1
|
Shang Z, Arishi AA, Wu C, Lao F, Gilchrist CLM, Moggach SA, Lacey E, Piggott AM, Chooi YH. Self-Resistance Gene-Guided Discovery of the Molecular Basis for Biosynthesis of the Fatty Acid Synthase Inhibitor Cerulenin. Angew Chem Int Ed Engl 2025; 64:e202414941. [PMID: 39363718 DOI: 10.1002/anie.202414941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
Cerulenin (1) is the first reported natural fatty acid synthase inhibitor and has been intensively researched for its antifungal, anticancer and anti-obesity properties. However, the molecular basis for its biosynthesis has remained a mystery for six decades. Here, we have identified the polyketide biosynthetic gene cluster (cer) responsible for the biosynthesis of 1 from two Sarocladium species using a self-resistance gene mining approach, which we validated via heterologous reconstitution of cer cluster in an Aspergillus nidulans host. Expression of various combinations of cer genes uncovered key pathway intermediates, electrocyclisation products derived from PKS-encoded polyenoic acids, and a suite of 13 new analogues of 1. This enabled us to establish a biosynthetic pathway to 1 that starts with a C12 polyketide precursor containing both E and Z double bonds and involves a complex series of epoxidations, double bond shifts, E/Z isomerisation and epoxide reduction. Using in vitro assays, we further validated the roles of amidotransferase CerD in amidation, and oxidase CerF and reductase CerE in the final two-electron oxidation and enone reduction steps towards 1. These findings expand our understanding of complex tailoring modifications in highly reducing PKS pathways and pave the way for the engineered biosynthesis of cerulenin analogues.
Collapse
Affiliation(s)
- Zhuo Shang
- School of Molecular Sciences, The University of Western Australia, 6009, Perth, WA, Australia
- School of Pharmaceutical Sciences, Shandong University, 250012, Jinan, Shandong, China
| | - Amr A Arishi
- School of Molecular Sciences, The University of Western Australia, 6009, Perth, WA, Australia
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Changzheng Wu
- School of Pharmaceutical Sciences, Shandong University, 250012, Jinan, Shandong, China
| | - Fangzheng Lao
- School of Molecular Sciences, The University of Western Australia, 6009, Perth, WA, Australia
| | - Cameron L M Gilchrist
- School of Molecular Sciences, The University of Western Australia, 6009, Perth, WA, Australia
- Present address: School of Biological Sciences, Seoul National University, 08826, Seoul, South Korea
| | - Stephen A Moggach
- School of Molecular Sciences, The University of Western Australia, 6009, Perth, WA, Australia
| | - Ernest Lacey
- Microbial Screening Technologies Pty. Ltd., 2164, Smithfield, NSW, Australia
- School of Natural Sciences, Macquarie University, 2109, Sydney, NSW, Australia
| | - Andrew M Piggott
- School of Natural Sciences, Macquarie University, 2109, Sydney, NSW, Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, 6009, Perth, WA, Australia
| |
Collapse
|
2
|
Han C, Song A, He Y, Yang L, Chen L, Dai W, Wu Q, Yuan S. Genome mining and biosynthetic pathways of marine-derived fungal bioactive natural products. Front Microbiol 2024; 15:1520446. [PMID: 39726967 PMCID: PMC11669671 DOI: 10.3389/fmicb.2024.1520446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Marine fungal natural products (MFNPs) are a vital source of pharmaceuticals, primarily synthesized by relevant biosynthetic gene clusters (BGCs). However, many of these BGCs remain silent under standard laboratory culture conditions, delaying the development of novel drugs from MFNPs to some extent. This review highlights recent efforts in genome mining and biosynthetic pathways of bioactive natural products from marine fungi, focusing on methods such as bioinformatics analysis, gene knockout, and heterologous expression to identify relevant BGCs and elucidate the biosynthetic pathways and enzyme functions of MFNPs. The research efforts presented in this review provide essential insights for future gene-guided mining and biosynthetic pathway analysis in MFNPs.
Collapse
Affiliation(s)
- Caihua Han
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Anjing Song
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Yueying He
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Liu Yang
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Litong Chen
- Center of Ocean Expedition, School of Atmospheric Science, Sun Yat-sen University, Zhuhai, China
| | - Wei Dai
- Teaching and Experimental Center, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qilin Wu
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Siwen Yuan
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| |
Collapse
|
3
|
Yuan GY, Zhang JM, Xu YQ, Zou Y. Biosynthesis and Assembly Logic of Fungal Hybrid Terpenoid Natural Products. Chembiochem 2024; 25:e202400387. [PMID: 38923144 DOI: 10.1002/cbic.202400387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
In recent decades, fungi have emerged as significant sources of diverse hybrid terpenoid natural products, and their biosynthetic pathways are increasingly unveiled. This review mainly focuses on elucidating the various strategies underlying the biosynthesis and assembly logic of these compounds. These pathways combine terpenoid moieties with diverse building blocks including polyketides, nonribosomal peptides, amino acids, p-hydroxybenzoic acid, saccharides, and adenine, resulting in the formation of plenty of hybrid terpenoid natural products via C-O, C-C, or C-N bond linkages. Subsequent tailoring steps, such as oxidation, cyclization, and rearrangement, further enhance the biological diversity and structural complexity of these hybrid terpenoid natural products. Understanding these biosynthetic mechanisms holds promise for the discovery of novel hybrid terpenoid natural products from fungi, which will promote the development of potential drug candidates in the future.
Collapse
Affiliation(s)
- Guan-Yin Yuan
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P.R. China
| | - Jin-Mei Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P.R. China
| | - Yan-Qiu Xu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P.R. China
| | - Yi Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P.R. China
| |
Collapse
|
4
|
Lewis JC. Identifying and Engineering Flavin Dependent Halogenases for Selective Biocatalysis. Acc Chem Res 2024; 57:2067-2079. [PMID: 39038085 PMCID: PMC11309780 DOI: 10.1021/acs.accounts.4c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
ConspectusOrganohalogen compounds are extensively used as building blocks, intermediates, pharmaceuticals, and agrochemicals due to their unique chemical and biological properties. Installing halogen substituents, however, frequently requires functionalized starting materials and multistep functional group interconversion. Several classes of halogenases evolved in nature to enable halogenation of a different classes of substrates; for example, site-selective halogenation of electron rich aromatic compounds is catalyzed by flavin-dependent halogenases (FDHs). Mechanistic studies have shown that these enzymes use FADH2 to reduce O2 to water with concomitant oxidation of X- to HOX (X = Cl, Br, I). This species travels through a tunnel within the enzyme to access the FDH active site. Here, it is believed to interact with an active site lysine proximal to bound substrate, enabling electrophilic halogenation with selectivity imparted via molecular recognition, rather than directing groups or strong electronic activation.The unique selectivity of FDHs led to several early biocatalysis efforts, preparative halogenation was rare, and the hallmark catalyst-controlled selectivity of FDHs did not translate to non-native substrates. FDH engineering was limited to site-directed mutagenesis, which resulted in modest changes in site-selectivity or substrate preference. To address these limitations, we optimized expression conditions for the FDH RebH and its cognate flavin reductase (FRed), RebF. We then showed that RebH could be used for preparative halogenation of non-native substrates with catalyst-controlled selectivity. We reported the first examples in which the stability, substrate scope, and site selectivity of a FDH were improved to synthetically useful levels via directed evolution. X-ray crystal structures of evolved FDHs and reversion mutations showed that random mutations throughout the RebH structure were critical to achieving high levels of activity and selectivity on diverse aromatic substrates, and these data were used in combination with molecular dynamics simulations to develop predictive model for FDH selectivity. Finally, we used family wide genome mining to identify a diverse set of FDHs with novel substrate scope and complementary regioselectivity on large, three-dimensionally complex compounds.The diversity of our evolved and mined FDHs allowed us to pursue synthetic applications beyond simple aromatic halogenation. For example, we established that FDHs catalyze enantioselective reactions involving desymmetrization, atroposelective halogenation, and halocyclization. These results highlight the ability of FDH active sites to tolerate different substrate topologies. This utility was further expanded by our recent studies on the single component FDH/FRed, AetF. While we were initially drawn to AetF because it does not require a separate FRed, we found that it halogenates substrates that are not halogenated efficiently or at all by other FDHs and provides high enantioselectivity for reactions that could only be achieved using RebH variants after extensive mutagenesis. Perhaps most notably, AetF catalyzes site-selective aromatic iodination and enantioselective iodoetherification. Together, these studies highlight the origins of FDH engineering, the utility and limitations of the enzymes developed to date, and the promise of FDHs for an ever-expanding range of biocatalytic halogenation reactions.
Collapse
Affiliation(s)
- Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
5
|
Mirghani HO. Effect of dates on blood glucose and lipid profile among patients with type 2 diabetes. World J Diabetes 2024; 15:1079-1085. [PMID: 38983813 PMCID: PMC11229973 DOI: 10.4239/wjd.v15.i6.1079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/03/2024] [Accepted: 04/03/2024] [Indexed: 06/11/2024] Open
Abstract
Poor fruit and vegetable consumption is one of the 10 major risk factors for mortality. There is a misconception regarding the consumption of dates among patients with diabetes. This manuscript assessed the effects of date consumption on fasting and postprandial blood glucose, glycated hemoglobin, total cholesterol, triglycerides, low-density lipoproteins, high-density lipoproteins, and microbial markers. Four literature databases were searched for relevant articles. Of the 595 studies retrieved, 24 assessed the effects of dates on glycemic control and lipids. Overall, the evidence suggests that dates have a lowering effect on blood glucose. Dates reduce total cholesterol and triglyceride levels and increase high-density lipoprotein levels. Dates also promote the abundance of beneficial gut microbiota. Therefore, patients with diabetes and dyslipidemia can consume dates to reduce their blood glucose, cholesterol, and triglycerides.
Collapse
Affiliation(s)
- Hyder Osman Mirghani
- Internal Medicine, University of Tabuk, Saudi Arabia, Tabuk 51941, Tabuk, Saudi Arabia
| |
Collapse
|
6
|
Steinert K, Atanasoff-Kardjalieff AK, Messner E, Gorfer M, Niehaus EM, Humpf HU, Studt-Reinhold L, Kalinina SA. Tools to make Stachybotrys chartarum genetically amendable: Key to unlocking cryptic biosynthetic gene clusters. Fungal Genet Biol 2024; 172:103892. [PMID: 38636782 DOI: 10.1016/j.fgb.2024.103892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
The soil and indoor fungus Stachybotrys chartarum can induce respiratory disorders, collectively referred to as stachybotryotoxicosis, owing to its prolific production of diverse bioactive secondary metabolites (SMs) or mycotoxins. Although many of these toxins responsible for the harmful effects on animals and humans have been identified in the genus Stachybotrys, however a number of SMs remain elusive. Through in silico analyses, we have identified 37 polyketide synthase (PKS) genes, highlighting that the chemical profile potential of Stachybotrys is far from being fully explored. Additionally, by leveraging phylogenetic analysis of known SMs produced by non-reducing polyketide synthases (NR-PKS) in other filamentous fungi, we showed that Stachybotrys possesses a rich reservoir of untapped SMs. To unravel natural product biosynthesis in S. chartarum, genetic engineering methods are crucial. For this purpose, we have developed a reliable protocol for the genetic transformation of S. chartarum and applied it to the ScPKS14 biosynthetic gene cluster. This cluster is homologous to the already known Claviceps purpurea CpPKS8 BGC, responsible for the production of ergochromes. While no novel SMs were detected, we successfully applied genetic tools, such as the generation of deletionand overexpression strains of single cluster genes. This toolbox can now be readily employed to unravel not only this particular BGC but also other candidate BGCs present in S. chartarum, making this fungus accessible for genetic engineering.
Collapse
Affiliation(s)
| | - Anna K Atanasoff-Kardjalieff
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| | - Elias Messner
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| | - Markus Gorfer
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Eva-Maria Niehaus
- Institute of Food Chemistry, University of Münster, Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Münster, Münster, Germany
| | - Lena Studt-Reinhold
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria.
| | | |
Collapse
|
7
|
Sang M, Feng P, Chi LP, Zhang W. The biosynthetic logic and enzymatic machinery of approved fungi-derived pharmaceuticals and agricultural biopesticides. Nat Prod Rep 2024; 41:565-603. [PMID: 37990930 DOI: 10.1039/d3np00040k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Covering: 2000 to 2023The kingdom Fungi has become a remarkably valuable source of structurally complex natural products (NPs) with diverse bioactivities. Since the revolutionary discovery and application of the antibiotic penicillin from Penicillium, a number of fungi-derived NPs have been developed and approved into pharmaceuticals and pesticide agents using traditional "activity-guided" approaches. Although emerging genome mining algorithms and surrogate expression hosts have brought revolutionary approaches to NP discovery, the time and costs involved in developing these into new drugs can still be prohibitively high. Therefore, it is essential to maximize the utility of existing drugs by rational design and systematic production of new chemical structures based on these drugs by synthetic biology. To this purpose, there have been great advances in characterizing the diversified biosynthetic gene clusters associated with the well-known drugs and in understanding the biosynthesis logic mechanisms and enzymatic transformation processes involved in their production. We describe advances made in the heterogeneous reconstruction of complex NP scaffolds using fungal polyketide synthases (PKSs), non-ribosomal peptide synthetases (NRPSs), PKS/NRPS hybrids, terpenoids, and indole alkaloids and also discuss mechanistic insights into metabolic engineering, pathway reprogramming, and cell factory development. Moreover, we suggest pathways for expanding access to the fungal chemical repertoire by biosynthesis of representative family members via common platform intermediates and through the rational manipulation of natural biosynthetic machineries for drug discovery.
Collapse
Affiliation(s)
- Moli Sang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Peiyuan Feng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Lu-Ping Chi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Wei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| |
Collapse
|
8
|
Yñigez-Gutierrez AE, Wurm JE, Froese JT, Rosenthal NE, Bachmann BO. Characterization of Dichloroisoeverninic Acid Biosynthesis and Chemoenzymatic Synthesis of New Orthosomycins. ACS Chem Biol 2024; 19:526-535. [PMID: 38289021 DOI: 10.1021/acschembio.3c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The orthosomycins are highly modified oligosaccharide natural products with a broad spectrum and potent antimicrobial activities. These include everninomicins and avilamycins, which inhibit protein translation by binding a unique site on the bacterial ribosome. Notably, ribosomal bound structures reveal a network of interactions between the 50S subunit and dichloroisoeverninic acid (DCIE), the aromatic A1-ring conserved across orthosomycins, but the relationship of these interactions to their antimicrobial activity remains undetermined. Genetic functional analysis of three genes putatively associated with DCIE biosynthesis in the everninomicin producer Micromonospora carbonacea delineates the native biosynthetic pathway and provides previously unreported advanced biosynthetic intermediates. Subsequent in vitro biochemical analyses demonstrate the complete DCIE biosynthetic pathway and provide access to novel everninomicin analogs. In addition to the orsellinate synthase EvdD3 and a flavin-dependent halogenase EvdD2, our results identified a key acyltransferase, EvdD1, responsible for transferring orsellinate from the acyl carrier protein domain of EvdD3 to a heptasaccharide orthosomycin biosynthetic intermediate. We have also shown that EvdD1 is able to transfer unnatural aryl groups via their N-acyl cysteamine thioesters to the everninomicin scaffold and used this as a biocatalyst to generate a panel of unnatural aryl analogs. The impact of diverse aryl functional group substitution on both ribosome inhibition and antibacterial activities demonstrates the importance of the DCIE moiety in the pharmacology of orthosomycins, notably revealing an uncoupling between ribosomal engagement and antibiotic activity. Control of A1-ring functionality in this class of molecules provides a potential handle to explore and address pharmacological roles of the DCIE ring in this potent and unique class of antibiotics.
Collapse
Affiliation(s)
| | - Jennifer E Wurm
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Chemical and Physical Biology Graduate Program, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jordan T Froese
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Nicholas E Rosenthal
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Brian O Bachmann
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
9
|
Cox RJ. Engineered and total biosynthesis of fungal specialized metabolites. Nat Rev Chem 2024; 8:61-78. [PMID: 38172201 DOI: 10.1038/s41570-023-00564-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2023] [Indexed: 01/05/2024]
Abstract
Filamentous fungi produce a very wide range of complex and often bioactive metabolites, demonstrating their inherent ability as hosts of complex biosynthetic pathways. Recent advances in molecular sciences related to fungi have afforded the development of new tools that allow the rational total biosynthesis of highly complex specialized metabolites in a single process. Increasingly, these pathways can also be engineered to produce new metabolites. Engineering can be at the level of gene deletion, gene addition, formation of mixed pathways, engineering of scaffold synthases and engineering of tailoring enzymes. Combination of these approaches with hosts that can metabolize low-value waste streams opens the prospect of one-step syntheses from garbage.
Collapse
Affiliation(s)
- Russell J Cox
- Institute for Organic Chemistry and BMWZ, Leibniz University of Hannover, Hannover, Germany.
| |
Collapse
|
10
|
Ou PP, He QL, Zhao Q. Structural diversification of natural substrates modified by the O-methyltransferase AurJ from Fusarium Graminearum. Biochem Biophys Res Commun 2023; 678:158-164. [PMID: 37640001 DOI: 10.1016/j.bbrc.2023.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Aromatic polyketide and phenylpropanoid derivatives are a large class of natural products produced by bacteria, fungi, and plants. The O-methylation is a unique decoration that can increase structural diversity of aromatic compounds and improve their pharmacological properties, but the substrate specificity of O-methyltransferase hinders the discovery of more natural products with O-methylation through biosynthesis. Here, we reported that the O-methyltransferase AurJ from plant pathogenic fungus Fusarium graminearum could methylate a broad range of natural substrates of monocyclic, bicyclic, and tricyclic aromatic precursors, exhibiting excellent substrate tolerance. This finding will partly change our stereotype about the specificity of traditional methyltransferases, and urge us to mine more O-methyltransferases with good substrate tolerance and discover more methylated natural products for drug discovery and development through directed evolution and combinatorial biosynthesis.
Collapse
Affiliation(s)
- Pei-Pei Ou
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Qing-Li He
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Qunfei Zhao
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
11
|
Zhgun AA. Fungal BGCs for Production of Secondary Metabolites: Main Types, Central Roles in Strain Improvement, and Regulation According to the Piano Principle. Int J Mol Sci 2023; 24:11184. [PMID: 37446362 PMCID: PMC10342363 DOI: 10.3390/ijms241311184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Filamentous fungi are one of the most important producers of secondary metabolites. Some of them can have a toxic effect on the human body, leading to diseases. On the other hand, they are widely used as pharmaceutically significant drugs, such as antibiotics, statins, and immunosuppressants. A single fungus species in response to various signals can produce 100 or more secondary metabolites. Such signaling is possible due to the coordinated regulation of several dozen biosynthetic gene clusters (BGCs), which are mosaically localized in different regions of fungal chromosomes. Their regulation includes several levels, from pathway-specific regulators, whose genes are localized inside BGCs, to global regulators of the cell (taking into account changes in pH, carbon consumption, etc.) and global regulators of secondary metabolism (affecting epigenetic changes driven by velvet family proteins, LaeA, etc.). In addition, various low-molecular-weight substances can have a mediating effect on such regulatory processes. This review is devoted to a critical analysis of the available data on the "turning on" and "off" of the biosynthesis of secondary metabolites in response to signals in filamentous fungi. To describe the ongoing processes, the model of "piano regulation" is proposed, whereby pressing a certain key (signal) leads to the extraction of a certain sound from the "musical instrument of the fungus cell", which is expressed in the production of a specific secondary metabolite.
Collapse
Affiliation(s)
- Alexander A Zhgun
- Group of Fungal Genetic Engineering, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky Prosp. 33-2, 119071 Moscow, Russia
| |
Collapse
|
12
|
Peh G, Gunawan GA, Tay T, Tiong E, Tan LL, Jiang S, Goh YL, Ye S, Wong J, Brown CJ, Zhao H, Ang EL, Wong FT, Lim YH. Further Characterization of Fungal Halogenase RadH and Its Homologs. Biomolecules 2023; 13:1081. [PMID: 37509117 PMCID: PMC10377541 DOI: 10.3390/biom13071081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
RadH is one of the flavin-dependent halogenases that has previously exhibited promising catalytic activity towards hydroxycoumarin, hydroxyisoquinoline, and phenolic derivatives. Here, we evaluated new functional homologs of RadH and expanded its specificities for the halogenation of non-tryptophan-derived, heterocyclic scaffolds. Our investigation revealed that RadH could effectively halogenate hydroxyquinoline and hydroxybenzothiophene. Assay optimization studies revealed the need to balance the various co-factor concentrations and where a GDHi co-factor recycling system most significantly improves the conversion and efficiency of the reaction. A crystal structure of RadH was also obtained with a resolution of 2.4 Å, and docking studies were conducted to pinpoint the binding and catalytic sites for substrates.
Collapse
Affiliation(s)
- GuangRong Peh
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore 138665, Singapore; (G.P.); (G.A.G.); (Y.L.G.); (S.Y.); (J.W.)
| | - Gregory A. Gunawan
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore 138665, Singapore; (G.P.); (G.A.G.); (Y.L.G.); (S.Y.); (J.W.)
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Dr, Proteos #07-01, Singapore 138673, Singapore; (E.T.); (L.L.T.)
| | - Terence Tay
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #01-02, Singapore 138669, Singapore; (T.T.); (H.Z.)
| | - Elaine Tiong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Dr, Proteos #07-01, Singapore 138673, Singapore; (E.T.); (L.L.T.)
| | - Lee Ling Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Dr, Proteos #07-01, Singapore 138673, Singapore; (E.T.); (L.L.T.)
| | - Shimin Jiang
- Disease Intervention Technology Laboratory, Institute of Molecular and Cellular Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Neuros/Immunos #06-04/05, Singapore 138648, Singapore; (S.J.); (C.J.B.)
| | - Yi Ling Goh
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore 138665, Singapore; (G.P.); (G.A.G.); (Y.L.G.); (S.Y.); (J.W.)
| | - Suming Ye
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore 138665, Singapore; (G.P.); (G.A.G.); (Y.L.G.); (S.Y.); (J.W.)
| | - Joel Wong
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore 138665, Singapore; (G.P.); (G.A.G.); (Y.L.G.); (S.Y.); (J.W.)
| | - Christopher J. Brown
- Disease Intervention Technology Laboratory, Institute of Molecular and Cellular Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Neuros/Immunos #06-04/05, Singapore 138648, Singapore; (S.J.); (C.J.B.)
| | - Huimin Zhao
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #01-02, Singapore 138669, Singapore; (T.T.); (H.Z.)
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ee Lui Ang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #01-02, Singapore 138669, Singapore; (T.T.); (H.Z.)
- Synthetic Biology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Fong Tian Wong
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore 138665, Singapore; (G.P.); (G.A.G.); (Y.L.G.); (S.Y.); (J.W.)
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Dr, Proteos #07-01, Singapore 138673, Singapore; (E.T.); (L.L.T.)
| | - Yee Hwee Lim
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore 138665, Singapore; (G.P.); (G.A.G.); (Y.L.G.); (S.Y.); (J.W.)
- Synthetic Biology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| |
Collapse
|
13
|
Yang J, Li JX, Zhang F, Zhao XQ. Global regulation of fungal secondary metabolism in Trichoderma reesei by the transcription factor Ypr1, as revealed by transcriptome analysis. ENGINEERING MICROBIOLOGY 2023; 3:100065. [PMID: 39629245 PMCID: PMC11610986 DOI: 10.1016/j.engmic.2022.100065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/07/2024]
Abstract
Trichoderma reesei Rut-C-30 is a well-known robust producer of cellulolytic enzymes, which are used to degrade lignocellulosic biomass for the sustainable production of biofuels and biochemicals. However, studies of its secondary metabolism and regulation remain scarce. Ypr1 was previously described as a regulator of the biosynthesis of the yellow pigment sorbicillin (a bioactive agent with great pharmaceutical interest) in T. reesei and several other fungi. However, the manner in which this regulator affects global gene transcription has not been explored. In this study, we report the effect of Ypr1 on the regulation of both the secondary and primary metabolism of T. reesei Rut-C30. A global gene transcription profile was obtained using a comparative transcriptomic analysis of the wild-type strain T. reesei Rut-C-30 and its ypr1 deletion mutant. The results of this analysis suggest that, in addition to its role in regulating sorbicillin and the major extracellular (hemi)cellulases, Ypr1 also affects the transcription of genes encoding several other secondary metabolites. Although the primary metabolism of T. reesei ∆ypr1 became less active compared with that of T. reesei Rut-C-30, several gene clusters involved in its secondary metabolism were activated, such as the gene clusters for the biosynthesis of specific polyketides and non-ribosomal peptides, together with the "sorbicillinoid-cellulase" super cluster, indicating that specific secondary metabolites and cellulases may be co-regulated in T. reesei Rut-C-30. The results presented in this study may benefit the development of genetic engineering strategies for the production of sorbicillin by T. reesei Rut-C-30, and provide insights for enhancing sorbicillin production in other filamentous fungal producers.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jia-Xiang Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fei Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
14
|
In Silico Exploration of Microtubule Agent Griseofulvin and Its Derivatives Interactions with Different Human β-Tubulin Isotypes. Molecules 2023; 28:molecules28052384. [PMID: 36903629 PMCID: PMC10005519 DOI: 10.3390/molecules28052384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Tubulin isotypes are known to regulate microtubule stability and dynamics, as well as to play a role in the development of resistance to microtubule-targeted cancer drugs. Griseofulvin is known to disrupt cell microtubule dynamics and cause cell death in cancer cells through binding to tubulin protein at the taxol site. However, the detailed binding mode involved molecular interactions, and binding affinities with different human β-tubulin isotypes are not well understood. Here, the binding affinities of human β-tubulin isotypes with griseofulvin and its derivatives were investigated using molecular docking, molecular dynamics simulation, and binding energy calculations. Multiple sequence analysis shows that the amino acid sequences are different in the griseofulvin binding pocket of βI isotypes. However, no differences were observed at the griseofulvin binding pocket of other β-tubulin isotypes. Our molecular docking results show the favorable interaction and significant affinity of griseofulvin and its derivatives toward human β-tubulin isotypes. Further, molecular dynamics simulation results show the structural stability of most β-tubulin isotypes upon binding to the G1 derivative. Taxol is an effective drug in breast cancer, but resistance to it is known. Modern anticancer treatments use a combination of multiple drugs to alleviate the problem of cancer cells resistance to chemotherapy. Our study provides a significant understanding of the involved molecular interactions of griseofulvin and its derivatives with β-tubulin isotypes, which may help to design potent griseofulvin analogues for specific tubulin isotypes in multidrug-resistance cancer cells in future.
Collapse
|
15
|
da Silva FMR, Paggi GM, Brust FR, Macedo AJ, Silva DB. Metabolomic Strategies to Improve Chemical Information from OSMAC Studies of Endophytic Fungi. Metabolites 2023; 13:metabo13020236. [PMID: 36837855 PMCID: PMC9961420 DOI: 10.3390/metabo13020236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Metabolomics strategies are important tools to get holistic chemical information from a system, but they are scarcely applied to endophytic fungi to understand their chemical profiles of biosynthesized metabolites. Here Penicillium sp. was cultured using One Strain Many Compounds (OSMAC) conditions as a model system to demonstrate how this strategy can help in understanding metabolic profiles and determining bioactive metabolites with the application of metabolomics and statistical analyses, as well as molecular networking. Penicillium sp. was fermented in different culture media and the crude extracts from mycelial biomass (CEm) and broth (CEb) were obtained, evaluated against bacterial strains (Staphylococcus aureus and Pseudomonas aeruginosa), and the metabolomic profiles by LC-DAD-MS were obtained and chemometrics statistical analyses were applied. The CEm and CEb extracts presented different chemical profiles and antibacterial activities; the highest activities observed were against S. aureus from CEm (MIC = 16, 64, and 128 µg/mL). The antibacterial properties from the extracts were impacted for culture media from which the strain was fermented. From the Volcano plot analysis, it was possible to determine statistically the most relevant features for the antibacterial activity, which were also confirmed from biplots of PCA as strong features for the bioactive extracts. These compounds included 75 (13-oxoverruculogen isomer), 78 (austalide P acid), 87 (austalide L or W), 88 (helvamide), 92 (viridicatumtoxin A), 96 (austalide P), 101 (dihydroaustalide K), 106 (austalide k), 110 (spirohexaline), and 112 (pre-viridicatumtoxin). Thus, these features included diketopiperazines, meroterpenoids, and polyketides, such as indole alkaloids, austalides, and viridicatumtoxin A, a rare tetracycline.
Collapse
Affiliation(s)
- Fernanda Motta Ribeiro da Silva
- Laboratory of Natural Products and Mass Spectrometry (LaPNEM), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Gecele Matos Paggi
- Laboratory of Ecology and Evolutionary Biology (LEBio), Institute of Biosciences, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Flávia Roberta Brust
- Biofilms and Diversity Laboratory, Faculty of Pharmacy and Biotechnology Center, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Alexandre José Macedo
- Biofilms and Diversity Laboratory, Faculty of Pharmacy and Biotechnology Center, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Denise Brentan Silva
- Laboratory of Natural Products and Mass Spectrometry (LaPNEM), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
- Correspondence:
| |
Collapse
|
16
|
Löhr NA, Urban MC, Eisen F, Platz L, Hüttel W, Gressler M, Müller M, Hoffmeister D. The Ketosynthase Domain Controls Chain Length in Mushroom Oligocyclic Polyketide Synthases. Chembiochem 2023; 24:e202200649. [PMID: 36507600 PMCID: PMC10108026 DOI: 10.1002/cbic.202200649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
The nonreducing iterative type I polyketide synthases (NR-PKSs) CoPKS1 and CoPKS4 of the webcap mushroom Cortinarius odorifer share 88 % identical amino acids. CoPKS1 almost exclusively produces a tricyclic octaketide product, atrochrysone carboxylic acid, whereas CoPKS4 shows simultaneous hepta- and octaketide synthase activity and also produces the bicyclic heptaketide 6-hydroxymusizin. To identify the region(s) controlling chain length, four chimeric enzyme variants were constructed and assayed for activity in Aspergillus niger as heterologous expression platform. We provide evidence that the β-ketoacyl synthase (KS) domain determines chain length in these mushroom NR-PKSs, even though their KS domains differ in only ten amino acids. A unique proline-rich linker connecting the acyl carrier protein with the thioesterase domain varies most between these two enzymes but is not involved in chain length control.
Collapse
Affiliation(s)
- Nikolai A. Löhr
- Department Pharmaceutical MicrobiologyHans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Maximilian C. Urban
- Department Pharmaceutical MicrobiologyHans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Frederic Eisen
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Lukas Platz
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Wolfgang Hüttel
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Markus Gressler
- Department Pharmaceutical MicrobiologyHans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Michael Müller
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Dirk Hoffmeister
- Department Pharmaceutical MicrobiologyHans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| |
Collapse
|
17
|
de Mattos-Shipley KMJ, Simpson TJ. The 'emodin family' of fungal natural products-amalgamating a century of research with recent genomics-based advances. Nat Prod Rep 2023; 40:174-201. [PMID: 36222427 PMCID: PMC9890505 DOI: 10.1039/d2np00040g] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 11/06/2022]
Abstract
Covering: up to 2022A very large group of biosynthetically linked fungal secondary metabolites are formed via the key intermediate emodin and its corresponding anthrone. The group includes anthraquinones such as chrysophanol and cladofulvin, the grisandienes geodin and trypacidin, the diphenyl ether pestheic acid, benzophenones such as monodictyphenone and various xanthones including the prenylated shamixanthones, the agnestins and dimeric xanthones such as the ergochromes, cryptosporioptides and neosartorin. Such compounds exhibit a wide range of bioactivities and as such have been utilised in traditional medicine for centuries, as well as garnering more recent interest from the pharmaceutical sector. Additional interest comes from industries such as textiles and cosmetics due to their use as natural colourants. A variety of biosynthetic routes and mechanisms have been proposed for this family of compounds, being altered and updated as new biosynthetic methods develop and new results emerge. After nearly 100 years of such research, this review aims to provide a comprehensive overview of what is currently known about the biosynthesis of this important family, amalgamating the early chemical and biosynthetic studies with the more recent genetics-based advances and comparative bioinformatics.
Collapse
Affiliation(s)
| | - Thomas J Simpson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| |
Collapse
|
18
|
Zhuang Z, Zhong X, Li Q, Liu T, Yang Q, Lin GQ, He QL, Zhao Q, Liu W. Production of the antifungal biopesticide physcion through the combination of microbial fermentation and chemical post-treatment. BIORESOUR BIOPROCESS 2023; 10:2. [PMID: 38647644 PMCID: PMC10991666 DOI: 10.1186/s40643-023-00625-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Physcion is an anthraquinone compound observed dominantly in medicinal herbs. This anthraquinone possesses a variety of pharmaceutically important activities and has been developed to be a widely used antifungal biopesticide. Herein, we report on the effective preparation of 3R-torosachrysone (4), a tetrahydroanthracene precursor of physcion, in Aspergillus oryzae NSAR1 by heterologous expression of related genes mined from the phlegmacins-producing ascomycete Talaromyces sp. F08Z-0631. Conditions for converting 4 into physcion were studied and optimized, leading to the development of a concise approach for extracting high-purity physcion from the alkali-treated fermentation broth of the 4-producing A. oryzae strain.
Collapse
Affiliation(s)
- Zheng Zhuang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Xueqing Zhong
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Qinghua Li
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Tian Liu
- School of Bioengineering, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing, 100193, China
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Qing-Li He
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Qunfei Zhao
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
19
|
Qi F, Zhang W, Xue Y, Geng C, Jin Z, Li J, Guo Q, Huang X, Lu X. Microbial production of the plant-derived fungicide physcion. Metab Eng 2022; 74:130-138. [DOI: 10.1016/j.ymben.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/15/2022] [Accepted: 10/23/2022] [Indexed: 11/05/2022]
|
20
|
Noriler S, Navarro-Muñoz JC, Glienke C, Collemare J. Evolutionary relationships of adenylation domains in fungi. Genomics 2022; 114:110525. [PMID: 36423773 DOI: 10.1016/j.ygeno.2022.110525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/11/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022]
Abstract
Non-ribosomal peptide synthetases (NRPSs) and NRPS-like enzymes are abundant in microbes as they are involved in the production of primary and secondary metabolites. In contrast to the well-studied NRPSs, known to produce non-ribosomal peptides, NRPS-like enzymes exhibit more diverse activities and their evolutionary relationships are unclear. Here, we present the first in-depth phylogenetic analysis of fungal NRPS-like A domains from functionally characterized pathways, and their relationships to characterized A domains found in fungal NRPSs. This study clearly differentiated amino acid reductases, including NRPSs, from CoA/AMP ligases, which could be divided into 10 distinct phylogenetic clades that reflect their conserved domain organization, substrate specificity and enzymatic activity. In particular, evolutionary relationships of adenylate forming reductases could be refined and explained the substrate specificity difference. Consistent with their phylogeny, the deduced amino acid code of A domains differentiated amino acid reductases from other enzymes. However, a diagnostic code was found for α-keto acid reductases and clade 7 CoA/AMP ligases only. Comparative genomics of loci containing these enzymes revealed that they can be independently recruited as tailoring genes in diverse secondary metabolite pathways. Based on these results, we propose a refined and clear phylogeny-based classification of A domain-containing enzymes, which will provide a robust framework for future functional analyses and engineering of these enzymes to produce new bioactive molecules.
Collapse
Affiliation(s)
- Sandriele Noriler
- Postgraduate Program of Microbiology, Parasitology and Pathology, Department of Pathology, Universidade Federal do Parana, Av. Coronel Francisco Heráclito dos Santos, 210, CEP: 81531-970, Curitiba, PR, Brazil
| | - Jorge C Navarro-Muñoz
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, the Netherlands
| | - Chirlei Glienke
- Postgraduate Program of Microbiology, Parasitology and Pathology, Department of Pathology, Universidade Federal do Parana, Av. Coronel Francisco Heráclito dos Santos, 210, CEP: 81531-970, Curitiba, PR, Brazil; Postgraduate Program of Genetics, Department of Genetics, Universidade Federal do Parana, Av. Coronel Francisco Heráclito dos Santos, 210, CEP: 81531-970, Curitiba, PR, Brazil
| | - Jérôme Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, the Netherlands.
| |
Collapse
|
21
|
Aris P, Wei Y, Mohamadzadeh M, Xia X. Griseofulvin: An Updated Overview of Old and Current Knowledge. Molecules 2022; 27:7034. [PMID: 36296627 PMCID: PMC9610072 DOI: 10.3390/molecules27207034] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022] Open
Abstract
Griseofulvin is an antifungal polyketide metabolite produced mainly by ascomycetes. Since it was commercially introduced in 1959, griseofulvin has been used in treating dermatophyte infections. This fungistatic has gained increasing interest for multifunctional applications in the last decades due to its potential to disrupt mitosis and cell division in human cancer cells and arrest hepatitis C virus replication. In addition to these inhibitory effects, we and others found griseofulvin may enhance ACE2 function, contribute to vascular vasodilation, and improve capillary blood flow. Furthermore, molecular docking analysis revealed that griseofulvin and its derivatives have good binding potential with SARS-CoV-2 main protease, RNA-dependent RNA polymerase (RdRp), and spike protein receptor-binding domain (RBD), suggesting its inhibitory effects on SARS-CoV-2 entry and viral replication. These findings imply the repurposing potentials of the FDA-approved drug griseofulvin in designing and developing novel therapeutic interventions. In this review, we have summarized the available information from its discovery to recent progress in this growing field. Additionally, explored is the possible mechanism leading to rare hepatitis induced by griseofulvin. We found that griseofulvin and its metabolites, including 6-desmethylgriseofulvin (6-DMG) and 4- desmethylgriseofulvin (4-DMG), have favorable interactions with cytokeratin intermediate filament proteins (K8 and K18), ranging from -3.34 to -5.61 kcal mol-1. Therefore, they could be responsible for liver injury and Mallory body (MB) formation in hepatocytes of human, mouse, and rat treated with griseofulvin. Moreover, the stronger binding of griseofulvin to K18 in rodents than in human may explain the observed difference in the severity of hepatitis between rodents and human.
Collapse
Affiliation(s)
- Parisa Aris
- Department of Biology, University of Ottawa, 30 Marie Curie, P.O. Box 450, Station A, Ottawa, ON K1N 6N5, Canada
| | - Yulong Wei
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Masoud Mohamadzadeh
- Department of Chemistry, Faculty of Sciences, University of Hormozgan, Bandar Abbas 71961, Iran
| | - Xuhua Xia
- Department of Biology, University of Ottawa, 30 Marie Curie, P.O. Box 450, Station A, Ottawa, ON K1N 6N5, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
22
|
Tan Y, Wang YD, Li Q, Xing XK, Niu SB, Sun BD, Chen L, Pan RL, Ding G. Undescribed diphenyl ethers betaethrins A-I from a desert plant endophytic strain of the fungus Phoma betae A.B. Frank (Didymellaceae). PHYTOCHEMISTRY 2022; 201:113264. [PMID: 35679970 DOI: 10.1016/j.phytochem.2022.113264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Ten diphenyl ethers (DPEs), including nine undescribed analogs named betaethrins A-I, were isolated from the desert plant endophytic fungus Phoma betae A.B. Frank (Didymellaceae). Their structures were determined mainly by NMR, HR-ESI-MS spectral and X-ray diffraction experiments. Betaethrins D-I possessed different fatty acid chains connected with the B-ring, which was the first report in all DPEs. The shielding effect of the B-ring on H-6 (A-ring) in methyl barceloneate, betaethrin A and betaethrins D-F (asterric acid analogs) was first observed and analyzed, which could differentiate the 1H-NMR chemical shift values of H-4/H-6 without the assistance of 3-OH. An empirical rule was then suggested: the steric hindrance between the A- and B-rings in asterric acid analogs might prevent these two aromatic rings from rotating freely, which led to the 1H-NMR chemical shift value of H-6 being in the high field zone due to the shielding effect of the B-ring on H-6. Based on the empirical rule, the chemical shift values of the A-ring in methyl barceloneate were revised. The possible biosynthesis of these isolates was postulated. Betaethrin H showed moderate cytotoxicity against MCF-7 and HepG2 cancer cell lines. Betaethrins A-F, H and I displayed strong antioxidant activities. These results further implied that endophytic fungi from unique environments, such as desert plants, with few chemical studies are an important resource of undescribed and bioactive metabolites.
Collapse
Affiliation(s)
- Yue Tan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Yan-Duo Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Qi Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Xiao-Ke Xing
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Shu-Bin Niu
- Department of Pharmacy, Beijing City University, Beijing, 100083, People's Republic of China
| | - Bing-Da Sun
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100090, People's Republic of China
| | - Lin Chen
- Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou, 450006, People's Republic of China
| | - Rui-Le Pan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China.
| | - Gang Ding
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China.
| |
Collapse
|
23
|
Zhang T, Pang X, Zhao J, Guo Z, He W, Cai G, Su J, Cen S, Yu L. Discovery and Activation of the Cryptic Cluster from Aspergillus sp. CPCC 400735 for Asperphenalenone Biosynthesis. ACS Chem Biol 2022; 17:1524-1533. [PMID: 35616995 DOI: 10.1021/acschembio.2c00204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Postgenomic analysis manifested that filamentous fungi contain numerous natural product biosynthetic gene clusters in their genome, yet most clusters remain cryptic or down-regulated. Herein, we report the successful manipulation of strain Aspergillus sp. CPCC 400735 that enables its genetic engineering via targeted overexpression of pathway-specific transcriptional regulator AspE. The down-regulated metabolic pathway encoded by the biosynthetic gene cluster asp was successfully up-activated. Analyses of mutant Ai-OE::aspE extracts led to isolation and characterization of 13 asperphenalenone derivatives, of which 11 of them are new compounds. All of the asperphenalenones exhibited conspicuous anti-influenza A virus effects with IC50 values of 0.45-2.22 μM. Additionally, their identification provided insight into biosynthesis of asperphenalenones and might benefit studies of downstream combinatorial biosynthesis. Our study further demonstrates the effective application of targeted overexpressing pathway-specific activator and novel metabolite discovery in microorganisms. These will accelerate the exploitation of the untapped resources and biosynthetic capability in filamentous fungi.
Collapse
Affiliation(s)
- Tao Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xu Pang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jianyuan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhe Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wenni He
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guowei Cai
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jing Su
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Liyan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
24
|
Courtial J, Helesbeux JJ, Oudart H, Aligon S, Bahut M, Hamon B, N'Guyen G, Pigné S, Hussain AG, Pascouau C, Bataillé-Simoneau N, Collemare J, Berruyer R, Poupard P. Characterization of NRPS and PKS genes involved in the biosynthesis of SMs in Alternaria dauci including the phytotoxic polyketide aldaulactone. Sci Rep 2022; 12:8155. [PMID: 35581239 PMCID: PMC9114375 DOI: 10.1038/s41598-022-11896-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Alternaria dauci is a Dothideomycete fungus, causal agent of carrot leaf blight. As a member of the Alternaria genus, known to produce a lot of secondary metabolite toxins, A. dauci is also supposed to synthetize host specific and non-host specific toxins playing a crucial role in pathogenicity. This study provides the first reviewing of secondary metabolism genetic basis in the Alternaria genus by prediction of 55 different putative core genes. Interestingly, aldaulactone, a phytotoxic benzenediol lactone from A. dauci, was demonstrated as important in pathogenicity and in carrot partial resistance to this fungus. As nothing is known about aldaulactone biosynthesis, bioinformatic analyses on a publicly available A. dauci genome data set that were reassembled, thanks to a transcriptome data set described here, allowed to identify 19 putative secondary metabolism clusters. We exploited phylogeny to pinpoint cluster 8 as a candidate in aldaulactone biosynthesis. This cluster contains AdPKS7 and AdPKS8, homologs with genes encoding a reducing and a non-reducing polyketide synthase. Clusters containing such a pair of PKS genes have been identified in the biosynthesis of resorcylic acid lactones or dihydroxyphenylacetic acid lactones. AdPKS7 and AdPKS8 gene expression patterns correlated with aldaulactone production in different experimental conditions. The present results highly suggest that both genes are responsible for aldaulactone biosynthesis.
Collapse
Affiliation(s)
- Julia Courtial
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Jean-Jacques Helesbeux
- Substances d'Origine Naturelle et Analogues Structuraux, SFR4207 QUASAV, Université d'Angers, Angers, France
| | - Hugo Oudart
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Sophie Aligon
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | | | - Bruno Hamon
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Guillaume N'Guyen
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Sandrine Pigné
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Ahmed G Hussain
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France.,Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Claire Pascouau
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | | | - Jérôme Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | - Romain Berruyer
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France.
| | - Pascal Poupard
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| |
Collapse
|
25
|
Cochereau B, Meslet-Cladière L, Pouchus YF, Grovel O, Roullier C. Halogenation in Fungi: What Do We Know and What Remains to Be Discovered? Molecules 2022; 27:3157. [PMID: 35630634 PMCID: PMC9144378 DOI: 10.3390/molecules27103157] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
In nature, living organisms produce a wide variety of specialized metabolites to perform many biological functions. Among these specialized metabolites, some carry halogen atoms on their structure, which can modify their chemical characteristics. Research into this type of molecule has focused on how organisms incorporate these atoms into specialized metabolites. Several families of enzymes have been described gathering metalloenzymes, flavoproteins, or S-adenosyl-L-methionine (SAM) enzymes that can incorporate these atoms into different types of chemical structures. However, even though the first halogenation enzyme was discovered in a fungus, this clade is still lagging behind other clades such as bacteria, where many enzymes have been discovered. This review will therefore focus on all halogenation enzymes that have been described in fungi and their associated metabolites by searching for proteins available in databases, but also by using all the available fungal genomes. In the second part of the review, the chemical diversity of halogenated molecules found in fungi will be discussed. This will allow the highlighting of halogenation mechanisms that are still unknown today, therefore, highlighting potentially new unknown halogenation enzymes.
Collapse
Affiliation(s)
- Bastien Cochereau
- Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes Université, F-44000 Nantes, France; (B.C.); (Y.F.P.); (O.G.)
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne, INRAE, University Brest, F-29280 Plouzané, France;
| | - Laurence Meslet-Cladière
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne, INRAE, University Brest, F-29280 Plouzané, France;
| | - Yves François Pouchus
- Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes Université, F-44000 Nantes, France; (B.C.); (Y.F.P.); (O.G.)
| | - Olivier Grovel
- Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes Université, F-44000 Nantes, France; (B.C.); (Y.F.P.); (O.G.)
| | - Catherine Roullier
- Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes Université, F-44000 Nantes, France; (B.C.); (Y.F.P.); (O.G.)
| |
Collapse
|
26
|
Skellam E. Biosynthesis of fungal polyketides by collaborating and trans-acting enzymes. Nat Prod Rep 2022; 39:754-783. [PMID: 34842268 DOI: 10.1039/d1np00056j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Covering: 1999 up to 2021Fungal polyketides encompass a range of structurally diverse molecules with a wide variety of biological activities. The giant multifunctional enzymes that synthesize polyketide backbones remain enigmatic, as do many of the tailoring enzymes involved in functional modifications. Recent advances in elucidating biosynthetic gene clusters (BGCs) have revealed numerous examples of fungal polyketide synthases that require the action of collaborating enzymes to synthesize the carbon backbone. This review will discuss collaborating and trans-acting enzymes involved in loading, extending, and releasing polyketide intermediates from fungal polyketide synthases, and additional modifications introduced by trans-acting enzymes demonstrating the complexity encountered when investigating natural product biosynthesis in fungi.
Collapse
Affiliation(s)
- Elizabeth Skellam
- Department of Chemistry, BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA.
| |
Collapse
|
27
|
Wang ZQ, Meng FZ, Yin LF, Yin WX, Lv L, Yang XL, Chang XQ, Zhang S, Luo CX. Transcriptomic Analysis of Resistant and Wild-Type Isolates Revealed Fludioxonil as a Candidate for Controlling the Emerging Isoprothiolane Resistant Populations of Magnaporthe oryzae. Front Microbiol 2022; 13:874497. [PMID: 35464942 PMCID: PMC9024399 DOI: 10.3389/fmicb.2022.874497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
The point mutation R343W in MoIRR, a putative Zn2Cys6 transcription factor, introduces isoprothiolane (IPT) resistance in Magnaporthe oryzae. However, the function of MoIRR has not been characterized. In this study, the function of MoIRR was investigated by subcellular localization observation, transcriptional autoactivation test, and transcriptomic analysis. As expected, GFP-tagged MoIRR was translocated in the nucleus, and its C-terminal could autonomously activate the expression of reporter genes HIS3 and α-galactosidase in absence of any prey proteins in Y2HGold, suggesting that MoIRR was a typical transcription factor. Transcriptomic analysis was then performed for resistant mutant 1a_mut (R343W), knockout transformant ΔMoIRR-1, and their parental wild-type isolate H08-1a. Upregulated genes in both 1a_mut and ΔMoIRR-1 were involved in fungicide resistance-related KEGG pathways, including the glycerophospholipid metabolism and Hog1 MAPK pathways. All MoIRR deficiency-related IPT-resistant strains exhibited increased susceptibility to fludioxonil (FLU) that was due to the upregulation of Hog1 MAPK pathway genes. The results indicated a correlation between FLU susceptibility and MoIRR deficiency-related IPT resistance in M. oryzae. Thus, using a mixture of IPT and FLU could be a strategy to manage the IPT-resistant populations of M. oryzae in rice fields.
Collapse
Affiliation(s)
- Zuo-Qian Wang
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan, China
| | - Fan-Zhu Meng
- Department of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Liang-Fen Yin
- Department of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Wei-Xiao Yin
- Department of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Liang Lv
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan, China
| | - Xiao-Lin Yang
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan, China
| | - Xiang-Qian Chang
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan, China
| | - Shu Zhang
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan, China
- *Correspondence: Shu Zhang,
| | - Chao-Xi Luo
- Department of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Chao-Xi Luo,
| |
Collapse
|
28
|
Aris P, Yan L, Wei Y, Chang Y, Shi B, Xia X. Conservation of griseofulvin genes in the gsf gene cluster among fungal genomes. G3 (BETHESDA, MD.) 2022; 12:jkab399. [PMID: 34792561 PMCID: PMC9210304 DOI: 10.1093/g3journal/jkab399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/08/2021] [Indexed: 11/12/2022]
Abstract
The polyketide griseofulvin is a natural antifungal compound and research in griseofulvin has been key in establishing our current understanding of polyketide biosynthesis. Nevertheless, the griseofulvin gsf biosynthetic gene cluster (BGC) remains poorly understood in most fungal species, including Penicillium griseofulvum where griseofulvin was first isolated. To elucidate essential genes involved in griseofulvin biosynthesis, we performed third-generation sequencing to obtain the genome of P. griseofulvum strain D-756. Furthermore, we gathered publicly available genome of 11 other fungal species in which gsf gene cluster was identified. In a comparative genome analysis, we annotated and compared the gsf BGC of all 12 fungal genomes. Our findings show no gene rearrangements at the gsf BGC. Furthermore, seven gsf genes are conserved by most genomes surveyed whereas the remaining six were poorly conserved. This study provides new insights into differences between gsf BGC and suggests that seven gsf genes are essential in griseofulvin production.
Collapse
Affiliation(s)
- Parisa Aris
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Lihong Yan
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
- Department of Bioengineering, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yulong Wei
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Ying Chang
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
- Department of Bioengineering, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Bihong Shi
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
- Department of Bioengineering, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Xuhua Xia
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
29
|
Franco MEE, Wisecaver JH, Arnold AE, Ju YM, Slot JC, Ahrendt S, Moore LP, Eastman KE, Scott K, Konkel Z, Mondo SJ, Kuo A, Hayes RD, Haridas S, Andreopoulos B, Riley R, LaButti K, Pangilinan J, Lipzen A, Amirebrahimi M, Yan J, Adam C, Keymanesh K, Ng V, Louie K, Northen T, Drula E, Henrissat B, Hsieh HM, Youens-Clark K, Lutzoni F, Miadlikowska J, Eastwood DC, Hamelin RC, Grigoriev IV, U'Ren JM. Ecological generalism drives hyperdiversity of secondary metabolite gene clusters in xylarialean endophytes. THE NEW PHYTOLOGIST 2022; 233:1317-1330. [PMID: 34797921 DOI: 10.1111/nph.17873] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Although secondary metabolites are typically associated with competitive or pathogenic interactions, the high bioactivity of endophytic fungi in the Xylariales, coupled with their abundance and broad host ranges spanning all lineages of land plants and lichens, suggests that enhanced secondary metabolism might facilitate symbioses with phylogenetically diverse hosts. Here, we examined secondary metabolite gene clusters (SMGCs) across 96 Xylariales genomes in two clades (Xylariaceae s.l. and Hypoxylaceae), including 88 newly sequenced genomes of endophytes and closely related saprotrophs and pathogens. We paired genomic data with extensive metadata on endophyte hosts and substrates, enabling us to examine genomic factors related to the breadth of symbiotic interactions and ecological roles. All genomes contain hyperabundant SMGCs; however, Xylariaceae have increased numbers of gene duplications, horizontal gene transfers (HGTs) and SMGCs. Enhanced metabolic diversity of endophytes is associated with a greater diversity of hosts and increased capacity for lignocellulose decomposition. Our results suggest that, as host and substrate generalists, Xylariaceae endophytes experience greater selection to diversify SMGCs compared with more ecologically specialised Hypoxylaceae species. Overall, our results provide new evidence that SMGCs may facilitate symbiosis with phylogenetically diverse hosts, highlighting the importance of microbial symbioses to drive fungal metabolic diversity.
Collapse
Affiliation(s)
- Mario E E Franco
- BIO5 Institute and Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| | - Jennifer H Wisecaver
- Center for Plant Biology and Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - A Elizabeth Arnold
- School of Plant Sciences and Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, 85721, USA
| | - Yu-Ming Ju
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Jason C Slot
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Steven Ahrendt
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Lillian P Moore
- BIO5 Institute and Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| | - Katharine E Eastman
- Center for Plant Biology and Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Kelsey Scott
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Zachary Konkel
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Stephen J Mondo
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alan Kuo
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Richard D Hayes
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Sajeet Haridas
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Bill Andreopoulos
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Robert Riley
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kurt LaButti
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jasmyn Pangilinan
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Anna Lipzen
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mojgan Amirebrahimi
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Juying Yan
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Catherine Adam
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Keykhosrow Keymanesh
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Vivian Ng
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Katherine Louie
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Trent Northen
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, 13288, France
- INRAE, Marseille, 13288, France
| | - Bernard Henrissat
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, DK-2800, Denmark
- Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Huei-Mei Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ken Youens-Clark
- BIO5 Institute and Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| | | | | | | | - Richard C Hamelin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Igor V Grigoriev
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Jana M U'Ren
- BIO5 Institute and Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
30
|
Crowe C, Molyneux S, Sharma SV, Zhang Y, Gkotsi DS, Connaris H, Goss RJM. Halogenases: a palette of emerging opportunities for synthetic biology-synthetic chemistry and C-H functionalisation. Chem Soc Rev 2021; 50:9443-9481. [PMID: 34368824 PMCID: PMC8407142 DOI: 10.1039/d0cs01551b] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Indexed: 12/14/2022]
Abstract
The enzymatic generation of carbon-halogen bonds is a powerful strategy used by both nature and synthetic chemists to tune the bioactivity, bioavailability and reactivity of compounds, opening up the opportunity for selective C-H functionalisation. Genes encoding halogenase enzymes have recently been shown to transcend all kingdoms of life. These enzymes install halogen atoms into aromatic and less activated aliphatic substrates, achieving selectivities that are often challenging to accomplish using synthetic methodologies. Significant advances in both halogenase discovery and engineering have provided a toolbox of enzymes, enabling the ready use of these catalysts in biotransformations, synthetic biology, and in combination with chemical catalysis to enable late stage C-H functionalisation. With a focus on substrate scope, this review outlines the mechanisms employed by the major classes of halogenases, while in parallel, it highlights key advances in the utilisation of the combination of enzymatic halogenation and chemical catalysis for C-H activation and diversification.
Collapse
Affiliation(s)
- Charlotte Crowe
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Samuel Molyneux
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Sunil V. Sharma
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Ying Zhang
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Danai S. Gkotsi
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Helen Connaris
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Rebecca J. M. Goss
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| |
Collapse
|
31
|
Little RF, Hertweck C. Chain release mechanisms in polyketide and non-ribosomal peptide biosynthesis. Nat Prod Rep 2021; 39:163-205. [PMID: 34622896 DOI: 10.1039/d1np00035g] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Review covering up to mid-2021The structure of polyketide and non-ribosomal peptide natural products is strongly influenced by how they are released from their biosynthetic enzymes. As such, Nature has evolved a diverse range of release mechanisms, leading to the formation of bioactive chemical scaffolds such as lactones, lactams, diketopiperazines, and tetronates. Here, we review the enzymes and mechanisms used for chain release in polyketide and non-ribosomal peptide biosynthesis, how these mechanisms affect natural product structure, and how they could be utilised to introduce structural diversity into the products of engineered biosynthetic pathways.
Collapse
Affiliation(s)
- Rory F Little
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Germany.
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Germany.
| |
Collapse
|
32
|
Herbst E, Lee A, Tang Y, Snyder SA, Cornish VW. Heterologous Catalysis of the Final Steps of Tetracycline Biosynthesis by Saccharomyces cerevisiae. ACS Chem Biol 2021; 16:1425-1434. [PMID: 34269557 DOI: 10.1021/acschembio.1c00259] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Developing treatments for antibiotic resistant bacterial infections is among the highest priority public health challenges worldwide. Tetracyclines, one of the most important classes of antibiotics, have fallen prey to antibiotic resistance, necessitating the generation of new analogs. Many tetracycline analogs have been accessed through both total synthesis and semisynthesis, but key C-ring tetracycline analogs remain inaccessible. New methods are needed to unlock access to these analogs, and heterologous biosynthesis in a tractable host such as Saccharomyces cerevisiae is a candidate method. C-ring analog biosynthesis can mimic nature's biosynthesis of tetracyclines from anhydrotetracyclines, but challenges exist, including the absence of the unique cofactor F420 in common heterologous hosts. Toward this goal, this paper describes the biosynthesis of tetracycline from anhydrotetracycline in S. cerevisiae heterologously expressing three enzymes from three bacterial hosts: the anhydrotetracycline hydroxylase OxyS, the dehydrotetracycline reductase CtcM, and the F420 reductase FNO. This biosynthesis of tetracycline is enabled by OxyS performing just one hydroxylation step in S. cerevisiae despite its previous characterization as a double hydroxylase. This single hydroxylation enabled us to purify and structurally characterize a hypothetical intermediate in oxytetracycline biosynthesis that can explain structural differences between oxytetracycline and chlortetracycline. We show that Fo, a synthetically accessible derivative of cofactor F420, can replace F420 in tetracycline biosynthesis. Critically, the use of S. cerevisiae for the final steps of tetracycline biosynthesis described herein sets the stage to achieve a total biosynthesis of tetracycline as well as novel tetracycline analogs in S. cerevisiae with the potential to combat antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Ehud Herbst
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Arden Lee
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Scott A. Snyder
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Virginia W. Cornish
- Department of Chemistry, Columbia University, New York, New York 10027, United States
- Department of Systems Biology, Columbia University, New York, New York 10032, United States
| |
Collapse
|
33
|
Wang W, Yu Y, Keller NP, Wang P. Presence, Mode of Action, and Application of Pathway Specific Transcription Factors in Aspergillus Biosynthetic Gene Clusters. Int J Mol Sci 2021; 22:ijms22168709. [PMID: 34445420 PMCID: PMC8395729 DOI: 10.3390/ijms22168709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 01/21/2023] Open
Abstract
Fungal secondary metabolites are renowned toxins as well as valuable sources of antibiotics, cholesterol-lowering drugs, and immunosuppressants; hence, great efforts were levied to understand how these compounds are genetically regulated. The genes encoding for the enzymes required for synthesizing secondary metabolites are arranged in biosynthetic gene clusters (BGCs). Often, BGCs contain a pathway specific transcription factor (PSTF), a valuable tool in shutting down or turning up production of the BGC product. In this review, we present an in-depth view of PSTFs by examining over 40 characterized BGCs in the well-studied fungal species Aspergillus nidulans and Aspergillus fumigatus. Herein, we find BGC size is a predictor for presence of PSTFs, consider the number and the relative location of PSTF in regard to the cluster(s) regulated, discuss the function and the evolution of PSTFs, and present application strategies for pathway specific activation of cryptic BGCs.
Collapse
Affiliation(s)
- Wenjie Wang
- Ocean College, Zhejiang University, Zhoushan 316021, China; (W.W.); (Y.Y.)
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yuchao Yu
- Ocean College, Zhejiang University, Zhoushan 316021, China; (W.W.); (Y.Y.)
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Correspondence: (N.P.K.); (P.W.)
| | - Pinmei Wang
- Ocean College, Zhejiang University, Zhoushan 316021, China; (W.W.); (Y.Y.)
- Correspondence: (N.P.K.); (P.W.)
| |
Collapse
|
34
|
Awakawa T, Abe I. Reconstitution of Polyketide-Derived Meroterpenoid Biosynthetic Pathway in Aspergillus oryzae. J Fungi (Basel) 2021; 7:jof7060486. [PMID: 34208768 PMCID: PMC8235479 DOI: 10.3390/jof7060486] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 02/03/2023] Open
Abstract
The heterologous gene expression system with Aspergillus oryzae as the host is an effective method to investigate fungal secondary metabolite biosynthetic pathways for reconstruction to produce un-natural molecules due to its high productivity and genetic tractability. In this review, we focus on biosynthetic studies of fungal polyketide-derived meroterpenoids, a group of bioactive natural products, by means of the A. oryzae heterologous expression system. The heterologous expression methods and the biosynthetic reactions are described in detail for future prospects to create un-natural molecules via biosynthetic re-design.
Collapse
Affiliation(s)
- Takayoshi Awakawa
- Laboratory of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- Correspondence: (T.A.); (I.A.)
| | - Ikuro Abe
- Laboratory of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- Correspondence: (T.A.); (I.A.)
| |
Collapse
|
35
|
Kuhnert E, Navarro-Muñoz J, Becker K, Stadler M, Collemare J, Cox R. Secondary metabolite biosynthetic diversity in the fungal family Hypoxylaceae and Xylaria hypoxylon. Stud Mycol 2021; 99:100118. [PMID: 34527085 PMCID: PMC8403587 DOI: 10.1016/j.simyco.2021.100118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To date little is known about the genetic background that drives the production and diversification of secondary metabolites in the Hypoxylaceae. With the recent availability of high-quality genome sequences for 13 representative species and one relative (Xylaria hypoxylon) we attempted to survey the diversity of biosynthetic pathways in these organisms to investigate their true potential as secondary metabolite producers. Manual search strategies based on the accumulated knowledge on biosynthesis in fungi enabled us to identify 783 biosynthetic pathways across 14 studied species, the majority of which were arranged in biosynthetic gene clusters (BGC). The similarity of BGCs was analysed with the BiG-SCAPE engine which organised the BGCs into 375 gene cluster families (GCF). Only ten GCFs were conserved across all of these fungi indicating that speciation is accompanied by changes in secondary metabolism. From the known compounds produced by the family members some can be directly correlated with identified BGCs which is highlighted herein by the azaphilone, dihydroxynaphthalene, tropolone, cytochalasan, terrequinone, terphenyl and brasilane pathways giving insights into the evolution and diversification of those compound classes. Vice versa, products of various BGCs can be predicted through homology analysis with known pathways from other fungi as shown for the identified ergot alkaloid, trigazaphilone, curvupallide, viridicatumtoxin and swainsonine BGCs. However, the majority of BGCs had no obvious links to known products from the Hypoxylaceae or other well-studied biosynthetic pathways from fungi. These findings highlight that the number of known compounds strongly underrepresents the biosynthetic potential in these fungi and that a tremendous number of unidentified secondary metabolites is still hidden. Moreover, with increasing numbers of genomes for further Hypoxylaceae species becoming available, the likelihood of revealing new biosynthetic pathways that encode new, potentially useful compounds will significantly improve. Reaching a better understanding of the biology of these producers, and further development of genetic methods for their manipulation, will be crucial to access their treasures.
Collapse
Affiliation(s)
- E. Kuhnert
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
| | - J.C. Navarro-Muñoz
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - K. Becker
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - M. Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - J. Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - R.J. Cox
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
| |
Collapse
|
36
|
Wei X, Chen X, Chen L, Yan D, Wang WG, Matsuda Y. Heterologous Biosynthesis of Tetrahydroxanthone Dimers: Determination of Key Factors for Selective or Divergent Synthesis. JOURNAL OF NATURAL PRODUCTS 2021; 84:1544-1549. [PMID: 33891392 DOI: 10.1021/acs.jnatprod.1c00022] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tetrahydroxanthone dimers are fungal products, among which secalonic acid D (1) is one of the most studied compounds because of its potent biological activity. Because the biosynthetic gene cluster of 1 has been previously identified, we sought to heterologously produce 1 in Aspergillus oryzae by expressing the relevant biosynthetic genes. However, our initial attempt of the total biosynthesis of 1 failed; instead, it produced four isomers of 1 due to the activity of an endogenous enzyme of A. oryzae. Subsequent overexpression of the Baeyer-Villiger monooxygenase, AacuH, which competes with the endogenous enzyme, altered the product profile and successfully generated 1. Characterization of the key biosynthetic enzymes revealed the surprising substrate promiscuity of the dimerizing enzyme, AacuE, and indicated that efficient synthesis of 1 requires highly selective preparation of the tetrahydroxanthone monomer, which is apparently controlled by AacuH. This study facilitates engineered biosynthesis of tetrahydroxanthone dimers both in a selective and divergent manner.
Collapse
Affiliation(s)
- Xingxing Wei
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, People's Republic of China
| | - Xiaoxuan Chen
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, People's Republic of China
| | - Lin Chen
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, People's Republic of China
| | - Dexiu Yan
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, People's Republic of China
| | - Wei-Guang Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, People's Republic of China
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, People's Republic of China
| |
Collapse
|
37
|
Genomic Determinants Encode the Reactivity and Regioselectivity of Flavin-Dependent Halogenases in Bacterial Genomes and Metagenomes. mSystems 2021; 6:e0005321. [PMID: 34042468 PMCID: PMC8269204 DOI: 10.1128/msystems.00053-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Halogenases create diverse natural products by utilizing halide ions and are of great interest in the synthesis of potential pharmaceuticals and agrochemicals. An increasing number of halogenases discovered in microorganisms are annotated as flavin-dependent halogenases (FDHs), but their chemical reactivities are markedly different and the genomic contents associated with such functional distinction have not been revealed yet. Even though the reactivity and regioselectivity of FDHs are essential in the halogenation activity, these FDHs are annotated inaccurately in the protein sequence repositories without characterizing their functional activities. We carried out a comprehensive sequence analysis and biochemical characterization of FDHs. Using a probabilistic model that we built in this study, FDHs were discovered from 2,787 bacterial genomes and 17 sediment metagenomes. We analyzed the essential genomic determinants that are responsible for substrate binding and subsequent reactions: four flavin adenine dinucleotide-binding, one halide-binding, and four tryptophan-binding sites. Compared with previous studies, our study utilizes large-scale genomic information to propose a comprehensive set of sequence motifs that are related to the active sites and regioselectivity. We reveal that the genomic patterns and phylogenetic locations of the FDHs determine the enzymatic reactivities, which was experimentally validated in terms of the substrate scope and regioselectivity. A large portion of publicly available FDHs needs to be reevaluated to designate their correct functions. Our genomic models establish comprehensive links among genotypic information, reactivity, and regioselectivity of FDHs, thereby laying an important foundation for future discovery and classification of novel FDHs. IMPORTANCE Halogenases are playing an important role as tailoring enzymes in biosynthetic pathways. Flavin-dependent tryptophan halogenases (Trp-FDHs) are among the enzymes that have broad substrate scope and high selectivity. From bacterial genomes and metagenomes, we found highly diverse halogenase sequences by using a well-trained profile hidden Markov model built from the experimentally validated halogenases. The characterization of genotype, steady-state activity, substrate scope, and regioselectivity has established comprehensive links between the information encoded in the genomic sequence and reactivity of FDHs reported here. By constructing models for accurate and detailed sequence markers, our work should guide future discovery and classification of novel FDHs.
Collapse
|
38
|
Sbaraini N, Hu J, Roux I, Phan CS, Motta H, Rezaee H, Schrank A, Chooi YH, Staats CC. Polyketides produced by the entomopathogenic fungus Metarhizium anisopliae induce Candida albicans growth. Fungal Genet Biol 2021; 152:103568. [PMID: 33991663 DOI: 10.1016/j.fgb.2021.103568] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/16/2021] [Accepted: 04/18/2021] [Indexed: 11/15/2022]
Abstract
Metarhizium anisopliae is an important entomopathogenic species and model for arthropod-fungus interaction studies. This fungus harbors a diverse arsenal of unexplored secondary metabolite biosynthetic gene clusters, which are suggested to perform diverse roles during host interaction and soil subsistence as a saprophytic species. Here we explored an unusual carnitine acyltransferase domain-containing highly reducing polyketide synthase found in the genome of M. anisopliae. Employing heterologous expression in Aspergillus nidulans, two new polyketides were obtained, named BAA and BAB, as well as one known polyketide [(2Z,4E,6E)-octa-2,4,6-trienedioic acid]. Intra-hemocoel injection of the most abundant compound (BAA) in the model-arthropod Galleria mellonella larvae did not induce mortality or noticeable alterations, suggesting that this compound may not harbor insecticidal activity. Also, the potential role of such molecules in polymicrobial interactions was evaluated. Determination of minimum inhibitory concentration assays using distinct fungal species revealed that BAA and BAB did not alter Cryptococcus neoformans growth, while BAA exhibited weak antifungal activity against Saccharomyces cerevisiae. Unexpectedly, these compounds increased Candida albicans growth compared to control conditions. Furthermore, BAA can mitigate the fungicidal effects of fluconazole over C. albicans. Although the exact role of these compounds on the M. anisopliae life cycle is elusive, the described results add up to the complexity of secondary metabolites produced by Metarhizium spp. Moreover, up to our knowledge, these are the first polyketides isolated from filamentous fungi that can boost the growth of another fungal species.
Collapse
Affiliation(s)
- Nicolau Sbaraini
- Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Jinyu Hu
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Indra Roux
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Chin-Soon Phan
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Heryk Motta
- Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Hamideh Rezaee
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Augusto Schrank
- Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| | - Charley Christian Staats
- Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
39
|
Two Novel, Flavin-Dependent Halogenases from the Bacterial Consortia of Botryococcus braunii Catalyze Mono- and Dibromination. Catalysts 2021. [DOI: 10.3390/catal11040485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Halogen substituents often lead to a profound effect on the biological activity of organic compounds. Flavin-dependent halogenases offer the possibility of regioselective halogenation at non-activated carbon atoms, while employing only halide salts and molecular oxygen. However, low enzyme activity, instability, and narrow substrate scope compromise the use of enzymatic halogenation as an economical and environmentally friendly process. To overcome these drawbacks, it is of tremendous interest to identify novel halogenases with high enzymatic activity and novel substrate scopes. Previously, Neubauer et al. developed a new hidden Markov model (pHMM) based on the PFAM tryptophan halogenase model, and identified 254 complete and partial putative flavin-dependent halogenase genes in eleven metagenomic data sets. In the present study, the pHMM was used to screen the bacterial associates of the Botryococcus braunii consortia (PRJEB21978), leading to the identification of several putative, flavin-dependent halogenase genes. Two of these new halogenase genes were found in one gene cluster of the Botryococcus braunii symbiont Sphingomonas sp. In vitro activity tests revealed that both heterologously expressed enzymes are active flavin-dependent halogenases able to halogenate indole and indole derivatives, as well as phenol derivatives, while preferring bromination over chlorination. Interestingly, SpH1 catalyses only monohalogenation, while SpH2 can catalyse both mono- and dihalogenation for some substrates.
Collapse
|
40
|
Williams AN, Sorout N, Cameron AJ, Stavrinides J. The Integration of Genome Mining, Comparative Genomics, and Functional Genetics for Biosynthetic Gene Cluster Identification. Front Genet 2020; 11:600116. [PMID: 33343637 PMCID: PMC7744662 DOI: 10.3389/fgene.2020.600116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/11/2020] [Indexed: 11/25/2022] Open
Abstract
Antimicrobial resistance is a worldwide health crisis for which new antibiotics are needed. One strategy for antibiotic discovery is identifying unique antibiotic biosynthetic gene clusters that may produce novel compounds. The aim of this study was to demonstrate how an integrated approach that combines genome mining, comparative genomics, and functional genetics can be used to successfully identify novel biosynthetic gene clusters that produce antimicrobial natural products. Secondary metabolite clusters of an antibiotic producer are first predicted using genome mining tools, generating a list of candidates. Comparative genomic approaches are then used to identify gene suites present in the antibiotic producer that are absent in closely related non-producers. Gene sets that are common to the two lists represent leading candidates, which can then be confirmed using functional genetics approaches. To validate this strategy, we identified the genes responsible for antibiotic production in Pantoea agglomerans B025670, a strain identified in a large-scale bioactivity survey. The genome of B025670 was first mined with antiSMASH, which identified 24 candidate regions. We then used the comparative genomics platform, EDGAR, to identify genes unique to B025670 that were not present in closely related strains with contrasting antibiotic production profiles. The candidate lists generated by antiSMASH and EDGAR were compared with standalone BLAST. Among the common regions was a 14 kb cluster consisting of 14 genes with predicted enzymatic, transport, and unknown functions. Site-directed mutagenesis of the gene cluster resulted in a reduction in antimicrobial activity, suggesting involvement in antibiotic production. An integrated approach that combines genome mining, comparative genomics, and functional genetics yields a powerful, yet simple strategy for identifying potentially novel antibiotics.
Collapse
|
41
|
Wei X, Chen L, Tang JW, Matsuda Y. Discovery of Pyranoviolin A and Its Biosynthetic Gene Cluster in Aspergillus violaceofuscus. Front Microbiol 2020; 11:562063. [PMID: 33117309 PMCID: PMC7575713 DOI: 10.3389/fmicb.2020.562063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/16/2020] [Indexed: 12/02/2022] Open
Abstract
A new polyketide-non-ribosomal peptide hybrid molecule, pyranoviolin A (1), was discovered from the genome-sequenced fungus Aspergillus violaceofuscus CBS 115571 and was characterized to be the first pyranonigrin analog harboring the C-3 methoxy group. Examination of the genome sequence of the fungus identified a putative biosynthetic gene cluster of 1, which was designated as the pyv cluster. The gene deletion experiment of the polyketide synthase (PKS)-non-ribosomal peptide synthetase (NRPS) hybrid gene in the cluster confirmed the involvement of the pyv cluster in the pyranoviolin A biosynthesis. Finally, a plausible biosynthetic route leading to 1 has been proposed based on the bioinformatic analysis. Our study indicates that metabolite analysis of genome-sequenced microorganisms whose metabolites have been largely unexplored facilitates the discovery of new secondary metabolites along with their biosynthetic gene clusters.
Collapse
Affiliation(s)
- Xingxing Wei
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lin Chen
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jian-Wei Tang
- Department of Ocean Science and Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
42
|
Caesar LK, Kelleher NL, Keller NP. In the fungus where it happens: History and future propelling Aspergillus nidulans as the archetype of natural products research. Fungal Genet Biol 2020; 144:103477. [PMID: 33035657 DOI: 10.1016/j.fgb.2020.103477] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/21/2020] [Accepted: 09/30/2020] [Indexed: 02/08/2023]
Abstract
In 1990 the first fungal secondary metabolite biosynthetic gene was cloned in Aspergillus nidulans. Thirty years later, >30 biosynthetic gene clusters (BGCs) have been linked to specific natural products in this one fungal species. While impressive, over half of the BGCs in A. nidulans remain uncharacterized and their compounds structurally and functionally unknown. Here, we provide a comprehensive review of past advances that have enabled A. nidulans to rise to its current status as a natural product powerhouse focusing on the discovery and annotation of secondary metabolite clusters. From genome sequencing, heterologous expression, and metabolomics to CRISPR and epigenetic manipulations, we present a guided tour through the evolution of technologies developed and utilized in the last 30 years. These insights provide perspective to future efforts to fully unlock the biosynthetic potential of A. nidulans and, by extension, the potential of other filamentous fungi.
Collapse
Affiliation(s)
- Lindsay K Caesar
- Department of Chemistry, Northwestern University, Evanston, IL, United States
| | - Neil L Kelleher
- Department of Chemistry, Northwestern University, Evanston, IL, United States; Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States; Proteomics Center of Excellence, Northwestern University, Evanston, IL, United States
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin- Madison, Madison, WI, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
43
|
Abstract
Covering: up to July 2020Fungal meroterpenoid cyclases are a recently discovered emerging family of membrane-integrated, non-canonical terpene cyclases. They catalyze the conversion of hybrid isoprenic precursors towards complex scaffolds and are therefore of great importance in the structure diversification in meroterpenoid biosynthesis. The products of these pathways exhibit intriguing molecular scaffolds and highly potent bioactivities, making them privileged structures from Nature and attractive candidates for drug development or industrial applications. This review will provide a comprehensive and comparative view on fungal meroterpenoid cyclases, their intriguing chemistries and importance for the scaffold formation step towards polycyclic meroterpenoid natural products.
Collapse
Affiliation(s)
- Lena Barra
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | |
Collapse
|
44
|
Yuan S, Gopal JV, Ren S, Chen L, Liu L, Gao Z. Anticancer fungal natural products: Mechanisms of action and biosynthesis. Eur J Med Chem 2020; 202:112502. [PMID: 32652407 DOI: 10.1016/j.ejmech.2020.112502] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 01/07/2023]
Abstract
Many fungal metabolites show promising anticancer properties both in vitro and in animal models, and some synthetic analogs of those metabolites have progressed into clinical trials. However, currently, there are still no fungi-derived agents approved as anticancer drugs. Two potential reasons could be envisioned: 1) lacking a clear understanding of their anticancer mechanism of action, 2) unable to supply enough materials to support the preclinical and clinic developments. In this review, we will summarize recent efforts on elucidating the anticancer mechanisms and biosynthetic pathways of several promising anticancer fungal natural products.
Collapse
Affiliation(s)
- Siwen Yuan
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jannu Vinay Gopal
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shuya Ren
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Litong Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Zhizeng Gao
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
45
|
Valente S, Cometto A, Piombo E, Meloni GR, Ballester AR, González-Candelas L, Spadaro D. Elaborated regulation of griseofulvin biosynthesis in Penicillium griseofulvum and its role on conidiation and virulence. Int J Food Microbiol 2020; 328:108687. [PMID: 32474227 DOI: 10.1016/j.ijfoodmicro.2020.108687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/14/2020] [Accepted: 05/23/2020] [Indexed: 10/24/2022]
Abstract
Penicilium griseofulvum, the causal agent of apple blue mold, is able to produce in vitro and on apple a broad spectrum of secondary metabolites (SM), including patulin, roquefortine C and griseofulvin. Among them, griseofulvin is known for its antifungal and antiproliferative activity, and has received interest in many sectors, from medicine to agriculture. The biosynthesis of SM is finely regulated by filamentous fungi and can involve global regulators and pathway specific regulators, which are usually encoded by genes present in the same gene cluster as the backbone gene and tailoring enzymes. In the griseofulvin gene cluster, two putative transcription factors were previously identified, encoded by genes gsfR1 and gsfR2, and their role has been investigated in the present work. Analysis of P. griseofulvum knockout mutants lacking either gene suggest that gsfR2 forms part of a different pathway and gsfR1 exhibits many spectra of action, acting as regulator of griseofulvin and patulin biosynthesis and influencing conidia production and virulence on apple. The analysis of gsfR1 promoter revealed that the regulation of griseofulvin biosynthesis is also controlled by global regulators in response to many environmental stimuli, such as carbon and nitrogen. The influence of carbon and nitrogen on griseofulvin production was further investigated and verified, revealing a complex network of response and confirming the central role of gsfR1 in many processes in P. griseofulvum.
Collapse
Affiliation(s)
- Silvia Valente
- Dept. Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Agnese Cometto
- Dept. Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Edoardo Piombo
- Dept. Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Giovanna Roberta Meloni
- Dept. Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Ana-Rosa Ballester
- IATA-CSIC - Instituto de Agroquímica y Tecnología de Alimentos, Calle Catedrático Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Luis González-Candelas
- IATA-CSIC - Instituto de Agroquímica y Tecnología de Alimentos, Calle Catedrático Agustín Escardino 7, Paterna 46980, Valencia, Spain.
| | - Davide Spadaro
- Dept. Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy.
| |
Collapse
|
46
|
Vib-PT, an Aromatic Prenyltransferase Involved in the Biosynthesis of Vibralactone from Stereum vibrans. Appl Environ Microbiol 2020; 86:AEM.02687-19. [PMID: 32144102 DOI: 10.1128/aem.02687-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/03/2020] [Indexed: 02/01/2023] Open
Abstract
Vibralactone, a hybrid compound derived from phenols and a prenyl group, is a strong pancreatic lipase inhibitor with a rare fused bicyclic β-lactone skeleton. Recently, a researcher reported a vibralactone derivative (compound C1) that caused inhibition of pancreatic lipase with a half-maximal inhibitory concentration of 14 nM determined by structure-based optimization, suggesting a potential candidate as a new antiobesity treatment. In the present study, we sought to identify the main gene encoding prenyltransferase in Stereum vibrans, which is responsible for the prenylation of phenol leading to vibralactone synthesis. Two RNA silencing transformants of the identified gene (vib-PT) were obtained through Agrobacterium tumefaciens-mediated transformation. Compared to wild-type strains, the transformants showed a decrease in vib-PT expression ranging from 11.0 to 56.0% at 5, 10, and 15 days in reverse transcription-quantitative PCR analysis, along with a reduction in primary vibralactone production of 37 to 64% at 15 and 21 days, respectively, as determined using ultra-high-performance liquid chromatography-mass spectrometry analysis. A soluble and enzymatically active fusion Vib-PT protein was obtained by expressing vib-PT in Escherichia coli, and the enzyme's optimal reaction conditions and catalytic efficiency (Km /k cat) were determined. In vitro experiments established that Vib-PT catalyzed the C-prenylation at C-3 of 4-hydroxy-benzaldehyde and the O-prenylation at the 4-hydroxy of 4-hydroxy-benzenemethanol in the presence of dimethylallyl diphosphate. Moreover, Vib-PT shows promiscuity toward aromatic compounds and prenyl donors.IMPORTANCE Vibralactone is a lead compound with a novel skeleton structure that shows strong inhibitory activity against pancreatic lipase. Vibralactone is not encoded by the genome directly but rather is synthesized from phenol, followed by prenylation and other enzyme reactions. Here, we used an RNA silencing approach to identify and characterize a prenyltransferase in a basidiomycete species that is responsible for the synthesis of vibralactone. The identified gene, vib-PT, was expressed in Escherichia coli to obtain a soluble and enzymatically active fusion Vib-PT protein. In vitro characterization of the enzyme demonstrated the catalytic mechanism of prenylation and broad substrate range for different aromatic acceptors and prenyl donors. These characteristics highlight the possibility of Vib-PT to generate prenylated derivatives of aromatics and other compounds as improved bioactive agents or potential prodrugs.
Collapse
|
47
|
Characterizing the Fungal Microbiome in Date ( Phoenix dactylifera) Fruit Pulp and Peel from Early Development to Harvest. Microorganisms 2020; 8:microorganisms8050641. [PMID: 32354087 PMCID: PMC7284588 DOI: 10.3390/microorganisms8050641] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
Date palm (Phoenix dactylifera) is considered to be a highly important food crop in several African and Middle Eastern countries due to its nutritional value and health-promoting properties. Microbial contamination of dates has been of concern to consumers, but very few works have analyzed in detail the microbial load of the different parts of date fruit. In the present work, we characterized the fungal communities of date fruit using a metagenomic approach, analyzing the data for differences between microbial populations residing in the pulp and peel of “Medjool” dates at the different stages of fruit development. The results revealed that Penicillium, Cladosporium, Aspergillus, and Alternaria were the most abundant genera in both parts of the fruit, however, the distribution of taxa among the time points and tissue types (peel vs. pulp) was very diverse. Penicillium was more abundant in the pulp at the green developmental stage (Kimri), while Aspergillus was more frequent in the peel at the brown developmental stage (Tamer). The highest abundance of Alternaria was detected at the earliest sampled stage of fruit development (Hababauk stage). Cladosporium had a high level of abundance in peel tissues at the Hababauk and yellow (Khalal) stages. Regarding the yeast community, the abundance of Candida remained stable up until the Khalal stage, but exhibited a dramatic increase in abundance at the Tamer stage in peel tissues, while the level of Metschnikowia, a genus containing several species with postharvest biocontrol activity, exhibited no significant differences between the two tissue types or stages of fruit development. This work constitutes a comprehensive metagenomic analysis of the fungal microbiome of date fruits, and has identified changes in the composition of the fungal microbiome in peel and pulp tissues at the different stages of fruit development. Notably, this study has also characterized the endophytic fungal microbiome present in pulp tissues of dates.
Collapse
|
48
|
Drott MT, Bastos RW, Rokas A, Ries LNA, Gabaldón T, Goldman GH, Keller NP, Greco C. Diversity of Secondary Metabolism in Aspergillus nidulans Clinical Isolates. mSphere 2020; 5:e00156-20. [PMID: 32269157 PMCID: PMC7142299 DOI: 10.1128/msphere.00156-20] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 03/11/2020] [Indexed: 01/30/2023] Open
Abstract
The filamentous fungus Aspergillus nidulans has been a primary workhorse used to understand fungal genetics. Much of this work has focused on elucidating the genetics of biosynthetic gene clusters (BGCs) and the secondary metabolites (SMs) they produce. SMs are both niche defining in fungi and of great economic importance to humans. Despite the focus on A. nidulans, very little is known about the natural diversity in secondary metabolism within this species. We determined the BGC content and looked for evolutionary patterns in BGCs from whole-genome sequences of two clinical isolates and the A4 reference genome of A. nidulans Differences in BGC content were used to explain SM profiles determined using liquid chromatography-high-resolution mass spectrometry. We found that in addition to genetic variation of BGCs contained by all isolates, nine BGCs varied by presence/absence. We discovered the viridicatumtoxin BGC in A. nidulans and suggest that this BGC has undergone a horizontal gene transfer from the Aspergillus section Nigri lineage into Penicillium sometime after the sections Nigri and Nidulantes diverged. We identified the production of viridicatumtoxin and several other compounds previously not known to be produced by A. nidulans One isolate showed a lack of sterigmatocystin production even though it contained an apparently intact sterigmatocystin BGC, raising questions about other genes and processes known to regulate this BGC. Altogether, our work uncovers a large degree of intraspecies diversity in BGC and SM production in this genetic model species and offers new avenues to understand the evolution and regulation of secondary metabolism.IMPORTANCE Much of what we know about the genetics underlying secondary metabolite (SM) production and the function of SMs in the model fungus Aspergillus nidulans comes from a single reference genome. A growing body of research indicates the importance of biosynthetic gene cluster (BGC) and SM diversity within a species. However, there is no information about the natural diversity of secondary metabolism in A. nidulans We discovered six novel clusters that contribute to the considerable variation in both BGC content and SM production within A. nidulans We characterize a diverse set of mutations and emphasize how findings of single nucleotide polymorphisms (SNPs), deletions, and differences in evolutionary history encompass much of the variation observed in nonmodel systems. Our results emphasize that A. nidulans may also be a strong model to use within-species diversity to elucidate regulatory cross talk, fungal ecology, and drug discovery systems.
Collapse
Affiliation(s)
- M T Drott
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - R W Bastos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - A Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - L N A Ries
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - T Gabaldón
- Life Sciences Program, Barcelona Supercomputing Centre, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine, Barcelona, Spain
- ICREA, Barcelona, Spain
| | - G H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - N P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - C Greco
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
49
|
Rudolf JD, Chang CY. Terpene synthases in disguise: enzymology, structure, and opportunities of non-canonical terpene synthases. Nat Prod Rep 2020; 37:425-463. [PMID: 31650156 PMCID: PMC7101268 DOI: 10.1039/c9np00051h] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: up to July 2019 Terpene synthases (TSs) are responsible for generating much of the structural diversity found in the superfamily of terpenoid natural products. These elegant enzymes mediate complex carbocation-based cyclization and rearrangement cascades with a variety of electron-rich linear and cyclic substrates. For decades, two main classes of TSs, divided by how they generate the reaction-triggering initial carbocation, have dominated the field of terpene enzymology. Recently, several novel and unconventional TSs that perform TS-like reactions but do not resemble canonical TSs in sequence or structure have been discovered. In this review, we identify 12 families of non-canonical TSs and examine their sequences, structures, functions, and proposed mechanisms. Nature provides a wide diversity of enzymes, including prenyltransferases, methyltransferases, P450s, and NAD+-dependent dehydrogenases, as well as completely new enzymes, that utilize distinctive reaction mechanisms for TS chemistry. These unique non-canonical TSs provide immense opportunities to understand how nature evolved different tools for terpene biosynthesis by structural and mechanistic characterization while affording new probes for the discovery of novel terpenoid natural products and gene clusters via genome mining. With every new discovery, the dualistic paradigm of TSs is contradicted and the field of terpene chemistry and enzymology continues to expand.
Collapse
Affiliation(s)
- Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Chin-Yuan Chang
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan, Republic of China
| |
Collapse
|
50
|
Ogawara H. Comparison of Antibiotic Resistance Mechanisms in Antibiotic-Producing and Pathogenic Bacteria. Molecules 2019; 24:E3430. [PMID: 31546630 PMCID: PMC6804068 DOI: 10.3390/molecules24193430] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance poses a tremendous threat to human health. To overcome this problem, it is essential to know the mechanism of antibiotic resistance in antibiotic-producing and pathogenic bacteria. This paper deals with this problem from four points of view. First, the antibiotic resistance genes in producers are discussed related to their biosynthesis. Most resistance genes are present within the biosynthetic gene clusters, but some genes such as paromomycin acetyltransferases are located far outside the gene cluster. Second, when the antibiotic resistance genes in pathogens are compared with those in the producers, resistance mechanisms have dependency on antibiotic classes, and, in addition, new types of resistance mechanisms such as Eis aminoglycoside acetyltransferase and self-sacrifice proteins in enediyne antibiotics emerge in pathogens. Third, the relationships of the resistance genes between producers and pathogens are reevaluated at their amino acid sequence as well as nucleotide sequence levels. Pathogenic bacteria possess other resistance mechanisms than those in antibiotic producers. In addition, resistance mechanisms are little different between early stage of antibiotic use and the present time, e.g., β-lactam resistance in Staphylococcus aureus. Lastly, guanine + cytosine (GC) barrier in gene transfer to pathogenic bacteria is considered. Now, the resistance genes constitute resistome composed of complicated mixture from divergent environments.
Collapse
Affiliation(s)
- Hiroshi Ogawara
- HO Bio Institute, 33-9, Yushima-2, Bunkyo-ku, Tokyo 113-0034, Japan.
- Department of Biochemistry, Meiji Pharmaceutical University, 522-1, Noshio-2, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|