1
|
Škerlová J, Krejčiříková V, Peřina M, Vojáčková V, Fábry M, Kryštof V, Jorda R, Řezáčová P. CDK2-based CDK7 mimic as a tool for structural analysis: Biochemical validation and crystal structure with SY5609. Int J Biol Macromol 2024:139117. [PMID: 39733900 DOI: 10.1016/j.ijbiomac.2024.139117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 12/31/2024]
Abstract
Cyclin-dependent kinases (CDKs) regulate cell cycle progression and transcription. CDK7 plays a pivotal role in cell division and proliferation, and the CDK7 gene often exhibits mutations or copy number loss in cancer. Pharmacological targeting of CDK7 has been proposed as a cancer treatment strategy and several inhibitors are currently in clinical trials. As opposed to CDK2, the use of structure-assisted drug design for CDK7 has been limited. We present here CDK2m7, a CDK2-based CDK7 mimic created by mutagenesis of the CDK2 active site pocket. CDK2m7 can be produced in E. coli in a fully active complex with cyclin A2 in high yield and purity. CDK2m7 exhibits a shift in inhibitor selectivity from CDK2 to CDK7 and readily crystallizes. Therefore, it can be used in structure-assisted design of CDK7 inhibitors, as demonstrated by the crystal structure of the complex with inhibitor SY5609. CDK2m7 thus represents a simple and affordable platform for CDK7 rational drug design.
Collapse
Affiliation(s)
- Jana Škerlová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.
| | - Veronika Krejčiříková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Miroslav Peřina
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Veronika Vojáčková
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Milan Fábry
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Vladimír Kryštof
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Radek Jorda
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic.
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Blears D, Lou J, Fong N, Mitter R, Sheridan RM, He D, Dirac-Svejstrup AB, Bentley D, Svejstrup JQ. Redundant pathways for removal of defective RNA polymerase II complexes at a promoter-proximal pause checkpoint. Mol Cell 2024; 84:4790-4807.e11. [PMID: 39504960 DOI: 10.1016/j.molcel.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/09/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024]
Abstract
The biological purpose of Integrator and RNA polymerase II (RNAPII) promoter-proximal pausing remains uncertain. Here, we show that loss of INTS6 in human cells results in increased interaction of RNAPII with proteins that can mediate its dissociation from the DNA template, including the CRL3ARMC5 E3 ligase, which ubiquitylates CTD serine5-phosphorylated RPB1 for degradation. ARMC5-dependent RNAPII ubiquitylation is activated by defects in factors acting at the promoter-proximal pause, including Integrator, DSIF, and capping enzyme. This ARMC5 checkpoint normally curtails a sizeable fraction of RNAPII transcription, and ARMC5 knockout cells produce more uncapped transcripts. When both the Integrator and CRL3ARMC5 turnover mechanisms are compromised, cell growth ceases and RNAPII with high pausing propensity disperses from the promoter-proximal pause site into the gene body. These data support a model in which CRL3ARMC5 functions alongside Integrator in a checkpoint mechanism that removes faulty RNAPII complexes at promoter-proximal pause sites to safeguard transcription integrity.
Collapse
Affiliation(s)
- Daniel Blears
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jiangman Lou
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Nova Fong
- RNA Bioscience Initiative, Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Richard Mitter
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ryan M Sheridan
- RNA Bioscience Initiative, Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Dandan He
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - A Barbara Dirac-Svejstrup
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - David Bentley
- RNA Bioscience Initiative, Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Jesper Q Svejstrup
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
3
|
Yang Y, Liao J, Pan Z, Meng J, Zhang L, Shi W, Wang X, Zhang X, Zhou Z, Luo J, Chen X, Yang Z, Mei X, Ma J, Zhang Z, Jiang YZ, Shao ZM, Chen FX, Yu X, Guo X. Dual Inhibition of CDK4/6 and CDK7 Suppresses Triple-Negative Breast Cancer Progression via Epigenetic Modulation of SREBP1-Regulated Cholesterol Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2413103. [PMID: 39656925 DOI: 10.1002/advs.202413103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/13/2024] [Indexed: 12/17/2024]
Abstract
Inhibitors targeting cyclin-dependent kinases 4 and 6 (CDK4/6) to block cell cycle progression have been effective in treating hormone receptor-positive breast cancer, but triple-negative breast cancer (TNBC) remains largely resistant, limiting their clinical applicability. The study reveals that transcription regulator cyclin-dependent kinase7 (CDK7) is a promising target to circumvent TNBC's inherent resistance to CDK4/6 inhibitors. Combining CDK4/6 and CDK7 inhibitors significantly enhances therapeutic effectiveness, leading to a marked decrease in cholesterol biosynthesis within cells. This effect is achieved through reduced activity of the transcription factor forkhead box M1 (FOXM1), which normally increases cholesterol production by inducing SREBF1 expression. Furthermore, this dual inhibition strategy attenuates the recruitment of sterol regulatory element binding transcription factor 1 (SREBP1) and p300 to genes essential for cholesterol synthesis, thus hindering tumor growth. This research is corroborated by an in-house cohort showing lower survival rates in TNBC patients with higher cholesterol production gene activity. This suggests a new treatment approach for TNBC by simultaneously targeting CDK4/6 and CDK7, warranting additional clinical trials.
Collapse
Affiliation(s)
- Yilan Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, No.270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
| | - Jiatao Liao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, No.270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
| | - Zhe Pan
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, No.270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
| | - Jin Meng
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, No.270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
| | - Li Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, No.270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
| | - Wei Shi
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, No.270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
| | - Xiaofang Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, No.270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
| | - Xiaomeng Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, No.270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
| | - Zhirui Zhou
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong'an Road, Shanghai, 200032, China
- Radiation Oncology Center, Huashan Hospital, No.12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Jurui Luo
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.1630 Dongfang Road, Shanghai, 200127, China
| | - Xingxing Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, No.270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
| | - Zhaozhi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, No.270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
| | - Xin Mei
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, No.270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
| | - Jinli Ma
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, No.270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, No.270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
| | - Yi-Zhou Jiang
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong'an Road, Shanghai, 200032, China
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, China
| | - Zhi-Min Shao
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong'an Road, Shanghai, 200032, China
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, China
| | - Fei Xavier Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, No.270 Dong'an Road, Shanghai, 200032, China
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Fudan University, No.131 Dong'an Road, Shanghai, 200032, China
| | - Xiaoli Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, No.270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
| | - Xiaomao Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, No.270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
| |
Collapse
|
4
|
Bu H, Pei C, Ouyang M, Chen Y, Yu L, Huang X, Tan Y. The antitumor peptide M1-20 induced the degradation of CDK1 through CUL4-DDB1-DCAF1-involved ubiquitination. Cancer Gene Ther 2024:10.1038/s41417-024-00855-8. [PMID: 39562696 DOI: 10.1038/s41417-024-00855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/21/2024]
Abstract
CDK1 is an oncogenic serine/threonine kinase known to play an important role in the regulation of the cell cycle. FOXM1, as one of the CDK1 substrates, requires binding of CDK1/CCNB1 complex for phosphorylation-dependent recruitment of p300/CBP coactivators to mediate transcriptional activity. Previous studies from our laboratory found that a novel peptide (M1-20) derived from the C-terminus of FOXM1 exhibited potent inhibitory effects for cancer cells. Based on these proofs and to explore the inhibitory mechanism of M1-20, we designed experiments and found that CDK1 served as an important target of M1-20. M1-20 enhanced the ubiquitination and degradation of CDK1 by CUL4-DDB1-DCAF1 complexes through the proteasome pathway. M1-20 could also affect the formation of CDK1/CCNB1 complexes. In addition, compared to RO3306, a CDK1 inhibitor, M1-20 exhibited excellent inhibitory effects in FVB/N MMTV-PyVT murine model of spontaneous breast cancer. These results suggested that M1-20 was a potential CDK1 inhibitor for the treatment of cancer.
Collapse
Affiliation(s)
- Huitong Bu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, China
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chaozhu Pei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, China
| | - Min Ouyang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, China
| | - Yan Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, China
| | - Li Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, China
| | - Xiaoqin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, China
| | - Yongjun Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, China.
| |
Collapse
|
5
|
Chen X, Shibu G, Sokolsky BA, Soussana TN, Fisher L, Deochand DK, Dacic M, Mantel I, Ramirez DC, Bell RD, Zhang T, Donlin LT, Goodman SM, Gray NS, Chinenov Y, Fisher RP, Rogatsky I. Disrupting the RNA polymerase II transcription cycle through CDK7 inhibition ameliorates inflammatory arthritis. Sci Transl Med 2024; 16:eadq5091. [PMID: 39565872 DOI: 10.1126/scitranslmed.adq5091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/11/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024]
Abstract
Macrophages are key drivers of inflammation and tissue damage in autoimmune diseases including rheumatoid arthritis. The rate-limiting step for transcription of more than 70% of inducible genes in macrophages is RNA polymerase II (Pol II) promoter-proximal pause release; however, the specific role of Pol II early elongation control in inflammation, and whether it can be modulated therapeutically, is unknown. Genetic ablation of a pause-stabilizing negative elongation factor (NELF) in macrophages did not affect baseline Pol II occupancy but enhanced the transcriptional response of paused anti-inflammatory genes to lipopolysaccharide followed by secondary attenuation of inflammatory signaling in vitro and in the K/BxN serum transfer mouse model of arthritis. To pharmacologically disrupt the Pol II transcription cycle, we used two covalent inhibitors of the transcription factor II H-associated cyclin-dependent kinase 7 (CDK7), THZ1 and YKL-5-124. Both reduced Pol II pausing in murine and human macrophages, broadly suppressed induction of pro- but not anti-inflammatory genes, and rapidly reversed preestablished inflammatory macrophage polarization. In mice, CDK7 inhibition ameliorated both acute and chronic progressive inflammatory arthritis. Lastly, CDK7 inhibition down-regulated a pathogenic gene expression signature in synovial explants from patients with rheumatoid arthritis. We propose that interfering with Pol II early elongation by targeting CDK7 represents a therapeutic opportunity for rheumatoid arthritis and other inflammatory diseases.
Collapse
Affiliation(s)
- Xi Chen
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Gayathri Shibu
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Baila A Sokolsky
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Logan Fisher
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Dinesh K Deochand
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Marija Dacic
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ian Mantel
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Daniel C Ramirez
- Department of Pathology and Laboratory Medicine, Hospital for Special Surgery, New York, NY 10021, USA
| | - Richard D Bell
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- David Z. Rosensweig Genomics Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Laura T Donlin
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Susan M Goodman
- Division of Rheumatology, Hospital for Special Surgery, New York, NY 10021, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Yurii Chinenov
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- David Z. Rosensweig Genomics Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Robert P Fisher
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10021, USA
| | - Inez Rogatsky
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
- David Z. Rosensweig Genomics Center, Hospital for Special Surgery, New York, NY 10021, USA
| |
Collapse
|
6
|
Belew MD, Chen J, Cheng Z. Emerging roles of cyclin-dependent kinase 7 in health and diseases. Trends Mol Med 2024:S1471-4914(24)00243-0. [PMID: 39414519 DOI: 10.1016/j.molmed.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024]
Abstract
Cyclin-dependent kinase 7 (CDK7) regulates cell cycle and transcription, which are central for cancer progression. CDK7 inhibitors exhibit substantial anticancer activities in preclinical studies and are currently being evaluated in clinical trials. CDK7 is widely expressed in the body. However, the impact of CDK7 inhibition on normal tissues has received little attention. Here, we review the biological functions of CDK7, followed by its emerging roles in development, homeostasis and diseases. We discuss the regulatory mechanisms of CDK7 kinase activation and provide an overview of CDK7 substrates identified to date. Moreover, we highlight unanswered questions and propose key areas for future investigation. An advanced understanding of CDK7 will facilitate the pharmaceutical development of CDK7 inhibitors and help minimize undesirable adverse effects.
Collapse
Affiliation(s)
- Mahder Dawit Belew
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, WA 99202-2131, USA
| | - Jingrui Chen
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, WA 99202-2131, USA
| | - Zhaokang Cheng
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, WA 99202-2131, USA.
| |
Collapse
|
7
|
Ji W, Du G, Jiang J, Lu W, Mills CE, Yuan L, Jiang F, He Z, Bradshaw GA, Chung M, Jiang Z, Byun WS, Hinshaw SM, Zhang T, Gray NS. Discovery of bivalent small molecule degraders of cyclin-dependent kinase 7 (CDK7). Eur J Med Chem 2024; 276:116613. [PMID: 39004018 PMCID: PMC11316633 DOI: 10.1016/j.ejmech.2024.116613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024]
Abstract
Cyclin-dependent kinase 7, along with cyclin H and MAT1, forms the CDK-activating complex (CAK), which directs cell cycle progression via T-loop phosphorylation of cell cycle CDKs. Pharmacological inhibition of CDK7 leads to selective anti-cancer effects in cellular and in vivo models, motivating several ongoing clinical investigations of this target. Current CDK7 inhibitors are either reversible or covalent inhibitors of its catalytic activity. We hypothesized that small molecule targeted protein degradation (TPD) might result in differentiated pharmacology due to the loss of scaffolding functions. Here, we report the design and characterization of a potent CDK7 degrader that is comprised of an ATP-competitive CDK7 binder linked to a CRL2VHL recruiter. JWZ-5-13 effectively degrades CDK7 in multiple cancer cells and leads to a potent inhibition of cell proliferation. Additionally, compound JWZ-5-13 displayed bioavailability in a pharmacokinetic study conducted in mice. Therefore, JWZ-5-13 is a useful chemical probe to investigate the pharmacological consequences of CDK7 degradation.
Collapse
Affiliation(s)
- Wenzhi Ji
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Guangyan Du
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jie Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Wenchao Lu
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Caitlin E Mills
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Linjie Yuan
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Fen Jiang
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Zhixiang He
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Gary A Bradshaw
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Mirra Chung
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Zixuan Jiang
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Woong Sub Byun
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Stephen M Hinshaw
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA.
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
8
|
Zhang H, Tu Y, Tao Z, Gao L, Huang S, Gao M, Mao J, Zhou Y, Li Y, Li J, Zhou Y, Xu T. Design, Synthesis, and Biological Evaluation of 2,4-Diaminopyrimidine Derivatives as Potent CDK7 Inhibitors. ACS Med Chem Lett 2024; 15:1213-1220. [PMID: 39140066 PMCID: PMC11318012 DOI: 10.1021/acsmedchemlett.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
Developing selective CDK7 inhibitors has emerged as a promising approach for cancer treatment owing to the critical role of CDK7 in cancer progression. Starting from BTX-A51, a CK1α inhibitor that also targets CDK7 and CDK9, we designed and synthesized a series of 2,4-diaminopyrimidine derivatives as potent CDK7 inhibitors. The representative compound, 22, displayed significant enzymatic inhibitory activity and demonstrated a remarkable selectivity profile against a panel of kinases, including seven CDK subtypes. Modeling studies and molecular dynamics simulations revealed that the sulfone group of 22 significantly enhanced the binding affinity, while the acetyl group contributed to the increased selectivity of CDK7 against CDK9. Compound 22 effectively inhibited the phosphorylation of RNA polymerase II and CDK2 and resulted in G1/S phase cell cycle arrest and apoptosis in MV4-11 cells. It appears to be a promising lead compound for the development of a CDK7 inhibitor for cancer therapy.
Collapse
Affiliation(s)
- Hualin Zhang
- Department
of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- Department
of Chemistry, College of Sciences, Shanghai
University, Shanghai 200444, China
| | - Yutong Tu
- Zhongshan
Institute for Drug Discovery, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, Guangdong 528400, China
- The
National Center for Drug Screening, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaofan Tao
- Department
of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixin Gao
- The
National Center for Drug Screening, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shengjie Huang
- State
Key Laboratory of Bioactive Molecules and Druggability Assessment,
International Cooperative Laboratory of Traditional Chinese Medicine
Modernization and Innovative Drug Discovery of Chinese Ministry of
Education, Guangzhou City Key Laboratory of Precision Chemical Drug
Development, School of Pharmacy, Jinan University, 855 Xingye Avenue, Guangzhou 510632, China
| | - Mingshan Gao
- Department
of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jialuo Mao
- Zhongshan
Institute for Drug Discovery, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, Guangdong 528400, China
- The
National Center for Drug Screening, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
| | - Yang Zhou
- State
Key Laboratory of Bioactive Molecules and Druggability Assessment,
International Cooperative Laboratory of Traditional Chinese Medicine
Modernization and Innovative Drug Discovery of Chinese Ministry of
Education, Guangzhou City Key Laboratory of Precision Chemical Drug
Development, School of Pharmacy, Jinan University, 855 Xingye Avenue, Guangzhou 510632, China
| | - Yupeng Li
- Department
of Pharmaceutical Sciences, School of Pharmacy and Border Biomedical
Research Center, The University of Texas
at EI Paso, EI Paso, Texas 79902, United States
| | - Jia Li
- Zhongshan
Institute for Drug Discovery, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, Guangdong 528400, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yubo Zhou
- Zhongshan
Institute for Drug Discovery, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, Guangdong 528400, China
- The
National Center for Drug Screening, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
| | - Tianfeng Xu
- Department
of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- School
of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced
Study, University of Chinese Academy of
Sciences, Hangzhou 310024, China
| |
Collapse
|
9
|
Mukherjee M, Day PJ, Laverty D, Bueren-Calabuig JA, Woodhead AJ, Griffiths-Jones C, Hiscock S, East C, Boyd S, O'Reilly M. Protein engineering enables a soakable crystal form of human CDK7 primed for high-throughput crystallography and structure-based drug design. Structure 2024; 32:1040-1048.e3. [PMID: 38870939 DOI: 10.1016/j.str.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/08/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
Cyclin dependent kinase 7 (CDK7) is an important therapeutic kinase best known for its dual role in cell cycle regulation and gene transcription. Here, we describe the application of protein engineering to generate constructs leading to high resolution crystal structures of human CDK7 in both active and inactive conformations. The active state of the kinase was crystallized by incorporation of an additional surface residue mutation (W132R) onto the double phosphomimetic mutant background (S164D and T170E) that yielded the inactive kinase structure. A novel back-soaking approach was developed to determine crystal structures of several clinical and pre-clinical inhibitors of this kinase, demonstrating the potential utility of the crystal system for structure-based drug design (SBDD). The crystal structures help to rationalize the mode of inhibition and the ligand selectivity profiles versus key anti-targets. The protein engineering approach described here illustrates a generally applicable strategy for structural enablement of challenging molecular targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Susan Boyd
- Astex Pharmaceuticals, Cambridge CB4 0QA, UK
| | | |
Collapse
|
10
|
Kar PP, Araveti PB, Saxena K, Borah A, Sijwali P, Srivastava A. Cimicifugin, a broad-spectrum inhibitor of Theileria annulata and Plasmodium falciparum CDK7. Antimicrob Agents Chemother 2024; 68:e0044024. [PMID: 39023263 PMCID: PMC11304743 DOI: 10.1128/aac.00440-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/15/2024] [Indexed: 07/20/2024] Open
Abstract
Cyclin-dependent kinase 7 is an attractive therapeutic target for the treatment of cancers, and a previous report suggested that Plasmodium falciparum CDK7 is a potential drug target for developing new anti-malarial drugs. In this study, we aimed to characterize and evaluate the drug target potential of Theileria annulata CDK7. Theileria annulata is responsible for tropical theileriosis, which induces a phenotype similar to cancerous cells like immortalization, hyperproliferation, and dissemination. Virtual screening of the MyriaScreen II library predicted 14 compounds with high binding energies to the ATP-binding pocket of TaCDK7. Three compounds (cimicifugin, ST092793, and ST026925) of these 14 compounds were non-cytotoxic to the uninfected bovine cells (BoMac cells). Cimicifugin treatment led to the activation of the extrinsic apoptosis pathway and induced autophagy in T. annulata-infected cells. Furthermore, cimicifugin also inhibited the growth of P. falciparum, indicating that it has both anti-theilerial and anti-malarial activities and that TaCDK7 and PfCDK7 are promising drug targets.
Collapse
Affiliation(s)
- Prajna Parimita Kar
- BRIC-NIAB (National Institute of Animal Biotechnology), Hyderabad, India
- Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Prasanna Babu Araveti
- BRIC-NIAB (National Institute of Animal Biotechnology), Hyderabad, India
- Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Kanika Saxena
- CSIR-CCMB (Center for Cellular and Molecular Biology), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Atlanta Borah
- BRIC-NIAB (National Institute of Animal Biotechnology), Hyderabad, India
| | - Puran Sijwali
- CSIR-CCMB (Center for Cellular and Molecular Biology), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anand Srivastava
- BRIC-NIAB (National Institute of Animal Biotechnology), Hyderabad, India
- Regional Centre for Biotechnology (RCB), Faridabad, India
| |
Collapse
|
11
|
Düster R, Anand K, Binder SC, Schmitz M, Gatterdam K, Fisher RP, Geyer M. Structural basis of Cdk7 activation by dual T-loop phosphorylation. Nat Commun 2024; 15:6597. [PMID: 39097586 PMCID: PMC11297931 DOI: 10.1038/s41467-024-50891-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024] Open
Abstract
Cyclin-dependent kinase 7 (Cdk7) is required in cell-cycle and transcriptional regulation owing to its function as both a CDK-activating kinase (CAK) and part of transcription factor TFIIH. Cdk7 forms active complexes by associating with Cyclin H and Mat1, and is regulated by two phosphorylations in the activation segment (T loop): the canonical activating modification at T170 and another at S164. Here we report the crystal structure of the human Cdk7/Cyclin H/Mat1 complex containing both T-loop phosphorylations. Whereas pT170 coordinates basic residues conserved in other CDKs, pS164 nucleates an arginine network unique to the ternary Cdk7 complex, involving all three subunits. We identify differential dependencies of kinase activity and substrate recognition on the individual phosphorylations. CAK function is unaffected by T-loop phosphorylation, whereas activity towards non-CDK substrates is increased several-fold by T170 phosphorylation. Moreover, dual T-loop phosphorylation stimulates multisite phosphorylation of the RNA polymerase II (RNAPII) carboxy-terminal domain (CTD) and SPT5 carboxy-terminal repeat (CTR) region. In human cells, Cdk7 activation is a two-step process wherein S164 phosphorylation precedes, and may prime, T170 phosphorylation. Thus, dual T-loop phosphorylation can regulate Cdk7 through multiple mechanisms, with pS164 supporting tripartite complex formation and possibly influencing processivity, while pT170 enhances activity towards key transcriptional substrates.
Collapse
Affiliation(s)
- Robert Düster
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kanchan Anand
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Sophie C Binder
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Maximilian Schmitz
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Karl Gatterdam
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Robert P Fisher
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
12
|
Chen J, Wei J, Xia P, Liu Y, Belew MD, Toohill R, Wu BJ, Cheng Z. Inhibition of cyclin-dependent kinase 7 mitigates doxorubicin cardiotoxicity and enhances anticancer efficacy. Cardiovasc Res 2024; 120:1024-1036. [PMID: 38646672 PMCID: PMC11288736 DOI: 10.1093/cvr/cvae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 01/16/2024] [Accepted: 02/29/2024] [Indexed: 04/23/2024] Open
Abstract
AIMS The anthracycline family of anticancer agents such as doxorubicin (DOX) can induce apoptotic death of cardiomyocytes and cause cardiotoxicity. We previously reported that DOX-induced apoptosis is accompanied by cardiomyocyte cell cycle re-entry. Cell cycle progression requires cyclin-dependent kinase 7 (CDK7)-mediated activation of downstream cell cycle CDKs. This study aims to determine whether CDK7 can be targeted for cardioprotection during anthracycline chemotherapy. METHODS AND RESULTS DOX exposure induced CDK7 activation in mouse heart and isolated cardiomyocytes. Cardiac-specific ablation of Cdk7 attenuated DOX-induced cardiac dysfunction and fibrosis. Treatment with the covalent CDK7 inhibitor THZ1 also protected against DOX-induced cardiomyopathy and apoptosis. DOX treatment induced activation of the proapoptotic CDK2-FOXO1-Bim axis in a CDK7-dependent manner. In response to DOX, endogenous CDK7 directly bound and phosphorylated CDK2 at Thr160 in cardiomyocytes, leading to full CDK2 kinase activation. Importantly, inhibition of CDK7 further suppressed tumour growth when used in combination with DOX in an immunocompetent mouse model of breast cancer. CONCLUSION Activation of CDK7 is necessary for DOX-induced cardiomyocyte apoptosis and cardiomyopathy. Our findings uncover a novel proapoptotic role for CDK7 in cardiomyocytes. Moreover, this study suggests that inhibition of CDK7 attenuates DOX-induced cardiotoxicity but augments the anticancer efficacy of DOX. Therefore, combined administration of CDK7 inhibitor and DOX may exhibit diminished cardiotoxicity but superior anticancer activity.
Collapse
MESH Headings
- Animals
- Doxorubicin/toxicity
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/metabolism
- Cardiotoxicity
- Cyclin-Dependent Kinases/metabolism
- Cyclin-Dependent Kinases/antagonists & inhibitors
- Apoptosis/drug effects
- Protein Kinase Inhibitors/pharmacology
- Cyclin-Dependent Kinase 2/metabolism
- Cyclin-Dependent Kinase 2/antagonists & inhibitors
- Mice, Inbred C57BL
- Cyclin-Dependent Kinase-Activating Kinase
- Female
- Phenylenediamines/pharmacology
- Signal Transduction/drug effects
- Phosphorylation
- Mice, Knockout
- Cardiomyopathies/chemically induced
- Cardiomyopathies/enzymology
- Cardiomyopathies/prevention & control
- Cardiomyopathies/pathology
- Cardiomyopathies/metabolism
- Antibiotics, Antineoplastic/toxicity
- Pyrimidines/pharmacology
- Humans
- Fibrosis
- Cell Line, Tumor
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/enzymology
- Mammary Neoplasms, Experimental/metabolism
- Ventricular Function, Left/drug effects
Collapse
Affiliation(s)
- Jingrui Chen
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, WA 99202-2131, USA
| | - Jing Wei
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, WA 99202-2131, USA
| | - Peng Xia
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, WA 99202-2131, USA
| | - Yuening Liu
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, WA 99202-2131, USA
| | - Mahder Dawit Belew
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, WA 99202-2131, USA
| | - Ryan Toohill
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, WA 99202-2131, USA
| | - Boyang Jason Wu
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, WA 99202-2131, USA
| | - Zhaokang Cheng
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, WA 99202-2131, USA
| |
Collapse
|
13
|
Cavalu S, Abdelhamid AM, Saber S, Elmorsy EA, Hamad RS, Abdel-Reheim MA, Yahya G, Salama MM. Cell cycle machinery in oncology: A comprehensive review of therapeutic targets. FASEB J 2024; 38:e23734. [PMID: 38847486 DOI: 10.1096/fj.202400769r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024]
Abstract
The cell cycle is tightly regulated to ensure controlled cell proliferation. Dysregulation of the cell cycle machinery is a hallmark of cancer that leads to unchecked growth. This review comprehensively analyzes key molecular regulators of the cell cycle and how they contribute to carcinogenesis when mutated or overexpressed. It focuses on cyclins, cyclin-dependent kinases (CDKs), CDK inhibitors, checkpoint kinases, and mitotic regulators as therapeutic targets. Promising strategies include CDK4/6 inhibitors like palbociclib, ribociclib, and abemaciclib for breast cancer treatment. Other possible targets include the anaphase-promoting complex/cyclosome (APC/C), Skp2, p21, and aurora kinase inhibitors. However, challenges with resistance have limited clinical successes so far. Future efforts should focus on combinatorial therapies, next-generation inhibitors, and biomarkers for patient selection. Targeting the cell cycle holds promise but further optimization is necessary to fully exploit it as an anti-cancer strategy across diverse malignancies.
Collapse
Affiliation(s)
- Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Amir Mohamed Abdelhamid
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Al Sharqia, Egypt
| | - Mohamed M Salama
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
14
|
Kwon MR, Park JS, Ko EJ, Park J, Ju EJ, Shin SH, Son GW, Lee HW, Park YY, Kang MH, Kim YJ, Kim BM, Lee HJ, Kim TW, Kim CJ, Song SY, Park SS, Jeong SY. Ibulocydine Inhibits Migration and Invasion of TNBC Cells via MMP-9 Regulation. Int J Mol Sci 2024; 25:6123. [PMID: 38892310 PMCID: PMC11173234 DOI: 10.3390/ijms25116123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Triple-negative breast cancer (TNBC) accounts for approximately 15-20% of all breast cancer types, indicating a poor survival prognosis with a more aggressive biology of metastasis to the lung and a short response duration to available therapies. Ibulocydine (IB) is a novel (cyclin-dependent kinase) CDK7/9 inhibitor prodrug displaying potent anti-cancer effects against various cancer cell types. We performed in vitro and in vivo experiments to determine whether IB inhibits metastasis and eventually overcomes the poor drug response in TNBC. The result showed that IB inhibited the growth of TNBC cells by inducing caspase-mediated apoptosis and blocking metastasis by reducing MMP-9 expression in vitro. Concurrently, in vivo experiments using the metastasis model showed that IB inhibited metastasis of MDA-MB-231-Luc cells to the lung. Collectively, these results demonstrate that IB inhibited the growth of TNBC cells and blocked metastasis by regulating MMP-9 expression, suggesting a novel therapeutic agent for metastatic TNBC.
Collapse
Affiliation(s)
- Mi-Ri Kwon
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer Therapeutix, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Ji-Soo Park
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun-Jung Ko
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer Therapeutix, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Jin Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer Therapeutix, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Eun-Jin Ju
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer Therapeutix, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Seol-Hwa Shin
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer Therapeutix, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Ga-Won Son
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer Therapeutix, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Hye-Won Lee
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer Therapeutix, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Yun-Yong Park
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Myoung-Hee Kang
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Yeon-Joo Kim
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Byeong-Moon Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Hee-Jin Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Tae-Won Kim
- Asan Preclinical Evaluation Center for Cancer Therapeutix, Asan Medical Center, Seoul 05505, Republic of Korea
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Chong-Jai Kim
- Asan Preclinical Evaluation Center for Cancer Therapeutix, Asan Medical Center, Seoul 05505, Republic of Korea
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Si-Yeol Song
- Asan Preclinical Evaluation Center for Cancer Therapeutix, Asan Medical Center, Seoul 05505, Republic of Korea
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Seok-Soon Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer Therapeutix, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Seong-Yun Jeong
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer Therapeutix, Asan Medical Center, Seoul 05505, Republic of Korea
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| |
Collapse
|
15
|
Guarducci C, Nardone A, Russo D, Nagy Z, Heraud C, Grinshpun A, Zhang Q, Freelander A, Leventhal MJ, Feit A, Cohen Feit G, Feiglin A, Liu W, Hermida-Prado F, Kesten N, Ma W, De Angelis C, Morlando A, O'Donnell M, Naumenko S, Huang S, Nguyen QD, Huang Y, Malorni L, Bergholz JS, Zhao JJ, Fraenkel E, Lim E, Schiff R, Shapiro GI, Jeselsohn R. Selective CDK7 Inhibition Suppresses Cell Cycle Progression and MYC Signaling While Enhancing Apoptosis in Therapy-resistant Estrogen Receptor-positive Breast Cancer. Clin Cancer Res 2024; 30:1889-1905. [PMID: 38381406 PMCID: PMC11061603 DOI: 10.1158/1078-0432.ccr-23-2975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/09/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
PURPOSE Resistance to endocrine therapy (ET) and CDK4/6 inhibitors (CDK4/6i) is a clinical challenge in estrogen receptor (ER)-positive (ER+) breast cancer. Cyclin-dependent kinase 7 (CDK7) is a candidate target in endocrine-resistant ER+ breast cancer models and selective CDK7 inhibitors (CDK7i) are in clinical development for the treatment of ER+ breast cancer. Nonetheless, the precise mechanisms responsible for the activity of CDK7i in ER+ breast cancer remain elusive. Herein, we sought to unravel these mechanisms. EXPERIMENTAL DESIGN We conducted multi-omic analyses in ER+ breast cancer models in vitro and in vivo, including models with different genetic backgrounds. We also performed genome-wide CRISPR/Cas9 knockout screens to identify potential therapeutic vulnerabilities in CDK4/6i-resistant models. RESULTS We found that the on-target antitumor effects of CDK7 inhibition in ER+ breast cancer are in part p53 dependent, and involve cell cycle inhibition and suppression of c-Myc. Moreover, CDK7 inhibition exhibited cytotoxic effects, distinctive from the cytostatic nature of ET and CDK4/6i. CDK7 inhibition resulted in suppression of ER phosphorylation at S118; however, long-term CDK7 inhibition resulted in increased ER signaling, supporting the combination of ET with a CDK7i. Finally, genome-wide CRISPR/Cas9 knockout screens identified CDK7 and MYC signaling as putative vulnerabilities in CDK4/6i resistance, and CDK7 inhibition effectively inhibited CDK4/6i-resistant models. CONCLUSIONS Taken together, these findings support the clinical investigation of selective CDK7 inhibition combined with ET to overcome treatment resistance in ER+ breast cancer. In addition, our study highlights the potential of increased c-Myc activity and intact p53 as predictors of sensitivity to CDK7i-based treatments.
Collapse
Affiliation(s)
- Cristina Guarducci
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Agostina Nardone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Douglas Russo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Zsuzsanna Nagy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Capucine Heraud
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Albert Grinshpun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Qi Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Allegra Freelander
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Mathew Joseph Leventhal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Computational and Systems Biology PhD program, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Avery Feit
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Gabriella Cohen Feit
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ariel Feiglin
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts
| | - Weihan Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Francisco Hermida-Prado
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nikolas Kesten
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Wen Ma
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Carmine De Angelis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Antonio Morlando
- Bioinformatics Unit, Department of Oncology, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy
| | - Madison O'Donnell
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Sergey Naumenko
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, Massachusetts
| | - Shixia Huang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Quang-Dé Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ying Huang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Luca Malorni
- Translational Research Unit, Department of Oncology, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy
| | - Johann S. Bergholz
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Jean J. Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Elgene Lim
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Rachel Schiff
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Geoffrey I. Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Rinath Jeselsohn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
16
|
Song X, Fang C, Dai Y, Sun Y, Qiu C, Lin X, Xu R. Cyclin-dependent kinase 7 (CDK7) inhibitors as a novel therapeutic strategy for different molecular types of breast cancer. Br J Cancer 2024; 130:1239-1248. [PMID: 38355840 PMCID: PMC11014910 DOI: 10.1038/s41416-024-02589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Cyclin-dependent kinase (CDK) 7 is aberrantly overexpressed in many types of cancer and is an attractive target for cancer therapy due to its dual role in transcription and cell cycle progression. Moreover, CDK7 can directly modulate the activities of estrogen receptor (ER), which is a major driver in breast cancer. Breast cancer cells have exhibited high sensitivity to CDK7 inhibition in pre-clinical studies. METHODS In this review, we provide a comprehensive summary of the latest insights into CDK7 biology and recent advancements in CDK7 inhibitor development for breast cancer treatment. We also discuss the current application of CDK7 inhibitors in different molecular types of breast cancer to provide potential strategies for the treatment of breast cancer. RESULTS Significant progress has been made in the development of selective CDK7 inhibitors, which show efficacy in both triple-negative breast cancer (TNBC) and hormone receptor-positive breast cancer (HR+). Moreover, combined with other agents, CDK7 inhibitors may provide synergistic effects for endocrine therapy and chemotherapy. Thus, high-quality studies for developing potent CDK7 inhibitors and investigating their applications in breast cancer therapy are rapidly emerging. CONCLUSION CDK7 inhibitors have emerged as a promising therapeutic strategy and have demonstrated significant anti-cancer activity in different subtypes of breast cancer, especially those that have been resistant to current therapies.
Collapse
Affiliation(s)
- Xue Song
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Chen Fang
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Yan Dai
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Yang Sun
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Chang Qiu
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Xiaojie Lin
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Rui Xu
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
17
|
Niu P, Tao Y, Lin G, Xu H, Meng Q, Yang K, Huang W, Song M, Ding K, Ma D, Fan M. Design and Synthesis of Novel Macrocyclic Derivatives as Potent and Selective Cyclin-Dependent Kinase 7 Inhibitors. J Med Chem 2024; 67:6099-6118. [PMID: 38586950 DOI: 10.1021/acs.jmedchem.3c01832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The duality of function (cell cycle regulation and gene transcription) of cyclin-dependent kinase 7 (CDK7) makes it an attractive oncology target and the discovery of CDK7 inhibitors has been a long-term pursuit by academia and pharmaceutical companies. However, achieving selective leading compounds is still difficult owing to the similarities among the ATP binding pocket. Herein, we detail the design and synthesis of a series of macrocyclic derivatives with pyrazolo[1,5-a]-1,3,5-triazine core structure as potent and selective CDK7 inhibitors. The diverse manners of macrocyclization led to distinguished selectivity profiles of the CDK family. Molecular dynamics (MD) simulation explained the binding difference between 15- and 16-membered macrocyclic compounds. Further optimization generated compound 37 exhibiting good CDK7 inhibitory activity and high selectivity over other CDKs. This work clearly demonstrated macrocyclization is a versatile method to finely tune the selectivity profile of small molecules and MD simulation can be a valuable tool in prioritizing designs of the macrocycle.
Collapse
Affiliation(s)
- Pengpeng Niu
- Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin 300072, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Yanxin Tao
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Guohao Lin
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Huiqi Xu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Qingyuan Meng
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Kang Yang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Weixue Huang
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 20032, China
| | - Meiru Song
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Ke Ding
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 20032, China
| | - Dawei Ma
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 20032, China
| | - Mengyang Fan
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
18
|
Gong Y, Li H. CDK7 in breast cancer: mechanisms of action and therapeutic potential. Cell Commun Signal 2024; 22:226. [PMID: 38605321 PMCID: PMC11010440 DOI: 10.1186/s12964-024-01577-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
Cyclin-dependent kinase 7 (CDK7) serves as a pivotal regulator in orchestrating cellular cycle dynamics and gene transcriptional activity. Elevated expression levels of CDK7 have been ubiquitously documented across a spectrum of malignancies and have been concomitantly correlated with adverse clinical outcomes. This review delineates the biological roles of CDK7 and explicates the molecular pathways through which CDK7 exacerbates the oncogenic progression of breast cancer. Furthermore, we synthesize the extant literature to provide a comprehensive overview of the advancement of CDK7-specific small-molecule inhibitors, encapsulating both preclinical and clinical findings in breast cancer contexts. The accumulated evidence substantiates the conceptualization of CDK7 as a propitious therapeutic target in breast cancer management.
Collapse
Affiliation(s)
- Ying Gong
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Huiping Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| |
Collapse
|
19
|
Greber BJ. High-resolution cryo-EM of a small protein complex: The structure of the human CDK-activating kinase. Structure 2024:S0969-2126(24)00085-6. [PMID: 38565138 DOI: 10.1016/j.str.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/27/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
The human CDK-activating kinase (CAK) is a multifunctional protein complex and key regulator of cell growth and division. Because of its critical functions in regulating the cell cycle and transcription initiation, it is a key target for multiple cancer drug discovery programs. However, the structure of the active human CAK, insights into its regulation, and its interactions with cellular substrates and inhibitors remained elusive until recently due to the lack of high-resolution structures of the intact complex. This review covers the progress in structure determination of the human CAK by cryogenic electron microscopy (cryo-EM), from early efforts to recent near-atomic resolution maps routinely resolved at 2Å or better. These results were enabled by the latest cryo-EM technologies introduced after the initial phase of the "resolution revolution" and allowed the application of high-resolution methods to new classes of molecular targets, including small protein complexes that were intractable using earlier technology.
Collapse
Affiliation(s)
- Basil J Greber
- Division of Structural Biology, The Institute of Cancer Research, London SW3 6JB, UK.
| |
Collapse
|
20
|
Cushing VI, Koh AF, Feng J, Jurgaityte K, Bondke A, Kroll SHB, Barbazanges M, Scheiper B, Bahl AK, Barrett AGM, Ali S, Kotecha A, Greber BJ. High-resolution cryo-EM of the human CDK-activating kinase for structure-based drug design. Nat Commun 2024; 15:2265. [PMID: 38480681 PMCID: PMC10937634 DOI: 10.1038/s41467-024-46375-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 02/23/2024] [Indexed: 03/17/2024] Open
Abstract
Rational design of next-generation therapeutics can be facilitated by high-resolution structures of drug targets bound to small-molecule inhibitors. However, application of structure-based methods to macromolecules refractory to crystallization has been hampered by the often-limiting resolution and throughput of cryogenic electron microscopy (cryo-EM). Here, we use high-resolution cryo-EM to determine structures of the CDK-activating kinase, a master regulator of cell growth and division, in its free and nucleotide-bound states and in complex with 15 inhibitors at up to 1.8 Å resolution. Our structures provide detailed insight into inhibitor interactions and networks of water molecules in the active site of cyclin-dependent kinase 7 and provide insights into the mechanisms contributing to inhibitor selectivity, thereby providing the basis for rational design of next-generation therapeutics. These results establish a methodological framework for the use of high-resolution cryo-EM in structure-based drug design.
Collapse
Affiliation(s)
- Victoria I Cushing
- The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Adrian F Koh
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Achtseweg Noord 5, 5651, Eindhoven, The Netherlands
| | - Junjie Feng
- The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Kaste Jurgaityte
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | | | | | - Marion Barbazanges
- Department of Chemistry, Imperial College London, London, UK
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, 4 Place Jussieu, 75252, Paris Cedex 05, France
| | - Bodo Scheiper
- Department of Chemistry, Imperial College London, London, UK
| | - Ash K Bahl
- Carrick Therapeutics, Nova UCD, Bellfield Innovation Park, Dublin 4, Ireland
| | | | - Simak Ali
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK.
| | - Abhay Kotecha
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Achtseweg Noord 5, 5651, Eindhoven, The Netherlands.
| | - Basil J Greber
- The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK.
| |
Collapse
|
21
|
Horvath RM, Brumme ZL, Sadowski I. Small molecule inhibitors of transcriptional cyclin-dependent kinases impose HIV-1 latency, presenting "block and lock" treatment strategies. Antimicrob Agents Chemother 2024; 68:e0107223. [PMID: 38319085 PMCID: PMC10923280 DOI: 10.1128/aac.01072-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Current antiretroviral therapy for HIV-1 infection does not represent a cure for infection as viral rebound inevitably occurs following discontinuation of treatment. The "block and lock" therapeutic strategy is intended to enforce proviral latency and durably suppress viremic reemergence in the absence of other intervention. The transcription-associated cyclin-dependent protein kinases (tCDKs) are required for expression from the 5´ HIV-1 long-terminal repeat, but the therapeutic potential of inhibiting these kinases for enforcing HIV-1 latency has not been characterized. Here, we expanded previous observations to directly compare the effect of highly selective small molecule inhibitors of CDK7 (YKL-5-124), CDK9 (LDC000067), and CDK8/19 (Senexin A), and found each of these prevented HIV-1 provirus expression at concentrations that did not cause cell toxicity. Inhibition of CDK7 caused cell cycle arrest, whereas CDK9 and CDK8/19 inhibitors did not, and could be continuously administered to establish proviral latency. Upon discontinuation of drug administration, HIV immediately rebounded in cells that had been treated with the CDK9 inhibitor, while proviral latency persisted for several days in cells that had been treated with CDK8/19 inhibitors. These results identify the mediator kinases CDK8/CDK19 as potential "block and lock" targets for therapeutic suppression of HIV-1 provirus expression.
Collapse
Affiliation(s)
- Riley M. Horvath
- Department of Biochemistry and Molecular Biology Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Ivan Sadowski
- Department of Biochemistry and Molecular Biology Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
22
|
Kuchukulla RR, Hwang I, Kim SH, Kye Y, Park N, Cha H, Moon S, Chung HW, Lee C, Kong G, Hur W. Identification of a novel potent CDK inhibitor degrading cyclinK with a superb activity to reverse trastuzumab-resistance in HER2-positive breast cancer in vivo. Eur J Med Chem 2024; 264:116014. [PMID: 38061230 DOI: 10.1016/j.ejmech.2023.116014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/19/2023] [Accepted: 11/26/2023] [Indexed: 12/30/2023]
Abstract
CDK12 is overexpressed in HER2-positive breast cancers and promotes tumorigenesis and trastuzumab resistance. Thus CDK12 is a good therapeutic target for the HER2-positive breast tumors resistant to trastuzumab. We previously reported a novel purine-based CDK inhibitor with an ability to degrade cyclinK. Herein, we further explored and synthesized new derivatives, and identified a new potent pan-CDK inhibitor degrading cyclinK (32e). Compound 32e potently inhibited CDK12/cyclinK with IC50 = 3 nM, and suppressed the growth of the both trastuzumab-sensitive and trastuzumab-resistant HER2-positive breast cancer cell lines (GI50's = 9-21 nM), which is superior to a potent, clinical pan-CDK inhibitor dinaciclib. Moreover, 32e (10, 20 mg/kg, ip, twice a week) showed a dose-dependent inhibition of tumor growth and a more dramatic anti-cancer effect than dinaciclib in mouse in vivo orthotopic breast cancer model of trastuzumab-resistant HCC1954 cells. Kinome-wide inhibition profiling revealed that 32e at 1 μM exhibits a decent selectivity toward CDK-family kinases including CDK12 over other wildtype protein kinases. Quantitative global proteomic analysis of 32e-treated HCC1954 cells demonstrated that 32e also showed a decent selectivity in degrading cyclinK over other cyclins. Compound 32e could be developed as a drug for intractable trastuzumab-resistant HER2-positive breast cancers. Our current study would provide a useful insight in designing potent cyclinK degraders.
Collapse
Affiliation(s)
- Ratnakar Reddy Kuchukulla
- HY-KIST Bioconvergence, Hanyang University, 222 Wangsimniro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Injeoung Hwang
- HY-KIST Bioconvergence, Hanyang University, 222 Wangsimniro, Seongdong-gu, Seoul, 04763, Republic of Korea; Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14 gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Suhn Hyung Kim
- Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14 gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Younghyeon Kye
- HY-KIST Bioconvergence, Hanyang University, 222 Wangsimniro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Narae Park
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14 gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, 26 Kyungheedaero, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Heary Cha
- HY-KIST Bioconvergence, Hanyang University, 222 Wangsimniro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Sojeong Moon
- HY-KIST Bioconvergence, Hanyang University, 222 Wangsimniro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Hwan Won Chung
- Computational Science Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14 gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Cheolju Lee
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14 gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Gu Kong
- HY-KIST Bioconvergence, Hanyang University, 222 Wangsimniro, Seongdong-gu, Seoul, 04763, Republic of Korea; Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14 gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Department of Pathology, Hanyang University College of Medicine, 222 Wangsimniro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| | - Wooyoung Hur
- HY-KIST Bioconvergence, Hanyang University, 222 Wangsimniro, Seongdong-gu, Seoul, 04763, Republic of Korea; Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14 gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| |
Collapse
|
23
|
Zhang H, Lin G, Jia S, Zhang Y, Wu J, Tao Y, Huang W, Song M, Ding K, Ma D, Fan M. Discovery and optimization of thieno[3,2-d]pyrimidine derivatives as highly selective inhibitors of cyclin-dependent kinase 7. Eur J Med Chem 2024; 263:115955. [PMID: 38000213 DOI: 10.1016/j.ejmech.2023.115955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
Targeting cyclin-dependent kinase 7 (CDK7) has emerged as a highly sought-after therapeutic strategy in oncology due to its duality of function in regulating biological processes, including cell cycle progression and transcriptional control. Herein, we describe the design, optimization and characterization of a series of thieno[3,2-d]pyrimidine derivatives as potent CDK7 inhibitors. The involvement of thiophene as core structure plays critical role in leading to the remarkable selectivity and incorporation of a fluorine atom into the piperidine ring enhances metabolic stability. Structure-activity relationship (SAR) study generated compound 36 as lead compound with potent inhibitory activity against CDK7 and good kinome selectivity in vitro. Compound 36 demonstrated strong efficacy against a triple negative breast cancer (TNBC) cell line-derived xenograft (CDX) mouse model upon oral administration at 5 mg/kg once daily. Therefore, it exhibits immense potential as a lead candidate for further exploration in the development of cancer therapy.
Collapse
Affiliation(s)
- Hongjin Zhang
- Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin, 300072, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China
| | - Guohao Lin
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China; Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Suyun Jia
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China; School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China; Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 20032, China
| | - Ying Zhang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China; College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Jianbo Wu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China; College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Yanxin Tao
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China; School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Weixue Huang
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 20032, China
| | - Meiru Song
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China; Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Ke Ding
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 20032, China.
| | - Dawei Ma
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 20032, China.
| | - Mengyang Fan
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China; Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|
24
|
Huang L, Yang H, Chen K, Yuan J, Li J, Dai G, Gu M, Shi Y. The suppressive efficacy of THZ1 depends on KRAS mutation subtype and is associated with super-enhancer activity and the PI3K/AKT/mTOR signalling in pancreatic ductal adenocarcinoma: A hypothesis-generating study. Clin Transl Med 2023; 13:e1500. [PMID: 38037549 PMCID: PMC10689978 DOI: 10.1002/ctm2.1500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Inhibition of CDK7, a potent transcription regulator, may bring new hope for treating pancreatic ductal adenocarcinoma (PDAC), which is featured by large genetic heterogeneity and abundant KRAS mutations. This investigation aimed at exploring the discrepant efficacies of THZ1, a small-molecule covalent CDK7 inhibitor, on PDACs with different KRAS mutations and the underlying mechanisms. METHODS Associations of CDK7 expression with survival by KRAS mutations were first assessed. Effects of THZ1 on PDAC by different KRAS mutations were then investigated in vitro and in vivo. Moreover, the effects of THZ1 on gene transcription and phosphorylation of RNA polymerase II (RNAPOLII) in different KRAS mutant PDACs were assessed, and the effect of THZ1 on super-enhancer activity was evaluated using chromatin immunoprecipitation sequencing. Lastly, the effects of THZ1 on the binding of H3K27ac to PIK3CA and on the PI3K/AKT/mTOR signalling were analysed. RESULTS High CDK7 expression was significantly linked to worse survival within PDAC patients carrying KRAS-G12V mutation but not in those with KRAS-G12D mutation. The apoptosis-inducing effect of THZ1 was markedly stronger in KRAS-G12V PDAC than KRAS-G12D cancer. THZ1 significantly inhibited the growth of xenograft tumour with KRAS-G12V mutation, and the inhibition was markedly stronger than for KRAS-G12D tumour. In mini-cell-derived xenograft (CDX) models, THZ1 significantly suppressed KRAS-G12V PDAC but not KRAS-G12D cancer. THZ1 significantly suppressed the phosphorylation of RNAPOLII, and this effect was stronger in KRAS-G12V PDAC (especially at ser5). KRAS-G12V PDAC had more H3K27ac-binding super-enhancers, and the inhibition of THZ1 on super-enhancer activity was also stronger in KRAS-G12V PDAC. Furthermore, THZ1 significantly weakened the binding of H3K27ac to PIK3CA in KRAS-G12V PDAC. THZ1 significantly suppressed the PI3K/AKT/mTOR pathway and its downstream markers, and this effect was stronger in KRAS-G12V cells. CONCLUSIONS In this hypothesis-generating study, THZ1 might selectively inhibit certain PDACs with KRAS-G12V mutation more potently compared with some other PDACs with KRAS-G12D mutation, which might be associated with its effect on super-enhancer activity and the PI3K/AKT/mTOR signalling. Our findings might offer novel key clues for the precise management of PDAC and important evidence for future targeted trial design. HIGHLIGHTS THZ1 had a stronger effect on PDAC-bearing KRAS-G12V mutation than G12D mutation. Suppressive effect of THZ1 on phosphorylation of RNAPOLII was stronger in KRAS-G12V than KRAS-G12D PDAC. Inhibition of THZ1 on super-enhancer activity and H3K27ac binding to PIK3CA was stronger in KRAS-G12V PDAC. Suppressive effect of THZ1 on PI3K/AKT/mTOR pathway was stronger in KRAS-G12V PDAC.
Collapse
Affiliation(s)
- Lei Huang
- Department of OncologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hui Yang
- Department of OncologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Kaidi Chen
- School of Pharmaceutical ScienceZhejiang Chinese Medical UniversityHangzhouChina
| | - Jing Yuan
- Department of PathologyChinese PLA General HospitalBeijingChina
| | - Jie Li
- Department of PathologyChinese PLA General HospitalBeijingChina
| | - Guanghai Dai
- Department of Medical OncologyChinese PLA General HospitalBeijingChina
| | - Mancang Gu
- School of Pharmaceutical ScienceZhejiang Chinese Medical UniversityHangzhouChina
- Academy of Chinese Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Yan Shi
- Department of General SurgeryShanghai Seventh People's HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
25
|
Wilson GA, Vuina K, Sava G, Huard C, Meneguello L, Coulombe-Huntington J, Bertomeu T, Maizels RJ, Lauring J, Kriston-Vizi J, Tyers M, Ali S, Bertoli C, de Bruin RAM. Active growth signaling promotes senescence and cancer cell sensitivity to CDK7 inhibition. Mol Cell 2023; 83:4078-4092.e6. [PMID: 37977119 DOI: 10.1016/j.molcel.2023.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/25/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
Tumor growth is driven by continued cellular growth and proliferation. Cyclin-dependent kinase 7's (CDK7) role in activating mitotic CDKs and global gene expression makes it therefore an attractive target for cancer therapies. However, what makes cancer cells particularly sensitive to CDK7 inhibition (CDK7i) remains unclear. Here, we address this question. We show that CDK7i, by samuraciclib, induces a permanent cell-cycle exit, known as senescence, without promoting DNA damage signaling or cell death. A chemogenetic genome-wide CRISPR knockout screen identified that active mTOR (mammalian target of rapamycin) signaling promotes samuraciclib-induced senescence. mTOR inhibition decreases samuraciclib sensitivity, and increased mTOR-dependent growth signaling correlates with sensitivity in cancer cell lines. Reverting a growth-promoting mutation in PIK3CA to wild type decreases sensitivity to CDK7i. Our work establishes that enhanced growth alone promotes CDK7i sensitivity, providing an explanation for why some cancers are more sensitive to CDK inhibition than normally growing cells.
Collapse
Affiliation(s)
- Gemma A Wilson
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Karla Vuina
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Georgina Sava
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Caroline Huard
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Leticia Meneguello
- Laboratory for Molecular Cell Biology, University College London, London, UK; UCL Cancer Institute, University College London, London, UK
| | - Jasmin Coulombe-Huntington
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada; Department of Bioengineering, McGill University, Montréal, QC, Canada
| | - Thierry Bertomeu
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Rory J Maizels
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Josh Lauring
- Janssen Research and Development, the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Janos Kriston-Vizi
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada; Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Simak Ali
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Cosetta Bertoli
- Laboratory for Molecular Cell Biology, University College London, London, UK.
| | - Robertus A M de Bruin
- Laboratory for Molecular Cell Biology, University College London, London, UK; UCL Cancer Institute, University College London, London, UK.
| |
Collapse
|
26
|
Wang Z, Himanen SV, Haikala HM, Friedel CC, Vihervaara A, Barborič M. Inhibition of CDK12 elevates cancer cell dependence on P-TEFb by stimulation of RNA polymerase II pause release. Nucleic Acids Res 2023; 51:10970-10991. [PMID: 37811895 PMCID: PMC10639066 DOI: 10.1093/nar/gkad792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023] Open
Abstract
P-TEFb and CDK12 facilitate transcriptional elongation by RNA polymerase II. Given the prominence of both kinases in cancer, gaining a better understanding of their interplay could inform the design of novel anti-cancer strategies. While down-regulation of DNA repair genes in CDK12-targeted cancer cells is being explored therapeutically, little is known about mechanisms and significance of transcriptional induction upon inhibition of CDK12. We show that selective targeting of CDK12 in colon cancer-derived cells activates P-TEFb via its release from the inhibitory 7SK snRNP. In turn, P-TEFb stimulates Pol II pause release at thousands of genes, most of which become newly dependent on P-TEFb. Amongst the induced genes are those stimulated by hallmark pathways in cancer, including p53 and NF-κB. Consequently, CDK12-inhibited cancer cells exhibit hypersensitivity to inhibitors of P-TEFb. While blocking P-TEFb triggers their apoptosis in a p53-dependent manner, it impedes cell proliferation irrespective of p53 by preventing induction of genes downstream of the DNA damage-induced NF-κB signaling. In summary, stimulation of Pol II pause release at the signal-responsive genes underlies the functional dependence of CDK12-inhibited cancer cells on P-TEFb. Our study establishes the mechanistic underpinning for combinatorial targeting of CDK12 with either P-TEFb or the induced oncogenic pathways in cancer.
Collapse
Affiliation(s)
- Zhijia Wang
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland
| | - Samu V Himanen
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Heidi M Haikala
- Translational Immunology Research Program (TRIMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki FIN-00014, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki FIN-00014, Finland
| | - Caroline C Friedel
- Institute of Informatics, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - Anniina Vihervaara
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Matjaž Barborič
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland
| |
Collapse
|
27
|
Pluta AJ, Studniarek C, Murphy S, Norbury CJ. Cyclin-dependent kinases: Masters of the eukaryotic universe. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1816. [PMID: 37718413 PMCID: PMC10909489 DOI: 10.1002/wrna.1816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023]
Abstract
A family of structurally related cyclin-dependent protein kinases (CDKs) drives many aspects of eukaryotic cell function. Much of the literature in this area has considered individual members of this family to act primarily either as regulators of the cell cycle, the context in which CDKs were first discovered, or as regulators of transcription. Until recently, CDK7 was the only clear example of a CDK that functions in both processes. However, new data points to several "cell-cycle" CDKs having important roles in transcription and some "transcriptional" CDKs having cell cycle-related targets. For example, novel functions in transcription have been demonstrated for the archetypal cell cycle regulator CDK1. The increasing evidence of the overlap between these two CDK types suggests that they might play a critical role in coordinating the two processes. Here we review the canonical functions of cell-cycle and transcriptional CDKs, and provide an update on how these kinases collaborate to perform important cellular functions. We also provide a brief overview of how dysregulation of CDKs contributes to carcinogenesis, and possible treatment avenues. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > 3' End Processing RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | | | - Shona Murphy
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Chris J. Norbury
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
28
|
Sun Z, Fan J, Dang Y, Zhao Y. Enhancer in cancer pathogenesis and treatment. Genet Mol Biol 2023; 46:e20220313. [PMID: 37548349 PMCID: PMC10405138 DOI: 10.1590/1678-4685-gmb-2022-0313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/19/2023] [Indexed: 08/08/2023] Open
Abstract
Enhancers are essential cis-acting regulatory elements that determine cell identity and tumor progression. Enhancer function is dependent on the physical interaction between the enhancer and its target promoter inside its local chromatin environment. Enhancer reprogramming is an important mechanism in cancer pathogenesis and can be driven by both cis and trans factors. Super enhancers are acquired at oncogenes in numerous cancer types and represent potential targets for cancer treatment. BET and CDK inhibitors act through mechanisms of enhancer function and have shown promising results in therapy for various types of cancer. Genome editing is another way to reprogram enhancers in cancer treatment. The relationship between enhancers and cancer has been revised by several authors in the past few years, which mainly focuses on the mechanisms by which enhancers can impact cancer. Here, we emphasize SE's role in cancer pathogenesis and the new therapies involving epigenetic regulators (BETi and CDKi). We suggest that understanding mechanisms of activity would aid clinical success for these anti-cancer agents.
Collapse
Affiliation(s)
- Zhuo Sun
- Xi’an Medical University, Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Weiyang District, Xi’an, Shaanxi, China
- Institute of Basic Medical Sciences, No.1 XinWang Rd, Weiyang District, Shaanxi, China
| | - Jinbo Fan
- Xi’an Medical University, Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Weiyang District, Xi’an, Shaanxi, China
| | - Yixiong Dang
- Xi’an Medical University, School of Public Health, Weiyang District, Xi’an, 710021 Shaanxi, China
| | - Yufeng Zhao
- Institute of Basic Medical Sciences, No.1 XinWang Rd, Weiyang District, Shaanxi, China
| |
Collapse
|
29
|
Gaur T, Poddutoori R, Khare L, Bagal B, Rashmi S, Patkar N, Tembhare P, Pg S, Shetty D, Dutt A, Zhang Q, Konopleva M, Platzbeckar U, Gupta S, Samajdar S, Ramchandra M, Khattry N, Hasan SK. Novel covalent CDK7 inhibitor potently induces apoptosis in acute myeloid leukemia and synergizes with Venetoclax. J Exp Clin Cancer Res 2023; 42:186. [PMID: 37507802 PMCID: PMC10386772 DOI: 10.1186/s13046-023-02750-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
INTRODUCTION The emergence of resistance to the highly successful BCL2-directed therapy is a major unmet need in acute myeloid leukemia (AML), an aggressive malignancy with poor survival rates. Towards identifying therapeutic options for AML patients who progress on BCL2-directed therapy, we studied a clinical-stage CDK7 inhibitor XL102, which is being evaluated in solid tumors (NCT04726332). MATERIALS AND METHODS To determine the anti-proliferative effects of XL102, we performed experiments including time-resolved fluorescence resonance energy transfer, target occupancy, cell cycle and apoptosis-based assays. We also included genetically characterized primary myeloid blasts from de novo and relapsed/refractory AML patients. For mechanistic studies, CRISPR/Cas9 mediated knockout of CDK7 and c-Myc and immunoblotting were performed. NOD/SCID orthotropic and subcutaneous AML xenografts were used to determine anti-leukemic effects. To assess the synergistic effects of XL102 with Venetoclax, we performed RNA sequencing and gene set enrichment analysis using Venetoclax sensitive and resistant model systems. RESULTS XL102, a highly specific, orally bioavailable covalent inhibitor of CDK7. Inhibitory effect on CDK7 by XL102 in primary myeloid blasts (n = 54) was in nanomolar range (mean = 300 nM; range = 4.0-952 nM). XL102 treated AML cells showed a reduction in phosphorylation levels of Serine 2/5/7 at carboxy-terminal domain of RNA polymerase II. T-loop phosphorylation of CDK1(Thr161) and CDK2(Thr160) was inhibited by XL102 in dose-dependent manner leading to cell-cycle arrest. c-Myc downregulation and enhanced levels of p53 and p21 in XL102 treated cells were observed. Increased levels of p21 and activation of p53 by XL102 were mimicked by genetic ablation of CDK7, which supports that the observed effects of XL102 are due to CDK7 inhibition. XL102 treated AML xenografts showed remarkable reduction in hCD45 + marrow cells (mean = 0.60%; range = 0.04%-3.53%) compared to vehicle control (mean = 38.2%; range = 10.1%-78%), with corresponding increase in p53, p21 and decrease in c-Myc levels. The data suggests XL102 induces apoptosis in AML cells via CDK7/c-Myc/p53 axis. RNA-sequencing from paired Venetoclax-sensitive and Venetoclax-resistant cells treated with XL102 showed downregulation of genes involved in proliferation and apoptosis. CONCLUSION Taken together, XL102 with Venetoclax led to synergistic effects in overcoming resistance and provided a strong rationale for clinical evaluation of XL102 as a single agent and in combination with Venetoclax.
Collapse
Affiliation(s)
- Tarang Gaur
- Hasan Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi, Mumbai, 410210, India
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India
| | - Ramulu Poddutoori
- Aurigene Oncology Limited, Electronic City Hosur Road, Bangalore, 560100, India
| | - Leena Khare
- Aurigene Oncology Limited, Electronic City Hosur Road, Bangalore, 560100, India
| | - Bhausaheb Bagal
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, 400014, India
| | - Sonal Rashmi
- Dutt Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi, Mumbai, 410210, India
- Present Address: CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Nikhil Patkar
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India
- Hematopathology Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi, Mumbai, 410210, India
| | - Prashant Tembhare
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India
- Hematopathology Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi, Mumbai, 410210, India
| | - Subramanian Pg
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India
- Hematopathology Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi, Mumbai, 410210, India
| | - Dhanlaxmi Shetty
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India
- Department of Cytogenetics, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi, Mumbai, 410210, India
| | - Amit Dutt
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India
- Dutt Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi, Mumbai, 410210, India
| | - Qi Zhang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - Uwe Platzbeckar
- Medical Clinic and Policlinic I, Hematology and Cellular Therapy, University Hospital Leipzig, Johannisallee 32, 04103, Leipzig, Germany
| | - Sudeep Gupta
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, 400014, India
| | - Susanta Samajdar
- Aurigene Oncology Limited, Electronic City Hosur Road, Bangalore, 560100, India
| | - Murali Ramchandra
- Aurigene Oncology Limited, Electronic City Hosur Road, Bangalore, 560100, India
| | - Navin Khattry
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India.
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, 400014, India.
| | - Syed K Hasan
- Hasan Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi, Mumbai, 410210, India.
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
30
|
Piemonte KM, Webb BM, Bobbitt JR, Majmudar PR, Cuellar-Vite L, Bryson BL, Latina NC, Seachrist DD, Keri RA. Disruption of CDK7 signaling leads to catastrophic chromosomal instability coupled with a loss of condensin-mediated chromatin compaction. J Biol Chem 2023; 299:104834. [PMID: 37201585 PMCID: PMC10300262 DOI: 10.1016/j.jbc.2023.104834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/20/2023] Open
Abstract
Chromatin organization is highly dynamic and modulates DNA replication, transcription, and chromosome segregation. Condensin is essential for chromosome assembly during mitosis and meiosis, as well as maintenance of chromosome structure during interphase. While it is well established that sustained condensin expression is necessary to ensure chromosome stability, the mechanisms that control its expression are not yet known. Herein, we report that disruption of cyclin-dependent kinase 7 (CDK7), the core catalytic subunit of CDK-activating kinase, leads to reduced transcription of several condensin subunits, including structural maintenance of chromosomes 2 (SMC2). Live and static microscopy revealed that inhibiting CDK7 signaling prolongs mitosis and induces chromatin bridge formation, DNA double-strand breaks, and abnormal nuclear features, all of which are indicative of mitotic catastrophe and chromosome instability. Affirming the importance of condensin regulation by CDK7, genetic suppression of the expression of SMC2, a core subunit of this complex, phenocopies CDK7 inhibition. Moreover, analysis of genome-wide chromatin conformation using Hi-C revealed that sustained activity of CDK7 is necessary to maintain chromatin sublooping, a function that is ascribed to condensin. Notably, the regulation of condensin subunit gene expression is independent of superenhancers. Together, these studies reveal a new role for CDK7 in sustaining chromatin configuration by ensuring the expression of condensin genes, including SMC2.
Collapse
Affiliation(s)
- Katrina M Piemonte
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Bryan M Webb
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Jessica R Bobbitt
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Parth R Majmudar
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Leslie Cuellar-Vite
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Benjamin L Bryson
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicholas C Latina
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Darcie D Seachrist
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ruth A Keri
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Department of General Medical Sciences-Oncology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| |
Collapse
|
31
|
Yao Y, Ng JF, Park WD, Samur M, Morelli E, Encinas Mayoral J, Chyra Z, Xu Y, Derebail S, Epstein C, Nabet B, Chesi M, Gray NS, Young RA, Kwiatkowski N, Mitsiades C, Anderson KC, Lin CY, Munshi NC, Fulciniti M. CDK7 controls E2F- and MYC-driven proliferative and metabolic vulnerabilities in multiple myeloma. Blood 2023; 141:2841-2852. [PMID: 36877894 PMCID: PMC10315622 DOI: 10.1182/blood.2022018885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 03/08/2023] Open
Abstract
Therapeutic targeting of CDK7 has proven beneficial in preclinical studies, yet the off-target effects of currently available CDK7 inhibitors make it difficult to pinpoint the exact mechanisms behind MM cell death mediated by CDK7 inhibition. Here, we show that CDK7 expression positively correlates with E2F and MYC transcriptional programs in cells from patients with multiple myeloma (MM); its selective targeting counteracts E2F activity via perturbation of the cyclin-dependent kinases/Rb axis and impairs MYC-regulated metabolic gene signatures translating into defects in glycolysis and reduced levels of lactate production in MM cells. CDK7 inhibition using the covalent small-molecule inhibitor YKL-5-124 elicits a strong therapeutic response with minimal effects on normal cells, and causes in vivo tumor regression, increasing survival in several mouse models of MM including a genetically engineered mouse model of MYC-dependent MM. Through its role as a critical cofactor and regulator of MYC and E2F activity, CDK7 is therefore a master regulator of oncogenic cellular programs supporting MM growth and survival, and a valuable therapeutic target providing rationale for development of YKL-5-124 for clinical use.
Collapse
Affiliation(s)
- Yao Yao
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Blood Disease Institute, Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical University, Xuzhou, China
| | - Jessica Fong Ng
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Woojun Daniel Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Mehmet Samur
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Eugenio Morelli
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | | | - Zuzana Chyra
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Yan Xu
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Sanika Derebail
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | | | - Behnam Nabet
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Marta Chesi
- Comprehensive Cancer Center, Mayo Clinic, Scottsdale, AZ
| | - Nathanael S. Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford Medical School, Stanford, CA
| | | | | | | | - Kenneth C. Anderson
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | | | - Nikhil C. Munshi
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Mariateresa Fulciniti
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
32
|
Sterling J, Baker JR, McCluskey A, Munoz L. Systematic literature review reveals suboptimal use of chemical probes in cell-based biomedical research. Nat Commun 2023; 14:3228. [PMID: 37270653 PMCID: PMC10239480 DOI: 10.1038/s41467-023-38952-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 05/23/2023] [Indexed: 06/05/2023] Open
Abstract
Chemical probes have reached a prominent role in biomedical research, but their impact is governed by experimental design. To gain insight into the use of chemical probes, we conducted a systematic review of 662 publications, understood here as primary research articles, employing eight different chemical probes in cell-based research. We summarised (i) concentration(s) at which chemical probes were used in cell-based assays, (ii) inclusion of structurally matched target-inactive control compounds and (iii) orthogonal chemical probes. Here, we show that only 4% of analysed eligible publications used chemical probes within the recommended concentration range and included inactive compounds as well as orthogonal chemical probes. These findings indicate that the best practice with chemical probes is yet to be implemented in biomedical research. To achieve this, we propose 'the rule of two': At least two chemical probes (either orthogonal target-engaging probes, and/or a pair of a chemical probe and matched target-inactive compound) to be employed at recommended concentrations in every study.
Collapse
Affiliation(s)
- Jayden Sterling
- Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Jennifer R Baker
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Adam McCluskey
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Lenka Munoz
- Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
33
|
Constantin TA, Varela-Carver A, Greenland KK, de Almeida GS, Olden E, Penfold L, Ang S, Ormrod A, Leach DA, Lai CF, Ainscow EK, Bahl AK, Carling D, Fuchter MJ, Ali S, Bevan CL. The CDK7 inhibitor CT7001 (Samuraciclib) targets proliferation pathways to inhibit advanced prostate cancer. Br J Cancer 2023; 128:2326-2337. [PMID: 37076563 PMCID: PMC10241923 DOI: 10.1038/s41416-023-02252-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Current strategies to inhibit androgen receptor (AR) are circumvented in castration-resistant prostate cancer (CRPC). Cyclin-dependent kinase 7 (CDK7) promotes AR signalling, in addition to established roles in cell cycle and global transcription, providing a rationale for its therapeutic targeting in CRPC. METHODS The antitumour activity of CT7001, an orally bioavailable CDK7 inhibitor, was investigated across CRPC models in vitro and in xenograft models in vivo. Cell-based assays and transcriptomic analyses of treated xenografts were employed to investigate the mechanisms driving CT7001 activity, alone and in combination with the antiandrogen enzalutamide. RESULTS CT7001 selectively engages with CDK7 in prostate cancer cells, causing inhibition of proliferation and cell cycle arrest. Activation of p53, induction of apoptosis, and suppression of transcription mediated by full-length and constitutively active AR splice variants contribute to antitumour efficacy in vitro. Oral administration of CT7001 represses growth of CRPC xenografts and significantly augments growth inhibition achieved by enzalutamide. Transcriptome analyses of treated xenografts indicate cell cycle and AR inhibition as the mode of action of CT7001 in vivo. CONCLUSIONS This study supports CDK7 inhibition as a strategy to target deregulated cell proliferation and demonstrates CT7001 is a promising CRPC therapeutic, alone or in combination with AR-targeting compounds.
Collapse
Affiliation(s)
- Theodora A Constantin
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Anabel Varela-Carver
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Kyle K Greenland
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Gilberto Serrano de Almeida
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Ellen Olden
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Lucy Penfold
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Simon Ang
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Alice Ormrod
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Damien A Leach
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Chun-Fui Lai
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Edward K Ainscow
- Carrick Therapeutics, Nova UCD, Bellfield Innovation Park, Dublin, 4, Ireland
| | - Ash K Bahl
- Carrick Therapeutics, Nova UCD, Bellfield Innovation Park, Dublin, 4, Ireland
| | - David Carling
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Matthew J Fuchter
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, UK
| | - Simak Ali
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Charlotte L Bevan
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK.
| |
Collapse
|
34
|
Moliner L, Zhang B, Lamberti G, Ardizzoni A, Byers LA, Califano R. Novel therapeutic strategies for recurrent SCLC. Crit Rev Oncol Hematol 2023; 186:104017. [PMID: 37150311 DOI: 10.1016/j.critrevonc.2023.104017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023] Open
Abstract
Therapeutic options for patients with relapsed SCLC are limited, and the prognosis in this setting remains poor. While clinical outcomes for frontline treatment have modestly improved with the introduction of immunotherapy, treatment in the second-line setting persists almost unchanged. In this review, current treatment options and recent advances in molecular biology are described. Emerging therapeutic options in this setting and potential strategies to improve clinical outcomes of these patients are also addressed.
Collapse
Affiliation(s)
- Laura Moliner
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
| | - Bingnan Zhang
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Giuseppe Lamberti
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Bologna, 40138, Italy
| | - Andrea Ardizzoni
- Department of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, 40138, Italy
| | - Lauren A Byers
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Raffaele Califano
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, M20 4BX, UK; Division of Cancer Sciences, The University of Manchester, Manchester, M13 9NT, UK.
| |
Collapse
|
35
|
D'Aes T, Marlier Q, Verteneuil S, Quatresooz P, Vandenbosch R, Malgrange B. Re-Evaluating the Relevance of the Oxygen-Glucose Deprivation Model in Ischemic Stroke: The Example of Cdk Inhibition. Int J Mol Sci 2023; 24:ijms24087009. [PMID: 37108171 PMCID: PMC10138648 DOI: 10.3390/ijms24087009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Previous research has shown that cyclin-dependent kinases (Cdks) that play physiological roles in cell cycle regulation become activated in post-mitotic neurons after ischemic stroke, resulting in apoptotic neuronal death. In this article, we report our results using the widely used oxygen-glucose deprivation (OGD) in vitro model of ischemic stroke on primary mouse cortical neurons to investigate whether Cdk7, as part of the Cdk-activating kinase (CAK) complex that activates cell cycle Cdks, might be a regulator of ischemic neuronal death and may potentially constitute a therapeutic target for neuroprotection. We found no evidence of neuroprotection with either pharmacological or genetic invalidation of Cdk7. Despite the well-established idea that apoptosis contributes to cell death in the ischemic penumbra, we also found no evidence of apoptosis in the OGD model. This could explain the absence of neuroprotection following Cdk7 invalidation in this model. Neurons exposed to OGD seem predisposed to die in an NMDA receptor-dependent manner that could not be prevented further downstream. Given the direct exposure of neurons to anoxia or severe hypoxia, it is questionable how relevant OGD is for modeling the ischemic penumbra. Due to remaining uncertainties about cell death after OGD, caution is warranted when using this in vitro model to identify new stroke therapies.
Collapse
Affiliation(s)
- Tine D'Aes
- Laboratory of Developmental Neurobiology, GIGA-Stem Cells & GIGA-Neurosciences, University of Liège, 4000 Liège, Belgium
| | - Quentin Marlier
- Laboratory of Developmental Neurobiology, GIGA-Stem Cells & GIGA-Neurosciences, University of Liège, 4000 Liège, Belgium
- Dendrogenix, Avenue de l'Hôpital, 1-B34 +3, 4000 Liège, Belgium
| | - Sébastien Verteneuil
- Laboratory of Developmental Neurobiology, GIGA-Stem Cells & GIGA-Neurosciences, University of Liège, 4000 Liège, Belgium
- Division of Histology, Department of Biomedical and Preclinical Sciences, University of Liège, 4000 Liège, Belgium
| | - Pascale Quatresooz
- Division of Histology, Department of Biomedical and Preclinical Sciences, University of Liège, 4000 Liège, Belgium
| | - Renaud Vandenbosch
- Laboratory of Developmental Neurobiology, GIGA-Stem Cells & GIGA-Neurosciences, University of Liège, 4000 Liège, Belgium
- Division of Histology, Department of Biomedical and Preclinical Sciences, University of Liège, 4000 Liège, Belgium
| | - Brigitte Malgrange
- Laboratory of Developmental Neurobiology, GIGA-Stem Cells & GIGA-Neurosciences, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
36
|
Characterization of new highly selective pyrazolo[4,3-d]pyrimidine inhibitor of CDK7. Biomed Pharmacother 2023; 161:114492. [PMID: 36931035 DOI: 10.1016/j.biopha.2023.114492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Targeting cyclin-dependent kinase 7 (CDK7) provides an interesting therapeutic option in cancer therapy because this kinase participates in regulating the cell cycle and transcription. Here, we describe a new trisubstituted pyrazolo[4,3-d]pyrimidine derivative, LGR6768, that inhibits CDK7 in the nanomolar range and displays favourable selectivity across the CDK family. We determined the structure of fully active CDK2/cyclin A2 in complex with LGR6768 at 2.6 Å resolution using X-ray crystallography, revealing conserved interactions within the active site. Structural analysis and comparison with LGR6768 docked to CDK7 provides an explanation of the observed biochemical selectivity, which is linked to a conformational difference in the biphenyl moiety. In cellular experiments, LGR6768 affected regulation of the cell cycle and transcription by inhibiting the phosphorylation of cell cycle CDKs and the carboxy-terminal domain of RNA polymerase II, respectively. LGR6768 limited the proliferation of several leukaemia cell lines, triggered significant changes in protein and mRNA levels related to CDK7 inhibition and induced apoptosis in dose- and time-dependent experiments. Our work supports previous findings and provides further information for the development of selective CDK7 inhibitors.
Collapse
|
37
|
Safaroghli-Azar A, Emadi F, Lenjisa J, Mekonnen L, Wang S. Kinase inhibitors: Opportunities for small molecule anticancer immunotherapies. Drug Discov Today 2023; 28:103525. [PMID: 36907320 DOI: 10.1016/j.drudis.2023.103525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/02/2023] [Accepted: 02/07/2023] [Indexed: 03/12/2023]
Abstract
As the fifth pillar of cancer treatment, immunotherapy has dramatically changed the paradigm of therapeutic strategies by focusing on the host's immune system. In the long road of immunotherapy development, the identification of immune-modulatory effects for kinase inhibitors opened a new chapter in this therapeutic approach. These small molecule inhibitors not only directly eradicate tumors by targeting essential proteins of cell survival and proliferation but can also drive immune responses against malignant cells. This review summarizes the current standings and challenges of kinase inhibitors in immunotherapy, either as a single agent or in a combined modality.
Collapse
Affiliation(s)
- Ava Safaroghli-Azar
- Drug Discovery and Development, University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia
| | - Fatemeh Emadi
- Drug Discovery and Development, University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia
| | - Jimma Lenjisa
- Drug Discovery and Development, University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia
| | - Laychiluh Mekonnen
- Drug Discovery and Development, University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia
| | - Shudong Wang
- Drug Discovery and Development, University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia.
| |
Collapse
|
38
|
Wang Z, Mačáková M, Bugai A, Kuznetsov SG, Hassinen A, Lenasi T, Potdar S, Friedel CC, Barborič M. P-TEFb promotes cell survival upon p53 activation by suppressing intrinsic apoptosis pathway. Nucleic Acids Res 2023; 51:1687-1706. [PMID: 36727434 PMCID: PMC9976905 DOI: 10.1093/nar/gkad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 02/03/2023] Open
Abstract
Positive transcription elongation factor b (P-TEFb) is the crucial player in RNA polymerase II (Pol II) pause release that has emerged as a promising target in cancer. Because single-agent therapy may fail to deliver durable clinical response, targeting of P-TEFb shall benefit when deployed as a combination therapy. We screened a comprehensive oncology library and identified clinically relevant antimetabolites and Mouse double minute 2 homolog (MDM2) inhibitors as top compounds eliciting p53-dependent death of colorectal cancer cells in synergy with selective inhibitors of P-TEFb. While the targeting of P-TEFb augments apoptosis by anti-metabolite 5-fluorouracil, it switches the fate of cancer cells by the non-genotoxic MDM2 inhibitor Nutlin-3a from cell-cycle arrest to apoptosis. Mechanistically, the fate switching is enabled by the induction of p53-dependent pro-apoptotic genes and repression of P-TEFb-dependent pro-survival genes of the PI3K-AKT signaling cascade, which stimulates caspase 9 and intrinsic apoptosis pathway in BAX/BAK-dependent manner. Finally, combination treatments trigger apoptosis of cancer cell spheroids. Together, co-targeting of P-TEFb and suppressors of intrinsic apoptosis could become a viable strategy to eliminate cancer cells.
Collapse
Affiliation(s)
- Zhijia Wang
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland
| | - Monika Mačáková
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland
| | - Andrii Bugai
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland.,Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Sergey G Kuznetsov
- High-Throughput Biomedicine Unit (HTB), Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FIN-00014, Finland
| | - Antti Hassinen
- High Content Imaging and Analysis Unit (HCA), Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FIN-00014, Finland
| | - Tina Lenasi
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland
| | - Swapnil Potdar
- High-Throughput Biomedicine Unit (HTB), Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FIN-00014, Finland
| | - Caroline C Friedel
- Institute for Informatics, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - Matjaž Barborič
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland
| |
Collapse
|
39
|
Arsenijevic T, Coulonval K, Raspé E, Demols A, Roger PP, Van Laethem JL. CDK4/6 Inhibitors in Pancreatobiliary Cancers: Opportunities and Challenges. Cancers (Basel) 2023; 15:968. [PMID: 36765923 PMCID: PMC9913743 DOI: 10.3390/cancers15030968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Existing treatment strategies for pancreatobiliary malignancies are limited. Nowadays, surgery is the only path to cure these types of cancer, but only a small number of patients present with resectable tumors at the time of diagnosis. The notoriously poor prognosis, lack of diverse treatment options associated with pancreaticobiliary cancers, and their resistance to current therapies reflect the urge for the development of novel therapeutic targets. Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors have emerged as an attractive therapeutic strategy in a number of cancers since their approval for treatment in patients with ER+/HER- breast cancer in combination with antiestrogens. In this article, we discuss the therapeutic potential of CDK4/6 inhibitors in pancreatobiliary cancers, notably cholangiocarcinoma and pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Tatjana Arsenijevic
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
- Department of Gastroenterology, Hepatology and Digestive Oncology, HUB Bordet Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
| | - Katia Coulonval
- Institute of Interdisciplinary Research (Iribhm), ULB-Cancer Research Center (U-crc), Université Libre de Bruxelles, Campus Erasme, Route de Lennik 808, 1070 Brussels, Belgium
| | - Eric Raspé
- Institute of Interdisciplinary Research (Iribhm), ULB-Cancer Research Center (U-crc), Université Libre de Bruxelles, Campus Erasme, Route de Lennik 808, 1070 Brussels, Belgium
| | - Anne Demols
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
- Department of Gastroenterology, Hepatology and Digestive Oncology, HUB Bordet Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
| | - Pierre P. Roger
- Institute of Interdisciplinary Research (Iribhm), ULB-Cancer Research Center (U-crc), Université Libre de Bruxelles, Campus Erasme, Route de Lennik 808, 1070 Brussels, Belgium
| | - Jean-Luc Van Laethem
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
- Department of Gastroenterology, Hepatology and Digestive Oncology, HUB Bordet Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
| |
Collapse
|
40
|
Rambout X, Cho H, Blanc R, Lyu Q, Miano JM, Chakkalakal JV, Nelson GM, Yalamanchili HK, Adelman K, Maquat LE. PGC-1α senses the CBC of pre-mRNA to dictate the fate of promoter-proximally paused RNAPII. Mol Cell 2023; 83:186-202.e11. [PMID: 36669479 PMCID: PMC9951270 DOI: 10.1016/j.molcel.2022.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/07/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023]
Abstract
PGC-1α is well established as a metazoan transcriptional coactivator of cellular adaptation in response to stress. However, the mechanisms by which PGC-1α activates gene transcription are incompletely understood. Here, we report that PGC-1α serves as a scaffold protein that physically and functionally connects the DNA-binding protein estrogen-related receptor α (ERRα), cap-binding protein 80 (CBP80), and Mediator to overcome promoter-proximal pausing of RNAPII and transcriptionally activate stress-response genes. We show that PGC-1α promotes pausing release in a two-arm mechanism (1) by recruiting the positive transcription elongation factor b (P-TEFb) and (2) by outcompeting the premature transcription termination complex Integrator. Using mice homozygous for five amino acid changes in the CBP80-binding motif (CBM) of PGC-1α that destroy CBM function, we show that efficient differentiation of primary myoblasts to myofibers and timely skeletal muscle regeneration after injury require PGC-1α binding to CBP80. Our findings reveal how PGC-1α activates stress-response gene transcription in a previously unanticipated pre-mRNA quality-control pathway.
Collapse
Affiliation(s)
- Xavier Rambout
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA.
| | - Hana Cho
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Roméo Blanc
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Qing Lyu
- Department of Medicine, Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Joseph M Miano
- Department of Medicine, Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Joe V Chakkalakal
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Geoffrey M Nelson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hari K Yalamanchili
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
41
|
Mounika P, Gurupadayya B, Kumar HY, Namitha B. An Overview of CDK Enzyme Inhibitors in Cancer Therapy. Curr Cancer Drug Targets 2023; 23:603-619. [PMID: 36959160 DOI: 10.2174/1568009623666230320144713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 03/25/2023]
Abstract
The ability to address the cell cycle in cancer therapy brings up new medication development possibilities. Cyclin-dependent kinases are a group of proteins that control the progression of the cell cycle. The CDK/cyclin complexes are activated when specific CDK sites are phosphorylated. Because of their non-selectivity and severe toxicity, most first-generation CDK inhibitors (also known as pan-CDK inhibitors) have not been authorized for clinical usage. Despite this, significant progress has been made in allowing pan-CDK inhibitors to be employed in clinical settings. Pan-CDK inhibitors' toxicity and side effects have been lowered in recent years because of the introduction of combination therapy techniques. As a result of this, pan-CDK inhibitors have regained a lot of clinical potential as a combination therapy approach. The CDK family members have been introduced in this overview, and their important roles in cell cycle control have been discussed. Then, we have described the current state of CDK inhibitor research, with a focus on inhibitors other than CDK4/6. We have mentioned first-generation pan-CDKIs, flavopiridol and roscovitine, as well as second-generation CDKIs, dinaciclib, P276-00, AT7519, TG02, roniciclib, and RGB-286638, based on their research phases, clinical trials, and cancer targeting. CDKIs are CDK4/6, CDK7, CDK9, and CDK12 inhibitors. Finally, we have looked into the efficacy of CDK inhibitors and PD1/PDL1 antibodies when used together, which could lead to the development of a viable cancer treatment strategy.
Collapse
Affiliation(s)
- Peddaguravagari Mounika
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Bannimath Gurupadayya
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Honnavalli Yogish Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Bannimath Namitha
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| |
Collapse
|
42
|
Gupta A, Dagar G, Chauhan R, Sadida HQ, Almarzooqi SK, Hashem S, Uddin S, Macha MA, Akil ASAS, Pandita TK, Bhat AA, Singh M. Cyclin-dependent kinases in cancer: Role, regulation, and therapeutic targeting. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:21-55. [PMID: 37061333 DOI: 10.1016/bs.apcsb.2023.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Regulated cell division is one of the fundamental phenomena which is the basis of all life on earth. Even a single base pair mutation in DNA leads to the production of the dysregulated protein that can have catastrophic consequences. Cell division is tightly controlled and orchestrated by proteins called cyclins and cyclin-dependent kinase (CDKs), which serve as licensing factors during different phases of cell division. Dysregulated cell division is one of the most important hallmarks of cancer and is commonly associated with a mutation in cyclins and CDKs along with tumor suppressor proteins. Therefore, targeting the component of the cell cycle which leads to these characteristics would be an effective strategy for treating cancers. Specifically, Cyclin-dependent kinases (CDKs) involved in cell cycle regulation have been identified to be overexpressed in many cancers. Many studies indicate that oncogenesis occurs in cancerous cells by the overactivity of different CDKs, which impact cell cycle progression and checkpoint dysregulation which is responsible for development of tumor. The development of CDK inhibitors has emerged as a promising and novel approach for cancer treatment in both solid and hematological malignancies. Some of the novel CDK inhibitors have shown remarkable results in clinical trials, such as-Ribociclib®, Palbociclib® and Abemaciclib®, which are CDK4/6 inhibitors and have received FDA approval for the treatment of breast cancer. In this chapter, we discuss the molecular mechanism through which cyclins and CDKs regulate cell cycle progression and the emergence of cyclins and CDKs as rational targets in cancer. We also discuss recent advances in developing CDK inhibitors, which have emerged as a novel class of inhibitors, and their associated toxicities in recent years.
Collapse
Affiliation(s)
- Ashna Gupta
- Department of Medical Oncology, Dr B.R Ambedkar Institute Rotary Cancer Hospital All India Institute of Medical Sciences, New Delhi, India
| | - Gunjan Dagar
- Department of Medical Oncology, Dr B.R Ambedkar Institute Rotary Cancer Hospital All India Institute of Medical Sciences, New Delhi, India
| | - Ravi Chauhan
- Department of Medical Oncology, Dr B.R Ambedkar Institute Rotary Cancer Hospital All India Institute of Medical Sciences, New Delhi, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Sara K Almarzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Sheema Hashem
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Tej K Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX, United States
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar.
| | - Mayank Singh
- Department of Medical Oncology, Dr B.R Ambedkar Institute Rotary Cancer Hospital All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
43
|
Patra D, Bhavya K, Ramprasad P, Kalia M, Pal D. Anti-cancer drug molecules targeting cancer cell cycle and proliferation. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:343-395. [PMID: 37061337 DOI: 10.1016/bs.apcsb.2022.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Cancer, a vicious clinical burden that potentiates maximum fatality for humankind, arises due to unregulated excessive cell division and proliferation through an eccentric expression of cell cycle regulator proteins. A set of evolutionarily conserved machinery controls the cell cycle in an extremely precise manner so that a cell that went through the cycle can produce a genetically identical copy. To achieve perfection, several checkpoints were placed in the cycle for surveillance; so, errors during the division were rectified by the repair strategies. However, irreparable damage leads to exit from the cell cycle and induces programmed cell death. In comparison to a normal cell, cancer cells facilitate the constitutive activation of many dormant proteins and impede negative regulators of the checkpoint. Extensive studies in the last few decades on cell division and proliferation of cancer cells elucidate the molecular mechanism of the cell-cycle regulators that are often targeted for the development of anti-cancer therapy. Each phase of the cell cycle has been regulated by a unique set of proteins including master regulators Cyclins, and CDKs, along with the accessory proteins such as CKI, Cdc25, error-responsive proteins, and various kinase proteins mainly WEE1 kinases, Polo-like kinases, and Aurora kinases that control cell division. Here in this chapter, we have analytically discussed the role of cell cycle regulators and proliferation factors in cancer progression and the rationale of using various cell cycle-targeting drug molecules as anti-cancer therapy.
Collapse
Affiliation(s)
- Debarun Patra
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Kumari Bhavya
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Palla Ramprasad
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Moyna Kalia
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Durba Pal
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India.
| |
Collapse
|
44
|
Donovan MG, Galbraith MD, Espinosa JM. Multi-omics investigation reveals functional specialization of transcriptional cyclin dependent kinases in cancer biology. Sci Rep 2022; 12:22505. [PMID: 36577800 PMCID: PMC9797569 DOI: 10.1038/s41598-022-26860-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
Transcriptional addiction is recognized as a valid therapeutic target in cancer, whereby the dependency of cancer cells on oncogenic transcriptional regulators may be pharmacologically exploited. However, a comprehensive understanding of the key factors within the transcriptional machinery that might afford a useful therapeutic window remains elusive. Herein, we present a cross-omics investigation into the functional specialization of the transcriptional cyclin dependent kinases (tCDKs) through analysis of high-content genetic dependency, gene expression, patient survival, and drug response datasets. This analysis revealed specialization among tCDKs in terms of contributions to cancer cell fitness, clinical prognosis, and interaction with oncogenic signaling pathways. CDK7 and CDK9 stand out as the most relevant targets, albeit through distinct mechanisms of oncogenicity and context-dependent contributions to cancer survival and drug sensitivity. Genetic ablation of CDK9, but not CDK7, mimics the effect on cell viability the loss of key components of the transcriptional machinery. Pathway analysis of genetic co-dependency and drug sensitivity data show CDK7 and CDK9 have distinct relationships with major oncogenic signatures, including MYC and E2F targets, oxidative phosphorylation, and the unfolded protein response. Altogether, these results inform the improved design of therapeutic strategies targeting tCDKs in cancer.
Collapse
Affiliation(s)
- Micah G Donovan
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew D Galbraith
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joaquin M Espinosa
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
45
|
Gai C, Harnor SJ, Zhang S, Cano C, Zhuang C, Zhao Q. Advanced approaches of developing targeted covalent drugs. RSC Med Chem 2022; 13:1460-1475. [PMID: 36561076 PMCID: PMC9749957 DOI: 10.1039/d2md00216g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
In recent years, the development of targeted covalent inhibitors has gained popularity around the world. Specific groups (electrophilic warheads) form irreversible bonds with the side chain of nucleophilic amino acid residues, thus changing the function of biological targets such as proteins. Since the first targeted covalent inhibitor was disclosed in the 1990s, great efforts have been made to develop covalent ligands from known reversible leads or drugs by addition of tolerated electrophilic warheads. However, high reactivity and "off-target" toxicity remain challenging issues. This review covers the concept of targeted covalent inhibition to diseases, discusses traditional and interdisciplinary strategies of cysteine-focused covalent drug discovery, and exhibits newly disclosed electrophilic warheads majorly targeting the cysteine residue. Successful applications to address the challenges of designing effective covalent drugs are also introduced.
Collapse
Affiliation(s)
- Conghao Gai
- Organic Chemistry Group, College of Pharmacy, Naval Medical University Shanghai 200433 P. R. China
| | - Suzannah J Harnor
- Cancer Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Shihao Zhang
- Organic Chemistry Group, College of Pharmacy, Naval Medical University Shanghai 200433 P. R. China
| | - Céline Cano
- Cancer Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Chunlin Zhuang
- Organic Chemistry Group, College of Pharmacy, Naval Medical University Shanghai 200433 P. R. China
| | - Qingjie Zhao
- Organic Chemistry Group, College of Pharmacy, Naval Medical University Shanghai 200433 P. R. China
| |
Collapse
|
46
|
Discovery of Novel N-(5-(Pyridin-3-yl)-1 H-indazol-3-yl)benzamide Derivatives as Potent Cyclin-Dependent Kinase 7 Inhibitors for the Treatment of Autosomal Dominant Polycystic Kidney Disease. J Med Chem 2022; 65:15770-15788. [PMID: 36384292 DOI: 10.1021/acs.jmedchem.2c01334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent evidence suggests that CDK7 is a novel potential drug target for autosomal dominant polycystic kidney disease (ADPKD) treatment. Herein, on the basis of structural analysis, a hit compound 3 with a novel scaffold was designed and subsequent medicinal chemistry efforts by a rational design strategy were conducted to improve CDK7 inhibitors' potency and selectivity. The representative compound B2 potently inhibited CDK7 with an IC50 value of 4 nM and showed high selectivity over CDKs. Compound B2 showed high potency to inhibit cyst growth and exhibited lower cytotoxicity than THZ1 in an in vitro Madin-Darby canine kidney cyst model. In addition, compound B2 was also highly efficacious in suppressing renal cyst development in an ex vivo embryonic kidney cyst model and in vivo ADPKD mouse model. These results indicate that compound B2 represents a promising lead compound that deserves further investigation to discover novel therapeutic agents for ADPKD.
Collapse
|
47
|
Li ZM, Liu G, Gao Y, Zhao MG. Targeting CDK7 in oncology: The avenue forward. Pharmacol Ther 2022; 240:108229. [PMID: 35700828 DOI: 10.1016/j.pharmthera.2022.108229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/14/2022]
Abstract
Cyclin-dependent kinase (CDK) 7 is best characterized for the ability to regulate biological processes, including the cell cycle and gene transcription. Abnormal CDK7 activity is observed in various tumours and represents a driving force for tumourigenesis. Therefore, CDK7 may be an appealing target for cancer treatment. Whereas, the enthusiasm for CDK7-targeted therapeutic strategy is mitigated due to the widely possessed belief that this protein is essential for normal cells. Indeed, the fact confronts the consensus. This is the first review to introduce the role of CDK7 in pan-cancers via a combined analysis of comprehensive gene information and (pre)clinical research results. We also discuss the recent advances in protein structure and summarize the understanding of mechanisms underlying CDK7 function. These endeavours highlight the pivotal roles of CDK7 in tumours and may contribute to the development of effective CDK7 inhibitors within the strategy of structure-based drug discovery for cancer therapy.
Collapse
Affiliation(s)
- Zhi-Mei Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Guan Liu
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xinsi Road 1, Xi'an 710038, Shaanxi, PR China
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, PR China.
| | - Ming-Gao Zhao
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China; Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xinsi Road 1, Xi'an 710038, Shaanxi, PR China.
| |
Collapse
|
48
|
Zhang ZY, Ding Y, Ezhilarasan R, Lhakhang T, Wang Q, Yang J, Modrek AS, Zhang H, Tsirigos A, Futreal A, Draetta GF, Verhaak RGW, Sulman EP. Lineage-coupled clonal capture identifies clonal evolution mechanisms and vulnerabilities of BRAF V600E inhibition resistance in melanoma. Cell Discov 2022; 8:102. [PMID: 36202798 PMCID: PMC9537441 DOI: 10.1038/s41421-022-00462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022] Open
Abstract
Targeted cancer therapies have revolutionized treatment but their efficacies are limited by the development of resistance driven by clonal evolution within tumors. We developed "CAPTURE", a single-cell barcoding approach to comprehensively trace clonal dynamics and capture live lineage-coupled resistant cells for in-depth multi-omics analysis and functional exploration. We demonstrate that heterogeneous clones, either preexisting or emerging from drug-tolerant persister cells, dominated resistance to vemurafenib in BRAFV600E melanoma. Further integrative studies uncovered diverse resistance mechanisms. This includes a previously unrecognized and clinically relevant mechanism, chromosome 18q21 gain, which leads to vulnerability of the cells to BCL2 inhibitor. We also identified targetable common dependencies of captured resistant clones, such as oxidative phosphorylation and E2F pathways. Our study provides new therapeutic insights into overcoming therapy resistance in BRAFV600E melanoma and presents a platform for exploring clonal evolution dynamics and vulnerabilities that can be applied to study treatment resistance in other cancers.
Collapse
Affiliation(s)
- Ze-Yan Zhang
- Department of Radiation Oncology, New York University (NYU) Grossman School of Medicine, New York, NY, USA.
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.
| | - Yingwen Ding
- Department of Radiation Oncology, New York University (NYU) Grossman School of Medicine, New York, NY, USA
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Ravesanker Ezhilarasan
- Department of Radiation Oncology, New York University (NYU) Grossman School of Medicine, New York, NY, USA
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Tenzin Lhakhang
- Applied Bioinformatics Laboratories, NYU Grossman School of Medicine, New York, NY, USA
| | - Qianghu Wang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing, Jiangsu, China
| | - Jie Yang
- Department of Radiation Oncology, New York University (NYU) Grossman School of Medicine, New York, NY, USA
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Aram S Modrek
- Department of Radiation Oncology, New York University (NYU) Grossman School of Medicine, New York, NY, USA
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Hua Zhang
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Aristotelis Tsirigos
- Applied Bioinformatics Laboratories, NYU Grossman School of Medicine, New York, NY, USA
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Giulio F Draetta
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roel G W Verhaak
- Department of Computational Biology, The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Erik P Sulman
- Department of Radiation Oncology, New York University (NYU) Grossman School of Medicine, New York, NY, USA.
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
49
|
Clopper KC, Taatjes DJ. Chemical inhibitors of transcription-associated kinases. Curr Opin Chem Biol 2022; 70:102186. [PMID: 35926294 PMCID: PMC10676000 DOI: 10.1016/j.cbpa.2022.102186] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022]
Abstract
Transcription by RNA polymerase II (pol II) is regulated by kinases. In recent years, many selective and potent inhibitors of pol II transcription-associated kinases have been developed, and these molecules have advanced understanding of kinase function in mammalian cells. Here, we focus on chemical inhibitors of the transcription-associated kinases CDK7, CDK8, CDK9, CDK12, CDK13, and CDK19. We provide a brief overview of the function of these kinases and common activation mechanisms. We then highlight the advantages of kinase inhibitors compared with other basic research methods, and describe the caveats associated with non-selective compounds (e.g. flavopiridol). We conclude with strategies and recommendations for implementation of chemical inhibitors for experimental analysis of transcription-associated kinases.
Collapse
Affiliation(s)
- Kevin C Clopper
- Dept. of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Dylan J Taatjes
- Dept. of Biochemistry, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
50
|
van der Noord VE, van de Water B, Le Dévédec SE. Targeting the Heterogeneous Genomic Landscape in Triple-Negative Breast Cancer through Inhibitors of the Transcriptional Machinery. Cancers (Basel) 2022; 14:4353. [PMID: 36139513 PMCID: PMC9496798 DOI: 10.3390/cancers14184353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer defined by lack of the estrogen, progesterone and human epidermal growth factor receptor 2. Although TNBC tumors contain a wide variety of oncogenic mutations and copy number alterations, the direct targeting of these alterations has failed to substantially improve therapeutic efficacy. This efficacy is strongly limited by interpatient and intratumor heterogeneity, and thereby a lack in uniformity of targetable drivers. Most of these genetic abnormalities eventually drive specific transcriptional programs, which may be a general underlying vulnerability. Currently, there are multiple selective inhibitors, which target the transcriptional machinery through transcriptional cyclin-dependent kinases (CDKs) 7, 8, 9, 12 and 13 and bromodomain extra-terminal motif (BET) proteins, including BRD4. In this review, we discuss how inhibitors of the transcriptional machinery can effectively target genetic abnormalities in TNBC, and how these abnormalities can influence sensitivity to these inhibitors. These inhibitors target the genomic landscape in TNBC by specifically suppressing MYC-driven transcription, inducing further DNA damage, improving anti-cancer immunity, and preventing drug resistance against MAPK and PI3K-targeted therapies. Because the transcriptional machinery enables transcription and propagation of multiple cancer drivers, it may be a promising target for (combination) treatment, especially of heterogeneous malignancies, including TNBC.
Collapse
Affiliation(s)
| | | | - Sylvia E. Le Dévédec
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| |
Collapse
|