1
|
Dong J, Zhao X, Dai R, Guo R, Liu C, Cui X, Liu Y, Wang H, Zheng B. Spatial patterns, source apportionment, and risk assessment of polychlorinated biphenyls (PCBs) in the surface sediments of eastern China lakes along a latitudinal gradient: Insights guided by full-congener analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136187. [PMID: 39427353 DOI: 10.1016/j.jhazmat.2024.136187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Understanding the occurrence, sources, and ecological risks of polychlorinated biphenyls (PCBs), which are universal persistent organic pollutants, is critical for improving the sustainability and ecological safety of lake systems. Herein, to determine PCB contamination levels and formulate control strategies in lake sediments, 210 sediment samples were collected from 21 lakes along a latitudinal gradient (18-45°N, ∼3000 km) across eastern China and were analyzed for all 209 PCB congeners. The results showed that the total PCB concentration varied greatly from 0.26 to 163.82 ng/g dry weight and exhibited a latitudinal trend of central > north/south. Spatial variations were affected mainly by the organic carbon fraction and local population density. Most lakes had similar PCB profiles, with lower chlorinated PCBs dominating. Notably, non-Aroclor PCB 11 was the most abundant congener. Moreover, unintentionally produced PCBs (UP-PCBs) accounted for ∼31 % of all PCBs. These findings highlight that the significance of UP-PCBs has been overlooked in past studies and that full-congener analysis is necessary for future monitoring. According to the ecological risk assessment of PCBs, zero to moderate risk existed in lake sediments. Therefore, effective strategies are needed to mitigate the impact of PCBs (especially UP-PCBs) from multiple sources on lakes.
Collapse
Affiliation(s)
- Jing Dong
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing 100012, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Xingru Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing 100012, China.
| | - Ran Dai
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Rui Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Chengyou Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Xiaoai Cui
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Yaqing Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Hui Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Binghui Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing 100012, China.
| |
Collapse
|
2
|
Zhao Q, Zhang Y, Li X, Hu X, Huang R, Xu J, Yin Z, Gu X, Xu Y, Yin J, Zhou Q, Li A, Shi P. Evaluating a river's ecological health: A multidimensional approach. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100423. [PMID: 38693993 PMCID: PMC11061703 DOI: 10.1016/j.ese.2024.100423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
Evaluating the health of river surface water is essential, as rivers support significant biological resources and serve as vital drinking water sources. While the Water Quality Index (WQI) is commonly employed to evaluate surface water quality, it fails to consider biodiversity and does not fully capture the ecological health of rivers. Here we show a comprehensive assessment of the ecological health of surface water in the lower Yangtze River (LYR), integrating chemical and biological metrics. According to traditional WQI metrics, the LYR's surface water generally meets China's Class II standards. However, it also contains 43 high-risk emerging contaminants; nitrobenzenes are found at the highest concentrations, representing 25-90% of total detections, while polycyclic aromatic hydrocarbons present the most substantial environmental risks, accounting for 81-93% of the total risk quotient. Notably, the plankton-based index of biological integrity (P-IBI) rates the ecological health of the majority of LYR water samples (59.7%) as 'fair', with significantly better health observed in autumn compared to other seasons (p < 0.01). Our findings suggest that including emerging contaminants and P-IBI as additional metrics can enhance the traditional WQI analysis in evaluating surface water's ecological health. These results highlight the need for a multidimensional assessment approach and call for improvements to LYR's ecological health, focusing on emerging contaminants and biodiversity rather than solely on reducing conventional indicators.
Collapse
Affiliation(s)
- Qiuyun Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Yangyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Xiuwen Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Xiaodong Hu
- Jiangsu Hydraulic Research Institute, Nanjing, 210023, China
| | - Rui Huang
- Jiangsu Hydraulic Research Institute, Nanjing, 210023, China
| | - Jixiong Xu
- Jiangsu Hydraulic Research Institute, Nanjing, 210023, China
| | - Zilong Yin
- Jiangsu Hydraulic Research Institute, Nanjing, 210023, China
| | - Xinjie Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Yuncheng Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Jinbao Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
3
|
Chen B, Jiang H, Wang H, Yang G, Hao X. Concentration of polychlorinated biphenyls and risk assessment in finless porpoises from the East China Sea. Toxicol Res 2024; 40:259-271. [PMID: 38525132 PMCID: PMC10959919 DOI: 10.1007/s43188-023-00221-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/09/2023] [Accepted: 11/30/2023] [Indexed: 03/26/2024] Open
Abstract
Polychlorinated biphenyls (PCBs) are bioaccumulative persistent organic pollutants with a great impact on cetaceans. To examine the content of PCBs and their risks to finless porpoises, this study determined the concentrations of seven typical PCB congeners in 56 tissue samples of East Asian finless porpoises (EAFPs) sampled in 2009-2012 from Ningbo (29.8835° N, 122.0644° E), Pingtan (25.5133° N, 119.8172° E) and Lvsi (32.1035° N, 121.6078° E). PCB138, PCB153 and PCB101 were the predominant congeners, accounting for 31.15%, 18.59% and 15.75%, respectively, of all PCBs detected. The content of PCBs increased with age in males but decreased from juveniles to adults in females due to transfer to calves by reproduction and lactation. EAFPs in Ningbo and Pingtan accumulated more PCBs than those in Lvsi Port. The trophic positions of EAFPs from Lvsi, Pingtan and Ningbo were 9.41, 8.95 and 9.43, respectively. PCB concentrations did not accumulate significantly with increasing trophic levels. The risk quotient index indicated that the risk of trichlorobiphenyl (3-PCB), tetrachlorobiphenyl (4-PCB), pentachlorobiphenyls (5-PCB), and hexachlorobiphenyls (6-PCB) to EAFPs in the East China Sea was generally low and within safe limits thus far. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-023-00221-0.
Collapse
Affiliation(s)
- Bingyao Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Huiping Jiang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Hui Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Xiuqing Hao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| |
Collapse
|
4
|
Zheng Q, Wu H, Yan L, Zhang Y, Wang J. Effects of polystyrene nanoplastics and PCB-44 exposure on growth and physiological biochemistry of Chlorella vulgaris. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170366. [PMID: 38280605 DOI: 10.1016/j.scitotenv.2024.170366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/01/2024] [Accepted: 01/20/2024] [Indexed: 01/29/2024]
Abstract
Both NPs and PCBs are emerging contaminants widely distributed in the environment, and it is worth exploring whether the combination of the two contaminants causes serious pollution and harm. Therefore, we studied the effects of PS-NPs and PCB-44 alone and together after 96 h and 21 d of exposure to C. pyrenoidosa. The results showed that PS-NPs and PCB-44 affected the cell cycle of C. pyrenoidosa and inhibited its normal growth. Under PS-NPs and PCB-44 stress, the relative conductivity of the algal solution increased, the hydrophobicity of the algal cell surface decreased, and the synthesis of chlorophyll a and chlorophyll b was reduced. In addition to physiological, there are biochemical effects on C. pyrenoidosa. PS-NPs and PCB-44 exposure induced oxidative stress with significant changes in the enzymatic activities of SOD and CAT together with MDA content. Moreover, the relative expression of photosynthesis-related genes (psbA, rbcL, rbcS) all responded, negatively affecting photosynthesis. In particular, significant toxic effects were observed with single exposure to PCB-44 and co-exposure to PS-NPs and PCB-44, with similar trends of effects in acute and chronic experiments. Taken together, exposure to PS-NPs and PCB-44 caused negative effects on the growth and physiological biochemistry of C. pyrenoidosa. These results provide scientific information to further explore the effects of NPs and PCBs on aquatic organisms and ecosystems.
Collapse
Affiliation(s)
- Qingzhi Zheng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hanru Wu
- GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Lei Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yanling Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 511457, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China.
| |
Collapse
|
5
|
Jiang S, Wan M, Lin K, Chen Y, Wang R, Tan L, Wang J. Spatiotemporal distribution, source analysis and ecological risk assessment of polychlorinated biphenyls (PCBs) in the Bohai Bay, China. MARINE POLLUTION BULLETIN 2024; 198:115780. [PMID: 38006871 DOI: 10.1016/j.marpolbul.2023.115780] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 11/27/2023]
Abstract
As a class of persistent organic pollutants (POPs), the spatial and temporal distribution of polychlorinated biphenyls (PCBs) in seawater is important for environmental assessment. Surface water samples were collected from 35 stations during summer and 36 stations during autumn of 2020 in the Bohai Bay. The concentration, composition, distribution and sources of PCBs were analyzed to assess the ecological impact of PCBs. The average concentration of ∑18PCBs was 124.6 ng/L (range of 28.1-445.5 ng/L) in summer and 122.8 ng/L (range of 21.0-581.4 ng/L) in autumn. PCBs in surface seawater of the Bohai Bay showed high near-shore and low far-shore characteristics, indicating the serious influence of land-based sources such as port activities and river inputs. Proportion analysis showed that Tetra-PCBs and Penta-PCBs were the major constituents in most stations. It was assessed as moderate and high risk (MRQ > 0.1) by mixture risk quotient (MRQ) and concentration addition (CA) model in surface seawater of the Bohai Bay. Principal component analysis (PCA) was used to explain the sources of PCBs in the Bohai Bay. PCBs in the Bohai Bay may come from commercial PCBs and their incineration products, municipal landfills, wood and coal combustion, and industrial activities, etc.
Collapse
Affiliation(s)
- Shan Jiang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Mengmeng Wan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Kun Lin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yanshan Chen
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Rui Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Battery Technology Company, Wanhua Chemical Group Co., Ltd. Yantai 265503, China
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
6
|
Yu H, Lin T, Hu L, Lammel G, Zhao S, Sun X, Wu X, Guo Z. Sources of polychlorinated biphenyls (PCBs) in sediments of the East China marginal seas: Role of unintentionally-produced PCBs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122707. [PMID: 37816403 DOI: 10.1016/j.envpol.2023.122707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023]
Abstract
The production and use of intentionally-produced polychlorinated biphenyls (PCBs) in China have a short history compared with countries of North America and Europe, where technical PCB mixtures were manufactured in large amounts for decades before being banned. Unintentionally-produced PCB emissions increased dramatically in China, leading to unique profiles of PCB burdens. This study first time evaluated 208 individual PCB congeners at 94 sites from surface sediments of the East China Marginal Seas (ECMSs) and explored their sources. Non-technical PCBs transported from atmospheric transport and river discharge played a dominant role in most areas of the ECMSs, while historical residuals of technical PCBs occupied the fine-grained sediments in muddy areas of the central Yellow Sea (YS), regarding to the low sedimentation rate in the central YS. Furthermore, emissions from Taizhou located on the coast of the East China Sea (ECS), which is an important electronic waste dismantling site in East China, contributed additional technical PCBs to the inner shelf of the ECS. Our results indicate that non-technical PCBs have become the dominant PCB species in the ECMSs, and emphasize the synergistic effects of large riverine input, long-range atmospheric transport, and muddy shelf deposition on PCB source and sink of in marginal seas.
Collapse
Affiliation(s)
- Huimin Yu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Institute of Eco-Chongming (IEC), Shanghai, 202162, China; Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128, Mainz, Germany
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Limin Hu
- Key Laboratory of Submarine Geosciences and Technology, MOE, Ocean University of China, Qingdao, 266100, China
| | - Gerhard Lammel
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128, Mainz, Germany; RECETOX, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Shizhen Zhao
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Xueshi Sun
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Xiao Wu
- Key Laboratory of Submarine Geosciences and Technology, MOE, Ocean University of China, Qingdao, 266100, China
| | - Zhigang Guo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Institute of Eco-Chongming (IEC), Shanghai, 202162, China.
| |
Collapse
|
7
|
Luo Y, Tong G, Song Q, Tao P, Jin M, Gu N, Zheng M, Yu X, Yu X. Impacts of shipyard oil leakage on the PAHs and PCBs occurrence in Xiangshan Bay, China. MARINE ENVIRONMENTAL RESEARCH 2023; 190:106057. [PMID: 37422993 DOI: 10.1016/j.marenvres.2023.106057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 07/11/2023]
Abstract
Here, we studied the shipyard impacts on the distribution of PAHs and PCBs in the semi-enclosed Xiangshan Bay, an important mariculture zone in China. The results showed that the shipyard caused a pollution plume for PAHs but not for PCBs. As characteristic pollutants of oil leakage, the PAHs had concentrations of up to 55.82 ng L-1 in the water, 2235.04 ng g-1 in suspended particulate matter (SPM), and 1489.60 ng g-1 in sediment. The PAHs in water and SPM were dominated by phenanthrene and pyrene that were mostly derived from lubricant and diesel, while those in sediments were dominated by the high-molecular-weight PAHs, such as indeno[1,2,3-c,d]pyrene. In contrast, the PCBs concentrations reached up to 10.17 ng L-1, 79.72 ng g-1, and 124.33 ng g-1 in the seawater, SPM, and sediment samples, respectively, and they did not show spatial patterns affected by the shipyard. Moreover, the health risk assessment indicated that the shipyard discharge caused a substantial PAHs ecological risk to the adjacent and downstream water environment. Therefore, point source discharge in semi-enclosed bays should be paid close attention to due to the strong pollutant transport effect.
Collapse
Affiliation(s)
- Yi Luo
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, 315211, PR China
| | - Ganghui Tong
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, 315211, PR China
| | - Qingbin Song
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, 315211, PR China
| | - Peiran Tao
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, 315211, PR China
| | - Meng Jin
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, 315211, PR China
| | - Nitao Gu
- Ningbo Research Institute of Ecological and Environmental Sciences, Ningbo, 315000, PR China
| | - Meiling Zheng
- Meishan Street Office, Beilun District, Ningbo, 315832, PR China
| | - Xinwei Yu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, 316021, PR China
| | - Xubiao Yu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, 315211, PR China; Donghai Academy, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
8
|
Sim W, Nam A, Lee M, Oh JE. Polychlorinated biphenyls and organochlorine pesticides in surface sediments from river networks, South Korea: Spatial distribution, source identification, and ecological risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94371-94385. [PMID: 37531057 DOI: 10.1007/s11356-023-28973-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023]
Abstract
In this study, the nationwide monitoring of 65 polychlorinated biphenyls (PCBs) and 23 organochlorine pesticides (OCPs) in surface sediments was conducted at 77 sites in river networks in South Korea. The concentrations of ∑PCBs were relatively high in industrial sites (0.0297-138 ng/g dry weight (dw); mean 15.1 ng/g dw; median 5.44 ng/g dw), followed by industrial and agricultural (not detected (ND)-15.2 ng/g dw; mean 1.23 ng/g dw; median 0.513 ng/g dw), other sites (0.0369-0.209 ng/g dw; mean 0.116 ng/g dw; median 0.101 ng/g dw), and agricultural (0.0119-0.359 ng/g dw; mean 0.117 ng/g dw; median 0.0476 ng/g dw). The distribution and composition of PCBs in sediments are affected by past use of commercial products, atmospheric deposition, wastewater effluents, and manufacturing processes. The concentrations of ∑OCPs in industrial sites ranged from 0.0587 to 8.70 ng/g dw (mean 1.85 ng/g dw; median 0.989 ng/g dw), followed by industrial and agricultural (ND-8.54 ng/g dw; mean 0.739 ng/g dw; median 0.343 ng/g dw), other sites (0.0247-0.143 ng/g dw; mean 0.0939 ng/g dw; median 0.114 ng/g dw), and agricultural (0.00838-0.931 ng/g dw; mean 0.232 ng/g dw; median 0.0752 ng/g dw). Hexachlorobenzene and pentachlorobenzene are unintentionally generated in industries and combustion processes. Dichlorodiphenyltrichloroethanes and chlordane were dominantly distributed by historical use, whereas recent inputs (i.e., long-range transport and atmospheric deposition) were related to aldrin, heptachlor, and hexachlorocyclohexanes. The ecological risks determined by the sediment quality guidelines and mean probable effect level quotients were acceptable, except at two sites.
Collapse
Affiliation(s)
- Wonjin Sim
- Institute for Environment and Energy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Aeji Nam
- Institute for Environment and Energy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Mikyung Lee
- National Institute of Environmental Research, 42 hwangyeong-ro, Seo-gu, Incheon, 22689, Republic of Korea
| | - Jeong-Eun Oh
- Institute for Environment and Energy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea.
- Department of Civil and Environmental Engineering, Pusan National University, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea.
| |
Collapse
|
9
|
Yang X, Liu Y, Liu S, Zheng P, Bai X, Ma LQ, Liu W. Prenatal exposure to 209 PCBs in mother-infant pairs from two cities in China: Levels, congener profiles, and transplacental transfer. CHEMOSPHERE 2023; 326:138483. [PMID: 36958503 DOI: 10.1016/j.chemosphere.2023.138483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Prenatal exposure to polychlorinated biphenyls (PCBs) has been well researched, but studies covering all 209 congeners are limited. Recent literature suggests a shift in the dominant congeners and increasing levels of unintentionally-produced PCBs (UP-PCBs) in environmental samples in China. To investigate the exposure levels and profiles of PCBs in pregnant women and newborns, as well as the characteristics of transplacental transfer, we measured 209 PCBs in 80 pairs of maternal serum (MS) and cord serum (CS) from Hangzhou and Mianyang, China. The levels of ∑PCBs of participants in this study were lower than those in developed countries and followed the order of (ng/g lw): Hangzhou-MS (148) > Hangzhou-CS (107) > Mianyang-MS (63.8) > Mianyang-CS (57.9). UP-PCBs (mainly PCB-11) contributed around 50% of ∑PCBs in serum, which is consistent with the environmental samples. Environmental burden and dietary intake may account for the differences in the exposure levels, while the historical production and release may have impacted the homologue profiles. Prenatal exposure to PCB-126 was associated with increased birth weight (n = 80, adjusted β = 0.270, p = 0.030). The body burden of dioxin-like PCBs of newborns in Hangzhou was 82.4 pg TEQ/kg bw, suggesting certain health risks under WHO tolerable daily intake of 1-4 pg TEQ/kg bw. Log10 KOW was negatively correlated with log10-transformed transplacental transfer efficiency (R2 = 0.36, p < 0.001), serving its importance for PCBs' transplacental transfer. This study is the first to investigate maternal and fetal exposure to PCBs in China based on their levels, congener and homologue profiles, and potential adverse effects. Our findings help to provide insights into the processes and factors influencing the transplacental transfer of PCBs.
Collapse
Affiliation(s)
- Xiaomeng Yang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, Zhejiang University, Hangzhou, 310058, China
| | - Yingxue Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, Zhejiang University, Hangzhou, 310058, China
| | - Shuren Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Ping Zheng
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoxia Bai
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Lena Q Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weiping Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
10
|
Tam N, Kong RYC, Lai KP. Reproductive toxicity in marine medaka (Oryzias melastigma) due to embryonic exposure to PCB 28 or 4'-OH-PCB 65. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162401. [PMID: 36842578 DOI: 10.1016/j.scitotenv.2023.162401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Previous studies have shown that juvenile or adult exposure to polychlorinated biphenyls (PCBs) induces alterations in reproductive functions (e.g., reduced fertilization rate) and behavior (e.g., reduced nest maintenance) in fish. Embryonic exposures to other endocrine disrupting chemicals have been reported to induce long-term reproductive toxicity in fish. However, the effects of embryonic exposure to PCBs or their metabolites, OH-PCBs, on long-term reproductive function in fish are unknown. In the present study, we used the marine medaka fish (Oryzias melastigma) as a model to assess the reproductive endpoints in response to embryonic exposure to either PCB 28 or 4'-OH-PCB 65. Our results showed that the sex ratio of marine medaka was feminized by exposure to 4'-OH-PCB 65. Fecundity was decreased in the medaka treated with either PCB 28 or 4'-OH-PCB 65, whereas the medaka from embryonic exposure to 4'-OH-PCB 65 additionally exhibited reduced fertilization and a reduction in the hatching success rate of offspring, as well as decreased sperm motility. Serum 11-KT concentrations were reduced in the PCB 28-treated medaka, and serum estradiol (E2)/testosterone (T) and E2/11-ketotestosterone (11-KT) ratios were decreased in the 4'-OH-PCB 65-treated medaka. To explain these observations at the molecular level, transcriptomic analysis of the gonads was performed. Bioinformatic analysis using Gene Ontology and Ingenuity Pathway Analysis revealed that genes involved in various pathways potentially involved in reproductive functions (e.g., steroid metabolism and cholesterol homeostasis) were differentially expressed in the testes and ovaries of either PCB- or OH-PCB-treated medaka. Thus, the long-term reproductive toxicity in fish due to embryonic exposure to PCB or OH-PCB should be considered for environmental risk assessment.
Collapse
Affiliation(s)
- Nathan Tam
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong
| | - Richard Yuen Chong Kong
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, China; Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| |
Collapse
|
11
|
Xu R, Chi T, Ren H, Li F, Tian J, Chen L. The occurrence, distribution and removal of adsorbable organic halogens (AOX) in a typical fine chemical industrial park. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120043. [PMID: 36030952 DOI: 10.1016/j.envpol.2022.120043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Coastal water quality in China has been impacted by direct discharge of industrial wastewater, and various kinds of AOX pollutants have been detected in the seawater and sediment. As the dominant pollution source of Hangzhou Bay, a typical fine chemical industry park "HSEDA" was selected as the study area in this research. The AOX in both wastewater and sludge phases from 22 large-scaled enterprises were simultaneously investigated. The results quantitatively illustrated the AOX flows from engineered wastewater and sludge treatment systems to natural environment. It can be seen that industrial enterprises discharged at least 160 t AOX every year, and about 105.4 t/a AOX eventually entered the natural environment. The dye manufacturing industry, which accounted for more than 60% of the total AOX emission load in HSEDA, was identified as the AOX pollution-intensive sector. The occurrence, characteristic pollutants and fate of AOX in dye wastewater were discussed, on the basis of which the improvements of cleaner production and wastewater treatment technologies have been put forward.
Collapse
Affiliation(s)
- Ranyun Xu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Tongtong Chi
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hang Ren
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Feifei Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jinping Tian
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Lyujun Chen
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
12
|
Pei L, Wang C, Zuo Y, Liu X, Chi Y. Impacts of Land Use on Surface Water Quality Using Self-Organizing Map in Middle Region of the Yellow River Basin, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10946. [PMID: 36078661 PMCID: PMC9517833 DOI: 10.3390/ijerph191710946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The Yellow River is one of the most important water sources in China, and its surrounding land use affected by human activities is an important factor in water quality pollution. To understand the impact of land use types on water quality in the Sanmenxia section of the Yellow River, the water quality index (WQI) was used to evaluate the water quality. A self-organizing map (SOM) was used for clustering analysis of water quality indicators, and the relationship between surface water quality and land use types was further analyzed by redundancy analysis (RDA). The results showed that WQI values ranged from 82.60 to 507.27, and the highest value was the sampling site S3, whose water quality grade was "Likely not suitable for drinking", mainly polluted by agricultural non-point sources ammonia nitrogen pollution. SOM clustered the sampling sites into 4 groups according to the water quality indicators, the main influencing factors for different groups were analyzed and explored in more depth in relation to land use types, suggesting that surface water quality was significantly connected with the proportion of land use types at the watershed scale in the interpretation of water quality change. The negative impact of cropland on surface water quality was greater than that of other land use types, and vegetation showed a greater positive impact on surface water quality than other land uses. The results provide evidence for water environment conservation based on land use in the watershed.
Collapse
Affiliation(s)
- Liang Pei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunhui Wang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiping Zuo
- Foreign Environmental Cooperation Center, Ministry of Ecology and Environment, Beijing 100035, China
| | - Xiaojie Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanyan Chi
- Chinese Academy of Environmental Planning, Beijing 100102, China
| |
Collapse
|
13
|
Niu L, Mao S, Zhou J, Zhao L, Zhu Y, Xu C, Sun X, Sun J, Liu W. Polychlorinated biphenyls (PCBs) in soils from typical paddy fields of China: Occurrence, influencing factors and human health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119567. [PMID: 35659909 DOI: 10.1016/j.envpol.2022.119567] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
The contamination of paddy soils is of great concern since it links to human health via food supply. Limited knowledge is available on PCB residue characteristics and the associated health risks in paddy soils under various environmental conditions. In this study, a soil sampling campaign was conducted in three typical paddy fields, i.e., Sanjiang Plain (SP), Taihu Plain (TP) and Hani Terrace (HT), crossing a transect of 4000 km in China. The concentrations of 29 quantified PCBs varied from 58.6 to 1930 pg/g in paddy soils, with samples at TP showing the highest burden. Tri-CBs were the major homologue group at SP and HT, whereas hexa-CBs at TP. Altitude, temperature, soil organic matter content and soil conductivity well explained the variations in PCB concentrations among sites. The homologue profiles of soil PCBs followed the fractionation theory. In addition, soil conductivity was found to be negatively correlated to low-chlorinated PCBs and positively to high-chlorinated congeners. Furthermore, the toxicities of soil PCBs and the exposure risks through rice intake were estimated. Higher toxicity equivalent quantities and hazard indexes were found at SP than TP and HT, with over one third of the samples displaying health risks. The results of this work highlight the necessity to better understand the occurrence characteristics and the associated health risks of PCBs in soils of rice-growing regions.
Collapse
Affiliation(s)
- Lili Niu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Shuduan Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Jinyi Zhou
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China; College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Lu Zhao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Yuanqiao Zhu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chao Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaohui Sun
- Zhejiang Environmental Monitoring Centre, Hangzhou, 310012, China
| | - Jianqiang Sun
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Weiping Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
14
|
Wang Q, Xie C, Long C, Yang W, Wang Y, Xu W, Zhang L, Sun Y. Bioaccumulation and Biomagnification of Polychlorinated Biphenyls and Dichlorodiphenyltrichloroethane in Biota from Qilianyu Island, South China Sea. TOXICS 2022; 10:toxics10060324. [PMID: 35736932 PMCID: PMC9230657 DOI: 10.3390/toxics10060324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022]
Abstract
Six biota species were collected from Qilianyu Island, South China Sea to determine the bioaccumulation and biomagnification of polychlorinated biphenyls (PCBs) and dichlorodiphenyltrichloroethane and its metabolites (DDTs). Concentrations of ΣPCBs and ΣDDTs in biota from Qilianyu Island ranged from 6.88 to 519.1 ng/g lipid weight (lw) and 7.0 to 19,413 ng/g lw, respectively. Significant differences for PCBs and DDTs concentrations were found among the six biota species from Qilianyu Island. The levels of PCBs and DDTs in intermediate egret were significantly higher than the other five biota species, which can be attributed to their different feeding and living habits. Significantly negative relationships between concentrations of PCBs and DDTs and δ13C values in the six biota species confirmed that dietary source is an important factor to determine the levels of PCBs and DDTs in biota species. ΣPCBs, ΣDDTs, PCB 28/31, PCB 52, and p,p'-DDE were biomagnified in the biota species from Qilianyu Island, and native species are suitable for studying the biomagnification of the contaminants. The toxic equivalent concentrations in birds from Qilianyu Island were significantly and positively correlated with PCBs concentrations, indicating that high concentrations of non- and mono-ortho-PCB congeners may induce adverse effects on bird species.
Collapse
Affiliation(s)
- Qingling Wang
- Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China; (Q.W.); (W.Y.)
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (C.X.); (C.L.); (L.Z.); (Y.S.)
| | - Chenmin Xie
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (C.X.); (C.L.); (L.Z.); (Y.S.)
| | - Chuyue Long
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (C.X.); (C.L.); (L.Z.); (Y.S.)
| | - Weiyan Yang
- Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China; (Q.W.); (W.Y.)
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (C.X.); (C.L.); (L.Z.); (Y.S.)
| | - Yan Wang
- Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China; (Q.W.); (W.Y.)
- Correspondence:
| | - Weihai Xu
- Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya 572000, China;
| | - Li Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (C.X.); (C.L.); (L.Z.); (Y.S.)
| | - Yuxin Sun
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (C.X.); (C.L.); (L.Z.); (Y.S.)
| |
Collapse
|
15
|
Abstract
Countries globally trade with tons of waste materials every year, some of which are highly hazardous. This trade admits a network representation of the world-wide waste web, with countries as vertices and flows as directed weighted edges. Here we investigate the main properties of this network by tracking 108 categories of wastes interchanged in the period 2001–2019. Although, most of the hazardous waste was traded between developed nations, a disproportionate asymmetry existed in the flow from developed to developing countries. Using a dynamical model, we simulate how waste stress propagates through the network and affects the countries. We identify 28 countries with low Environmental Performance Index that are at high risk of waste congestion. Therefore, they are at threat of improper handling and disposal of hazardous waste. We find evidence of pollution by heavy metals, by volatile organic compounds and/or by persistent organic pollutants, which are used as chemical fingerprints, due to the improper handling of waste in several of these countries. The 2001–2019 web of international waste trade is investigated, allowing the identification of countries at threat of improper handling and disposal of waste. Chemical tracers are used to identify the environmental impact of waste in these countries.
Collapse
|
16
|
Zhu M, Yuan Y, Yin H, Guo Z, Wei X, Qi X, Liu H, Dang Z. Environmental contamination and human exposure of polychlorinated biphenyls (PCBs) in China: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150270. [PMID: 34536863 DOI: 10.1016/j.scitotenv.2021.150270] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Polychlorinated biphenyls (PCBs), together with 11 other organic compounds, were initially listed as persistent organic pollutants (POPs) by the Stockholm Convention because of their potential threat to ecosystems and humans. In China, many monitoring studies have been undertaken to reveal the level of PCBs in environment since 2005 due to the introduced stricter environmental regulations. However, there are still significant gaps in understanding the overall spatial and temporal distributions of PCBs in China. This review systematically discusses the occurrence and distribution of PCBs in environmental matrices, organisms, and humans in China. Results showed that PCB contamination in northern and southern China was not significantly different, but the PCB levels in East China were commonly higher than those in West China, which might have been due to the widespread consumption of PCBs and intensive human activities in East China. Serious PCB contamination was found in e-waste disassembling areas (e.g., Taizhou of Zhejiang Province and Qingyuan and Guiyu of Guangdong Province). Higher PCB concentrations were also chronicled in megalopolises and industrial clusters. The unintentionally produced PCBs (UP-PCBs) formed during industrial thermal processes may play an increasingly significant role in PCB pollution in China. Low PCB levels were recorded in rural and underdeveloped districts, particularly in remote and high-altitude localities such as the Tibetan Plateau and the South China Sea. However, these data are limited. Human exposure to PCBs is closely related to the characteristics of environmental pollution. This review also discusses existing issues and future research prospects on PCBs in China. For instance, the accumulation characteristics and migration regularities of PCBs in food webs should be further studied. More investigations should be undertaken to assess the quantitative relationship between external and internal exposure to PCBs. For example, bioaccessibility and bioavailability studies should be supplemented to evaluate human health risks more accurately.
Collapse
Affiliation(s)
- Minghan Zhu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Yibo Yuan
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Zhanyu Guo
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Xipeng Wei
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Xin Qi
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Hang Liu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
17
|
Xu L, Liu S, Tang Y, Han X, Wang Y, Fu D, Qin Q, Xu Y. Long-Term Dechlorination of Polychlorinated Biphenyls (PCBs) in Taihu Lake Sediment Microcosms: Identification of New Pathways, PCB-Driven Shifts of Microbial Communities, and Insights into Dechlorination Potential. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:938-950. [PMID: 34958198 DOI: 10.1021/acs.est.1c06057] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microbial reductive dechlorination of polychlorinated biphenyls (PCBs) is regarded as an alternative approach for in situ remediation and detoxification in the environment. To better understand the process of PCB dechlorination in freshwater lake sediment, a long-term (108 weeks) dechlorination study was performed in Taihu Lake sediment microcosms with nine parent PCB congeners (PCB5, 12, 64, 71, 105, 114, 149, 153, and 170). Within 108 weeks, the total PCBs declined by 32.8%, while parent PCBs declined by 84.8%. PCB dechlorinators preferred to attack meta- and para-chlorines, principally para-flanked meta and single-flanked para chlorines. A total of 58 dechlorination pathways were observed, and 20 of them were not in 8 processes, suggesting the broad spectrum of PCB dechlorination in the environment. Rare ortho dechlorination was confirmed to target the unflanked ortho chlorine, indicating a potential for complete dechlorination. PCBs drove the shifts of the microbial community structures, and putative dechlorinating bacteria were growth-linked to PCB dechlorination. The distinct jump of RDase genes ardA, rdh12, pcbA4, and pcbA5 was found to be consistent with the commencement of dechlorination. The maintained high level of putative dechlorinating phylum Chloroflexi (including Dehalococcoides and o-17/DF-1), genus Dehalococcoides, and four RDase genes at the end of incubation revealed the long-term dechlorination potential. This work provided insights into dechlorination potential for long-term remediation strategies at PCB-contaminated sites.
Collapse
Affiliation(s)
- Lei Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| | - Sha Liu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| | - Yanqiang Tang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| | - Xuexin Han
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| | - Ying Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| | - Dafang Fu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| | - Qingdong Qin
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| | - Yan Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| |
Collapse
|
18
|
Xu G, Zhao X, Zhao S, He J. Acceleration of polychlorinated biphenyls remediation in soil via sewage sludge amendment. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126630. [PMID: 34293691 DOI: 10.1016/j.jhazmat.2021.126630] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Bioremediation of polychlorinated biphenyls (PCBs) is impeded by difficulties in massively cultivating bioinoculant. Meanwhile, sewage sludge is rich in pollutant-degrading microorganisms and nutrients, drawing our attention to investigate their potential to be used as a supplement for bioremediation of PCBs. Here we reported extensive microbial reductive dechlorination of PCBs by waste activated sludge (WAS) and digestion sludge (DS), which were identified to harbor multiple putative organohalide-respiring bacteria (i.e., Dehalococcoides, Dehalogenimonas, Dehalobacter, and uncultivated Dehalococcoidia) and PCB reductive dehalogenase genes (i.e., pcbA4 and pcbA5). Consequently, amendment of 1-20% (w/w) fresh WAS/DS enhanced the attenuation of PCBs by 126-544% in a soil microcosm compared with the control soil, with the fastest dechlorination of PCBs being achieved when spiked with 20% fresh WAS. Notably, dechlorination pathways of PCBs were also changed by sludge amendment. Microbial and physicochemical analyses revealed that the enhanced dechlorination of PCBs by sludge amendment was largely attributed to the synergistic effects of sludge-derived nutrients, PCB-dechlorinating bacteria, and stimulated growth of beneficial microorganisms (e.g., fermenters). Finally, risk assessment of heavy metals suggests low potential ecological risks of sludge amendment in soil. Collectively, our study demonstrates that sewage sludge amendment could be an efficient, cost-effective and environment-friendly approach for in situ bioremediation of PCBs.
Collapse
Affiliation(s)
- Guofang Xu
- NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore 117576, Singapore
| | - Xuejie Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore 117576, Singapore
| | - Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore 117576, Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore 117576, Singapore.
| |
Collapse
|
19
|
Wang S, Huang X, Wang M, Tian L, Li X, Kong C, Han F, Lou X, Ye H, Shi Y. Simultaneous Determination of Polychlorinated Biphenyl 101 (PCB101) and Its Hydroxylated, Methoxylated and Methyl Sulfonated Metabolites in Aquatic Organisms by Solid-Phase Extraction (SPE) and Gas Chromatography–Microelectron Capture Detection (GC-μECD). ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1967369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Shuai Wang
- Fishery Products Quality Inspection and Test Centre (Shanghai), Ministry of Agriculture and Rural Affairs of China, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Linquan County Agricultural Product Quality and Safety Inspection Station, Anhui, Linquan, China
| | - Xunyun Huang
- Fishery Products Quality Inspection and Test Centre (Shanghai), Ministry of Agriculture and Rural Affairs of China, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Mengyuan Wang
- Fishery Products Quality Inspection and Test Centre (Shanghai), Ministry of Agriculture and Rural Affairs of China, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Liangliang Tian
- Fishery Products Quality Inspection and Test Centre (Shanghai), Ministry of Agriculture and Rural Affairs of China, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Xiaolei Li
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Cong Kong
- Fishery Products Quality Inspection and Test Centre (Shanghai), Ministry of Agriculture and Rural Affairs of China, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Feng Han
- Fishery Products Quality Inspection and Test Centre (Shanghai), Ministry of Agriculture and Rural Affairs of China, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Xiaoyi Lou
- Fishery Products Quality Inspection and Test Centre (Shanghai), Ministry of Agriculture and Rural Affairs of China, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Hongli Ye
- Fishery Products Quality Inspection and Test Centre (Shanghai), Ministry of Agriculture and Rural Affairs of China, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Yongfu Shi
- Fishery Products Quality Inspection and Test Centre (Shanghai), Ministry of Agriculture and Rural Affairs of China, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| |
Collapse
|
20
|
Lu Q, Liang Y, Fang W, Guan KL, Huang C, Qi X, Liang Z, Zeng Y, Luo X, He Z, Mai B, Wang S. Spatial Distribution, Bioconversion and Ecological Risk of PCBs and PBDEs in the Surface Sediment of Contaminated Urban Rivers: A Nationwide Study in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9579-9590. [PMID: 33852286 DOI: 10.1021/acs.est.1c01095] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Surface sediments of polluted urban rivers can be a reservoir of hydrophobic persistent organic pollutants (POPs). In this study, we comprehensively assessed the contamination of two groups of POPs, that is, polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), in 173 black-odorous urban rivers in China. Spatial distribution of PCBs and PBDEs showed similar patterns but very different contamination levels in surface sediments, that is, average concentrations of 10.73 and 401.16 ng/g dw for the ∑PCBs and ∑PBDEs, respectively. Tetra-/di-CBs and deca-BDE are major PCBs and PBDEs and accounted for 59.11 and 95.11 wt % of the ∑PCBs and ∑PBDEs, respectively. Compared with the persistence of PBDEs, the EF changes of chiral PCBs together with previous cultivation evidence indicated indigenous bioconversion of PCBs in black-odorous urban rivers, particularly the involvement of uncharacterized Dehalococcoidia in PCB dechlorination. Major PCB sources (and their relative contributions) included pigment/painting (25.36%), e-waste (22.92%), metallurgical industry (13.25%), and e-waste/biological degradation process (10.95%). A risk assessment indicated that exposure of resident organisms in urban river sediments to deca-/penta-BDEs could pose a high ecological risk. This study provides the first insight into the contamination, conversion and ecological risk of PCBs and PBDEs in nationwide polluted urban rivers in China.
Collapse
Affiliation(s)
- Qihong Lu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yongyi Liang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Wenwen Fang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Ke-Lan Guan
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Chenchen Huang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xuemeng Qi
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhiwei Liang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
21
|
Sun S, Cao R, Jin J, Zhang Y, Gao Y, Lu X, Chen J, Zhang H. Accumulation characteristics and estimated dietary intakes of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and polychlorinated biphenyls in plant-origin foodstuffs from Chinese markets. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145830. [PMID: 33621885 DOI: 10.1016/j.scitotenv.2021.145830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
The levels and accumulation characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) were investigated in nine pools of representative plant-origin foodstuffs randomly collected from markets located in five regions of the Chinese mainland during 2018-2019. The collected foodstuffs consisted of cereals, beans, potatoes, leafy vegetables, root and stem vegetables, melon vegetables, legume vegetables, edible fungi, and mixed vegetable oil. In the fresh plant food pools, the concentrations of toxic equivalency (WHO-TEQ) were in the ranges of 0.9-14.5 pg/kg in upperbound (UB) scenario and 0.002-7.3 pg/kg in lowerbound (LB) scenario on a fresh weight basis; and TriCDFs and TeCBs were the predominant PCDD/F and PCB homologues, respectively. In the mixed vegetable oil, the WHO-TEQ concentrations were 129.4 pg/kg and 103.6 pg/kg on a lipid weight basis in UB and LB scenarios, respectively; and high-chlorinated PCDD/F and PCB homologues were much more abundant. The estimated plant food-borne dietary intakes of WHO-TEQ by a standard adult in the five surveyed regions were in the ranges of 3.39-4.20 and 1.57-2.13 pg WHO-TEQ/kg body weight/month in UB and LB scenarios, respectively. Among all surveyed regions, consumption of cereals and vegetable oil made up the primary contributions to the estimated dietary intakes of WHO-TEQ. TriCDFs accounted for 41.1-83.9% of the PCDD/Fs dietary intakes via consumption of plant foods, and TeCBs made up 61.2-73.0% of the PCBs dietary intakes via consumption of plant foods, suggesting that the potential toxic effects of TriCDFs and TeCBs on human health should be concerned.
Collapse
Affiliation(s)
- Shuai Sun
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Cao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jing Jin
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yichi Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yuan Gao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xianbo Lu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
22
|
Deng Q, Wei Y, Huang W, Li Y, Peng C, Zhao Y, Yang J, Xu Z, Wang X, Liang W. Sedimentary evolution of PAHs, POPs and ECs: Historical sedimentary deposition and evolution of persistent and emerging organic pollutants in sediments in a typical karstic river basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:144765. [PMID: 33940703 DOI: 10.1016/j.scitotenv.2020.144765] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Knowledge on the occurrence and distributions of organic compounds, especially PAHs, POPs and ECs, in karstic river basins is limited. This study aims to determine the depositional history and sources of PAHs, PCBs, OCPs, antibiotics, EDCs and phenolic compounds and the ecological risk they have in the Panyang River Basin, an area with a typical karstic landscape and a high-longevity population. Sediment core analysis was adopted, correlation and principal component analyses were conducted to analyze pollution sources, and lead isotope technology was implemented for dating analysis. The sediment core covered 108 years. PCBs were detected with concentrations ranging from 3.80 to 16.18 μg/kg in the core with two concentration peaks in 1950 and 2005 that were related to anthropogenic effects. Eight of the 20 targeted phenolic compounds were detected, with concentrations ranging from 0.42 to 1.10 mg/kg. All PAHs were detected in the cores, with concentrations from 12.91 to 37.80 μg/kg. They were mainly related to natural diagenetic processes and domestic and agricultural sources. The concentrations of different OCP compounds ranged from undetected to 213.43 μg/kg and were mainly related to agricultural activities and long-range transportation. These key findings can assist environmental planning and management in this river basin.
Collapse
Affiliation(s)
- Qucheng Deng
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; School of Earth and Environmental Sciences, the University of Queensland, Brisbane 4072, Australia
| | - Yongping Wei
- School of Earth and Environmental Sciences, the University of Queensland, Brisbane 4072, Australia
| | | | - Yonghua Li
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Chong Peng
- Guangxi Zhuang Autonomous Region Radiation Environmental Supervision and Management Station, 530028, China
| | - Yinjun Zhao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning 530001, China
| | - Jiahuan Yang
- Guangxi Zhuang Autonomous Region Marine Environment Monitoring Center Station, 536000, China
| | - Zecheng Xu
- Guangxi Zhuang Autonomous Region Radiation Environmental Supervision and Management Station, 530028, China
| | - Xiaofei Wang
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China
| | - Wei Liang
- Guangxi Environmental Information Center, Nanning 536000, China
| |
Collapse
|
23
|
Lu Q, Liu J, He H, Liang Z, Qiu R, Wang S. Waste activated sludge stimulates in situ microbial reductive dehalogenation of organohalide-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125189. [PMID: 33858119 DOI: 10.1016/j.jhazmat.2021.125189] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Due to its enriched organic matter, nutrients and growth cofactors, as well as a diverse range of microorganisms, waste activated sludge (WAS) might be an ideal additive to stimulate organohalide respiration for in situ bioremediation of organohalide-contaminated sites. In this study, we investigated the biostimulation and bioaugmentation impacts of WAS-amendment on the performance and microbiome in tetrachloroethene (PCE) and polychlorinated biphenyls (PCBs) dechlorinating microcosms. Results demonstrated that WAS-amendment increased PCE- and PCBs-dechlorination rate as much as 6.06 and 10.67 folds, respectively. The presence of WAS provided a favorable growth niche for organohalide-respiring bacteria (OHRB), including redox mediation and generation of electron donors and carbon sources. Particularly for the PCE dechlorination, indigenous Geobacter and WAS-derived Dehalococcoides were identified to play key roles in PCE-to-dichloroethene (DCE) and DCE-to-ethene dechlorination, respectively. Similar biostimulation and bioaugmentation effects of WAS-amendment were observed on both PCE- and PCBs-dechlorination in three different soils, i.e., laterite, brown loam and paddy soil. Risk assessment suggested low potential ecological risk of WAS amendment in remediation of organohalide-contaminated soil. Overall, this study provided an economic and efficient strategy to stimulate the organohalide respiration-based bioremediation in field applications.
Collapse
Affiliation(s)
- Qihong Lu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China
| | - Jinting Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China
| | - Haozheng He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhiwei Liang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China
| | - Rongliang Qiu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
24
|
Chen MY, Liu HY, Luo XJ, Mai BX, Lu FH. Investigating the spatial distribution of polychlorinated biphenyls in sediment in the Pearl River Delta, South China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:321. [PMID: 33945020 DOI: 10.1007/s10661-021-09072-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
One hundred forty-three surface sediment (0-5 cm depth) samples were collected from locations representing industrialized areas, less-industrialized areas, and e-waste recycling areas in the Pearl River Delta (PRD). The spatial distribution of polychlorinated biphenyls (PCBs) and their potential adverse effects on aquatic organisms were investigated. The average PCB concentration in the less-industrialized areas (background) in the PRD was approximately 10 ng/g dry weight (dw), which was generally half that found in the industrialized areas (approximately 22 ng/g dw). Severe PCB contamination, with concentrations ranging from 1000 to 26500 ng/g dw, was found in pond sediments collected from e-waste recycling areas. It is very likely that such contamination would have had adverse effects on the aquatic biota there. PCBs in the e-waste recycling areas were dominated by penta- and hex-PCB congeners, which made them significantly different from those found in other regions, where tri- and tetra-PCB congeners were predominant. Higher abundances of less chlorinated congeners were seen in the less-industrialized areas compared to the industrialized areas. Differences in the transport abilities of different congeners, together with dechlorination of higher chlorinated congeners, is the most likely reasons for this.
Collapse
Affiliation(s)
- Man-Ying Chen
- Guangdong Testing Institute of Product Quality Supervision, Guangzhou, 528300, China.
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Hong-Yin Liu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 200433, China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | | |
Collapse
|
25
|
Wang S, Hu C, Lu A, Wang Y, Cao L, Wu W, Li H, Wu M, Yan C. Association between prenatal exposure to persistent organic pollutants and neurodevelopment in early life: A mother-child cohort (Shanghai, China). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111479. [PMID: 33099138 DOI: 10.1016/j.ecoenv.2020.111479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
As common environmental pollutants, persistent organic pollutants (POPs) that are widely applied in industry and agriculture have adverse effects on neurodevelopment. However, evidence on the neurotoxicity of POPs in neural development of offspring is limited. This study explored the relationship between prenatal exposure to POPs and neurodevelopment of 18-month-old toddlers in a mother-child cohort in Shanghai, China. In this study, we determined exposure levels of 37 POPs in cord blood serum collected at the time of delivery. The detection rate of pollutants HCB, β-HCH, and p,p'-DDE was higher than 60%, so these will be discussed in the following analysis. From birth to approximately 18 months, we followed up infants to longitudinally explore whether POPs influenced their language, motor, and cognitive development according to a Bayley-Ⅲ assessment . Based on multivariable regression analyses, the β-HCH concentration in cord serum was negatively related to motor development scores in children at 18 months by adjusting for the covariates, but there was no change in language and cognition. Further piecewise linear regression analysis showed that a cord serum β-HCH concentration greater than 0.2 μg/L had a significantly negative correlation with the motor development scores. p,p'-DDE was positively associated with language development at 18 months before and after adjusting for covariates. But prenatal HCB levels were not associated with any of the Bayley-Ⅲ subscales at 18 months. We concluded that prenatal exposure to β-HCH might have adverse effects on infants' motor development. The minimum harmful concentration of β-HCH was estimated at 0.2 μg/L in cord serum. The unexpected positive association between p,p'-DDT and language development could be due to live birth bias.
Collapse
Affiliation(s)
- Susu Wang
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Chunping Hu
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Anxin Lu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaqian Wang
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Lulu Cao
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wu
- Qilu Children's Hospital of Shandong University, Shandong, Jinan, China
| | - Hui Li
- Jining No.1 People's Hospital, Shandong, Jining, China
| | - Meiqin Wu
- The Women and Children's Health Care Department Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No.2699, West Gaoke Road, Shanghai 200040, China.
| | - Chonghuai Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Peng FJ, Hardy EM, Béranger R, Mezzache S, Bourokba N, Bastien P, Li J, Zaros C, Chevrier C, Palazzi P, Soeur J, Appenzeller BMR. Human exposure to PCBs, PBDEs and bisphenols revealed by hair analysis: A comparison between two adult female populations in China and France. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115425. [PMID: 32882460 DOI: 10.1016/j.envpol.2020.115425] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/22/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Humans are exposed to various anthropogenic chemicals in daily life, including endocrine-disrupting chemicals (EDCs). However, there are limited data on chronic, low-level exposure to such contaminants among the general population. Here hair analysis was used to investigate the occurrence of four polychlorinated biphenyls (PCBs), seven polybrominated diphenyl ethers (PBDEs) and two bisphenols (BPs) in 204 Chinese women living in the urban areas of Baoding and Dalian and 311 pregnant French women. All the PCBs and PBDEs tested here were more frequently detected in the hair samples of the French women than in those of the Chinese women. In both cohorts, PCB 180 and BDE 47 were the dominant PCB and PBDE congener, respectively. PCB 180 was found in 82% of the French women and 44% of the Chinese women, while the corresponding values of BDE 47 were 54% and 11%, respectively. A discriminant analysis further demonstrated the difference in PCBs and PBDEs exposure profile between the two cohorts. These results demonstrate that hair analysis is sufficiently sensitive to detect exposure to these pollutants and highlight differences in exposure between populations even at environmental levels. Although BPA and BPS were found in 100% of the hair samples in both cohorts, the French women had significantly higher levels of BPA and BPS than the Chinese women. The median concentrations of BPA were one order of magnitude higher than BPS in both the Chinese (34.9 versus 2.84 pg/mg) and the French women (118 versus 8.01 pg/mg) respectively. Our results suggest that both French and Chinese populations were extensively exposed to BPA and BPS.
Collapse
Affiliation(s)
- Feng-Jiao Peng
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445, Strassen, Luxembourg.
| | - Emilie M Hardy
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445, Strassen, Luxembourg
| | - Rémi Béranger
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Sakina Mezzache
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller BP22, 93601, Aulnay-sous-Bois, France
| | - Nasrine Bourokba
- L'Oréal Research and Innovation, Biopolis Drive, Synapse, 138623, Singapore
| | - Philippe Bastien
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller BP22, 93601, Aulnay-sous-Bois, France
| | - Jing Li
- L'Oréal Research and Innovation, No. 550 JinYu Rd., Pudong New Area, China
| | - Cécile Zaros
- INSERM, Joint Unit INED-INSERM-EFS, Aubervilliers, France
| | - Cécile Chevrier
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Paul Palazzi
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445, Strassen, Luxembourg
| | - Jeremie Soeur
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller BP22, 93601, Aulnay-sous-Bois, France
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445, Strassen, Luxembourg
| |
Collapse
|
27
|
Xu Y, Teng Y, Wang X, Li R, Christie P. Exploring bacterial community structure and function associated with polychlorinated biphenyl biodegradation in two hydrogen-amended soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140839. [PMID: 32726695 DOI: 10.1016/j.scitotenv.2020.140839] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Hydrogen (H2) is a universal energy source supplying survival energy for numerous microbial functions. Diffusive fluxes of H2 released by rhizobacterial symbiont nodules in which H2 is an obligate by-product of dinitrogen fixation may act as an additional energy input shaping microbial community structure and function in soils. However, the effects of H2 at the soil-nodule interface on soil contaminant degradation processes are poorly understood. Here, we mimicked the hydrogen conditions present at the soil-nodule interface (10,000 ppmv) to test the impact of elevated H2 concentrations on soil microbial removal of 3, 3', 4, 4'-tetrachlorobiphenyl (PCB77) and examined the associated bacterial communities and their functions by conducting a microcosm experiment using two different soil types at three PCB contamination levels (0.5, 1.0 and 5.0 mg kg-1). After incubation for 84 days the PCB77 removal rates in the elevated H2 treatments in the Paddy soil were significantly promoted (by 4.88 to 6.41%) compared with the control (0.5 ppmv H2) but no significant effect was observed in a Fluvo-aquic soil. This is consistent with changes in the abundance of functional genes for PCB-degraders as shown by quantitative real-time PCR (Q-PCR) and phylogenetic investigation of bacterial communities by reconstruction of unobserved states (PICRUSt). 16S amplicon sequencing was conducted to explore bacterial community structure and correlate the genera to potential PCB degradation. The abundance of a total of four potentially PCB-degrading bacterial genera (Bacillus, Streptomyces, Ramlibacter and Paenibacillus) increased with increasing H2 level. In addition, the abundance of hydrogenase in the elevated H2 treatments was higher than in the control across different contamination levels in both soil types. Thus, elevated H2 stimulated soil PCB degradation with direct effects (aerobic PCB-degrading bacteria directly utilized H2 as an energy source for growth and thus enhanced PCB degradation efficiency) and indirect effects (aerobic PCB-degrading bacteria acted synergistically with other hydrogenotrophs to enhance PCB degradation efficiency by exchange of substances and energy). These results help to further understand the role of elevated hydrogen amendment in the PCB biodegradation process and provide evidence that H2 supports metabolic and energetic flexibility in microorganisms supplying a range of ecosystem services.
Collapse
Affiliation(s)
- Yongfeng Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Xiaomi Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ran Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
28
|
Guo K, Zhang X, Liu J, Wu Z, Chen M, Zhang K, Chen Y. Establishment of an integrated decision-making method for planning the ecological restoration of terrestrial ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:139852. [PMID: 32886978 DOI: 10.1016/j.scitotenv.2020.139852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/07/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Ecological restoration of terrestrial ecosystems facilitates environmental protection and enhances sustainable development of land resources. With increasingly severe land degradation, new and effective methods must be developed for the restoration of ecological functions. In this study, we developed a regional risk assessment approach to support the planning of ecological restoration of a terrestrial ecosystem located in the Daye area in central China. The study area was divided into six sub-regions where ecological risks were characterized by building a non-linear model to represent ecological interactions among the risk components there. Socio-economic conditions in the areas were evaluated and presented using an analytic hierarchy process. Assessment of different stakeholders there was conducted based on multiple-criteria decision analysis. Then, integrated assessment was performed using the technique of order preference for an ideal solution. We divided the degraded land in Daye into areas with different priorities for restoration or rectification and presented corresponding sequential time intervals for the action. The results are as follows: (i) the top priority rectification areas (totaling 358 km2) are mainly distributed in northeast and northwest regions; (ii) the high priority rectification areas are concentrated in the central region spanning 226 km2; (iii) the medium priority rectification areas comprised a large amount of arable and forest land spanning 605 km2; and (iv) the low priority rectification areas cover the rest part of the Daye area spanning 195 km2. The assessment tool was proven to be useful in planning regional ecological restoration in terrestrial ecosystems.
Collapse
Affiliation(s)
- Kai Guo
- School of Geographical Sciences, Guangzhou University, Guangzhou 510006, China
| | - Xinchang Zhang
- School of Geographical Sciences, Guangzhou University, Guangzhou 510006, China.
| | - Jiamin Liu
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Zhifeng Wu
- School of Geographical Sciences, Guangzhou University, Guangzhou 510006, China
| | - Min Chen
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Kexin Zhang
- Map institute of Guangdong province, Guangzhou 510620, China
| | - Yiyun Chen
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
29
|
Wang S, Xiong Z, Yang N, Ding X, Chen H. Iodine-doping-assisted tunable introduction of oxygen vacancies on bismuth tungstate photocatalysts for highly efficient molecular oxygen activation and pentachlorophenol mineralization. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63506-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
30
|
Lin S, Zhao B, Ying Z, Fan S, Hu Z, Xue F, Zhang Q. Residual characteristics and potential health risk assessment of polychlorinated biphenyls (PCBs) in seafood and surface sediments from Xiangshan Bay, China (2011–2016). Food Chem 2020; 327:126994. [DOI: 10.1016/j.foodchem.2020.126994] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/13/2020] [Accepted: 05/05/2020] [Indexed: 01/18/2023]
|
31
|
Li W, Achal V. Environmental and health impacts due to e-waste disposal in China - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139745. [PMID: 32516663 DOI: 10.1016/j.scitotenv.2020.139745] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 05/02/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
E-waste is discarded and shipped mostly to developing countries located in Asian continent for disposal from other developed countries. Especially 70% of the world's e-waste ends up in Guiyu, a small town located in Guangdong Province of China. As little as 25% is recycled in formal recycling centers with adequate protection for workers and the other e-waste arrived in those areas is not handled in organized manner. As per reports only roughly 12.5% of e-waste is actually recycled, and the recycling efforts in those regions are primitive and result in toxic substances being leached into the surrounding ecosystems. In addition to persistent organic pollutants, there are many heavy metals found in the ground and river sediments in Guiyu, exceeding the threshold set to protect human health. Those areas are no longer suitable for growing food, and water is unsafe for drinking, due to the amount of toxins leached into the groundwater and land. Hazardous threats to environment and human health due to hazardous substances of e-waste all around China, as well as the current e-waste management were documented in this review. The article concludes with controlled contamination sources, and eco-friendly and efficient remediation technologies to solve e-waste problem in China.
Collapse
Affiliation(s)
- Weila Li
- Environmental Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou 515063, China; Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Varenyam Achal
- Environmental Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou 515063, China; Technion - Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
32
|
Isibor PO, Akinsanya B, Sogbamu T, Olaleru F, Excellence A, Komolafe B, Kayode SJ. Nilonema gymnarchi (Nematoda: Philometridae) and trace metals in Gymnarchus niloticus of Epe lagoon in Lagos State, Nigeria. Heliyon 2020; 6:e04959. [PMID: 33015385 PMCID: PMC7522485 DOI: 10.1016/j.heliyon.2020.e04959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/21/2020] [Accepted: 09/14/2020] [Indexed: 11/21/2022] Open
Abstract
The presence of trace metals in the sediment, water, and biota of the Epe lagoon has been recently linked to oil exploration and municipal perturbations around the lagoon. The study was aimed at assessing the concentrations and associated health risks of Fe, Zn, Cu, Ni, Pb, Cd, Cr, Mn, Co and V in the water, sediment, and Gymnarchus niloticus of Epe lagoon and to evaluate the role of the enteric parasite Nilonema gymnarchi in bioaccumulation of the metals in the fish. The temperature, pH, redox potential, conductivity, turbidity, dissolved oxygen (DO), total dissolved solids (TDS), and salinity were determined in-situ using a handheld multi-parameter probe (Horiba Water Checker Model U-10). The concentrations of Fe, Zn, Cu, Ni, Pb, Cd, Cr, Mn, Co, and V were determined in the surface water, bottom sediment, Gymnarchus niloticus, and its enteric parasites, Nilonema gymnarchi in Epe lagoon using the Flame Atomic Absorption Spectrometer (Philips model PU 9100). The bioaccumulation factors and target hazard quotients of the trace metals in the infected and uninfected fish were estimated and compared. The intestinal tissue sections of the infected and uninfected fish were examined using a binocular dissecting microscope (American Optical Corporation, Model 570) using hematoxylin and eosin (H&E) stain. Biochemical markers such as reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and lipid peroxidation (MDA) were determined in the liver of the infected and uninfected fish. The SOD level was higher in the uninfected fish than the infected ones supports the indications deduced from the bioaccumulation analysis. Strong positive correlations between SOD and most of the metals- Fe (0.916), Zn (0.919), Cu (0.896), and Ni (0.917) suggests that the metals may have inflicted more toxicity in the uninfected. The histopathological comparisons made between the uninfected and infected fish showed consistency with the outcomes of other comparisons made in this study. These evidence were marked by tissue alterations in the infected fish ranging from no observed changes to mild alterations, while the uninfected exhibited more severe tissue injuries such as hemorrhagic lesions, severe vascular congestion, edema, the increased connective tissue of the submucosa, and vascular congestion. The condition factors of the infected (0.252) and uninfected (0.268) fish indicated slenderness and unfitness possibly due to environmental stressors such as trace metals. The parasitized fish showing better-coping potentials than the uninfected, coupled with the significant bioaccumulation interferences exhibited by the parasite Nilonema gymnarchi is an indication that the parasites may be a good metal sequestration agent for the fish and can be used to forestall the significant health hazard quotient posed by the current level of iron and the synergy of all metals analyzed in the lagoon.
Collapse
Affiliation(s)
| | - Bamidele Akinsanya
- Department of Zoology, University of Lagos, P.O. Box 156, Akoka, Nigeria
| | - Temitope Sogbamu
- Department of Zoology, University of Lagos, P.O. Box 156, Akoka, Nigeria
| | - Fatsuma Olaleru
- Department of Zoology, University of Lagos, P.O. Box 156, Akoka, Nigeria
| | | | - Benjamin Komolafe
- Department of Zoology, University of Lagos, P.O. Box 156, Akoka, Nigeria
| | | |
Collapse
|
33
|
Prithiviraj B, Chakraborty P. Atmospheric polychlorinated biphenyls from an urban site near informal electronic waste recycling area and a suburban site of Chennai city, India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:135526. [PMID: 31784153 DOI: 10.1016/j.scitotenv.2019.135526] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
Recent studies evidenced informal electronic waste (e-waste) recycling as a potential source of polychlorinated biphenyls (PCBs) in the metropolitan environment of India. Given the recent evidences on the release of hazardous organic compounds from the informal e-waste recycling workshops in the Chennai city, we have conducted high volume air sampling in an urban site close to the informal e-waste recycling corridor and in a suburban site located about 35 km away from the urban center. Weekly diurnal gaseous and particulate phase samples were collected from both urban and suburban sites during summer and winter samples were collected only from suburban site. Mean atmospheric PCB levels in the urban site (Avg ± Stdev, 46 ± 16 ng/m3) is several orders of magnitude higher than suburban summer (10 ± 12 ng/m3) and winter (4 ± 3 ng/m3). Back trajectories originating from the land seems to have impacted the samples recorded with maximum PCB concentration. No significant difference was seen between summer and winter atmospheric PCBs in the suburban site. In urban site, PCB-52 and dioxin like PCBs (dl-PCBs) have increased from the past observations with maximum PCB-52 concentration in night time samples. Positive matrix factorization source-receptor model outputs suggest that in the urban centers, open burning in municipal dumpsites is a major source for PCB-52, while dl-PCBs were related to e-waste recycling by the informal sector. Exponential increment in most toxic non-ortho dl-PCBs proclaims the severity of on-going sources which contributed to the high toxic equivalency (TEQs) upto 105 pg TEQ/m3.
Collapse
Affiliation(s)
- Balasubramanian Prithiviraj
- Department of Civil Engineering, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Paromita Chakraborty
- Department of Civil Engineering, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
34
|
Tang D, Liu X, He H, Cui Z, Gan H, Xia Z. Distribution, sources and ecological risks of organochlorine compounds (DDTs, HCHs and PCBs) in surface sediments from the Pearl River Estuary, China. MARINE POLLUTION BULLETIN 2020; 152:110942. [PMID: 32479303 DOI: 10.1016/j.marpolbul.2020.110942] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/24/2020] [Accepted: 01/25/2020] [Indexed: 06/11/2023]
Abstract
The Pearl River Estuary is an important sink of organochlorine compounds (OCs), and OC pollution levels in surface sediments remain largely unknown at present. We collected and analysed residual DDTs, HCHs and PCBs of 45 surface sediments from the Pearl River Estuary in 2017. The values of DDTs (1.83 to 6.98 ng·g-1) and HCHs (0.43 to 2.14 ng·g-1) were higher in the Humen outlet, and the values of PCBs (4.6 to 187.4 ng·g-1) were higher in the coastal areas of Shenzhen. The DDTs and HCHs have generally decreased while the PCBs have been rapidly increasing in recent decades. The DDTs might originate from technical DDT and dicofol. The major source of HCHs was lindane. The main potential sources of PCBs were increased industrial products, ship painting, E-waste disassembly, maricultural and agricultural pollution. The total PCBs and DDTs had medium ecological risks according to the sediment quality guidelines.
Collapse
Affiliation(s)
- Dehao Tang
- Guangzhou Marine Geological Survey, Guangzhou 510075, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China.
| | - Xingjian Liu
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; CAS Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Guangzhou 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, (ISEE, CAS), Guangzhou 510301, China
| | - Haijun He
- Guangzhou Marine Geological Survey, Guangzhou 510075, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Zhenang Cui
- Guangzhou Marine Geological Survey, Guangzhou 510075, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Huayang Gan
- Guangzhou Marine Geological Survey, Guangzhou 510075, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Zhen Xia
- Guangzhou Marine Geological Survey, Guangzhou 510075, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China.
| |
Collapse
|
35
|
Akinsanya B, Isibor PO, Onadeko B, Tinuade AA. Impacts of trace metals on African common toad, Amietophrynus regularis (Reuss, 1833) and depuration effects of the toad's enteric parasite, Amplicaecum africanum (Taylor, 1924) sampled within Lagos metropolis, Nigeria. Heliyon 2020; 6:e03570. [PMID: 32258456 PMCID: PMC7113632 DOI: 10.1016/j.heliyon.2020.e03570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/11/2019] [Accepted: 03/09/2020] [Indexed: 12/25/2022] Open
Abstract
The study aimed at assessing the depuration potentials of endoparasite, Amplicaecum africanum on trace metals in its toad host, Amietophrynus regularis at sites of significant anthropogenic perturbations within the Lagos metropolis, in Nigeria. A total of 120 toads of both sexes, alongside 45 soil samples were collected from each of three (3) stations labeled Dumpsite, Lagoon front and Highrise, using hand nets and by hand-picking between February and October, 2018. The intestinal tissues sections of the toads were examined using a binocular dissecting microscope (American Optical Corporation, Model 570) and hematoxylin and eosin (H&E) stain. Oxidative stress in toad intestine was assessed by estimating the levels of glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), and lipid peroxidation (MDA). Trace metals in the water, soil, toad liver, intestine and parasite, Amplicaecum africanum were tested using Atomic Absorption Spectrophotometry (Philips model PU 9100). Lead (Pb), copper (Cu), nickel (Ni), cadmium (Cd), and chromium (Cr) were detected in the toads, with the infected toads having lower concentrations of most trace metals than the uninfected toads, irrespective of the locations and sex. Strong negative correlations between parasitological indices and concentrations of trace metals in the toads suggest that the parasites might have taken up significant amounts of trace metals from the host. The study demonstrated the potentials of parasite, A. africanum to depurate trace metal burden in Amietophrynus regularis. When the dominant factor impacting the toad is the parasitic infection, parasite intensity determines the trade-off between parasitological harm and depuration benefit to the host. Hence, under controlled conditions, parasites may serve as bioremediation agent in the event of pollution. Depuration potential of A. africanum in the study was supported by the mild tissue alterations observed in the intestine of infected toads, compared to the uninfected counterparts, which exhibited severe glandular hyperplasia, increased connective tissue, and severely stunted villi. Consistently lower activities of biochemical biomarkers which characterize the uninfected toads compared to the infected, irrespective of the sex and stations, further corroborate drawn inferences.
Collapse
Affiliation(s)
| | - Patrick Omoregie Isibor
- Department of Biological Sciences, College of Science and Technology, Covenant University, Nigeria
| | | | | |
Collapse
|
36
|
Kang Y, Cao S, Yan F, Qin N, Wang B, Zhang Y, Shao K, El-Maleh CA, Duan X. Health risks and source identification of dietary exposure to indicator polychlorinated biphenyls (PCBs) in Lanzhou, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:681-692. [PMID: 31538290 DOI: 10.1007/s10653-019-00402-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Polychlorinated biphenyls (PCBs) are widely present in multiple environmental media even long after the phaseout, posing a health risk to the general population. Dietary intake is the major exposure route of PCBs; however, information is limited regarding PCBs in food that people directly consume. This study aims to measure personal exposure to indicator PCBs, evaluate the health risks, and identify their sources in a typical metropolitan city in China. Multi-day food samples were collected from 21 subjects in Lanzhou, Gansu Province, in two seasons using the duplicate plate method. Samples were extracted and analyzed for seven indicator PCBs using gas chromatography/mass spectrometry. Average daily doses (ADDs) of ∑7PCBs were estimated using Monte Carlo analysis with food intake information. Results show that PCB-118 and PCB-180 were the major congeners in food samples with average concentrations of 1.42 and 1.11 ng/g, respectively. The average (± SD) ADD of ∑7PCBs was 26.47 ± 22.10 ng/kg day among adults aged 18-69 years and displayed small variation across age groups. Comparing with the chronic RfD of 7 ng/kg day, 67% of people had their ADDs exceeding this threshold. The median cancer risk was 5.52 × 10-5, and 51% of residents had risks exceeding the action level of 10-4. The principal component analysis identified waste incineration, gasoline engine production, and leakage of #1 PCBs as the major PCBs sources. In conclusion, a large portion of Lanzhou residents has high non-cancer and cancer risks from dietary exposure to PCBs, which warrants control actions targeting these major sources.
Collapse
Affiliation(s)
- Yijin Kang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Suzhen Cao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing, 100083, China.
| | - Fangfang Yan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Ning Qin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Beibei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yaqun Zhang
- Institute of Environmental Science of Gansu Province, Lanzhou, 730000, China
| | - Kan Shao
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, 47405, USA
| | - Citrine A El-Maleh
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Xiaoli Duan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
37
|
Xu C, Hu J, Wu J, Wei B, Zhu Z, Yang L, Zhou T, Jin J. Polychlorinated naphthalenes, polychlorinated dibenzo-p-dioxins and dibenzofurans, and polychlorinated biphenyls in soils in an industrial park in Northwestern China: Levels, source apportionment, and potential human health risks. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109895. [PMID: 31706238 DOI: 10.1016/j.ecoenv.2019.109895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/07/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Seventeen soil samples collected in an industrial park located in Ningxia Province, Northwestern China were analyzed for polychlorinated naphthalenes (PCNs), polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), and polychlorinated biphenyls (PCBs). The PCN, PCDD/F, and PCB concentration ranges were 183-3340, 7.00-215, and 45.1-355 pg/g, respectively. Positive matrix factorization showed that secondary ferrous metal smelters and cement kilns contributed more than 70% of the total PCN concentration. Historical use of Halowax 1051 also affected the PCN concentrations in soil. Principal component analysis indicated that the PCDD/F concentrations in soil in the study area were mainly affected by thermal processes in secondary ferrous metal smelters. CB-209 was an important contributor to total PCBs in the study area, and likely originated from the phthalocyanine-type pigments used in a local recycled paper mill. Samples S10, S1, S17, and S6 had high ∑TEQ (PCDD/Fs + PCNs + PCBs) concentrations, and the carcinogenic risks of PCDD/Fs, PCNs, and PCBs for workers from these samples were 0.487 × 10-6, 0.234 × 10-6, 0.230 × 10-6, and 0.210 × 10-6, respectively. According to our results, the health risks of PCDD/Fs, PCNs, and PCBs for workers in this area should be given more attention.
Collapse
Affiliation(s)
- Chenyang Xu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Jicheng Hu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Engineering Research Center of Food Environment and Public Health, Beijing, 100081, China.
| | - Jing Wu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Baokai Wei
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Zhenlei Zhu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Liwen Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Tingting Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Jun Jin
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Engineering Research Center of Food Environment and Public Health, Beijing, 100081, China
| |
Collapse
|
38
|
Impacts of Landscapes on Water Quality in A Typical Headwater Catchment, Southeastern China. SUSTAINABILITY 2020. [DOI: 10.3390/su12020721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The relationship between land landscape and water quality has been a hot topic, especially for researchers in headwater catchment, because of drinking water safety and ecological protection. In this study, Lita Watershed, a typical headwater catchment of Southeast China, was selected as the study area. During 2015 and 2016, water samples were collected from 18 sampling points every month, and 19 water quality parameters were tested such as nutrients and heavy metals. Through multistatistics analysis, the results show that the most sensitive water quality parameters are Cr, NO3, NO2, and COD. The type and scale of water body have direct effects on water quality, while the land-use patterns in the surrounding areas have an indirect impact on the concentration and migration of pollutants. This effect is sensitive to seasonal change because heavy metals are mainly from atmospheric deposition, but nutrients are mainly from agricultural nonpoint source pollution. According to the results, increasing the proportion of forest land and paddy field is effective to the reduction of water nutrients. Besides, balancing the configuration of water bodies, especially increasing the capacity of the pond, can significantly alleviate the water pollution in the dry season. This study is useful to provide policy suggestion for refined watershed management and water source planning basing on seasons and pollution sources.
Collapse
|
39
|
Cui S, Hough R, Fu Q, Qi X, Liu D, Cooper P, Li P, Zhang Z. Concentrations and uptake pathways of polychlorinated biphenyls from soil to grass. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109428. [PMID: 31302331 DOI: 10.1016/j.ecoenv.2019.109428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/30/2019] [Accepted: 07/06/2019] [Indexed: 06/10/2023]
Abstract
Field coupled samples in soil and grass were collected to determine the concentrations and identify the uptake pathways of PCBs into the grass at a pasture from Scotland, UK. Concentrations of indicator PCBs (∑7PCBs) in soils ranged from 0.20 to 0.88 ng g-1 dw (dry weight), with a mean of 0.33 ng g-1 dw, and in grass ranged from 0.20 to 2.14 ng g-1 dw, with a mean of 0.48 ng g-1 dw. The comprehensive factors of low concentrations and detection rate (PCB28: 18.8%; PCB52: 37.5%) of PCBs in soil, as well as continuously declined air concentrations of PCBs in the UK since the 1990s suggested that the secondary emission from the soil is becoming the supplied source of PCBs to air and grass. The significant correlations between bioconcentration factor (BCF) values and the log KOW (R = -0.850, p < 0.05) and log KOA (R = -0.860, p < 0.05) of indicator PCB congeners were found in the present study, indicating that these two parameters are likely to affect the bioaccumulation and uptake of grass. A generic one-compartment model was employed to identify uptake pathways of grass and evaluate the uptake amounts for PCBs. This suggested that the most important pathway for uptake of PCBs by grass was at the aerial part, and the difference of PCBs concentrations between leaves and roots was about four orders of magnitude. Removing and risk transfer of PCBs or other organic pollutants by grass need to be investigated and assessed further.
Collapse
Affiliation(s)
- Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Rupert Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Qiang Fu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Xuebin Qi
- China-UK Water and Soil Resources Sustainable Utilization Joint Research Centre, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, 453002, China
| | - Dong Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Pat Cooper
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Ping Li
- China-UK Water and Soil Resources Sustainable Utilization Joint Research Centre, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, 453002, China
| | - Zulin Zhang
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK.
| |
Collapse
|
40
|
Li C, Liu J, Wu N, Pan X, Feng J, Al-Basher G, Allam AA, Qu R, Wang Z. Photochemical formation of hydroxylated polychlorinated biphenyls (OH-PCBs) from decachlorobiphenyl (PCB-209) on solids/air interface. JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120758. [PMID: 31207486 DOI: 10.1016/j.jhazmat.2019.120758] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
In this work, the photochemical transformation of decachlorobiphenyl (PCB-209) on the surface of several solid particles were systematically evaluated under simulated solar irradiation. The degradation kinetics of PCB-209 were first investigated using silica as a model aerosol particulate. It was found that PCB-209 photodegradation was enhanced at small silica particle size, low surface coverage and low humidity. Electron paramagnetic resonance (EPR) analysis and radicals quenching experiments demonstrated that hydroxyl radicals contributed to PCB-209 degradation. Stepwise hydrodechlorination, hydroxyl addition and cleavage of the CC bridge bond were mainly observed in the reaction process, leading to the formation of lower chlorinated PCBs, hydroxylated PCBs (OH-PCBs) and chlorophenols. Based on density functional theory (DFT) calculation, the dissociation energy of the CCl bond requires 354.81-359.79 kJ/mol energy that corresponds to a wavelength of less than 322 nm. And the minimum activation energy of OH radicals attack on PCB-209 is only 18.12 kJ/mol. Photochemical transformation of PCB-209 can also occur on the surface of natural particles, but the rates were inhibited as compared to silica. The hydroxylation and hydrodechlorination products of PCB-209 were detected in all natural particles. This study would make significant contribution to understanding the fate of PCBs in solids/air interface.
Collapse
Affiliation(s)
- Chenguang Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Jiaoqin Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Xiaoxue Pan
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Jianfang Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Gadh Al-Basher
- King Saud University, College of Science, Zoology Department, P.O. Box 2455, Riyadh, 11451, Saudia Arabia
| | - Ahmed A Allam
- Beni-Suef University, Faculty of Science, Zoology Department, Beni-Suef, 65211, Egypt
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China.
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| |
Collapse
|
41
|
Cui S, Fu Q, Tian C, Zhang Z, Hough R, Shen Z, Ma J, An L, Li YF. Modeling primary and secondary fractionation effects and atmospheric transport of polychlorinated biphenyls through single-source emissions. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:1939-1951. [PMID: 30739235 DOI: 10.1007/s10653-019-00252-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
The Chinese Gridded Industrial Pollutants Emission and Residue Model (ChnGIPERM) was used to investigate potential fractionation effects and atmospheric transport of polychlorinated biphenyls (PCBs) derived from single-source emissions in China. Modeling the indicative PCBs (CB28, CB101, CB153, and CB180) revealed spatiotemporal trends in atmospheric transport, gas/particle partitioning, and primary and secondary fractionation effects. These included the inference that the Westerlies and East Asian monsoons affect atmospheric transport patterns of PCBs by influencing the atmospheric transport time (ATT). In this study, dispersion pathways with long ATTs in winter tended to have short ones in summer and vice versa. The modeled partitioning of PCB congeners between gas and particles was mainly controlled by temperature, which can further influence the ATT. The potential for primary and secondary fractionation was explored by means of numerical simulations with single-source emissions. Within ChnGIPERM, these phenomena were mainly controlled by the temperature and soil organic carbon content. The secondary fractionation of PCBs is a slow process, with model results suggesting a timescale of several decades.
Collapse
Affiliation(s)
- Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- IJRC-PTS, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
| | - Qiang Fu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Chongguo Tian
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China
| | - Zulin Zhang
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Rupert Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Zhenxing Shen
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jianmin Ma
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Lihui An
- State Environmental Protection Key Laboratory of Estuarine and Coastal Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yi-Fan Li
- IJRC-PTS, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China.
| |
Collapse
|
42
|
Novel PCB-degrading Rhodococcus strains able to promote plant growth for assisted rhizoremediation of historically polluted soils. PLoS One 2019; 14:e0221253. [PMID: 31437185 PMCID: PMC6705854 DOI: 10.1371/journal.pone.0221253] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/04/2019] [Indexed: 12/28/2022] Open
Abstract
Extended soil contamination by polychlorinated biphenyls (PCBs) represents a global environmental issue that can hardly be addressed with the conventional remediation treatments. Rhizoremediation is a sustainable alternative, exploiting plants to stimulate in situ the degradative bacterial communities naturally occurring in historically polluted areas. This approach can be enhanced by the use of bacterial strains that combine PCB degradation potential with the ability to promote plant and root development. With this aim, we established a collection of aerobic bacteria isolated from the soil of the highly PCB-polluted site “SIN Brescia-Caffaro” (Italy) biostimulated by the plant Phalaris arundinacea. The strains, selected on biphenyl and plant secondary metabolites provided as unique carbon source, were largely dominated by Actinobacteria and a significant number showed traits of interest for remediation, harbouring genes homologous to bphA, involved in the PCB oxidation pathway, and displaying 2,3-catechol dioxygenase activity and emulsification properties. Several strains also showed the potential to alleviate plant stress through 1-aminocyclopropane-1-carboxylate deaminase activity. In particular, we identified three Rhodococcus strains able to degrade in vitro several PCB congeners and to promote lateral root emergence in the model plant Arabidopsis thaliana in vivo. In addition, these strains showed the capacity to colonize the root system and to increase the plant biomass in PCB contaminated soil, making them ideal candidates to sustain microbial-assisted PCB rhizoremediation through a bioaugmentation approach.
Collapse
|
43
|
Cui L, Wang J. Persistent Halogenated Organic Pollutants in Surface Water in a Megacity: Distribution Characteristics and Ecological Risks in Wuhan, China. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 77:98-114. [PMID: 30953115 DOI: 10.1007/s00244-019-00622-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
Surface water pollution in megacities is strongly linked to human and environmental health, and surface water quality has deteriorated sharply recently because of increasing persistent halogenated organic pollutant (HOP) concentrations. In the present study, we collected 112 water samples from 14 lakes and 11 drinking water sources in Wuhan, China, and analyzed them for two typical groups of HOPs: polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). The mean values of the ΣPCB concentrations were 4.34 and 10.05 ng L-1 in winter and summer, respectively. For ΣPBDE concentrations, the mean values were 0.88 and 1.53 ng L-1 in winter and summer, respectively. The PCB and PBDE concentrations at most sites in summer were significantly higher than those in winter, probably because of heavy stormwater runoff in summer. The degree of urbanization predicted from the population density was positively correlated with ΣPCB concentrations in the drinking water sources in summer. PBDE and PCB composition analysis suggested the major sources were penta-BDE and Aroclor mixtures. Risk assessments showed the PBDEs in water from the Zhuankou site exceeded the threshold set by the European Union, which could result in adverse effects on aquatic organisms. Negligible noncarcinogenic risks were found for PCBs and PBDEs in the surface water with regard to drinking and bathing. However, the carcinogenic risks of PCBs for bathing in surface water were higher than the safe level of 1.00 × 10-6, implying that the surface water in Wuhan is not safe for bathing.
Collapse
Affiliation(s)
- Lili Cui
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
44
|
Zhou S, Zhu H, Huang S, Zhou J, Zhang S, Wang C. Biomagnification and risk assessment of polychlorinated biphenyls in food web components from Zhoushan fishing ground, China. MARINE POLLUTION BULLETIN 2019; 142:613-619. [PMID: 31232348 DOI: 10.1016/j.marpolbul.2019.04.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/11/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Trophodynamics and risks of polychlorinated biphenyls (PCBs) in organisms from the Zhoushan fishing ground (ZFG), China were studied. Σ22PCBs varied from 1.36 to 36.75 ng/g wet weight, which were far below the maximum residue levels allowed in fishery products. However, estimated daily intake and hazard ratio calculations present possible adverse effects due to PCB pollution. Significantly positive correlations appeared between wet-weighted concentrations of target chemicals and trophic levels (TLs) of the organisms, with trophic magnification factors (TMFs) from 1.15 to 9.72. The TMF values first increased with an increase of compound's KOW values, and then decreased, with log KOW around 7.0 as an inflection point. TL is suggested as the key factor controlling contaminant burden among the species for only PCBs 105, 138, 153, and 171. For the remaining PCBs, lipid content of the organism or metabolite capacity of the compound may be more important influence on their bioaccumulation.
Collapse
Affiliation(s)
- Shanshan Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Hongbin Zhu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shaorong Huang
- Environmental Monitoring Station of Yuyao, Yuyao 315400, China
| | - Jiayi Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shenwei Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chanzong Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
45
|
Liu J, Zhang H, Yao Z, Li X, Tang J. Thermal desorption of PCBs contaminated soil with calcium hydroxide in a rotary kiln. CHEMOSPHERE 2019; 220:1041-1046. [PMID: 33395790 DOI: 10.1016/j.chemosphere.2019.01.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/31/2018] [Accepted: 01/05/2019] [Indexed: 06/12/2023]
Abstract
In this study, thermal desorption was combined with the addition of calcium hydroxide to remediate polychlorinated biphenyls (PCBs) contaminated soil, collected from a storage point for PCB-contaminated capacitors and transformers. The thermal desorption test conditions were varied from 300 to 600 °C, both with blank soil and with 1% Ca(OH)2 added. The results showed that the synergistic thermal desorption was effective to removal most of PCBs. At 600 °C, the removal efficiency (RE) reached 94.0% in presence of Ca(OH)2, higher than that of 90.9% in blank soil. The dechlorination was significant when compared with blank soil. Ca(OH)2 effectively decreased both the sum and the toxic equivalence quantity (TEQ) value of the 12 dioxin-like PCBs, with the RE based on TEQ of 90.0%. Ca(OH)2 strengthened the removal, dechlorination and detoxication of PCBs. The synergistic effect factor proved the promotion did exist in the presence of Ca(OH)2.
Collapse
Affiliation(s)
- Jie Liu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Hao Zhang
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhitong Yao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Xiaodong Li
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Junhong Tang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| |
Collapse
|
46
|
Wang W, Bai J, Zhang G, Jia J, Wang X, Liu X, Cui B. Occurrence, sources and ecotoxicological risks of polychlorinated biphenyls (PCBs) in sediment cores from urban, rural and reclamation-affected rivers of the Pearl River Delta, China. CHEMOSPHERE 2019; 218:359-367. [PMID: 30476767 DOI: 10.1016/j.chemosphere.2018.11.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/13/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
Sediment cores were collected to a depth of 40 cm (50 cm for urban river sediments) in the Pearl River Delta of China from rural river sediments and river sediments undergoing the process of urbanization and reclamation. Polychlorinated biphenyls (PCBs) in sediment cores were determined to evaluate their levels, distribution, possible sources and potential risks aimed at providing effective information of management practices for local governments. Our results showed that the total concentrations of PCBs (∑16PCBs) in urban, rural and reclamation-affected river sediments ranged from 16.15 to 477.85 μg kg-1 (dry weight), with mean values of 121.94, 150.49 and 124.20 μg kg-1 (dry weight), respectively. The most abundant PCB congeners among the study area were light PCBs. Generally, PCBs showed a decreasing trend with depth along sediment cores at most sampling sites. Source analysis indicated that PCBs in the three types of river sediments mainly originated from Aroclor 1242, 1248, 1254 and 1016. Risks evaluation based on sediment quality guideline quotient (SQGQ) showed PCBs at most sampling sites would cause no or moderate adverse biological effects on benthic organisms except surface sediments of U4 and R5 (high adverse biological effects). However, threshold effects level (TEL) is ignored when calculating SQGQ, which might underestimate the risks of PCBs. Thus, a new SQGQ (NSQGQ) taken TEL into consideration was established. Results showed that NSQGQ could evaluate ecotoxicological risks of PCBs better. Redundancy analysis (RDA) showed that PCBs in sediments were positively correlated with sand content and microbial biomass carbon (MBC) (p < 0.05).
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, PR China.
| | - Junhong Bai
- State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, PR China.
| | - Guangliang Zhang
- State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, PR China.
| | - Jia Jia
- State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, PR China.
| | - Xin Wang
- State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, PR China.
| | - Xinhui Liu
- State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, PR China.
| | - Baoshan Cui
- State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
47
|
Wei L, Tadesse AW, Wang J. Organohalogenated Contaminants (OHCs) in Surface Sediments and Water of East Dongting Lake and Hong Lake, China. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 76:157-170. [PMID: 30244305 DOI: 10.1007/s00244-018-0564-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
East Dongting Lake and Hong Lake are two typical lakes in the middle watershed of the Yangtze River, China. The differences in the hydrological condition and human activities of the region may result in the differences in concentrations, distribution, and sources of contaminants. The levels, sources, distribution, and ecological risk of OHCs, including 15 OCPs, 7 PCBs, and 7 PBDEs in surface sediments and water from this region, were investigated. OCPs and PCBs were the predominant pollutants in water and sediments samples, respectively. Source analysis showed that HCHs, PBDEs, and PCBs were mainly from the historical input of commercial products, but there were recent discharges of DDT into the water. The spatial distribution of OHCs showed that higher levels of OHCs in sediments and water were found in the sampling sites far away from the estuary of Hong Lake, but such obvious distribution characteristic was not found in East Dongting Lake. TOC played a crucial role in the retention of OCPs in the sediments of Hong Lake, but significant correlation between TOC and OCPs for East Dongting Lake, TOC and PCBs or PBDEs for both lakes were not found. The possible adverse biological effects could be caused by OCPs residues in sediments of both lakes, and it was worse for Hong Lake. The noncarcinogenic and carcinogenic risk assessment of HCHs and DDTs indicated the water quality of both lakes was safe for bathing and drinking. The potential ecotoxicological risks of PBDEs and PCBs of both lakes were rather low.
Collapse
Affiliation(s)
- Liangfu Wei
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ababo Workineh Tadesse
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
48
|
Zhao T, Guo Z, Yao P, Hu L, Wu Z, Lin T. Deposition flux and mass inventory of polychlorinated biphenyls in sediments of the Yangtze River Estuary and inner shelf, East China Sea: Implications for contributions of large-river input and e-waste dismantling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:1222-1229. [PMID: 30180330 DOI: 10.1016/j.scitotenv.2018.08.076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/04/2018] [Accepted: 08/05/2018] [Indexed: 06/08/2023]
Abstract
Surface sediment samples were collected from the Yangtze River Estuary (YRE) to the inner-shelf mud area of the East China Sea (ECS) for a comprehensive study of the sources and fates of polychlorinated biphenyls (PCBs) based on their spatial distribution, deposition flux, and mass inventory. The total concentrations of 32 PCBs (Σ32PCBs) varied from 0.3 to 11.9 ng/g dry weight. Under strong hydrodynamic conditions, the weak correlations between TOC or MD and Σ32PCB concentrations were observed in the YRE. In contrast, there were relatively well relationships of PCBs with TOC content and sediment grain size in the inner shelf of the ECS due to the influence of hydrological sorting from the YRE to the inner shelf of the ECS. This suggests that the Yangtze River input plays a considerable role in controlling the distribution of PCBs in the coastal ECS. Compared with the annual discharge of Σ32PCBs from the Yangtze River to the sea (3.21 t/yr), the deposition flux was estimated to be ~2.63 t/yr. Furthermore, a total mass inventory of 50 tons in the sediments suggests that the YRE and inner shelf mud of the ECS represents an important global sink of PCBs. Estimated 21-39% of sedimentary PCBs were derived from local emissions (mainly dismantling of electronic waste) aside from Yangtze River input. Higher proportions of penta-CBs were also observed near the central Zhejiang Coast, providing further evidence that the local emission from e-waste dismantling near the coast is a significant contributor to sedimentary PCBs in the coastal ECS.
Collapse
Affiliation(s)
- Tiange Zhao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Zhigang Guo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China.
| | - Peng Yao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Limin Hu
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China
| | - Zilan Wu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Tian Lin
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
49
|
Kaiser D, Schulz-Bull DE, Waniek JJ. Polycyclic and organochlorine hydrocarbons in sediments of the northern South China Sea. MARINE POLLUTION BULLETIN 2018; 137:668-676. [PMID: 30503482 DOI: 10.1016/j.marpolbul.2018.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/17/2018] [Indexed: 06/09/2023]
Abstract
We investigated the concentration distribution and composition of organic pollutants in sediments of the shelf and the deep northern South China Sea (NSCS). Concentrations of polycyclic aromatic hydrocarbons (Σ15PAH; 10.69-66.45 ng g-1), Dichlorodiphenyltrichloroethane (Σ4DDT; 0-0.82 ng g-1), and polychlorinated biphenyls (Σ24PCB; 0-0.12 ng g-1) are below established sediment quality guidelines, suggesting no environmental risk. Surprisingly, concentrations increase from the shelf to the deep NSCS, and are higher in the east of the study area. The organic pollutant composition indicates PAH mainly derived from pyrogenic sources, and mostly degraded DDT and PCB. However, in the deep NSCS, considerable contribution of petrogenic PAH, low chlorinated PCB and p,p'-DDT suggest more recent input from different sources compared to the shelf. From these results we infer that organic pollution in the NSCS does not originate from the Pearl River Estuary but from the NE SCS, SW of Taiwan.
Collapse
Affiliation(s)
- David Kaiser
- Leibniz Institute for Baltic Sea Research Warnemünde, 18119 Rostock, Germany.
| | | | - Joanna J Waniek
- Leibniz Institute for Baltic Sea Research Warnemünde, 18119 Rostock, Germany.
| |
Collapse
|
50
|
Lin M, Ma Y, Yuan H, Luo X, Wang Q, Liu A, Wang Y, Jin J. Temporal trends in dioxin-like polychlorinated biphenyl concentrations in serum from the general population of Shandong Province, China: A longitudinal study from 2011 to 2017. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:59-65. [PMID: 30172124 DOI: 10.1016/j.envpol.2018.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/30/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
Temporal changes in the concentrations of dioxin-like (DL) polychlorinated biphenyls (PCBs) in environmental and biological matrices in China are not well understood. We determined the DL-PCB concentrations in pooled serum samples from the general population of Weifang City, Shandong Province, China in 2011 (n = 305) and 2017 (n = 495). The total DL-PCB concentration was 3.48 ± 1.31 ng/g lipid (mean ± standard deviation) in 2011 and 2.82 ± 1.73 ng/g lipid (19% lower) in 2017, but the difference was not statistically significant (p = 0.347). The DL-PCB concentrations and toxic equivalent concentrations were much lower in the serum from Weifang residents than have been found in serum from the inhabitants of other parts of the world. The concentrations of most of the DL-PCB congeners followed different downward temporal trends, but the PCB-118 concentration was higher in 2017 than in 2011. The temporal changes in the PCB concentrations and compositions in the samples from the general population of Weifang indicated that there may a new source of unintentionally produced PCBs in Weifang.
Collapse
Affiliation(s)
- Mu Lin
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yulong Ma
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Haodong Yuan
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xinghua Luo
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Qinghua Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; State Information Center, Beijing 100045, China
| | - Anming Liu
- Binhai Branch of the Weifang People's Hospital, Weifang 262737, China
| | - Ying Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Jun Jin
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; Engineering Research Center of Food Environment and Public Health, Beijing 100081, China
| |
Collapse
|