development. This study aimed to examine the association between the prevalence of NAFLD and predicted pro-inflammatory high-sensitivity C-reactive protein (hs-CRP) score. Methods We included 1,076 Korean adults who underwent a medical examination at the Seoul National University Hospital Gangnam Healthcare Center in Korea between May and December 2011 and updated in 2021. The predicted pro-inflammatory hs-CRP score was derived from pro-inflammatory demographic, lifestyle, dietary, and anthropometric factors, and NAFLD was diagnosed using liver ultrasound. Multivariable-adjusted odds ratios (ORs) and 95% confidence intervals (CIs) of NAFLD odds according to predicted pro-inflammatory hs-CRP score were estimated using logistic regression at a two-sided P < 0.05. Results Among the 1,076 participants, 320 had NAFLD. The multivariable-adjusted ORs and 95% CIs for NAFLD by tertiles of predicted pro-inflammatory hs-CRP score were 1.00, 3.30 (2.06, 5.30), 18.25 (10.47, 31.81; P < 0.0001) in men and women combined, 1.00, 1.77 (1.10, 2.84), and 3.26 (2.02, 5.28; P < 0.0001) among men only, and 1.00, 3.03 (1.39, 6.62), and 16.71 (7.05, 39.63; P < 0.0001) among women only. Conclusions Predicted pro-inflammatory hs-CRP score was associated with higher odds of NAFLD. Adopting dietary and lifestyle changes related to lower inflammation might be a valuable strategy for preventing NAFLD.
Collapse
Affiliation(s)
- Akinkunmi Paul Okekunle
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea
- Research Institute of Human Ecology, Seoul National University, Seoul, Korea
| | - Jiyoung Youn
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea
| | - Sihan Song
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea
| | - Goh Eun Chung
- Healthcare System Gangnam Center, Healthcare Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Sun Young Yang
- Healthcare System Gangnam Center, Healthcare Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Young Sun Kim
- Healthcare System Gangnam Center, Healthcare Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jung Eun Lee
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea
- Healthcare System Gangnam Center, Healthcare Research Institute, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
10
|
Xu X, Xu H, Liu X, Zhang S, Cao Z, Qiu L, Du X, Liu Y, Wang G, Zhang L, Zhang Y, Zhang J. MBOAT7 rs641738 (C>T) is associated with NAFLD progression in men and decreased ASCVD risk in elder Chinese population. Front Endocrinol (Lausanne) 2023; 14:1199429. [PMID: 37424875 PMCID: PMC10324031 DOI: 10.3389/fendo.2023.1199429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Background and aim The MBOAT7 rs641738 (C>T) variant has demonstrated an association with non-alcoholic fatty liver disease (NAFLD) in both adult and pediatric patients, while few studies have been conducted in elderly populations. Hence, a case-control study was undertaken to assess their correlation in elderly residents in a Beijing community. Materials and methods A total of 1,287 participants were included. Medical history, abdominal ultrasound, and laboratory tests were recorded. Liver fat content and fibrosis stage were detected by Fibroscan. Genotyping of genomic DNA was performed using the 96.96 genotyping integrated fluidics circuit. Results Of the recruited subjects, 638 subjects (56.60%) had NAFLD, and 398 subjects (35.28%) had atherosclerotic cardiovascular disease (ASCVD). T allele carriage was associated with higher ALT (p=0.005) and significant fibrosis in male NAFLD patients (p=0.005) compared to CC genotype. TT genotype was associated with reduced risk of metabolic syndrome (OR=0.589, 95%CI: 0.114-0.683, p=0.005) and type 2 diabetes (OR=0.804, 95%CI: 0.277-0.296, p=0.048) in NAFLD population when compared to the CC genotype. In addition, TT genotype was also associated with reduced risk of ASCVD (OR=0.570, 95%CI:0.340-0.953, p=0.032) and less obesity (OR=0.545, 95%CI: 0.346-0.856, p=0.008) in the whole population. Conclusion MBOAT7 rs641738 (C>T) variant was associated with fibrosis in male NAFLD patients. The variant also reduced risk of metabolic traits and type 2 diabetes in NAFLD and ASCVD risk in Chinese elders.
Collapse
Affiliation(s)
- Xiaoyi Xu
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hangfei Xu
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiaohui Liu
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shuang Zhang
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Menkuang Hospital, Beijing Jingmei Group General Hospital, Beijing, China
| | - Zhenhuan Cao
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Lixia Qiu
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiaofei Du
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yali Liu
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Gang Wang
- Menkuang Hospital, Beijing Jingmei Group General Hospital, Beijing, China
| | - Li Zhang
- Menkuang Hospital, Beijing Jingmei Group General Hospital, Beijing, China
| | - Yang Zhang
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Koo BK, Lee H, Kwak SH, Lee DH, Park JH, Kim W. Long-Term Effect of PNPLA3 on the Aggravation of Nonalcoholic Fatty Liver Disease in a Biopsy-Proven Cohort. Clin Gastroenterol Hepatol 2023; 21:1105-1107.e3. [PMID: 35189385 DOI: 10.1016/j.cgh.2022.02.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023]
Abstract
The PNPLA3 rs738409 G allele increases the risk of not only nonalcoholic fatty liver disease (NAFLD) but also nonalcoholic steatohepatitis (NASH) or fibrosis.1 It also affects the prognosis of patients with NAFLD in specific conditions. After liver transplantation, patients with NAFLD carrying the rs738409 GG genotype have a higher risk of graft steatosis2 or development of hepatocellular carcinoma.3 In addition, rs738409 modifies the effects of medical intervention: patients with NAFLD carrying the GG genotype showed a lower effect of omega-3 polyunsaturated fatty acid treatment on the reduction of liver fat;4 in contrast, they were more sensitive to the beneficial effects of lifestyle modifications.5,6.
Collapse
Affiliation(s)
- Bo Kyung Koo
- Division of Endocrinology, Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyunsuk Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soo-Heon Kwak
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong Hyeon Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea
| | - Jeong Hwan Park
- Department of Pathology, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea
| | - Won Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea.
| | | |
Collapse
|
12
|
Kim HY, Kim DJ, Lee HA, Cho JY, Kim W. Baseline Tyrosine Level Is Associated with Dynamic Changes in FAST Score in NAFLD Patients under Lifestyle Modification. Metabolites 2023; 13:metabo13030444. [PMID: 36984884 PMCID: PMC10058052 DOI: 10.3390/metabo13030444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Noninvasive risk stratification is a challenging issue in the management of patients with nonalcoholic fatty liver disease (NAFLD). This study aimed to identify multiomics-based predictors of NAFLD progression, as assessed by changes in serial FibroScan-aspartate aminotransferase (FAST) scores during lifestyle modification. A total of 266 patients with available metabolomics and genotyping data were included. The follow-up sub-cohort included patients with paired laboratory and transient elastography results (n = 160). The baseline median FAST score was 0.37. The PNPLA3 rs738409 genotype was significantly associated with a FAST score > 0.35. Circulating metabolomics significantly associated with a FAST score > 0.35 included SM C24:0 (odds ratio [OR] = 0.642; 95% confidence interval [CI], 0.463-0.891), PC ae C40:6 (OR = 0.477; 95% CI, 0.340-0.669), lysoPC a C18:2 (OR = 0.570; 95% CI, 0.417-0.779), and tyrosine (OR = 2.743; 95% CI, 1.875-4.014). A combination of these metabolites and PNPLA3 genotype yielded a c-index = 0.948 for predicting a FAST score > 0.35. In the follow-up sub-cohort (median follow-up = 23.7 months), 47/76 patients (61.8%) with a baseline FAST score > 0.35 had a follow-up FAST score ≤ 0.35. An improved FAST score at follow-up was significantly associated with age, serum alanine aminotransferase, and tyrosine. In conclusion, baseline risk stratification in NAFLD patients may be assisted using a multiomics-based model. Particularly, patients with increased tyrosine may benefit from an earlier switch to pharmacologic approaches.
Collapse
Affiliation(s)
- Hwi Young Kim
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea
| | - Da Jung Kim
- Metabolomics Core Facility, Department of Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
| | - Hye Ah Lee
- Clinical Trial Center, Ewha Womans University Medical Center, Seoul 07985, Republic of Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Won Kim
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul Metropolitan Government Boramae Medical Center, Seoul 07061, Republic of Korea
| |
Collapse
|
13
|
Amangurbanova M, Huang DQ, Loomba R. Review article: the role of HSD17B13 on global epidemiology, natural history, pathogenesis and treatment of NAFLD. Aliment Pharmacol Ther 2023; 57:37-51. [PMID: 36349732 PMCID: PMC10047549 DOI: 10.1111/apt.17292] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/07/2022] [Accepted: 10/23/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) occurs in around a quarter of the global population and is one of the leading causes of chronic liver disease. The phenotypic manifestation and the severity of NAFLD are influenced by an interplay of environmental and genetic factors. Recently, several inactivating variants in the novel 17-Beta hydroxysteroid dehydrogenase 13 (HSD17B13) gene have been found to be associated with a reduced risk of chronic liver diseases, including NAFLD. AIMS To review the existing literature on the epidemiology of HSD17B13 and discuss its role in the natural history, disease pathogenesis and treatment of NAFLD. METHODS We extensively searched relevant literature in PubMed, Google Scholar, clinicaltrials.gov and the reference list of articles included in the review. RESULTS HSD17B13 is a liver-specific, lipid droplet (LD)-associated protein that has enzymatic pathways involving steroids, pro-inflammatory lipid mediators and retinol. The estimated prevalence of the best characterised HSD17B13 variant (rs72613567) ranges from 5% in Africa to 34% in East Asia. Loss-of-function variants in HSD17B13 are protective against the progression of NAFLD from simple steatosis to non-alcoholic steatohepatitis (NASH), liver fibrosis, cirrhosis and hepatocellular carcinoma. Emerging data from mechanistic and preclinical studies with RNA interference (RNAi) and small molecule agents indicate that inhibiting HSD17B13 activity may prevent NAFLD progression. CONCLUSIONS The loss-of-function polymorphisms of the newly identified HSD17B13 gene mitigate the progression of NAFLD. It is important to understand the exact mechanism by which these variants exert a protective effect and implement the gathered knowledge in the treatment of NAFLD.
Collapse
Affiliation(s)
- Maral Amangurbanova
- NAFLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, United States
| | - Daniel Q. Huang
- NAFLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, United States
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, United States
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, San Diego, CA, United States
| |
Collapse
|
14
|
Sulaiman SA, Dorairaj V, Adrus MNH. Genetic Polymorphisms and Diversity in Nonalcoholic Fatty Liver Disease (NAFLD): A Mini Review. Biomedicines 2022; 11:106. [PMID: 36672614 PMCID: PMC9855725 DOI: 10.3390/biomedicines11010106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common liver disease with a wide spectrum of liver conditions ranging from hepatic steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. The prevalence of NAFLD varies across populations, and different ethnicities have specific risks for the disease. NAFLD is a multi-factorial disease where the genetics, metabolic, and environmental factors interplay and modulate the disease's development and progression. Several genetic polymorphisms have been identified and are associated with the disease risk. This mini-review discussed the NAFLD's genetic polymorphisms and focusing on the differences in the findings between the populations (diversity), including of those reports that did not show any significant association. The challenges of genetic diversity are also summarized. Understanding the genetic contribution of NAFLD will allow for better diagnosis and management explicitly tailored for the various populations.
Collapse
Affiliation(s)
- Siti Aishah Sulaiman
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Yaa’cob Latiff, Cheras, Kuala Lumpur 56000, Malaysia; (V.D.); (M.N.H.A.)
| | | | | |
Collapse
|
15
|
A machine-learning approach for nonalcoholic steatohepatitis susceptibility estimation. Indian J Gastroenterol 2022; 41:475-482. [PMID: 36367682 DOI: 10.1007/s12664-022-01263-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 05/02/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH), a severe form of nonalcoholic fatty liver disease, can lead to advanced liver damage and has become an increasingly prominent health problem worldwide. Predictive models for early identification of high-risk individuals could help identify preventive and interventional measures. Traditional epidemiological models with limited predictive power are based on statistical analysis. In the current study, a novel machine-learning approach was developed for individual NASH susceptibility prediction using candidate single nucleotide polymorphisms (SNPs). METHODS A total of 245 NASH patients and 120 healthy individuals were included in the study. Single nucleotide polymorphism genotypes of candidate genes including two SNPs in the cytochrome P450 family 2 subfamily E member 1 (CYP2E1) gene (rs6413432, rs3813867), two SNPs in the glucokinase regulator (GCKR) gene (rs780094, rs1260326), rs738409 SNP in patatin-like phospholipase domain-containing 3 (PNPLA3), and gender parameters were used to develop models for identifying at-risk individuals. To predict the individual's susceptibility to NASH, nine different machine-learning models were constructed. These models involved two different feature selections including Chi-square, and support vector machine recursive feature elimination (SVM-RFE) and three classification algorithms including k-nearest neighbor (KNN), multi-layer perceptron (MLP), and random forest (RF). All nine machine-learning models were trained using 80% of both the NASH patients and the healthy controls data. The nine machine-learning models were then tested on 20% of both groups. The model's performance was compared for model accuracy, precision, sensitivity, and F measure. RESULTS Among all nine machine-learning models, the KNN classifier with all features as input showed the highest performance with 86% F measure and 79% accuracy. CONCLUSIONS Machine learning based on genomic variety may be applicable for estimating an individual's susceptibility for developing NASH among high-risk groups with a high degree of accuracy, precision, and sensitivity.
Collapse
|
16
|
Advance of Serum Biomarkers and Combined Diagnostic Panels in Nonalcoholic Fatty Liver Disease. DISEASE MARKERS 2022; 2022:1254014. [PMID: 35811662 PMCID: PMC9259243 DOI: 10.1155/2022/1254014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) affects approximately 25-30% population worldwide, which progresses from simple steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma, and has complications such as cardiovascular events. Liver biopsy is still the gold standard for the diagnosis of NAFLD, with some limitations, such as invasive, sampling deviation, and empirical judgment. Therefore, it is urgent to develop noninvasive diagnostic biomarkers. Currently, a large number of NAFLD-related serum biomarkers have been identified, including apoptosis, inflammation, fibrosis, adipokines, hepatokines, and omics biomarkers, which could effectively diagnose NASH and exclude patients with progressive fibrosis. We summarized serum biomarkers and combined diagnostic panels of NAFLD, to provide some guidance for the noninvasive diagnosis and further clinical studies.
Collapse
|
17
|
Varadharajan V, Massey WJ, Brown JM. Membrane-bound O-acyltransferase 7 (MBOAT7)-driven phosphatidylinositol remodeling in advanced liver disease. J Lipid Res 2022; 63:100234. [PMID: 35636492 PMCID: PMC9240865 DOI: 10.1016/j.jlr.2022.100234] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 01/21/2023] Open
Abstract
Advanced liver diseases account for approximately 2 million deaths annually worldwide. Roughly, half of liver disease-associated deaths arise from complications of cirrhosis and the other half driven by viral hepatitis and hepatocellular carcinoma. Unfortunately, the development of therapeutic strategies to treat subjects with advanced liver disease has been hampered by a lack of mechanistic understanding of liver disease progression and a lack of human-relevant animal models. An important advance has been made within the past several years, as several genome-wide association studies have discovered that an SNP near the gene encoding membrane-bound O-acyltransferase 7 (MBOAT7) is associated with severe liver diseases. This common MBOAT7 variant (rs641738, C>T), which reduces MBOAT7 expression, confers increased susceptibility to nonalcoholic fatty liver disease, alcohol-associated liver disease, and liver fibrosis in patients chronically infected with viral hepatitis. Recent studies in mice also show that Mboat7 loss of function can promote hepatic steatosis, inflammation, and fibrosis, causally linking this phosphatidylinositol remodeling enzyme to liver health in both rodents and humans. Herein, we review recent insights into the mechanisms by which MBOAT7-driven phosphatidylinositol remodeling influences liver disease progression and discuss how rapid progress in this area could inform drug discovery moving forward.
Collapse
Affiliation(s)
- Venkateshwari Varadharajan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - William J Massey
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
18
|
Kang H, You HJ, Lee G, Lee SH, Yoo T, Choi M, Joo SK, Park JH, Chang MS, Lee DH, Kim W, Ko G. Interaction effect between NAFLD severity and high carbohydrate diet on gut microbiome alteration and hepatic de novo lipogenesis. Gut Microbes 2022; 14:2078612. [PMID: 35634707 PMCID: PMC9154801 DOI: 10.1080/19490976.2022.2078612] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is associated with high carbohydrate (HC) intake. We investigated whether the relationship between carbohydrate intake and NAFLD is mediated by interactions between gut microbial modulation, impaired insulin response, and hepatic de novo lipogenesis (DNL). Stool samples were collected from 204 Korean subjects with biopsy-proven NAFLD (n = 129) and without NAFLD (n = 75). The gut microbiome profiles were analyzed using 16S rRNA amplicon sequencing. Study subjects were grouped by the NAFLD activity score (NAS) and percentage energy intake from dietary carbohydrate. Hepatic DNL-related transcripts were also analyzed (n = 90). Data from the Korean healthy twin cohort (n = 682), a large sample of individuals without NAFLD, were used for comparison and validation. A HC diet rather than a low carbohydrate diet was associated with the altered gut microbiome diversity according to the NAS. Unlike individuals from the twin cohort without NAFLD, the abundances of Enterobacteriaceae and Ruminococcaceae were significantly different among the NAS subgroups in NAFLD subjects who consumed an HC diet. The addition of these two microbial families, along with Veillonellaceae, significantly improved the diagnostic performance of the predictive model, which was based on the body mass index, age, and sex to predict nonalcoholic steatohepatitis in the HC group. In the HC group, two crucial regulators of DNL (SIRT1 and SREBF2) were differentially expressed among the NAS subgroups. In particular, kernel causality analysis revealed a causal effect of the abundance of Enterobacteriaceae on SREBF2 upregulation and of the surrogate markers of insulin resistance on NAFLD activity in the HC group. Consuming an HC diet is associated with alteration in the gut microbiome, impaired glucose homeostasis, and upregulation of hepatic DNL genes, altogether contributing to NAFLD pathogenesis.
Collapse
Affiliation(s)
- Hyena Kang
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Republic of Korea
| | - Hyun Ju You
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Republic of Korea,Center for Human and Environmental Microbiome, Institute of Health and Environment, Seoul National University, Republic of Korea,Bio-MAX/N-Bio, Seoul National University, Seoul, Republic of Korea
| | - Giljae Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Republic of Korea
| | - Seung Hyun Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Republic of Korea
| | - Taekyung Yoo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sae Kyung Joo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea
| | - Jeong Hwan Park
- Department of Pathology, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea
| | - Mee Soo Chang
- Department of Pathology, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea
| | - Dong Hyeon Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea
| | - Won Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea,CONTACT Won Kim Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul07061, Republic of Korea
| | - GwangPyo Ko
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Republic of Korea,Center for Human and Environmental Microbiome, Institute of Health and Environment, Seoul National University, Republic of Korea,Bio-MAX/N-Bio, Seoul National University, Seoul, Republic of Korea,KoBioLabs Inc, Seoul, Republic of Korea,GwangPyo Ko Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | | |
Collapse
|
19
|
Duan Y, Pan X, Luo J, Xiao X, Li J, Bestman PL, Luo M. Association of Inflammatory Cytokines With Non-Alcoholic Fatty Liver Disease. Front Immunol 2022; 13:880298. [PMID: 35603224 PMCID: PMC9122097 DOI: 10.3389/fimmu.2022.880298] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/11/2022] [Indexed: 01/30/2023] Open
Abstract
Background Inflammatory cytokines have been considered to be significant factors contributing to the development and progression of non-alcoholic fatty liver disease (NAFLD). However, the role of inflammatory cytokines in NAFLD remains inconclusive. Objective This study aimed to evaluate the association between inflammatory cytokines and NAFLD. Methods PubMed, Web of Science, the Cochrane Library, and EMBASE databases were searched until 31 December 2021 to identify eligible studies that reported the association of inflammatory cytokine with NAFLD and its subtypes. We pooled odds ratios (ORs) and hazard risk (HRs) with 95% confidence intervals (CIs) and conducted heterogeneity tests. Sensitivity analysis and analysis for publication bias were also carried out. Results The search in the databases identified 51 relevant studies that investigated the association between 19 different inflammatory cytokines and NAFLD based on 36,074 patients and 47,052 controls. The results of the meta-analysis showed significant associations for C-reactive protein (CRP), interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and intercellular adhesion molecule-1 (ICAM-1) with NAFLD (ORs of 1.41, 1.08, 1.50, 1.15 and 2.17, respectively). In contrast, we observed non-significant associations for interferon-γ (IFN-γ), insulin-like growth factor (IGF-II), interleukin-2 (IL-2), interleukin-4 (IL-4), interleukin-5 (IL-5), interleukin-7 (IL-7), interleukin-8 (IL-8), interleukin-10 (IL-10), interleukin-12 (IL-12), monocyte chemoattractant protein-1(MCP-1), and transforming growth factor-β (TGF-β) with NAFLD. Our results also showed that CRP, IL-1β, and TNF-α were significantly associated with non-alcoholic steatohepatitis (NASH) and hepatic fibrosis. Conclusions Our results indicated that increased CRP, IL‐1β, IL-6, TNF‐α, and ICAM-1 concentrations were significantly associated with increased risks of NAFLD. These inflammatory mediators may serve as biomarkers for NAFLD subjects and expect to provide new insights into the aetiology of NAFLD as well as early diagnosis and intervention.
Collapse
Affiliation(s)
- Yamei Duan
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xiongfeng Pan
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jiayou Luo
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xiang Xiao
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jingya Li
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Prince L. Bestman
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Miyang Luo
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- *Correspondence: Miyang Luo,
| |
Collapse
|
20
|
Gabriel-Medina P, Ferrer-Costa R, Rodriguez-Frias F, Ciudin A, Augustin S, Rivera-Esteban J, Pericàs JM, Selva DM. Influence of Type 2 Diabetes in the Association of PNPLA3 rs738409 and TM6SF2 rs58542926 Polymorphisms in NASH Advanced Liver Fibrosis. Biomedicines 2022; 10:1015. [PMID: 35625751 PMCID: PMC9139123 DOI: 10.3390/biomedicines10051015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a leading cause of cirrhosis in western countries. Insulin resistance (IR), type 2 diabetes (T2D), and the polymorphisms patatin-like phospholipase domain-containing 3 (PNPLA3) rs738409 and transmembrane 6 superfamily member 2 (TM6SF2) rs58542926 are independent risk factors of NASH. Nevertheless, little is known about the interaction between IR and T2D with these polymorphisms in the pathogenesis of NASH and the development of advanced fibrosis. Thus, our study aimed to investigate this relationship. This is a cross-sectional study including NASH patients diagnosed by liver biopsy, at the Vall d’Hebron University Hospital. A total of 140 patients were included (93 T2D, 47 non-T2D). T2D (OR = 4.67; 95%CI 2.13−10.20; p < 0.001), PNPLA3 rs738409 and TM6SF2 rs58542926 polymorphisms (OR = 3.94; 95%CI 1.63−9.54; p = 0.002) were independently related with advanced liver fibrosis. T2D increased the risk of advance fibrosis on top of the two polymorphisms (OR = 14.69; 95%CI 3.03−77.35; p = 0.001 for PNPLA3 rs738409 and OR = 11.45; 95%CI 3.16−41.55; p < 0.001 for TM6SF2 rs58542926). In non-T2D patients, the IR (HOMA-IR ≥ 5.2, OR = 14.33; 95%CI 2.14−18.66; p = 0.014) increased the risk of advanced fibrosis when the polymorphisms were present (OR = 19.04; 95%CI 1.71−650.84; p = 0.042). The T2D and IR status increase the risk of advanced fibrosis in patients with NASH carrying the PNPLA3 rs738409 and/or TM6SF2 rs58542926 polymorphisms, respectively.
Collapse
Affiliation(s)
- Pablo Gabriel-Medina
- Biochemistry Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (P.G.-M.); (F.R.-F.)
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain;
- Clinical Biochemistry Research Team, Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
| | - Roser Ferrer-Costa
- Biochemistry Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (P.G.-M.); (F.R.-F.)
- Clinical Biochemistry Research Team, Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
| | - Francisco Rodriguez-Frias
- Biochemistry Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (P.G.-M.); (F.R.-F.)
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain;
- Clinical Biochemistry Research Team, Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain; (S.A.); (J.M.P.)
| | - Andreea Ciudin
- Endocrinology and Nutrition Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain;
- Diabetes and Metabolism Department, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Salvador Augustin
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain; (S.A.); (J.M.P.)
- Liver Unit, Internal Medicine Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - Jesus Rivera-Esteban
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain;
- Liver Unit, Internal Medicine Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - Juan M. Pericàs
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain; (S.A.); (J.M.P.)
- Liver Unit, Internal Medicine Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - David Martinez Selva
- Diabetes and Metabolism Department, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| |
Collapse
|
21
|
Huh Y, Cho YJ, Nam GE. Recent Epidemiology and Risk Factors of Nonalcoholic Fatty Liver Disease. J Obes Metab Syndr 2022; 31:17-27. [PMID: 35332111 PMCID: PMC8987457 DOI: 10.7570/jomes22021] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/28/2022] Open
Abstract
Because of the global obesity epidemic, the incidence and prevalence of nonalcoholic fatty liver disease (NAFLD) have increased worldwide, including among Koreans. Recently, the incidence rate of NAFLD in Korea was reported to be 45.1 per 1,000 person-years, and the prevalence as approximately 30% depending on the diagnostic methods used. The incidence of advanced fibrosis and hepatocellular carcinoma, as well as all-cause and liver-related mortality in NAFLD patients has increased substantially, imposing considerable public health costs in Korea. Genetic, demographic, environmental, and clinical factors are involved in the pathogenesis of NAFLD. Some genetic variants, such as patatin-like phospholipase domain-containing 3 (PNPLA-3) and sorting and assembly machinery component 50 (SAMM-50), play a major role in the occurrence of NAFLD. The risk of NAFLD and fibrosis increases with advancing age and in men. Nutritional factors, inadequate exercise, and sleep duration are also associated with increased risk of NAFLD. Obesity is a major risk factor for NAFLD; however, NAFLD in lean individuals has been noted in recent studies. Insulin resistance, type 2 diabetes, and metabolic syndrome and its components are closely associated with NAFLD development and liver fibrosis with various underlying mechanisms. Sarcopenia likely shares a common pathophysiology with NAFLD. The rapidly increasing incidence and prevalence of NAFLD and its complications, as well as the associated healthcare burden, warrant early assessment of NAFLD and its risk factors to prevent NAFLD-related complications in high risk groups.
Collapse
Affiliation(s)
- Youn Huh
- Department of Family Medicine, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu, Korea
| | - Yoon Jeong Cho
- Department of Family Medicine, Daegu Catholic University School of Medicine, Daegu, Korea
| | - Ga Eun Nam
- Department of Family Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Li G, Zhang X, Lin H, Liang LY, Wong GLH, Wong VWS. Non-invasive tests of non-alcoholic fatty liver disease. Chin Med J (Engl) 2022; 135:532-546. [PMID: 35089884 PMCID: PMC8920457 DOI: 10.1097/cm9.0000000000002027] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT For the detection of steatosis, quantitative ultrasound imaging techniques have achieved great progress in past years. Magnetic resonance imaging proton density fat fraction is currently the most accurate test to detect hepatic steatosis. Some blood biomarkers correlate with non-alcoholic steatohepatitis, but the accuracy is modest. Regarding liver fibrosis, liver stiffness measurement by transient elastography (TE) has high accuracy and is widely used across the world. Magnetic resonance elastography is marginally better than TE but is limited by its cost and availability. Several blood biomarkers of fibrosis have been used in clinical trials and hold promise for selecting patients for treatment and monitoring treatment response. This article reviews new developments in the non-invasive assessment of non-alcoholic fatty liver disease (NAFLD). Accumulating evidence suggests that various non-invasive tests can be used to diagnose NAFLD, assess its severity, and predict the prognosis. Further studies are needed to determine the role of the tests as monitoring tools. We cannot overemphasize the importance of context in selecting appropriate tests.
Collapse
Affiliation(s)
- Guanlin Li
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- Medical Data Analytics Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Xinrong Zhang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- Medical Data Analytics Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Huapeng Lin
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- Medical Data Analytics Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Lilian Yan Liang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- Medical Data Analytics Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Grace Lai-Hung Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- Medical Data Analytics Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- Medical Data Analytics Centre, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
23
|
Abstract
The acronym nonalcoholic fatty-liver disease (NAFLD) groups a heterogeneous patient population. Although in many patients the primary driver is metabolic dysfunction, a complex and dynamic interaction of different factors (i.e., sex, presence of one or more genetic variants, coexistence of different comorbidities, diverse microbiota composition, and various degrees of alcohol consumption among others) takes place to determine disease subphenotypes with distinct natural history and prognosis and, eventually, different response to therapy. This review aims to address this topic through the analysis of existing data on the differential contribution of known factors to the pathogenesis and clinical expression of NAFLD, thus determining the different clinical subphenotypes observed in practice. To improve our understanding of NAFLD heterogeneity and the dominant drivers of disease in patient subgroups would predictably impact on the development of more precision-targeted therapies for NAFLD.
Collapse
Affiliation(s)
- Marco Arrese
- Department of Gastroenterology, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Juan P. Arab
- Department of Gastroenterology, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Francisco Barrera
- Department of Gastroenterology, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Benedikt Kaufmann
- Department of Pediatric Gastroenterology, Rady Children's Hospital, University of California San Diego, California
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Universita degli Studi di Milano, Translational Medicine, Department of Transfusion, Medicine and Hematology, Fondazione IRCCS Ca' Granda, Pad Marangoni, Milan, Italy
| | - Ariel E. Feldstein
- Department of Pediatric Gastroenterology, Rady Children's Hospital, University of California San Diego, California
| |
Collapse
|
24
|
Meroni M, Longo M, Tria G, Dongiovanni P. Genetics Is of the Essence to Face NAFLD. Biomedicines 2021; 9:1359. [PMID: 34680476 PMCID: PMC8533437 DOI: 10.3390/biomedicines9101359] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the commonest cause of chronic liver disease worldwide. It is closely related to obesity, insulin resistance (IR) and dyslipidemia so much so it is considered the hepatic manifestation of the Metabolic Syndrome. The NAFLD spectrum extends from simple steatosis to nonalcoholic steatohepatitis (NASH), a clinical condition which may progress up to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). NAFLD is a complex disease whose pathogenesis is shaped by both environmental and genetic factors. In the last two decades, several heritable modifications in genes influencing hepatic lipid remodeling, and mitochondrial oxidative status have been emerged as predictors of progressive hepatic damage. Among them, the patatin-like phospholipase domain-containing 3 (PNPLA3) p.I148M, the Transmembrane 6 superfamily member 2 (TM6SF2) p.E167K and the rs641738 membrane bound-o-acyltransferase domain-containing 7 (MBOAT7) polymorphisms are considered the most robust modifiers of NAFLD. However, a forefront frontier in the study of NAFLD heritability is to postulate score-based strategy, building polygenic risk scores (PRS), which aggregate the most relevant genetic determinants of NAFLD and biochemical parameters, with the purpose to foresee patients with greater risk of severe NAFLD, guaranteeing the most highly predictive value, the best diagnostic accuracy and the more precise individualized therapy.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, 20122 Milano, Italy
| | - Giada Tria
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| |
Collapse
|
25
|
Sun DQ, Wang TY, Zheng KI, Zhang HY, Wang XD, Targher G, Byrne CD, Chen YP, Yuan WJ, Jin Y, Zheng MH. The HSD17B13 rs72613567 variant is associated with lower levels of albuminuria in patients with biopsy-proven nonalcoholic fatty liver disease. Nutr Metab Cardiovasc Dis 2021; 31:1822-1831. [PMID: 33853719 DOI: 10.1016/j.numecd.2021.02.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/13/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Several susceptibility gene variants predisposing to nonalcoholic fatty liver disease (NAFLD) have been identified in chronic kidney disease (CKD). Evidence supports that 17-beta hydroxysteroid dehydrogenase 13 (HSD17B13) rs72613567 plays a role in NAFLD development by affecting lipid homeostasis. Since lipid droplets may accumulate in the kidneys and contribute to renal injury, we investigated the association between the HSD17B13 rs72613567 variant and markers of renal function/injury in NAFLD. METHODS AND RESULTS We measured estimated glomerular filtration rate (eGFR), urinary/serum neutrophil gelatinase-associated lipocalin (NGAL), and urinary albumin-to-creatinine ratio (u-ACR) in individuals with biopsy-proven NAFLD. Multivariable regression analyses were undertaken to examine the associations between the HSD17B13 rs72613567 variant and markers of renal function/injury. Individuals were stratified by HSD17B13 rs72613567 genotypes into -/-, A/- and A/A groups. HSD17B13 rs72613567 genotypes were not significantly associated with eGFR and urinary/serum NGAL levels. Conversely, the prevalence of abnormal albuminuria in the A/- + A/A group was lower than in the -/- group (4.92% vs. 19.35%, p = 0.001). Additionally, the mean u-ACR levels were lower among carriers of the A/- or A/A genotypes with coexisting hypertension or diabetes, than among those with the -/- genotype. The risk of abnormal albuminuria (adjusted-odds ratio 0.16, p = 0.001) remained significantly lower in the A/- + A/A group after adjustment for established renal risk factors and histologic severity of NAFLD. CONCLUSION HSD17B13 rs72613567: A allele is associated with a lower risk of having abnormal albuminuria, but not with lower eGFR or urinary/serum NGAL levels, in patients with biopsy-proven NAFLD.
Collapse
Affiliation(s)
- Dan-Qin Sun
- Affiliated Wuxi Clinical College of Nantong University, Wuxi, China; Department of Nephrology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China; Department of Nephrology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Ting-Yao Wang
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kenneth I Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hao-Yang Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Dong Wang
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Christopher D Byrne
- Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Southampton, UK
| | - Yong-Ping Chen
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
| | - Wei-Jie Yuan
- Department of Nephrology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Yan Jin
- Affiliated Wuxi Clinical College of Nantong University, Wuxi, China; Department of Gastroenterology, the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China.
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Institute of Hepatology, Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China.
| |
Collapse
|
26
|
Jun DW. An analysis of polygenic risk scores for non-alcoholic fatty liver disease. Clin Mol Hepatol 2021; 27:446-447. [PMID: 34024056 PMCID: PMC8273633 DOI: 10.3350/cmh.2021.0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 11/05/2022] Open
Affiliation(s)
- Dae Won Jun
- Department of Internal Medicine, College of Medicine, Hanyang University, Seoul, Korea
| |
Collapse
|
27
|
Gao F, Zheng KI, Chen SD, Lee DH, Wu XX, Wang XD, Targher G, Byrne CD, Chen YP, Kim W, Zheng MH. Individualized Polygenic Risk Score Identifies NASH in the Eastern Asia Region: A Derivation and Validation Study. Clin Transl Gastroenterol 2021; 12:e00321. [PMID: 33704100 PMCID: PMC7954375 DOI: 10.14309/ctg.0000000000000321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/08/2021] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Strong evidence indicates that multiple genetic and environmental risk factors play a role in the pathogenesis of nonalcoholic steatohepatitis (NASH). We aimed to develop and validate a novel nomogram, incorporating both genetic and clinical factors, for predicting NASH. METHODS A total of 1,070 Asian individuals with biopsy-confirmed nonalcoholic fatty liver disease (NAFLD) from 2 countries (China and South Korea) were recruited. The histological spectrum of NAFLD was classified according to the NASH clinical research network scoring system. The nomogram was developed in the Chinese training set (n = 402), and then, it was validated in both the Chinese internal validation set (n = 136) and the external Korean validation cohort (n = 532), respectively. RESULTS Sex, metabolic syndrome, insulin resistance, serum aspartate aminotransferase levels, and PNPLA3 (rs738409) and HSD17B13 (rs72613567) genetic variants were strongly associated with NASH. Based on their regression coefficients, we developed a nomogram with good discriminatory ability (area under the receiver operating characteristic curve: 0.81, 95% confidence interval [CI] 0.77-0.85) and good calibration (Hosmer-Lemeshow test, P = 0.794) for identifying NASH. In the 2 validation cohorts, the nomogram showed high area under the receiver operating characteristic curves (internal validation set: 0.80, 95% CI 0.72-0.88; external validation cohort: 0.76, 95% CI 0.72-0.80) and good calibration. DISCUSSION Our newly developed and externally validated nomogram, incorporating both genetic and clinical risk factors, may be conveniently used to predict NASH. Further validation studies in other ethnic groups are warranted to confirm its diagnostic utility to identify NASH, among patients with biopsy-proven NAFLD.
Collapse
Affiliation(s)
- Feng Gao
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kenneth I. Zheng
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sui-Dan Chen
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dong Hyeon Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea
| | - Xi-Xi Wu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Dong Wang
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Christopher D. Byrne
- Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Southampton, UK
| | - Yong-Ping Chen
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Won Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| |
Collapse
|
28
|
Xu K, Zheng KI, Zheng MH. External Validation of the Nonalcoholic Steatohepatitis Scoring System in Patients With Biopsy-Proven Nonalcoholic Fatty Liver Disease in China. Clin Gastroenterol Hepatol 2021; 19:412-413. [PMID: 33248101 DOI: 10.1016/j.cgh.2020.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Ke Xu
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, The First Clinical Medical Institute of Wenzhou Medical University, Wenzhou, China
| | - Kenneth I Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Institute of Hepatology of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| |
Collapse
|
29
|
Reply. Clin Gastroenterol Hepatol 2021; 19:413-414. [PMID: 33248097 DOI: 10.1016/j.cgh.2020.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
|
30
|
Lahelma M, Luukkonen PK, Qadri S, Ahlholm N, Lallukka-Brück S, Porthan K, Juuti A, Sammalkorpi H, Penttilä AK, Arola J, Orho-Melander M, Yki-Järvinen H. Assessment of Lifestyle Factors Helps to Identify Liver Fibrosis Due to Non-Alcoholic Fatty Liver Disease in Obesity. Nutrients 2021; 13:nu13010169. [PMID: 33429859 PMCID: PMC7827136 DOI: 10.3390/nu13010169] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
Only some individuals with obesity develop liver fibrosis due to non-alcoholic fatty liver disease (NAFLD-fibrosis). We determined whether detailed assessment of lifestyle factors in addition to physical, biochemical and genetic factors helps in identification of these patients. A total of 100 patients with obesity (mean BMI 40.0 ± 0.6 kg/m2) referred for bariatric surgery at the Helsinki University Hospital underwent a liver biopsy to evaluate liver histology. Physical activity was determined by accelerometer recordings and by the Modifiable Activity Questionnaire, diet by the FINRISK Food Frequency Questionnaire, and other lifestyle factors, such as sleep patterns and smoking, by face-to-face interviews. Physical and biochemical parameters and genetic risk score (GRS based on variants in PNPLA3, TM6SF2, MBOAT7 and HSD17B13) were measured. Of all participants 49% had NAFLD-fibrosis. Independent predictors of NAFLD-fibrosis were low moderate-to-vigorous physical activity, high red meat intake, low carbohydrate intake, smoking, HbA1c, triglycerides and GRS. A model including these factors (areas under the receiver operating characteristics curve (AUROC) 0.90 (95% CI 0.84–0.96)) identified NAFLD-fibrosis significantly more accurately than a model including all but lifestyle factors (AUROC 0.82 (95% CI 0.73–0.91)) or models including lifestyle, physical and biochemical, or genetic factors alone. Assessment of lifestyle parameters in addition to physical, biochemical and genetic factors helps to identify obese patients with NAFLD-fibrosis.
Collapse
Affiliation(s)
- Mari Lahelma
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland; (M.L.); (P.K.L.); (S.Q.); (N.A.); (S.L.-B.); (K.P.)
- Department of Medicine, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Panu K. Luukkonen
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland; (M.L.); (P.K.L.); (S.Q.); (N.A.); (S.L.-B.); (K.P.)
- Department of Medicine, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8056, USA
| | - Sami Qadri
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland; (M.L.); (P.K.L.); (S.Q.); (N.A.); (S.L.-B.); (K.P.)
- Department of Medicine, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Noora Ahlholm
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland; (M.L.); (P.K.L.); (S.Q.); (N.A.); (S.L.-B.); (K.P.)
- Department of Medicine, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Susanna Lallukka-Brück
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland; (M.L.); (P.K.L.); (S.Q.); (N.A.); (S.L.-B.); (K.P.)
- Department of Medicine, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Kimmo Porthan
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland; (M.L.); (P.K.L.); (S.Q.); (N.A.); (S.L.-B.); (K.P.)
- Department of Medicine, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Anne Juuti
- Abdominal Center, Department of Gastrointestinal Surgery, Helsinki University Hospital, 00290 Helsinki, Finland; (A.J.); (H.S.); (A.K.P.)
| | - Henna Sammalkorpi
- Abdominal Center, Department of Gastrointestinal Surgery, Helsinki University Hospital, 00290 Helsinki, Finland; (A.J.); (H.S.); (A.K.P.)
| | - Anne K. Penttilä
- Abdominal Center, Department of Gastrointestinal Surgery, Helsinki University Hospital, 00290 Helsinki, Finland; (A.J.); (H.S.); (A.K.P.)
| | - Johanna Arola
- Department of Pathology, Helsinki University Hospital, University of Helsinki, 00290 Helsinki, Finland;
| | - Marju Orho-Melander
- Diabetes and Cardiovascular Disease-Genetic Epidemiology, Department of Clinical Sciences in Malmö, Lund University, 20502 Malmö, Sweden;
| | - Hannele Yki-Järvinen
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland; (M.L.); (P.K.L.); (S.Q.); (N.A.); (S.L.-B.); (K.P.)
- Department of Medicine, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
- Correspondence:
| |
Collapse
|
31
|
Teo K, Abeysekera KWM, Adams L, Aigner E, Anstee QM, Banales JM, Banerjee R, Basu P, Berg T, Bhatnagar P, Buch S, Canbay A, Caprio S, Chatterjee A, Ida Chen YD, Chowdhury A, Daly AK, Datz C, de Gracia Hahn D, DiStefano JK, Dong J, Duret A, Emdin C, Fairey M, Gerhard GS, Guo X, Hampe J, Hickman M, Heintz L, Hudert C, Hunter H, Kelly M, Kozlitina J, Krawczyk M, Lammert F, Langenberg C, Lavine J, Li L, Lim HK, Loomba R, Luukkonen PK, Melton PE, Mori TA, Palmer ND, Parisinos CA, Pillai SG, Qayyum F, Reichert MC, Romeo S, Rotter JI, Im YR, Santoro N, Schafmayer C, Speliotes EK, Stender S, Stickel F, Still CD, Strnad P, Taylor KD, Tybjærg-Hansen A, Umano GR, Utukuri M, Valenti L, Wagenknecht LE, Wareham NJ, Watanabe RM, Wattacheril J, Yaghootkar H, Yki-Järvinen H, Young KA, Mann JP. rs641738C>T near MBOAT7 is associated with liver fat, ALT and fibrosis in NAFLD: A meta-analysis. J Hepatol 2021; 74:20-30. [PMID: 32882372 PMCID: PMC7755037 DOI: 10.1016/j.jhep.2020.08.027] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/29/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS A common genetic variant near MBOAT7 (rs641738C>T) has been previously associated with hepatic fat and advanced histology in NAFLD; however, these findings have not been consistently replicated in the literature. We aimed to establish whether rs641738C>T is a risk factor across the spectrum of NAFLD and to characterise its role in the regulation of related metabolic phenotypes through a meta-analysis. METHODS We performed a meta-analysis of studies with data on the association between rs641738C>T genotype and liver fat, NAFLD histology, and serum alanine aminotransferase (ALT), lipids or insulin. These included directly genotyped studies and population-level data from genome-wide association studies (GWAS). We performed a random effects meta-analysis using recessive, additive and dominant genetic models. RESULTS Data from 1,066,175 participants (9,688 with liver biopsies) across 42 studies were included in the meta-analysis. rs641738C>T was associated with higher liver fat on CT/MRI (+0.03 standard deviations [95% CI 0.02-0.05], pz = 4.8×10-5) and diagnosis of NAFLD (odds ratio [OR] 1.17 [95% CI 1.05-1.3], pz = 0.003) in Caucasian adults. The variant was also positively associated with presence of advanced fibrosis (OR 1.22 [95% CI 1.03-1.45], pz = 0.021) in Caucasian adults using a recessive model of inheritance (CC + CT vs. TT). Meta-analysis of data from previous GWAS found the variant to be associated with higher ALT (pz = 0.002) and lower serum triglycerides (pz = 1.5×10-4). rs641738C>T was not associated with fasting insulin and no effect was observed in children with NAFLD. CONCLUSIONS Our study validates rs641738C>T near MBOAT7 as a risk factor for the presence and severity of NAFLD in individuals of European descent. LAY SUMMARY Fatty liver disease is a common condition where fat builds up in the liver, which can cause liver inflammation and scarring (including 'cirrhosis'). It is closely linked to obesity and diabetes, but some genes are also thought to be important. We did this study to see whether one specific change ('variant') in one gene ('MBOAT7') was linked to fatty liver disease. We took data from over 40 published studies and found that this variant near MBOAT7 is linked to more severe fatty liver disease. This means that drugs designed to work on MBOAT7 could be useful for treating fatty liver disease.
Collapse
Affiliation(s)
- Kevin Teo
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | - Leon Adams
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia; Department of Hepatology, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Elmar Aigner
- First Department of Medicine, Paracelsus Medical University Salzburg, Austria
| | - Quentin M Anstee
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Jesus M Banales
- Department on Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastian, Spain
| | | | | | - Thomas Berg
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | | | - Stephan Buch
- Medical Department 1, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Ali Canbay
- Gastroenterology, Hepatology and Infectiology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Sonia Caprio
- Yale University, Department of Pediatrics, New Haven, CT, USA
| | | | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Abhijit Chowdhury
- Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Ann K Daly
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Christian Datz
- Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University Salzburg, Oberndorf, Austria
| | | | - Johanna K DiStefano
- Diabetes and Fibrotic Disease Unit Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Jiawen Dong
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Amedine Duret
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Connor Emdin
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Boston, MA, USA
| | - Madison Fairey
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Glenn S Gerhard
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jochen Hampe
- Medical Department 1, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Matthew Hickman
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
| | - Lena Heintz
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Christian Hudert
- Department of Pediatric Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Harriet Hunter
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | - Julia Kozlitina
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marcin Krawczyk
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany; Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Joel Lavine
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Lin Li
- BioStat Solutions LLC, Frederick, MD, USA
| | - Hong Kai Lim
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology and Epidemiology, University of California at San Diego, La Jolla, CA, USA
| | - Panu K Luukkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Yale University School of Medicine, New Haven, CT, USA
| | - Phillip E Melton
- School of Global Population Health, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia; School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA, Australia; Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Trevor A Mori
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Constantinos A Parisinos
- Institute of Health Informatics, Faculty of Population Health Sciences, University College London, London, UK
| | | | - Faiza Qayyum
- Department of Clinical Biochemistry, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | - Matthias C Reichert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden; Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden; Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yu Ri Im
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Nicola Santoro
- Yale University, Department of Pediatrics, New Haven, CT, USA; Department of Medicine and Health Sciences 'V. Tiberio' University of Molise, Campobasso, Italy
| | - Clemens Schafmayer
- Department of Visceral and Thoracic Surgery, Kiel University, Kiel, Germany
| | - Elizabeth K Speliotes
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Michigan Health System, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Stefan Stender
- Department of Clinical Biochemistry, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | - Felix Stickel
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | | | - Pavel Strnad
- Medical Clinic III, University Hospital RWTH Aachen, Aachen, Germany
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | - Giuseppina Rosaria Umano
- Yale University, Department of Pediatrics, New Haven, CT, USA; Department of the Woman, the Child, of General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Mrudula Utukuri
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy; Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - Lynne E Wagenknecht
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Richard M Watanabe
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Julia Wattacheril
- Department of Medicine, Center for Liver Disease and Transplantation, Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital, New York, NY, USA
| | - Hanieh Yaghootkar
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Hannele Yki-Järvinen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kendra A Young
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, CO, USA
| | - Jake P Mann
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| |
Collapse
|
32
|
Jonas W, Schürmann A. Genetic and epigenetic factors determining NAFLD risk. Mol Metab 2020; 50:101111. [PMID: 33160101 PMCID: PMC8324682 DOI: 10.1016/j.molmet.2020.101111] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/27/2020] [Accepted: 11/03/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Hepatic steatosis is a common chronic liver disease that can progress into more severe stages of NAFLD or promote the development of life-threatening secondary diseases for some of those affected. These include the liver itself (nonalcoholic steatohepatitis or NASH; fibrosis and cirrhosis, and hepatocellular carcinoma) or other organs such as the vessels and the heart (cardiovascular disease) or the islets of Langerhans (type 2 diabetes). In addition to elevated caloric intake and a sedentary lifestyle, genetic and epigenetic predisposition contribute to the development of NAFLD and the secondary diseases. SCOPE OF REVIEW We present data from genome-wide association studies (GWAS) and functional studies in rodents which describe polymorphisms identified in genes relevant for the disease as well as changes caused by altered DNA methylation and gene regulation via specific miRNAs. The review also provides information on the current status of the use of genetic and epigenetic factors as risk markers. MAJOR CONCLUSION With our overview we provide an insight into the genetic and epigenetic landscape of NAFLD and argue about the applicability of currently defined risk scores for risk stratification and conclude that further efforts are needed to make the scores more usable and meaningful.
Collapse
Affiliation(s)
- Wenke Jonas
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany; University of Potsdam, Institute of Nutritional Sciences, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology, Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany.
| |
Collapse
|
33
|
Perakakis N, Stefanakis K, Mantzoros CS. The role of omics in the pathophysiology, diagnosis and treatment of non-alcoholic fatty liver disease. Metabolism 2020; 111S:154320. [PMID: 32712221 PMCID: PMC7377759 DOI: 10.1016/j.metabol.2020.154320] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifaceted metabolic disorder, whose spectrum covers clinical, histological and pathophysiological developments ranging from simple steatosis to non-alcoholic steatohepatitis (NASH) and liver fibrosis, potentially evolving into cirrhosis, hepatocellular carcinoma and liver failure. Liver biopsy remains the gold standard for diagnosing NAFLD, while there are no specific treatments. An ever-increasing number of high-throughput Omics investigations on the molecular pathobiology of NAFLD at the cellular, tissue and system levels produce comprehensive biochemical patient snapshots. In the clinical setting, these applications are considerably enhancing our efforts towards obtaining a holistic insight on NAFLD pathophysiology. Omics are also generating non-invasive diagnostic modalities for the distinct stages of NAFLD, that remain though to be validated in multiple, large, heterogenous and independent cohorts, both cross-sectionally as well as prospectively. Finally, they aid in developing novel therapies. By tracing the flow of information from genomics to epigenomics, transcriptomics, proteomics, metabolomics, lipidomics and glycomics, the chief contributions of these techniques in understanding, diagnosing and treating NAFLD are summarized herein.
Collapse
Affiliation(s)
- Nikolaos Perakakis
- Department of Internal Medicine, Boston VA Healthcare system and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA..
| | - Konstantinos Stefanakis
- Department of Internal Medicine, Boston VA Healthcare system and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christos S Mantzoros
- Department of Internal Medicine, Boston VA Healthcare system and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
34
|
Ismaiel A, Dumitrascu DL. Genetic predisposition in metabolic-dysfunction-associated fatty liver disease and cardiovascular outcomes-Systematic review. Eur J Clin Invest 2020; 50:e13331. [PMID: 32589269 DOI: 10.1111/eci.13331] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/02/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Despite the demonstrated increased cardiovascular (CV) risk associated with metabolic-dysfunction-associated fatty liver disease (MAFLD), genetic variants predisposing to MAFLD were not constantly associated with CV events. Recently, rs641738C > T near membrane-bound O-acyltransferase domain-containing 7 (MBOAT7) has been studied in MAFLD and CV outcomes. Therefore, we aimed to evaluate the association between rs641738C > T in the presence and severity of hepatic steatosis, fibrosis, biochemical markers and progression to hepatocellular carcinoma (HCC), in addition to CV outcomes in MAFLD. MATERIALS AND METHODS An electronic search on PubMed, Embase and Cochrane Library for articles published till 23 March 2020 was systematically performed. Articles were screened, and data extracted from eligible studies by two reviewers independently. RESULTS Studies conducted on adults with MAFLD involving European, Hispanic and African American populations evaluating rs641738 reported reduced hepatic expression of MBOAT7, increased hepatic fat content, severity of MAFLD, susceptibility to develop NASH, advanced fibrosis and HCC in adults. However, most articles involving Asian individuals contradicted these findings. Studies involving obese children associated rs641738 with increased plasma alanine aminotransferase (ALT) levels, while its association with MAFLD remains inconsistent. The rs641738 variant was assessed as a MAFLD susceptibility gene in coronary artery disease (CAD) reporting neutral effects. CONCLUSIONS Despite inconclusive results in Asian populations, rs641738C > T near MBOAT7 is associated with increased hepatic fat, MAFLD severity, susceptibility to develop NASH, advanced fibrosis and HCC in adults from Caucasian, Hispanic and African American ethnicities with MAFLD, as well as elevated ALT levels in children, while exerting neutral effects in CAD.
Collapse
Affiliation(s)
- Abdulrahman Ismaiel
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,2nd Department of Internal Medicine, Cluj-Napoca, Romania
| | - Dan L Dumitrascu
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,2nd Department of Internal Medicine, Cluj-Napoca, Romania
| |
Collapse
|
35
|
Liu J. Need to establish a new adolescent suicide prevention programme in South Korea. Gen Psychiatr 2020; 33:e100200. [PMID: 32695959 PMCID: PMC7351269 DOI: 10.1136/gpsych-2020-100200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Adolescent suicide is the leading cause of death among South Korean (Korean) youth. Despite great efforts being made towards suicide prevention in Korea, the suicide rate has not decreased significantly. There is an urgent need for a new adolescent suicide prevention strategy. This paper describes the seriousness of the issue of adolescent suicide in Korea, evaluates its current management by the SWOT analysis (strengths, weaknesses, opportunities and threats) and further recommends a new suicide prevention programme that integrates national/social involvement (State Suicide Intervention Committee, suicide posts’ monitoring, parental divorce information sharing and Adolescence Mental Health Promotion Foundation), school-based programmes (continuous monitoring system, psychology consultation team and mental health educational curricula) and family-based programmes (parental education and family-school communication). In addition, genetic analysis, biochemical tests and psychological disease registration are the indispensable elements that aid in suicidal behaviour prevention and prediction.
Collapse
Affiliation(s)
- Jiacheng Liu
- Melbourne School of Population & Global Health, Division of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
36
|
Lee HW, Ahn SH. How do genetic variants affect our interpretation of non-invasive tests for non-alcoholic fatty liver disease? J Gastroenterol Hepatol 2020; 35:915-916. [PMID: 32537755 DOI: 10.1111/jgh.15124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Hye Won Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.,Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.,Yonsei University College of Medicine, Seoul, Korea
| | - Sang Hoon Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.,Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.,Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|