1
|
Baunach M, Guljamow A, Miguel-Gordo M, Dittmann E. Harnessing the potential: advances in cyanobacterial natural product research and biotechnology. Nat Prod Rep 2024; 41:347-369. [PMID: 38088806 DOI: 10.1039/d3np00045a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Covering: 2000 to 2023Cyanobacteria produce a variety of bioactive natural products that can pose a threat to humans and animals as environmental toxins, but also have potential for or inspire pharmaceutical use. As oxygenic phototrophs, cyanobacteria furthermore hold great promise for sustainable biotechnology. Yet, the necessary tools for exploiting their biotechnological potential have so far been established only for a few model strains of cyanobacteria, while large untapped biosynthetic resources are hidden in slow-growing cyanobacterial genera that are difficult to access by genetic techniques. In recent years, several approaches have been developed to circumvent the bottlenecks in cyanobacterial natural product research. Here, we summarize current progress that has been made in unlocking or characterizing cryptic metabolic pathways using integrated omics techniques, orphan gene cluster activation, use of genetic approaches in original producers, heterologous expression and chemo-enzymatic techniques. We are mainly highlighting genomic mining concepts and strategies towards high-titer production of cyanobacterial natural products from the last 10 years and discuss the need for further research developments in this field.
Collapse
Affiliation(s)
- Martin Baunach
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.
- University of Bonn, Institute of Pharmaceutical Biology, Nußallee 6, 53115 Bonn, Germany
| | - Arthur Guljamow
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.
| | - María Miguel-Gordo
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.
| | - Elke Dittmann
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.
| |
Collapse
|
2
|
Eslami SM, van der Donk WA. Proteases Involved in Leader Peptide Removal during RiPP Biosynthesis. ACS BIO & MED CHEM AU 2024; 4:20-36. [PMID: 38404746 PMCID: PMC10885120 DOI: 10.1021/acsbiomedchemau.3c00059] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 02/27/2024]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) have received much attention in recent years because of their promising bioactivities and the portability of their biosynthetic pathways. Heterologous expression studies of RiPP biosynthetic enzymes identified by genome mining often leave a leader peptide on the final product to prevent toxicity to the host and to allow the attachment of a genetically encoded affinity purification tag. Removal of the leader peptide to produce the mature natural product is then carried out in vitro with either a commercial protease or a protease that fulfills this task in the producing organism. This review covers the advances in characterizing these latter cognate proteases from bacterial RiPPs and their utility as sequence-dependent proteases. The strategies employed for leader peptide removal have been shown to be remarkably diverse. They include one-step removal by a single protease, two-step removal by two dedicated proteases, and endoproteinase activity followed by aminopeptidase activity by the same protease. Similarly, the localization of the proteolytic step varies from cytoplasmic cleavage to leader peptide removal during secretion to extracellular leader peptide removal. Finally, substrate recognition ranges from highly sequence specific with respect to the leader and/or modified core peptide to nonsequence specific mechanisms.
Collapse
Affiliation(s)
- Sara M. Eslami
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Howard
Hughes Medical Institute, University of
Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Abstract
Graspetides are a class of RiPPs (ribosomally synthesized and post-translationally modified peptides) defined by the presence of ester or amide side chain-side chain linkages resulting in peptide macrocycles. The graspetide name comes from the ATP-grasp enzymes that install the side chain-side chain linkages. This review covers the early, activity-based isolation of the first graspetides, marinostatins and microviridins, as well as the key genomics-driven experiments that established graspetide as RiPPs. The mechanism and structure of graspetide-associated ATP-grasp enzymes is discussed. Genome mining methods to discover new graspetides as well as the analytical techniques used to determine the linkages in graspetides are described. Extant knowledge on the bioactivity of graspetides as protease inhibitors is reviewed. Further chemical modifications to graspetides as well graspetide engineering studies are also described. We conclude with several suggestions about future directions of graspetide research.
Collapse
Affiliation(s)
- Brian Choi
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - A. James Link
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|
4
|
Zhong G, Wang ZJ, Yan F, Zhang Y, Huo L. Recent Advances in Discovery, Bioengineering, and Bioactivity-Evaluation of Ribosomally Synthesized and Post-translationally Modified Peptides. ACS BIO & MED CHEM AU 2023; 3:1-31. [PMID: 37101606 PMCID: PMC10125368 DOI: 10.1021/acsbiomedchemau.2c00062] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 04/28/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are of increasing interest in natural products as well as drug discovery. This empowers not only the unique chemical structures and topologies in natural products but also the excellent bioactivities such as antibacteria, antifungi, antiviruses, and so on. Advances in genomics, bioinformatics, and chemical analytics have promoted the exponential increase of RiPPs as well as the evaluation of biological activities thereof. Furthermore, benefiting from their relatively simple and conserved biosynthetic logic, RiPPs are prone to be engineered to obtain diverse analogues that exhibit distinct physiological activities and are difficult to synthesize. This Review aims to systematically address the variety of biological activities and/or the mode of mechanisms of novel RiPPs discovered in the past decade, albeit the characteristics of selective structures and biosynthetic mechanisms are briefly covered as well. Almost one-half of the cases are involved in anti-Gram-positive bacteria. Meanwhile, an increasing number of RiPPs related to anti-Gram-negative bacteria, antitumor, antivirus, etc., are also discussed in detail. Last but not least, we sum up some disciplines of the RiPPs' biological activities to guide genome mining as well as drug discovery and optimization in the future.
Collapse
Affiliation(s)
- Guannan Zhong
- Helmholtz
International Laboratory for Anti-Infectives, State Key Laboratory
of Microbial Technology, Shandong University, Qingdao 266237, China
- Suzhou
Research Institute, Shandong University, Suzhou, Jiangsu 215123, P. R. China
| | - Zong-Jie Wang
- Helmholtz
International Laboratory for Anti-Infectives, State Key Laboratory
of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Fu Yan
- Helmholtz
International Laboratory for Anti-Infectives, State Key Laboratory
of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Youming Zhang
- Helmholtz
International Laboratory for Anti-Infectives, State Key Laboratory
of Microbial Technology, Shandong University, Qingdao 266237, China
- CAS
Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute
of Synthetic Biology, Shenzhen Institute
of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Faculty
of Synthetic Biology, Shenzhen Institute
of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liujie Huo
- Helmholtz
International Laboratory for Anti-Infectives, State Key Laboratory
of Microbial Technology, Shandong University, Qingdao 266237, China
- Suzhou
Research Institute, Shandong University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
5
|
Wang T, Wang X, Zhao H, Huo L, Fu C. Uncovering a Subtype of Microviridins via the Biosynthesis Study of FR901451. ACS Chem Biol 2022; 17:3489-3498. [PMID: 36373602 DOI: 10.1021/acschembio.2c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microviridins are a class of ribosomally synthesized and post-translationally modified peptides originally discovered from cyanobacteria, featured by intramolecular ω-ester and ω-amide bonds catalyzed by two ATP-grasp ligases. In this study, 104 biosynthetic gene clusters of microviridins from Bacteroidetes were bioinformatically analyzed, which unveiled unique features of precursor peptides. The analysis of core peptides revealed a microviridin-like biosynthetic gene cluster from Chitinophagia japonensis DSM13484 consisting of two potential precursors ChiA1 and ChiA2. Unexpectedly, the core peptide sequence of ChiA1 is consistent with the backbone of the elastase-inhibiting peptide FR901451, while ChiA2 is likely to be a precursor of an unknown product. However, an unusual C-terminal follower cleavage compared to the previously known microviridin pathways was observed and found to be dispensable for other modifications. To confirm the biosynthetic origin of FR901451, ATP-grasp ligases ChiC and ChiB were biochemically characterized to be responsible for the intramolecular ester and amide bond formation, respectively. In vitro reconstitution of the pathway showed the three-fold dehydrations of ChiA1 while unusual four-fold dehydrations were observed for ChiA2. Furthermore, in vivo gene coexpression facilitated the production of chitinoviridin A1 (FR901451) and two novel microviridin-class compounds chitinoviridin A2A and chitinoviridin A2B, with an extra macrolactone ring. All of these peptides showed potent inhibitory effects against elastase and chymotrypsin independently.
Collapse
Affiliation(s)
- Tingting Wang
- Workgroup Genome Mining for Secondary Metabolites, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.,Helmholtz International Lab for Anti-Infectives, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany
| | - Xiaotong Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China.,Helmholtz International Lab for Anti-Infectives, Shandong University, Qingdao 266237, P. R. China
| | - Haowen Zhao
- Workgroup Genome Mining for Secondary Metabolites, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.,Helmholtz International Lab for Anti-Infectives, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany
| | - Liujie Huo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China.,Helmholtz International Lab for Anti-Infectives, Shandong University, Qingdao 266237, P. R. China
| | - Chengzhang Fu
- Workgroup Genome Mining for Secondary Metabolites, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.,Helmholtz International Lab for Anti-Infectives, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany
| |
Collapse
|
6
|
Elashal HE, Koos JD, Cheung-Lee WL, Choi B, Cao L, Richardson MA, White HL, Link AJ. Biosynthesis and characterization of fuscimiditide, an aspartimidylated graspetide. Nat Chem 2022; 14:1325-1334. [PMID: 35982233 PMCID: PMC10078976 DOI: 10.1038/s41557-022-01022-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/11/2022] [Indexed: 11/09/2022]
Abstract
Microviridins and other ω-ester-linked peptides, collectively known as graspetides, are characterized by side-chain-side-chain linkages installed by ATP-grasp enzymes. Here we report the discovery of a family of graspetides, the gene clusters of which also encode an O-methyltransferase with homology to the protein repair catalyst protein L-isoaspartyl methyltransferase. Using heterologous expression, we produced fuscimiditide, a ribosomally synthesized and post-translationally modified peptide (RiPP). NMR analysis of fuscimiditide revealed that the peptide contains two ester cross-links forming a stem-loop macrocycle. Furthermore, an unusually stable aspartimide moiety is found within the loop macrocycle. We fully reconstituted fuscimiditide biosynthesis in vitro including formation of the ester and aspartimide moieties. The aspartimide moiety embedded in fuscimiditide hydrolyses regioselectively to isoaspartate. Surprisingly, this isoaspartate-containing peptide is also a substrate for the L-isoaspartyl methyltransferase homologue, thus driving any hydrolysis products back to the aspartimide form. Whereas an aspartimide is often considered a nuisance product in protein formulations, our data suggest that some RiPPs have aspartimide residues intentionally installed via enzymatic activity.
Collapse
Affiliation(s)
- Hader E Elashal
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Joseph D Koos
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Wai Ling Cheung-Lee
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Brian Choi
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Li Cao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Michelle A Richardson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Heather L White
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - A James Link
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
7
|
Scholz S, Kerestetzopoulou S, Wiebach V, Schnegotzki R, Schmid B, Reyna‐González E, Ding L, Süssmuth RD, Dittmann E, Baunach M. One-Pot Chemoenzymatic Synthesis of Microviridin Analogs Containing Functional Tags. Chembiochem 2022; 23:e202200345. [PMID: 35995730 PMCID: PMC9826346 DOI: 10.1002/cbic.202200345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/31/2022] [Indexed: 01/11/2023]
Abstract
Microviridins are a prominent family of ribosomally synthesized and posttranslationally modified peptides (RiPPs) featuring characteristic lactone and lactam rings. Their unusual cage-like architecture renders them highly potent serine protease inhibitors of which individual variants specifically inhibit different types of proteases of pharmacological interest. While posttranslational modifications are key for the stability and bioactivity of RiPPs, additional attractive properties can be introduced by functional tags. To date - although highly desirable - no method has been reported to incorporate functional tags in microviridin scaffolds or the overarching class of graspetides. In this study, a chemoenzymatic in vitro platform is used to introduce functional tags in various microviridin variants yielding biotinylated, dansylated or propargylated congeners. This straightforward approach paves the way for customized protease inhibitors with built-in functionalities that can help to unravel the still elusive ecological roles and targets of this remarkable class of compounds and to foster applications based on protease inhibition.
Collapse
Affiliation(s)
- Stella Scholz
- Department of MicrobiologyUniversity of PotsdamKarl-Liebknecht-Str. 24/2514476Potsdam-GolmGermany
| | - Sofia Kerestetzopoulou
- Department of MicrobiologyUniversity of PotsdamKarl-Liebknecht-Str. 24/2514476Potsdam-GolmGermany
| | - Vincent Wiebach
- Department of Biotechnology and BiomedicineTechnical University of DenmarkSøltofts Plads, Building 221DK-2800 Kgs.LyngbyDenmark
| | - Romina Schnegotzki
- Institute of ChemistryTechnical University BerlinStraße des 17. Juni 12410623BerlinGermany
| | - Bianca Schmid
- Institute of ChemistryTechnical University BerlinStraße des 17. Juni 12410623BerlinGermany
| | - Emmanuel Reyna‐González
- Department of MicrobiologyUniversity of PotsdamKarl-Liebknecht-Str. 24/2514476Potsdam-GolmGermany
| | - Ling Ding
- Department of Biotechnology and BiomedicineTechnical University of DenmarkSøltofts Plads, Building 221DK-2800 Kgs.LyngbyDenmark
| | - Roderich D. Süssmuth
- Institute of ChemistryTechnical University BerlinStraße des 17. Juni 12410623BerlinGermany
| | - Elke Dittmann
- Department of MicrobiologyUniversity of PotsdamKarl-Liebknecht-Str. 24/2514476Potsdam-GolmGermany
| | - Martin Baunach
- Department of MicrobiologyUniversity of PotsdamKarl-Liebknecht-Str. 24/2514476Potsdam-GolmGermany
- Institute of Pharmaceutical BiologyUniversity of BonnNussallee 653115BonnGermany
| |
Collapse
|
8
|
Glassey E, King AM, Anderson DA, Zhang Z, Voigt CA. Functional expression of diverse post-translational peptide-modifying enzymes in Escherichia coli under uniform expression and purification conditions. PLoS One 2022; 17:e0266488. [PMID: 36121811 PMCID: PMC9484694 DOI: 10.1371/journal.pone.0266488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/22/2022] [Indexed: 11/18/2022] Open
Abstract
RiPPs (ribosomally-synthesized and post-translationally modified peptides) are a class of pharmaceutically-relevant natural products expressed as precursor peptides before being enzymatically processed into their final functional forms. Bioinformatic methods have illuminated hundreds of thousands of RiPP enzymes in sequence databases and the number of characterized chemical modifications is growing rapidly; however, it remains difficult to functionally express them in a heterologous host. One challenge is peptide stability, which we addressed by designing a RiPP stabilization tag (RST) based on a small ubiquitin-like modifier (SUMO) domain that can be fused to the N- or C-terminus of the precursor peptide and proteolytically removed after modification. This is demonstrated to stabilize expression of eight RiPPs representative of diverse phyla. Further, using Escherichia coli for heterologous expression, we identify a common set of media and growth conditions where 24 modifying enzymes, representative of diverse chemistries, are functional. The high success rate and broad applicability of this system facilitates: (i) RiPP discovery through high-throughput “mining” and (ii) artificial combination of enzymes from different pathways to create a desired peptide.
Collapse
Affiliation(s)
- Emerson Glassey
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Andrew M. King
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Daniel A. Anderson
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Zhengan Zhang
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Christopher A. Voigt
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- * E-mail:
| |
Collapse
|
9
|
Makarova KS, Blackburne B, Wolf YI, Nikolskaya A, Karamycheva S, Espinoza M, Barry CE, Bewley CA, Koonin EV. Phylogenomic analysis of the diversity of graspetides and proteins involved in their biosynthesis. Biol Direct 2022; 17:7. [PMID: 35313954 PMCID: PMC8939145 DOI: 10.1186/s13062-022-00320-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
Background Bacteria and archaea produce an enormous diversity of modified peptides that are involved in various forms of inter-microbial conflicts or communication. A vast class of such peptides are Ribosomally synthesized, Postranslationally modified Peptides (RiPPs), and a major group of RiPPs are graspetides, so named after ATP-grasp ligases that catalyze the formation of lactam and lactone linkages in these peptides. The diversity of graspetides, the multiple proteins encoded in the respective Biosynthetic Gene Clusters (BGCs) and their evolution have not been studied in full detail. In this work, we attempt a comprehensive analysis of the graspetide-encoding BGCs and report a variety of novel graspetide groups as well as ancillary proteins implicated in graspetide biosynthesis and expression. Results We compiled a comprehensive, manually curated set of graspetides that includes 174 families including 115 new families with distinct patterns of amino acids implicated in macrocyclization and further modification, roughly tripling the known graspetide diversity. We derived signature motifs for the leader regions of graspetide precursors that could be used to facilitate graspetide prediction. Graspetide biosynthetic gene clusters and specific precursors were identified in bacterial divisions not previously known to encode RiPPs, in particular, the parasitic and symbiotic bacteria of the Candidate phyla radiation. We identified Bacteroides-specific biosynthetic gene clusters (BGC) that include remarkable diversity of graspetides encoded in the same loci which predicted to be modified by the same ATP-grasp ligase. We studied in details evolution of recently characterized chryseoviridin BGCs and showed that duplication and horizonal gene exchange both contribute to the diversification of the graspetides during evolution. Conclusions We demonstrate previously unsuspected diversity of graspetide sequences, even those associated with closely related ATP-grasp enzymes. Several previously unnoticed families of proteins associated with graspetide biosynthetic gene clusters are identified. The results of this work substantially expand the known diversity of RiPPs and can be harnessed to further advance approaches for their identification. Supplementary Information The online version contains supplementary material available at 10.1186/s13062-022-00320-2.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| | - Brittney Blackburne
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Anastasia Nikolskaya
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Svetlana Karamycheva
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Marlene Espinoza
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Clifton E Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Carole A Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| |
Collapse
|
10
|
Li G, Patel K, Zhang Y, Pugmire J, Ding Y, Bruner SD. Structural and biochemical studies of an iterative ribosomal peptide macrocyclase. Proteins 2022; 90:670-679. [PMID: 34664307 PMCID: PMC8816810 DOI: 10.1002/prot.26264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 11/06/2022]
Abstract
Microviridins, tricyclic peptide natural products originally isolated from cyanobacteria, function as inhibitors of diverse serine-type proteases. Here we report the structure and biochemical characterization of AMdnB, a unique iterative macrocyclase involved in a microviridin biosynthetic pathway from Anabaena sp. PCC 7120. The ATP-dependent cyclase, along with the homologous AMdnC, introduce up to nine macrocyclizations on three distinct core regions of a precursor peptide, AMdnA. The results presented here provide structural and mechanistic insight into the iterative chemistry of AMdnB. In vitro AMdnB-catalyzed cyclization reactions demonstrate the synthesis of the two predicted tricyclic products from a multi-core precursor peptide substrate, consistent with a distributive mode of catalysis. The X-ray structure of AMdnB shows a structural motif common to ATP-grasp cyclases involved in RiPPs biosynthesis. Additionally, comparison with the noniterative MdnB allows insight into the structural basis for the iterative chemistry. Overall, the presented results provide insight into the general mechanism of iterative enzymes in ribosomally synthesized and post-translationally modified peptide biosynthetic pathways.
Collapse
Affiliation(s)
- Gengnan Li
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Krishna Patel
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Yi Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Jackson Pugmire
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Yousong Ding
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Steven D. Bruner
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA., Corresponding author
| |
Collapse
|
11
|
Santos-Aberturas J, Vior NM. Beyond Soil-Dwelling Actinobacteria: Fantastic Antibiotics and Where to Find Them. Antibiotics (Basel) 2022; 11:195. [PMID: 35203798 PMCID: PMC8868522 DOI: 10.3390/antibiotics11020195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/10/2022] Open
Abstract
Bacterial secondary metabolites represent an invaluable source of bioactive molecules for the pharmaceutical and agrochemical industries. Although screening campaigns for the discovery of new compounds have traditionally been strongly biased towards the study of soil-dwelling Actinobacteria, the current antibiotic resistance and discovery crisis has brought a considerable amount of attention to the study of previously neglected bacterial sources of secondary metabolites. The development and application of new screening, sequencing, genetic manipulation, cultivation and bioinformatic techniques have revealed several other groups of bacteria as producers of striking chemical novelty. Biosynthetic machineries evolved from independent taxonomic origins and under completely different ecological requirements and selective pressures are responsible for these structural innovations. In this review, we summarize the most important discoveries related to secondary metabolites from alternative bacterial sources, trying to provide the reader with a broad perspective on how technical novelties have facilitated the access to the bacterial metabolic dark matter.
Collapse
Affiliation(s)
| | - Natalia M. Vior
- Department of Molecular Microbiology, John Innes Centre, Norwich NR7 4UH, UK
| |
Collapse
|
12
|
Ramesh S, Guo X, DiCaprio AJ, De Lio AM, Harris LA, Kille BL, Pogorelov TV, Mitchell DA. Bioinformatics-Guided Expansion and Discovery of Graspetides. ACS Chem Biol 2021; 16:2787-2797. [PMID: 34766760 PMCID: PMC8688276 DOI: 10.1021/acschembio.1c00672] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Graspetides are a class of ribosomally synthesized and post-translationally modified peptide natural products featuring ATP-grasp ligase-dependent formation of macrolactones/macrolactams. These modifications arise from serine, threonine, or lysine donor residues linked to aspartate or glutamate acceptor residues. Characterized graspetides include serine protease inhibitors such as the microviridins and plesiocin. Here, we report an update to Rapid ORF Description and Evaluation Online (RODEO) for the automated detection of graspetides, which identified 3,923 high-confidence graspetide biosynthetic gene clusters. Sequence and co-occurrence analyses doubled the number of graspetide groups from 12 to 24, defined based on core consensus sequence and putative secondary modification. Bioinformatic analyses of the ATP-grasp ligase superfamily suggest that extant graspetide synthetases diverged once from an ancestral ATP-grasp ligase and later evolved to introduce a variety of ring connectivities. Furthermore, we characterized thatisin and iso-thatisin, two graspetides related by conformational stereoisomerism from Lysobacter antibioticus. Derived from a newly identified graspetide group, thatisin and iso-thatisin feature two interlocking macrolactones with identical ring connectivity, as determined by a combination of tandem mass spectrometry (MS/MS), methanolytic, and mutational analyses. NMR spectroscopy of thatisin revealed a cis conformation for a key proline residue, while molecular dynamics simulations, solvent-accessible surface area calculations, and partial methanolytic analysis coupled with MS/MS support a trans conformation for iso-thatisin at the same position. Overall, this work provides a comprehensive overview of the graspetide landscape, and the improved RODEO algorithm will accelerate future graspetide discoveries by enabling open-access analysis of existing and emerging genomes.
Collapse
Affiliation(s)
- Sangeetha Ramesh
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Xiaorui Guo
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Adam J. DiCaprio
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Ashley M. De Lio
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 505 South Mathews Ave, Urbana, Illinois 61801, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, 1205 West Clark Street, Urbana, Illinois 61801, USA
| | - Lonnie A. Harris
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Bryce L. Kille
- Department of Computer Science, University of Illinois at Urbana-Champaign, 201 North Goodwin Avenue, Urbana, Illinois 61801, USA
| | - Taras V. Pogorelov
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 505 South Mathews Ave, Urbana, Illinois 61801, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, 1205 West Clark Street, Urbana, Illinois 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| |
Collapse
|
13
|
Song I, Kim Y, Yu J, Go SY, Lee HG, Song WJ, Kim S. Molecular mechanism underlying substrate recognition of the peptide macrocyclase PsnB. Nat Chem Biol 2021; 17:1123-1131. [PMID: 34475564 DOI: 10.1038/s41589-021-00855-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/08/2021] [Indexed: 01/02/2023]
Abstract
Graspetides, also known as ω-ester-containing peptides (OEPs), are a family of ribosomally synthesized and post-translationally modified peptides (RiPPs) bearing side chain-to-side chain macrolactone or macrolactam linkages. Here, we present the molecular details of precursor peptide recognition by the macrocyclase enzyme PsnB in the biosynthesis of plesiocin, a group 2 graspetide. Biochemical analysis revealed that, in contrast to other RiPPs, the core region of the plesiocin precursor peptide noticeably enhanced the enzyme-precursor interaction via the conserved glutamate residues. We obtained four crystal structures of symmetric or asymmetric PsnB dimers, including those with a bound core peptide and a nucleotide, and suggest that the highly conserved Arg213 at the enzyme active site specifically recognizes a ring-forming acidic residue before phosphorylation. Collectively, this study provides insights into the mechanism underlying substrate recognition in graspetide biosynthesis and lays a foundation for engineering new variants.
Collapse
Affiliation(s)
- Inseok Song
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Younghyeon Kim
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Jaeseung Yu
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Su Yong Go
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Hong Geun Lee
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Woon Ju Song
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Seokhee Kim
- Department of Chemistry, Seoul National University, Seoul, South Korea.
| |
Collapse
|
14
|
Wu Z, Li Y, Zhang L, Ding Z, Shi G. Microbial production of small peptide: pathway engineering and synthetic biology. Microb Biotechnol 2021; 14:2257-2278. [PMID: 33459516 PMCID: PMC8601181 DOI: 10.1111/1751-7915.13743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 01/14/2023] Open
Abstract
Small peptides are a group of natural products with low molecular weights and complex structures. The diverse structures of small peptides endow them with broad bioactivities and suggest their potential therapeutic use in the medical field. The remaining challenge is methods to address the main limitations, namely (i) the low amount of available small peptides from natural sources, and (ii) complex processes required for traditional chemical synthesis. Therefore, harnessing microbial cells as workhorse appears to be a promising approach to synthesize these bioactive peptides. As an emerging engineering technology, synthetic biology aims to create standard, well-characterized and controllable synthetic systems for the biosynthesis of natural products. In this review, we describe the recent developments in the microbial production of small peptides. More importantly, synthetic biology approaches are considered for the production of small peptides, with an emphasis on chassis cells, the evolution of biosynthetic pathways, strain improvements and fermentation.
Collapse
Affiliation(s)
- Zhiyong Wu
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxiJiangsu Province214122China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
| | - Youran Li
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxiJiangsu Province214122China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
| | - Liang Zhang
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxiJiangsu Province214122China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
| | - Zhongyang Ding
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxiJiangsu Province214122China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
| | - Guiyang Shi
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxiJiangsu Province214122China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
| |
Collapse
|
15
|
Kaweewan I, Nakagawa H, Kodani S. Heterologous expression of a cryptic gene cluster from Marinomonas fungiae affords a novel tricyclic peptide marinomonasin. Appl Microbiol Biotechnol 2021; 105:7241-7250. [PMID: 34480236 DOI: 10.1007/s00253-021-11545-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/01/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
The ω-ester-containing peptides (OEPs) are a group of ribosomally synthesized and post-translationally modified peptides (RiPPs). The biosynthetic gene clusters of ω-ester-containing peptides commonly include ATP-grasp ligase coding genes and are distributed over the genomes of a wide variety of bacteria. A new biosynthetic gene cluster of ω-ester-containing peptides was found in the genome sequence of the marine proteobacterium Marinomonas fungiae. Heterologous production of a new tricyclic peptide named marinomonasin was accomplished using the biosynthetic gene cluster in Escherichia coli expression host strain BL21(DE3). By ESI-MS and NMR experiments, the structure of marinomonasin was determined to be a tricyclic peptide 18 amino acids in length with one ester and two isopeptide bonds in the molecule. The bridging patterns of the three intramolecular bonds were determined by the interpretation of HMBC and NOESY data. The bridging pattern of marinomonasin was unprecedented in the ω-ester-containing peptide group. The results indicated that the ATP-grasp ligase for the production of marinomonasin was a novel enzyme possessing bifunctional activity to form one ester and two isopeptide bonds. KEY POINTS: • New tricyclic peptide marinomonasin was heterologously produced in Escherichia coli. • Marinomonasin contained one ester and two isopeptide bonds in the molecule. • The bridging pattern of intramolecular bonds was novel.
Collapse
Affiliation(s)
- Issara Kaweewan
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Hiroyuki Nakagawa
- Institute of Food Research, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan.,Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Shinya Kodani
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan. .,Shizuoka Institute for the Study of Marine Biology and Chemistry, Shizuoka University, Shizuoka, Japan. .,College of Agriculture, Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
16
|
Patel KP, Silsby LM, Li G, Bruner SD. Structure-Based Engineering of Peptide Macrocyclases for the Chemoenzymatic Synthesis of Microviridins. J Org Chem 2021; 86:11212-11219. [PMID: 34263606 DOI: 10.1021/acs.joc.1c00785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microviridins are cyanobacterial tricyclic depsipeptides with unique ring architectures and function as serine protease inhibitors. In this study, we explore two strategies to probe the structure and mechanism of macrocyclases involved in microviridin biosynthesis. The results both provide approaches for in vitro chemoenzymatic synthesis and insight into the molecular interactions and function of the biosynthetic enzymes. The first strategy involves generating constitutively activated macrocyclases whereby the leader portion of the substrate peptide is covalently attached to the ATP-grasp ligases to examine leader peptide/enzyme interactions. The second strategy uses a structure-based design to create disulfide cross-linked peptide/enzyme complexes. Together, the strategies provide constitutively active enzymes and tools to study the catalysis of the macrocyclizations on synthetic core peptides.
Collapse
Affiliation(s)
- Krishna P Patel
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Lily M Silsby
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Gengnan Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Steven D Bruner
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
17
|
Dhakal D, Chen M, Luesch H, Ding Y. Heterologous production of cyanobacterial compounds. J Ind Microbiol Biotechnol 2021; 48:6119914. [PMID: 33928376 PMCID: PMC8210676 DOI: 10.1093/jimb/kuab003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/17/2020] [Indexed: 12/29/2022]
Abstract
Cyanobacteria produce a plethora of compounds with unique chemical structures and diverse biological activities. Importantly, the increasing availability of cyanobacterial genome sequences and the rapid development of bioinformatics tools have unraveled the tremendous potential of cyanobacteria in producing new natural products. However, the discovery of these compounds based on cyanobacterial genomes has progressed slowly as the majority of their corresponding biosynthetic gene clusters (BGCs) are silent. In addition, cyanobacterial strains are often slow-growing, difficult for genetic engineering, or cannot be cultivated yet, limiting the use of host genetic engineering approaches for discovery. On the other hand, genetically tractable hosts such as Escherichia coli, Actinobacteria, and yeast have been developed for the heterologous expression of cyanobacterial BGCs. More recently, there have been increased interests in developing model cyanobacterial strains as heterologous production platforms. Herein, we present recent advances in the heterologous production of cyanobacterial compounds in both cyanobacterial and noncyanobacterial hosts. Emerging strategies for BGC assembly, host engineering, and optimization of BGC expression are included for fostering the broader applications of synthetic biology tools in the discovery of new cyanobacterial natural products.
Collapse
Affiliation(s)
- Dipesh Dhakal
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 31610, USA
| | - Manyun Chen
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 31610, USA
| | - Hendrik Luesch
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 31610, USA
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 31610, USA
| |
Collapse
|
18
|
Unno K, Nakagawa H, Kodani S. Heterologous production of new protease inhibitory peptide marinostatin E. Biosci Biotechnol Biochem 2021; 85:97-102. [DOI: 10.1093/bbb/zbaa011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/09/2020] [Indexed: 01/30/2023]
Abstract
Abstract
Bicyclic peptides, marinostatins, are protease inhibitors derived from the marine bacterium Algicola sagamiensis. The biosynthetic gene cluster of marinostatin was previously identified, although no heterologous production was reported. In this report, the biosynthetic gene cluster of marinostatin (mstA and mstB) was cloned into the expression vector pET-41a(+). As a result of the coexpression experiment, a new analogous peptide named marinostatin E was successfully produced using Escherichia coli BL21(DE3). The structure of marinostatin E was determined by a combination of chemical treatments and tandem mass spectrometry experiments. Marinostatin E exhibited inhibitory activities against chymotrypsin and subtilisin with an IC50 of 4.0 and 39.6 μm, respectively.
Collapse
Affiliation(s)
- Kohta Unno
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Hiroyuki Nakagawa
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
- Advanced Analysis Center, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Shinya Kodani
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
- College of Agriculture, Academic Institute, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
19
|
Current Knowledge on Microviridin from Cyanobacteria. Mar Drugs 2021; 19:md19010017. [PMID: 33406599 PMCID: PMC7823629 DOI: 10.3390/md19010017] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Cyanobacteria are a rich source of secondary metabolites with a vast biotechnological potential. These compounds have intrigued the scientific community due their uniqueness and diversity, which is guaranteed by a rich enzymatic apparatus. The ribosomally synthesized and post-translationally modified peptides (RiPPs) are among the most promising metabolite groups derived from cyanobacteria. They are interested in numerous biological and ecological processes, many of which are entirely unknown. Microviridins are among the most recognized class of ribosomal peptides formed by cyanobacteria. These oligopeptides are potent inhibitors of protease; thus, they can be used for drug development and the control of mosquitoes. They also play a key ecological role in the defense of cyanobacteria against microcrustaceans. The purpose of this review is to systematically identify the key characteristics of microviridins, including its chemical structure and biosynthesis, as well as its biotechnological and ecological significance.
Collapse
|
20
|
Montalbán-López M, Scott TA, Ramesh S, Rahman IR, van Heel AJ, Viel JH, Bandarian V, Dittmann E, Genilloud O, Goto Y, Grande Burgos MJ, Hill C, Kim S, Koehnke J, Latham JA, Link AJ, Martínez B, Nair SK, Nicolet Y, Rebuffat S, Sahl HG, Sareen D, Schmidt EW, Schmitt L, Severinov K, Süssmuth RD, Truman AW, Wang H, Weng JK, van Wezel GP, Zhang Q, Zhong J, Piel J, Mitchell DA, Kuipers OP, van der Donk WA. New developments in RiPP discovery, enzymology and engineering. Nat Prod Rep 2021; 38:130-239. [PMID: 32935693 PMCID: PMC7864896 DOI: 10.1039/d0np00027b] [Citation(s) in RCA: 417] [Impact Index Per Article: 139.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: up to June 2020Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large group of natural products. A community-driven review in 2013 described the emerging commonalities in the biosynthesis of RiPPs and the opportunities they offered for bioengineering and genome mining. Since then, the field has seen tremendous advances in understanding of the mechanisms by which nature assembles these compounds, in engineering their biosynthetic machinery for a wide range of applications, and in the discovery of entirely new RiPP families using bioinformatic tools developed specifically for this compound class. The First International Conference on RiPPs was held in 2019, and the meeting participants assembled the current review describing new developments since 2013. The review discusses the new classes of RiPPs that have been discovered, the advances in our understanding of the installation of both primary and secondary post-translational modifications, and the mechanisms by which the enzymes recognize the leader peptides in their substrates. In addition, genome mining tools used for RiPP discovery are discussed as well as various strategies for RiPP engineering. An outlook section presents directions for future research.
Collapse
|
21
|
Unno K, Kodani S. Heterologous expression of cryptic biosynthetic gene cluster from Streptomyces prunicolor yields novel bicyclic peptide prunipeptin. Microbiol Res 2020; 244:126669. [PMID: 33360751 DOI: 10.1016/j.micres.2020.126669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/02/2020] [Accepted: 12/06/2020] [Indexed: 11/18/2022]
Abstract
Recently, ω-ester-containing peptides (OEPs) were indicated to be a class of ribosomally synthesized and post-translationally modified peptides. Based on genome mining, new biosynthetic gene cluster of OEPs was found in the genome sequence of actinobacterium Streptomyces prunicolor. The biosynthetic gene cluster contained just two genes including precursor peptide (pruA) and ATP-grasp ligase (pruB) coding genes. Heterologous co-expression of the two genes was accomplished using expression vector pET-41a(+) in Escherichia coli. As a result, new OEP named prunipeptin was produced by this system. By site-directed mutagenesis experiment, a variant peptide prunipeptin 15HW was obtained. The bridging pattern of prunipeptin 15HW was determined by combination of chemical cleavage and MS experiments. Prunipeptin 15HW possessed bicyclic structure with an ester bond and an isopeptide bond. The ATP-grasp ligase PruB was indicated to catalyze the two different intramolecular bonds.
Collapse
Affiliation(s)
- Kohta Unno
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Shinya Kodani
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan; College of Agriculture, Academic Institute, Shizuoka University, Shizuoka, Japan.
| |
Collapse
|
22
|
Rubin GM, Ding Y. Recent advances in the biosynthesis of RiPPs from multicore-containing precursor peptides. J Ind Microbiol Biotechnol 2020; 47:659-674. [PMID: 32617877 PMCID: PMC7666021 DOI: 10.1007/s10295-020-02289-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) compose a large structurally and functionally diverse family of natural products. The biosynthesis system of RiPPs typically involves a precursor peptide comprising of a leader and core motif and nearby processing enzymes that recognize the leader and act on the core for producing modified peptides. Interest in RiPPs has increased substantially in recent years as improvements in genome mining techniques have dramatically improved access to these peptides and biochemical and engineering studies have supported their applications. A less understood, intriguing feature in the RiPPs biosynthesis is the precursor peptides of multiple RiPPs families produced by bacteria, fungi and plants carrying multiple core motifs, which we term "multicore". Herein, we present the prevalence of the multicore systems, their biosynthesis and engineering for applications.
Collapse
Affiliation(s)
- Garret M Rubin
- Department of Medicinal Chemistry, and Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, 32610, USA
| | - Yousong Ding
- Department of Medicinal Chemistry, and Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
23
|
Unno K, Kaweewan I, Nakagawa H, Kodani S. Heterologous expression of a cryptic gene cluster from Grimontia marina affords a novel tricyclic peptide grimoviridin. Appl Microbiol Biotechnol 2020; 104:5293-5302. [DOI: 10.1007/s00253-020-10605-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/01/2020] [Accepted: 04/01/2020] [Indexed: 10/24/2022]
|
24
|
Sieber S, Grendelmeier SM, Harris LA, Mitchell DA, Gademann K. Microviridin 1777: A Toxic Chymotrypsin Inhibitor Discovered by a Metabologenomic Approach. JOURNAL OF NATURAL PRODUCTS 2020; 83:438-446. [PMID: 31989826 PMCID: PMC7050427 DOI: 10.1021/acs.jnatprod.9b00986] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The toxicity of the cyanobacterium Microcystis aeruginosa EAWAG 127a was evaluated against the sensitive grazer Thamnocephalus platyurus, and the extract possessed strong activity. To investigate the compounds responsible for cytotoxicity, a series of peptides from this cyanobacterium were studied using a combined genomic and molecular networking approach. The results led to the isolation, structure elucidation, and biological evaluation of microviridin 1777, which represents the most potent chymotrypsin inhibitor characterized from this family of peptides to date. Furthermore, the biosynthetic gene clusters of microviridin, anabaenopeptin, aeruginosin, and piricyclamide were located in the producing organism, and six additional natural products were identified by tandem mass spectrometry analyses. These results highlight the potential of modern techniques for the identification of natural products, demonstrate the ecological role of protease inhibitors produced by cyanobacteria, and raise ramifications concerning the presence of novel, yet uncharacterized, toxin families in cyanobacteria beyond microcystin.
Collapse
Affiliation(s)
- Simon Sieber
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH 8057, Switzerland
| | - Simone M. Grendelmeier
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH 8057, Switzerland
| | - Lonnie A. Harris
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Karl Gademann
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH 8057, Switzerland
| |
Collapse
|
25
|
Roh H, Han Y, Lee H, Kim S. A Topologically Distinct Modified Peptide with Multiple Bicyclic Core Motifs Expands the Diversity of Microviridin‐Like Peptides. Chembiochem 2019; 20:1051-1059. [DOI: 10.1002/cbic.201800678] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Heejin Roh
- Department of ChemistrySeoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 South Korea
| | - Yeji Han
- Department of ChemistrySeoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 South Korea
| | - Hyunbin Lee
- Department of ChemistrySeoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 South Korea
| | - Seokhee Kim
- Department of ChemistrySeoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 South Korea
| |
Collapse
|
26
|
Kaysser L. Built to bind: biosynthetic strategies for the formation of small-molecule protease inhibitors. Nat Prod Rep 2019; 36:1654-1686. [DOI: 10.1039/c8np00095f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The discovery and characterization of natural product protease inhibitors has inspired the development of numerous pharmaceutical agents.
Collapse
Affiliation(s)
- Leonard Kaysser
- Department of Pharmaceutical Biology
- University of Tübingen
- 72076 Tübingen
- Germany
- German Centre for Infection Research (DZIF)
| |
Collapse
|
27
|
Zhang Y, Chen M, Bruner SD, Ding Y. Heterologous Production of Microbial Ribosomally Synthesized and Post-translationally Modified Peptides. Front Microbiol 2018; 9:1801. [PMID: 30135682 PMCID: PMC6092494 DOI: 10.3389/fmicb.2018.01801] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/17/2018] [Indexed: 12/30/2022] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides, or RiPPs, which have mainly isolated from microbes as well as plants and animals, are an ever-expanding group of peptidic natural products with diverse chemical structures and biological activities. They have emerged as a major category of secondary metabolites partly due to a myriad of microbial genome sequencing endeavors and the availability of genome mining software in the past two decades. Heterologous expression of RiPP gene clusters mined from microbial genomes, which are often silent in native producers, in surrogate hosts such as Escherichia coli and Streptomyces strains can be an effective way to elucidate encoded peptides and produce novel derivatives. Emerging strategies have been developed to facilitate the success of the heterologous expression by targeting multiple synthetic biology levels, including individual proteins, pathways, metabolic flux and hosts. This review describes recent advances in heterologous production of RiPPs, mainly from microbes, with a focus on E. coli and Streptomyces strains as the surrogate hosts.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Manyun Chen
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Steven D Bruner
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL, United States
| |
Collapse
|
28
|
Khan RA. Natural products chemistry: The emerging trends and prospective goals. Saudi Pharm J 2018; 26:739-753. [PMID: 29991919 PMCID: PMC6036106 DOI: 10.1016/j.jsps.2018.02.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 02/05/2018] [Indexed: 01/01/2023] Open
Abstract
The role and contributions of natural products chemistry in advancements of the physical and biological sciences, its interdisciplinary domains, and emerging of new avenues by providing novel applications, constructive inputs, thrust, comprehensive understanding, broad perspective, and a new vision for future is outlined. The developmental prospects in bio-medical, health, nutrition, and other interrelated sciences along with some of the emerging trends in the subject area are also discussed as part of the current review of the basic and core developments, innovation in techniques, advances in methodology, and possible applications with their effects on the sciences in general and natural products chemistry in particular. The overview of the progress and ongoing developments in broader areas of the natural products chemistry discipline, its role and concurrent economic and scientific implications, contemporary objectives, future prospects as well as impending goals are also outlined. A look at the natural products chemistry in providing scientific progress in various disciplines is deliberated upon.
Collapse
Affiliation(s)
- Riaz A. Khan
- Department of Medicinal Chemistry, Qassim University, Qassim 51452, Saudi Arabia
- Manav Rachna International University, National Capital Region, Faridabad, HR 121 004, India
| |
Collapse
|
29
|
A distributive peptide cyclase processes multiple microviridin core peptides within a single polypeptide substrate. Nat Commun 2018; 9:1780. [PMID: 29725007 PMCID: PMC5934393 DOI: 10.1038/s41467-018-04154-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 02/23/2018] [Indexed: 11/16/2022] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are an important family of natural products. Their biosynthesis follows a common scheme in which the leader peptide of a precursor peptide guides the modifications of a single core peptide. Here we describe biochemical studies of the processing of multiple core peptides within a precursor peptide, rare in RiPP biosynthesis. In a cyanobacterial microviridin pathway, an ATP-grasp ligase, AMdnC, installs up to two macrolactones on each of the three core peptides within AMdnA. The enzyme catalysis occurs in a distributive fashion and follows an unstrict N-to-C overall directionality, but a strict order in macrolactonizing each core peptide. Furthermore, AMdnC is catalytically versatile to process unnatural substrates carrying one to four core peptides, and kinetic studies provide insights into its catalytic properties. Collectively, our results reveal a distinct biosynthetic logic of RiPPs, opening up the possibility of modular production via synthetic biology approaches. Microviridins belong to the family of ribosomally synthesized and post-translationally modified peptides (RiPPs). Here, the authors discover a microviridin-synthesizing enzyme in a cyanobacterium that modifies multiple core peptides from a single substrate in a distributive and unstrictly directional manner, an unusual biosynthetic logic for RiPPs.
Collapse
|
30
|
Abstract
Natural products are significant therapeutic agents and valuable drug leads. This is likely owing to their three-dimensional structural complexity, which enables them to form complex interactions with biological targets. Enzymes from natural product biosynthetic pathways show great potential to generate natural product-like compounds and libraries. Many challenges still remain in biosynthesis, such as how to rationally synthesize small molecules with novel structures and how to generate maximum chemical diversity. In this Account, we describe recent advances from our laboratory in the synthesis of natural product-like libraries using natural biosynthetic machinery. Our work has focused on the pat and tru biosynthetic pathways to patellamides, trunkamide, and related compounds from cyanobacterial symbionts in marine tunicates. These belong to the cyanobactin class of natural products, which are part of the larger group of ribosomally synthesized and post-translationally modified peptides (RiPPs). These results have enabled the synthesis of rationally designed small molecules and libraries covering more than 1 million estimated derivatives. Because the RiPPs are translated on the ribosome and then enzymatically modified, they are highly compatible with recombinant technologies. This is important because it means that the resulting natural products, their derivatives, and wholly new compounds can be synthesized using the tools of genetic engineering. The RiPPs also represent possibly the most widespread group of bioactive natural products, although this is in part because of the broad definition of what constitutes a RiPP. In addition, the underlying ideas may form the basis for broad-substrate biosynthetic pathways beyond the RiPPs. For example, some of the ideas about kinetic ordering of broad substrate pathways may apply to polyketide or nonribosomal peptide biosynthesis as well. While making these products, we have sought to understand what makes biosynthetic pathways plastic and whether there are any rules that might generally apply to plastic biosynthetic pathways. We present three principles of diversity-generating biosynthesis: (1) substrate evolution, in which the substrates change while enzymes remain constant; (2) pairing of recognition sequences on substrates with biosynthetic enzymes; (3) an inverse metabolic flux in comparison to canonical pathways. If these principles are general, they may enable the design of unimagined derivatives using biosynthetic engineering. For example, it is possible to discover substrate evolution directly by examining sequencing data. By shuffling appropriate recognition sequences and biosynthetic enzymes, it has already been possible to make new hybrid products of multiple pathways. While cases so far have been limited, if this is more general, designed synthesis will become routine. Finally, biosynthesis of natural products is regulated in elaborate ways that are just beginning to be understood. If the inverse metabolic flux model is widespread, it potentially informs on what the timing and relative production level of each enzyme in a designer pathway should be in order to optimize the synthesis of new compounds in vivo.
Collapse
Affiliation(s)
- Wenjia Gu
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| |
Collapse
|
31
|
Ogasawara Y, Dairi T. Biosynthesis of Oligopeptides Using ATP-Grasp Enzymes. Chemistry 2017; 23:10714-10724. [PMID: 28488371 DOI: 10.1002/chem.201700674] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Indexed: 11/08/2022]
Abstract
Peptides are biologically occurring oligomers of amino acids linked by amide bonds and are indispensable for all living organisms. Many bioactive peptides are used as antibiotics, antivirus agents, insecticides, pheromones, and food preservatives. Nature employs several different strategies to form amide bonds. ATP-grasp enzymes that catalyze amide bond formation (ATP-dependent carboxylate-amine ligases) utilize a strategy of activating carboxylic acid as an acylphosphate intermediate to form amide bonds and are involved in many different biological processes in both primary and secondary metabolisms. The recent discovery of several new ATP-dependent carboxylate-amine ligases has expanded the diversity of this group of enzymes and showed their usefulness for generating oligopeptides. In this review, an overview of findings on amide bond formation catalyzed by ATP-grasp enzymes in the past decade is presented.
Collapse
Affiliation(s)
- Yasushi Ogasawara
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Tohru Dairi
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| |
Collapse
|
32
|
Ahmed MN, Reyna-González E, Schmid B, Wiebach V, Süssmuth RD, Dittmann E, Fewer DP. Phylogenomic Analysis of the Microviridin Biosynthetic Pathway Coupled with Targeted Chemo-Enzymatic Synthesis Yields Potent Protease Inhibitors. ACS Chem Biol 2017; 12:1538-1546. [PMID: 28406289 DOI: 10.1021/acschembio.7b00124] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Natural products and their semisynthetic derivatives are an important source of drugs for the pharmaceutical industry. Bacteria are prolific producers of natural products and encode a vast diversity of natural product biosynthetic gene clusters. However, much of this diversity is inaccessible to natural product discovery. Here, we use a combination of phylogenomic analysis of the microviridin biosynthetic pathway and chemo-enzymatic synthesis of bioinformatically predicted microviridins to yield new protease inhibitors. Phylogenomic analysis demonstrated that microviridin biosynthetic gene clusters occur across the bacterial domain and encode three distinct subtypes of precursor peptides. Our analysis shed light on the evolution of microviridin biosynthesis and enabled prioritization of their chemo-enzymatic production. Targeted one-pot synthesis of four microviridins encoded by the cyanobacterium Cyanothece sp. PCC 7822 identified a set of novel and potent serine protease inhibitors, the most active of which had an IC50 value of 21.5 nM. This study advances the genome mining techniques available for natural product discovery and obviates the need to culture bacteria.
Collapse
Affiliation(s)
- Muhammad N. Ahmed
- Microbiology
and Biotechnology Division, Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 56, Viikki Biocenter, Viikinkaari 9, Helsinki FIN-00014, Finland
| | - Emmanuel Reyna-González
- Institute
of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany
| | - Bianca Schmid
- Institute
of Chemistry, Technical University Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Vincent Wiebach
- Institute
of Chemistry, Technical University Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Roderich D. Süssmuth
- Institute
of Chemistry, Technical University Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Elke Dittmann
- Institute
of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany
| | - David P. Fewer
- Microbiology
and Biotechnology Division, Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 56, Viikki Biocenter, Viikinkaari 9, Helsinki FIN-00014, Finland
| |
Collapse
|
33
|
Wever WJ, Bogart JW, Bowers AA. Identification of Pyridine Synthase Recognition Sequences Allows a Modular Solid-Phase Route to Thiopeptide Variants. J Am Chem Soc 2016; 138:13461-13464. [PMID: 27575591 DOI: 10.1021/jacs.6b05389] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Thiopeptides are structurally complex, bioactive natural products derived from ribosomally synthesized and post-translationally modified peptides. A remarkable set of enzymes were recently revealed to catalyze the formation of the core trithiazolylpyridine of thiopeptides via a formal [4 + 2] cycloaddition. These pyridine synthases typically act late in thiopeptide biosynthesis to affect macrocyclization and cleavage of the N-terminal leader peptide, making them potentially useful biocatalysts for preparation of new thiopeptide variants. Herein we investigate the leader peptide requirements for TclM from thiocillin biosynthesis in Bacillus cereus ATCC 14579. Through a series of truncations, we define a minimum recognition sequence (RS) that is necessary and sufficient for TclM activity. This RS can be readily synthesized and ligated to linear thiopeptide cores prepared via solid-phase peptide synthesis (SPPS), giving an efficient and modular route to thiopeptide variants. We exploit this strategy to define C-terminal core peptide requirements and explore the differences in promiscuity of two pyridine synthases, TclM and TbtD, ultimately examining their ability to access new structural variants.
Collapse
Affiliation(s)
- Walter J Wever
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy , Chapel Hill, North Carolina 27599, United States
| | - Jonathan W Bogart
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy , Chapel Hill, North Carolina 27599, United States
| | - Albert A Bowers
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
34
|
Structural basis for precursor protein-directed ribosomal peptide macrocyclization. Nat Chem Biol 2016; 12:973-979. [PMID: 27669417 PMCID: PMC5117808 DOI: 10.1038/nchembio.2200] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/03/2016] [Indexed: 11/08/2022]
Abstract
Macrocyclization is a common feature of natural product biosynthetic pathways including the diverse family of ribosomal peptides. Microviridins are architecturally complex cyanobacterial ribosomal peptides whose members target proteases with potent reversible inhibition. The product structure is constructed by three macrocyclizations catalyzed sequentially by two members of the ATP-grasp family, a unique strategy for ribosomal peptide macrocyclization. Here, we describe the detailed structural basis for the enzyme-catalyzed macrocyclizations in the microviridin J pathway of Microcystis aeruginosa. The macrocyclases, MdnC and MdnB, interact with a conserved α-helix of the precursor peptide using a novel precursor peptide recognition mechanism. The results provide insight into the unique protein/protein interactions key to the chemistry, suggest an origin of the natural combinatorial synthesis of microviridin peptides and provide a framework for future engineering efforts to generate designed compounds.
Collapse
|
35
|
Reyna‐González E, Schmid B, Petras D, Süssmuth RD, Dittmann E. Leader Peptide‐Free In Vitro Reconstitution of Microviridin Biosynthesis Enables Design of Synthetic Protease‐Targeted Libraries. Angew Chem Int Ed Engl 2016; 55:9398-401. [DOI: 10.1002/anie.201604345] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 05/23/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Emmanuel Reyna‐González
- Institute of Biochemistry and BiologyUniversity of Potsdam Karl-Liebknecht-Straße 24-25 14476 Potsdam-Golm Germany
| | - Bianca Schmid
- Institute of ChemistryTechnical University Berlin Straße des 17. Juni 124 10623 Berlin Germany
| | - Daniel Petras
- Institute of ChemistryTechnical University Berlin Straße des 17. Juni 124 10623 Berlin Germany
- Skaggs School of Pharmacy & Pharmaceutical SciencesUniversity of California—San Diego 9500 Gilman Drive La Jolla CA 92093-0751 USA
| | - Roderich D. Süssmuth
- Institute of ChemistryTechnical University Berlin Straße des 17. Juni 124 10623 Berlin Germany
| | - Elke Dittmann
- Institute of Biochemistry and BiologyUniversity of Potsdam Karl-Liebknecht-Straße 24-25 14476 Potsdam-Golm Germany
| |
Collapse
|
36
|
Reyna‐González E, Schmid B, Petras D, Süssmuth RD, Dittmann E. Leader Peptide‐Free In Vitro Reconstitution of Microviridin Biosynthesis Enables Design of Synthetic Protease‐Targeted Libraries. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Emmanuel Reyna‐González
- Institute of Biochemistry and BiologyUniversity of Potsdam Karl-Liebknecht-Straße 24-25 14476 Potsdam-Golm Germany
| | - Bianca Schmid
- Institute of ChemistryTechnical University Berlin Straße des 17. Juni 124 10623 Berlin Germany
| | - Daniel Petras
- Institute of ChemistryTechnical University Berlin Straße des 17. Juni 124 10623 Berlin Germany
- Skaggs School of Pharmacy & Pharmaceutical SciencesUniversity of California—San Diego 9500 Gilman Drive La Jolla CA 92093-0751 USA
| | - Roderich D. Süssmuth
- Institute of ChemistryTechnical University Berlin Straße des 17. Juni 124 10623 Berlin Germany
| | - Elke Dittmann
- Institute of Biochemistry and BiologyUniversity of Potsdam Karl-Liebknecht-Straße 24-25 14476 Potsdam-Golm Germany
| |
Collapse
|
37
|
Ziemert N, Alanjary M, Weber T. The evolution of genome mining in microbes - a review. Nat Prod Rep 2016; 33:988-1005. [PMID: 27272205 DOI: 10.1039/c6np00025h] [Citation(s) in RCA: 415] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Covering: 2006 to 2016The computational mining of genomes has become an important part in the discovery of novel natural products as drug leads. Thousands of bacterial genome sequences are publically available these days containing an even larger number and diversity of secondary metabolite gene clusters that await linkage to their encoded natural products. With the development of high-throughput sequencing methods and the wealth of DNA data available, a variety of genome mining methods and tools have been developed to guide discovery and characterisation of these compounds. This article reviews the development of these computational approaches during the last decade and shows how the revolution of next generation sequencing methods has led to an evolution of various genome mining approaches, techniques and tools. After a short introduction and brief overview of important milestones, this article will focus on the different approaches of mining genomes for secondary metabolites, from detecting biosynthetic genes to resistance based methods and "evo-mining" strategies including a short evaluation of the impact of the development of genome mining methods and tools on the field of natural products and microbial ecology.
Collapse
Affiliation(s)
- Nadine Ziemert
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Microbiology and Biotechnology, University of Tuebingen, Germany.
| | | | | |
Collapse
|
38
|
Three aeruginosins and a microviridin from a bloom assembly of Microcystis spp. collected from a fishpond near Kibbutz Lehavot HaBashan, Israel. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.07.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Weiz AR, Ishida K, Quitterer F, Meyer S, Kehr JC, Müller KM, Groll M, Hertweck C, Dittmann E. Harnessing the Evolvability of Tricyclic Microviridins To Dissect Protease-Inhibitor Interactions. Angew Chem Int Ed Engl 2014; 53:3735-8. [DOI: 10.1002/anie.201309721] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/03/2014] [Indexed: 11/11/2022]
|
40
|
Weiz AR, Ishida K, Quitterer F, Meyer S, Kehr JC, Müller KM, Groll M, Hertweck C, Dittmann E. Analyse von Protease-Inhibitor-Interaktionen unter Nutzung evolvierbarer tricyclischer Microviridine. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201309721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
41
|
Functional analysis of environmental DNA-derived microviridins provides new insights into the diversity of the tricyclic peptide family. Appl Environ Microbiol 2013; 80:1380-7. [PMID: 24334668 DOI: 10.1128/aem.03502-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microviridins represent a unique family of ribosomally synthesized cage-like depsipeptides from cyanobacteria with potent protease-inhibitory activities. The natural diversity of these peptides is largely unexplored. Here, we describe two methodologies that were developed to functionally characterize cryptic microviridin gene clusters from metagenomic DNA. Environmental samples were collected and enriched from cyanobacterial freshwater blooms of different geographical origins containing predominantly Microcystis sp. Microviridins were produced either directly from fosmid clones or after insertion of environmental DNA-derived gene cassettes into a minimal expression platform in Escherichia coli. Three novel microviridin variants were isolated and tested against different serine-type proteases. The comparison of the bioactivity profiles of the new congeners allows deduction of further structure-function relationships for microviridins. Moreover, this study provides new insights into microviridin processing and gene cluster organization.
Collapse
|
42
|
Yang X, van der Donk WA. Ribosomally synthesized and post-translationally modified peptide natural products: new insights into the role of leader and core peptides during biosynthesis. Chemistry 2013; 19:7662-77. [PMID: 23666908 DOI: 10.1002/chem.201300401] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Indexed: 11/08/2022]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a major class of natural products with a high degree of structural diversity and a wide variety of bioactivities. Understanding the biosynthetic machinery of these RiPPs will benefit the discovery and development of new molecules with potential pharmaceutical applications. In this Concept article, we discuss the features of the biosynthetic pathways to different RiPP classes, and propose mechanisms regarding recognition of the precursor peptide by the post-translational modification enzymes. We propose that the leader peptides function as allosteric regulators that bind the active form of the biosynthetic enzymes in a conformational selection process. We also speculate how enzymes that generate polycyclic products of defined topologies may have been selected for during evolution.
Collapse
Affiliation(s)
- Xiao Yang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801, USA
| | | |
Collapse
|
43
|
Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, Cotter PD, Craik DJ, Dawson M, Dittmann E, Donadio S, Dorrestein PC, Entian KD, Fischbach MA, Garavelli JS, Göransson U, Gruber CW, Haft DH, Hemscheidt TK, Hertweck C, Hill C, Horswill AR, Jaspars M, Kelly WL, Klinman JP, Kuipers OP, Link AJ, Liu W, Marahiel MA, Mitchell DA, Moll GN, Moore BS, Müller R, Nair SK, Nes IF, Norris GE, Olivera BM, Onaka H, Patchett ML, Piel J, Reaney MJT, Rebuffat S, Ross RP, Sahl HG, Schmidt EW, Selsted ME, Severinov K, Shen B, Sivonen K, Smith L, Stein T, Süssmuth RD, Tagg JR, Tang GL, Truman AW, Vederas JC, Walsh CT, Walton JD, Wenzel SC, Willey JM, van der Donk WA. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 2013; 30:108-60. [PMID: 23165928 DOI: 10.1039/c2np20085f] [Citation(s) in RCA: 1483] [Impact Index Per Article: 134.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review presents recommended nomenclature for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), a rapidly growing class of natural products. The current knowledge regarding the biosynthesis of the >20 distinct compound classes is also reviewed, and commonalities are discussed.
Collapse
Affiliation(s)
- Paul G Arnison
- Prairie Plant Systems Inc, Botanical Alternatives Inc, Suite 176, 8B-3110 8th Street E, Saskatoon, SK, S7H 0W2, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
|