1
|
Thompson RM, George D, del Carmen Montero‐Calasanz M. Actinorhizal plants and Frankiaceae: The overlooked future of phytoremediation. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70033. [PMID: 39496278 PMCID: PMC11534348 DOI: 10.1111/1758-2229.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024]
Abstract
Bioremediation of degraded soils is increasingly necessary due to rising food demand, reductions in agricultural productivity, and limitations in total available arable area. Several bioremediation strategies could be utilized to combat soil degradation, with phytoremediation emerging as a standout option due to its in situ approach and low implementation and maintenance costs compared to other methods. Phytoremediation is also a sustainable solution, which is increasingly desirable to blunt the progression of global warming. Actinorhizal plants display several desirable traits for application in phytoremediation, including the ability to revegetate saline soil and sequester heavy metals with low foliar translocation. Additionally, when grown in association with Frankiaceae endophytes, these abilities are improved and expanded to include the degradation of anthropogenic pollutants and the restoration of soil fertility. However, despite this significant potential to remediate marginalized land, the actinorhizal-Frankiaceae symbiosis remains heavily understudied and underutilized. This review aims to collate the scattered studies that demonstrate these bioremediation abilities and explain the mechanics behind such abilities to provide the necessary insight. Finally, this review will conclude with proposed future directions for utilizing this symbiosis and how it can be optimized further to facilitate improved bioremediation outcomes.
Collapse
Affiliation(s)
- Ryan Michael Thompson
- School of Natural and Environmental Sciences, Newcastle UniversityNewcastle upon TyneUK
| | - David George
- School of Natural and Environmental Sciences, Newcastle UniversityNewcastle upon TyneUK
| | - Maria del Carmen Montero‐Calasanz
- School of Natural and Environmental Sciences, Newcastle UniversityNewcastle upon TyneUK
- IFAPA Las Torres‐Andalusian Institute of Agricultural and Fisheries Research and Training, Junta de AndalucíaSevilleSpain
| |
Collapse
|
2
|
Ranucci E, Treccani S, Ferruti P, Alongi J. The Seed Germination Test as a Valuable Tool for the Short-Term Phytotoxicity Screening of Water-Soluble Polyamidoamines. Polymers (Basel) 2024; 16:1744. [PMID: 38932092 PMCID: PMC11207469 DOI: 10.3390/polym16121744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Six differently charged amphoteric polyamidoamines, synthesized by the polyaddition of N,N'-methylenebisacrylamide to alanine, leucine, serine, arginine (M-ARG), glutamic acid (M-GLU) and a glycine/cystine mixture, were screened for their short-term phytotoxicity using a seed germination test. Lepidium sativum L. seeds were incubated in polyamidoamine water solutions with concentrations ranging from 0.156 to 2.5 mg mL-1 at 25 ± 1 °C for 120 h. The seed germination percentage (SG%), an indicator of acute toxicity, and both root and shoot elongation, related to plant maturation, were the considered endpoints. The germination index (GI) was calculated as the product of relative seed germination times relative radical growth. The SG% values were in all cases comparable to those obtained in water, indicating no detectable acute phytotoxicity of the polyamidoamines. In the short term, the predominantly positively charged M-ARG proved to be phytotoxic at all concentrations (GI < 0.8), whereas the predominantly negatively charged M-GLU proved to be biostimulating at intermediate concentrations (GI > 1) and slightly inhibitory at 2.5 mg mL-1 (0.8 < GI < 1). Overall, polyamidoamine phytotoxicity could be correlated to charge distribution, demonstrating the potential of the test for predicting and interpreting the eco-toxicological behavior of water-soluble polyelectrolytes.
Collapse
Affiliation(s)
| | | | | | - Jenny Alongi
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy; (E.R.); (S.T.); (P.F.)
| |
Collapse
|
3
|
Parmaki S, Vasquez MI, Patsalou M, Gomes RFA, Simeonov SP, Afonso CAM, Koutinas M. Ecotoxicological assessment of biomass-derived furan platform chemicals using aquatic and terrestrial bioassays. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:686-699. [PMID: 38372577 DOI: 10.1039/d3em00552f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
An environmental toxicological assessment of fourteen furanic compounds serving as valuable building blocks produced from biomass was performed. The molecules selected included well studied compounds serving as control examples to compare the toxicity exerted against a variety of highly novel furans which have been additionally targeted as potential or current alternatives to biofuels, building blocks and polymer monomers. The impact of the furan platform chemicals targeted on widely applied ecotoxicity model organisms was determined employing the marine bioluminescent bacterium Aliivibrio fischeri and the freshwater green microalgae Raphidocelis subcapitata, while their ecotoxicity effects on plants were assessed using dicotyledonous plants Sinapis alba and Lepidium sativum. Regarding the specific endpoints evaluated, the furans tested were slightly toxic or practically nontoxic for A. fischeri following 5 and 15 min of exposure. Moreover, most of the building blocks did not affect the growth of L. sativum and S. alba at 150 mg L-1 for 72 h of exposure. Specifically, 9 and 11 out of the 14 furan platform chemicals tested were non-effective or stimulant for L. sativum and S. alba respectively. Given that furans comprise common inhibitors in biorefinery fermentations, the growth inhibition of the specific building blocks was studied using the industrial workhorse yeast Saccharomyces cerevisiae, demonstrating insignificant inhibition on eukaryotic cell growth following 6, 12 and 16 h of exposure at a concentration of 500 mg L-1. The study provides baseline information to unravel the ecotoxic effects and to confirm the green aspects of a range of versatile biobased platform molecules.
Collapse
Affiliation(s)
- Stella Parmaki
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036, Limassol, Cyprus.
| | - Marlen I Vasquez
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036, Limassol, Cyprus.
- European University of Technology, 30 Archbishop Kyprianou Str., 3036, Limassol, Cyprus
| | - Maria Patsalou
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036, Limassol, Cyprus.
| | - Rafael F A Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Svilen P Simeonov
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 9, 1113, Sofia, Bulgaria
| | - Carlos A M Afonso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Michalis Koutinas
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036, Limassol, Cyprus.
| |
Collapse
|
4
|
Acila S, Derouiche S, Allioui N. Embryo growth alteration and oxidative stress responses in germinating Cucurbita pepo seeds exposed to cadmium and copper toxicity. Sci Rep 2024; 14:8608. [PMID: 38615032 PMCID: PMC11016075 DOI: 10.1038/s41598-024-58635-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/28/2023] [Indexed: 04/15/2024] Open
Abstract
This study investigated the influence of cadmium (Cd) and copper (Cu) heavy metals on germination, metabolism, and growth of zucchini seedlings (Cucurbita pepo L.). Zucchini seeds were subjected to two concentrations (100 and 200 μM) of CdCl2 and CuCl2. Germination parameters, biochemical and phytochemical attributes of embryonic axes were assessed. Results revealed that germination rate remained unaffected by heavy metals (Cd, Cu). However, seed vigor index (SVI) notably decreased under Cd and Cu exposure. Embryonic axis length and dry weight exhibited significant reductions, with variations depending on the type of metal used. Malondialdehyde and H2O2 content, as well as catalase activity, did not show a significant increase at the tested Cd and Cu concentrations. Superoxide dismutase activity decreased in embryonic axis tissues. Glutathione S-transferase activity significantly rose with 200 μM CdCl2, while glutathione content declined with increasing Cd and Cu concentrations. Total phenol content and antioxidant activity increased at 200 μM CuCl2. In conclusion, Cd and Cu heavy metals impede zucchini seed germination efficiency and trigger metabolic shifts in embryonic tissue cells. Response to metal stress is metal-specific and concentration-dependent. These findings contribute to understanding the intricate interactions between heavy metals and plant physiology, aiding strategies for mitigating their detrimental effects on plants.
Collapse
Affiliation(s)
- Smail Acila
- Department of Biology, Faculty of Nature and Life Sciences, University of El Oued, PO Box 789, 39000, El Oued, Algeria.
- Laboratory of Biology, Environment and Health, University of El Oued, El Oued, Algeria.
| | - Samir Derouiche
- Department of Cellular and Molecular Biology, Faculty of Nature and Life Sciences, University of El Oued, El Oued, Algeria
- Laboratory of Biodiversity and Application of Biotechnology in the Agricultural Field, University of El Oued, El Oued, Algeria
| | - Nora Allioui
- Department of Ecology and Environmental Engineering, Faculty of Nature and Life Sciences and Earth and Universe Sciences, University of May 8th, 1945, Guelma, Algeria
| |
Collapse
|
5
|
Zou D, Wu Y, Peng Y, Lei J, Wang G, Wang J, Pan Y, Yan W, Chen X. Characterization and application of Fe-modified biochar alleviating Cr(VI) stress in pak choi seedling cultivated in Cr-polluted hydroponics. CHEMOSPHERE 2023; 340:139793. [PMID: 37572714 DOI: 10.1016/j.chemosphere.2023.139793] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Chromium (Cr) is one of the common environmental pollutants, which causes severe health hazards on human health and environmental security. In this study, we characterized two biochars, a raw biochar (RBC) and a Fe-modified biochar (MBC) made from poplar wood chips and determined the effect of the two biochars on remediation of hexavalent chromium (Cr(VI)) in hydroponic system by monitoring Pak choi growth. Results showed the surface area, pore number and pore volume were significantly higher in MBC than in PBC, but the pore size was larger in PBC than in MBC. When compared to the control, low concentrations of Cr(VI) (≤2 mg L-1) promoted the growth and biomass production of Pak choi by 10-78%. In contrast, the high concentrations of Cr(VI) (≥4 mg L-1) showed a significantly reduction of the growth and biomass production of Pak choi by 10-28%. Fe-modified biochar (MBC) had a more significant impact than RBC on the remediation of Cr in the Cr(VI) pollution and improved growth and biomass production of Pak choi to a greater extent. Our study indicated that MBC has a better effect on degrading Cr(VI) pollution. The findings provide scientific basis and reference for the remediation of heavy metals in aquatic ecosystems by using biochar.
Collapse
Affiliation(s)
- Dongjun Zou
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Yaohui Wu
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Yuanying Peng
- College of Arts and Sciences, Saint Xavier University, Chicago, IL, 60655, USA
| | - Junjie Lei
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Guangjun Wang
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China; National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Changsha, Hunan, 410004, China
| | - Jun Wang
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China; National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Changsha, Hunan, 410004, China
| | - Yuliang Pan
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China; National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Changsha, Hunan, 410004, China
| | - Wende Yan
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China; National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Changsha, Hunan, 410004, China.
| | - Xiaoyong Chen
- College of Arts and Sciences, Governors State University, University Park, IL 60484, USA.
| |
Collapse
|
6
|
Mercado SAS, Galvis DGV. Paracetamol ecotoxicological bioassay using the bioindicators Lens culinaris Med. and Pisum sativum L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:61965-61976. [PMID: 36934188 PMCID: PMC10024602 DOI: 10.1007/s11356-023-26475-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/11/2023] [Indexed: 05/10/2023]
Abstract
Paracetamol is one of the most widely used drugs worldwide, yet its environmental presence and hazardous impact on non-target organisms could rapidly increase. In this study, the possible cytotoxic effects of paracetamol were evaluated using two bioindicator plants Lens culinaris and Pisum sativum. Concentrations of 500, 400, 300, 200, 100, 50, 25, 5, 1 mg L-1, and a control (distilled water) were used for a total of 10 treatments, which were subsequently applied on seeds of Lens culinaris Med. and Pisum sativum L.; after 72 h of exposure, root growth, mitotic index, percentage of chromosomal abnormalities, and the presence of micronucleus were evaluated. The cytotoxic effect of paracetamol on L. culinaris and P. sativum was demonstrated, reporting the inhibition of root growth, the presence of abnormalities, and a significant micronucleus index at all concentrations used, which shows that this drug has a high degree of toxicity.
Collapse
|
7
|
Park J, Shin K, Lee H, Choi S, Kim G, Depuydt S, De Saeger J, Heynderickx PM, Wu D, Asselman J, Janssen C, Han T. Evaluating ecotoxicological assays for comprehensive risk assessment of toxic metals present in industrial wastewaters in the Republic of Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161536. [PMID: 36638998 DOI: 10.1016/j.scitotenv.2023.161536] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Toxicity tests represent a rapid, user-friendly and cost-effective means to assess the impact of wastewater quality on aquatic ecosystems. There are not many cases where wastewater management standards are set based on various bio-based ecotoxicity values. Here, we tested a novel multitaxon approach to compare standard water quality indices to toxicity metrics obtained from ecotoxicity tests, conducted using aquatic organisms representing several trophic levels (Aliivibrio, Ulva, Daphnia, and Lemna), for 99 industrial wastewater samples from South Korea. For five wastewater samples, the concentrations of Se, Zn, or Ni exceeded the permissible limits (1, 5, and 3 mg L-1, respectively). All the four physiochemical water quality indices tested were positively correlated with Se and Pb concentrations. The toxicity unit (TU) scores indicated a declining sensitivity to pollutants, in the order Lemna (2.87) >Daphnia (2.24) >Aliivibrio (1.78) >Ulva (1.42). Significant correlations were observed between (1) Cd and Ni, and Aliivibrio, (2) Cu and Daphnia, (3) Cd, Cu, Zn, and Cr and Lemna, and (4) Cu, Zn, and Ni and Ulva. Daphnia-Lemna and Lemna-Ulva were found to be good indicators of ecologically harmful Se and Ni contents in wastewater, respectively. We suggest that regulatory thresholds based on these bioassays should be set at TU = 1 for all the species or at TU = 1 for Aliivibrio and Ulva and TU = 2 for Daphnia and Lemna, if the number of companies whose wastewater discharge exceeds the allowable TU levels is <1 % or 5 % of the total number of industries, respectively. Taken together, these findings could help in establishing a rapid, ecologically relevant wastewater quality assessment system that would be useful for developing strategies to protect aquatic ecosystems.
Collapse
Affiliation(s)
- Jihae Park
- Center for Environmental and Energy Research, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea; Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653-Block F, B-9000 Gent, Belgium
| | - Kisik Shin
- Water Environmental Engineering Research Division, National Institute of Environmental Research (NIER), 42, Hwangyeong-ro, Incheon 22689, Republic of Korea
| | - Hojun Lee
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
| | - Soyeon Choi
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
| | - Geonhee Kim
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
| | - Stephen Depuydt
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
| | - Jonas De Saeger
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
| | - Philippe M Heynderickx
- Center for Environmental and Energy Research, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Di Wu
- Center for Environmental and Energy Research, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Jana Asselman
- Department of Applied Ecology and Environmental Biology, Ghent University, Coupure Links 653-Block F, B-9000 Gent, Belgium
| | - Colin Janssen
- Department of Applied Ecology and Environmental Biology, Ghent University, Coupure Links 653-Block F, B-9000 Gent, Belgium
| | - Taejun Han
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653-Block F, B-9000 Gent, Belgium; Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea.
| |
Collapse
|
8
|
Li S, Yang B, Wang M, Zhang R, Chen K, He Z, Shi H, Chen S. Environmental quality standards for agricultural land in China: What should be improved on derivation methodology? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116334. [PMID: 36352708 DOI: 10.1016/j.jenvman.2022.116334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/31/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Soil pollution has caused increasingly widespread attention in China. The environmental risk threshold of pollutants is a yardstick to measure soil environmental quality. For decades, plenty of research on soil environmental quality standards (SEQSs) has been carried out, providing scientific basis for the investigation and supervision of soil environmental quality. This paper summaries the development of SEQSs in China, the corresponding influencing factors and methodology of SEQSs derivation. In the current version of SEQSs (GB15618-2018), the thresholds of soil pollutants are derived by the methods of environmental risk assessment, which are more methodologically scientific than geochemical method and ecological effect method used in the previous version (GB15618-1995). Abundant toxicology data on related species is required for risk assessment of soil pollution using extrapolation; however, basic toxicological data is insufficient and few valid data is available at present. Besides, the inadequate consideration on influencing factors for the derivation of soil pollutant threshold would affect the scientificity and rationality of SEQSs, such as biotic factors (species type, test endpoint etc.) and abiotic factors (aging effect, leaching effect, synergistic or antagonistic effects of elements etc.). These problems should be paid close attention in future research on soil environmental quality standards. The contents summarized in this review may provide reference for decision-making on supervision of soil environmental quality and point out important directions for future studies.
Collapse
Affiliation(s)
- Shanshan Li
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, PR China
| | - Bing Yang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, PR China
| | - Meng Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/ Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Rong Zhang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, PR China
| | - Kun Chen
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, PR China
| | - Zexin He
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, PR China
| | - Huading Shi
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, PR China.
| | - Shibao Chen
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/ Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
9
|
Wlodkowic D, Jansen M. High-throughput screening paradigms in ecotoxicity testing: Emerging prospects and ongoing challenges. CHEMOSPHERE 2022; 307:135929. [PMID: 35944679 DOI: 10.1016/j.chemosphere.2022.135929] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/09/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The rapidly increasing number of new production chemicals coupled with stringent implementation of global chemical management programs necessities a paradigm shift towards boarder uses of low-cost and high-throughput ecotoxicity testing strategies as well as deeper understanding of cellular and sub-cellular mechanisms of ecotoxicity that can be used in effective risk assessment. The latter will require automated acquisition of biological data, new capabilities for big data analysis as well as computational simulations capable of translating new data into in vivo relevance. However, very few efforts have been so far devoted into the development of automated bioanalytical systems in ecotoxicology. This is in stark contrast to standardized and high-throughput chemical screening and prioritization routines found in modern drug discovery pipelines. As a result, the high-throughput and high-content data acquisition in ecotoxicology is still in its infancy with limited examples focused on cell-free and cell-based assays. In this work we outline recent developments and emerging prospects of high-throughput bioanalytical approaches in ecotoxicology that reach beyond in vitro biotests. We discuss future importance of automated quantitative data acquisition for cell-free, cell-based as well as developments in phytotoxicity and in vivo biotests utilizing small aquatic model organisms. We also discuss recent innovations such as organs-on-a-chip technologies and existing challenges for emerging high-throughput ecotoxicity testing strategies. Lastly, we provide seminal examples of the small number of successful high-throughput implementations that have been employed in prioritization of chemicals and accelerated environmental risk assessment.
Collapse
Affiliation(s)
- Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, Melbourne, VIC, 3083, Australia.
| | - Marcus Jansen
- LemnaTec GmbH, Nerscheider Weg 170, 52076, Aachen, Germany
| |
Collapse
|
10
|
Mendoza NGA, Mercado SAS. Cytogenotoxicity of fifth-generation quaternary ammonium using three plant bioindicators. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103972. [PMID: 36089239 DOI: 10.1016/j.etap.2022.103972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
The investigation aimed to determine the cytogenotoxic effect of fifth-generation quaternary ammonium using three plant species as bioindicators. Bulbs of A. cepa and seeds of L. culinaris and P. sativum were exposed to different concentrations of fifth-generation quaternary ammonium and a control solution of distilled water for 72 h. The results showed that the A. cepa bioindicator presented the greatest reduction in root length at 50 mg L-1 and no mitotic index at 40 and 50 mg L-1, reaching 100% mitotic inhibition. Cell abnormalities were present among the three bioindicator species, where the highest index of micronuclei occurred at 50 mg L-1, being A. cepa the bioindicator with the highest relative rate of abnormality (25.28%). It was concluded that fifth-generation quaternary ammonium, in all treatments, caused a cytogenotoxic effect on the apical meristematic cells of the three species, A. cepa was the most sensitive species.
Collapse
Affiliation(s)
| | - Seir Antonio Salazar Mercado
- Departamento de Biología, Universidad Francisco de Paula Santander, Avenida Gran Colombia No. 12E-96B, Colsag, San José de Cúcuta, Colombia.
| |
Collapse
|
11
|
Arán D, Santos ES, Abreu MM, Antelo J, Macías F. Use of combined tools for effectiveness evaluation of tailings rehabilitated with designed Technosol. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:1857-1873. [PMID: 34676513 DOI: 10.1007/s10653-021-01118-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Soil and water characteristics and biogeochemical processes can be improved by the application of an integrated technology based on circular economy: designed Technosol. The evaluation of the effectiveness of the superficial application of a designed Technosol, with andic and eutrophic properties, on the rehabilitation of sulfide tailings of a uranium mine (Fé mining area, Spain) was the aim of this study. After 20 months of the Technosol application, the tailing rehabilitation status (Rehabilitated tailing) was compared to a non-rehabilitated tailing (Tailing). To assess the rehabilitation of these systems, several properties were analyzed: chemical characteristics of the materials and their leachates, soil enzymatic activities (dehydrogenase, β-glucosidase, acid phosphatase and urease), basal respiration and several plant endpoints from direct and indirect bioassays and pot experiment using Lolium perennse L. and Trifolium pratense L.. Potentially toxic concentrations of Co, Mn and Ni were identified in both available fraction and leachates, pointing out the serious environmental risk posed by the tailing. The improvement of overall physicochemical properties in the rehabilitated tailing materials (e.g., decrease of the hazardous element concentrations in leachates and available fraction, and improvement of the fertility and structure) allowed a quick plant cover with pasture species and provided a suitable habitat for active microbial community (evaluated by increasing dehydrogenase activity and basal respiration). This improvement in the rehabilitated tailing contributed to a significant decrease in the ecotoxicological risk and the spread of hazardous elements. The field application of this specific Technosol was a promising and lasting solution for rehabilitation of this type of tailings.
Collapse
Affiliation(s)
- Diego Arán
- Instituto de Investigaciones Tecnológicas, Universidad de Santiago de Compostela, Santiago de Compostela, Spain.
- Inproyen Consulting, C/Lugo 18, Santa Comba, A Coruña, Spain.
- Universidade de Lisboa, Instituto Superior de Agronomia, LEAF-Linking Landscape, Environment, Agriculture and Food-Research Center, Tapada da Ajuda, 1349-017, Lisbon, Portugal.
| | - Erika S Santos
- Universidade de Lisboa, Instituto Superior de Agronomia, LEAF-Linking Landscape, Environment, Agriculture and Food-Research Center, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Maria Manuela Abreu
- Universidade de Lisboa, Instituto Superior de Agronomia, LEAF-Linking Landscape, Environment, Agriculture and Food-Research Center, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Juan Antelo
- Instituto de Investigaciones Tecnológicas, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Felipe Macías
- Instituto de Investigaciones Tecnológicas, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
- Departamento de Edafología y Química Agrícola, Facultad de Biología, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
12
|
Urionabarrenetxea E, Garcia-Velasco N, Zaldibar B, Soto M. Impacts of sewage sludges deposition on agricultural soils: Effects upon model soil organisms. Comp Biochem Physiol C Toxicol Pharmacol 2022; 255:109276. [PMID: 35114392 DOI: 10.1016/j.cbpc.2022.109276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 11/26/2022]
Abstract
During years sewage sludges have been worldwide poured in agricultural soils to enhance vegetal production. The "Landfill 17" located in Gernika-Lumo town (43°19'28.9"N 2°40'30.9"W) received for decades sewage sludges from the local Waste Water Treatment Plant (WWTP) with agricultural purposes. To this WWTP, several pollutants as heavy metals (Cd, Cr, Ni, Pb), PAHs (benzo(a)pyrene among many others) and pesticides (i.e. dieldrin) could have arrived from local industry and be widespread all over the landfill. Soil invertebrates like earthworms and plants are of special interest due to their close contact with the polluted matrix and their potential effects by the presence of pollutants. In this context, the aim of the present work was to determine the health status of landfill soils by evaluating the effects on model soil organisms exerted by long-lasted pollutants after on site deposition of WWTP active sludges. With such a purpose, different standard toxicity tests and cellular level endpoints were performed on lettuce and earthworms. Indeed, germination (EPA 850.4100) and root elongation (EPA 850.4230) tests were carried out in Lactuca sativa, while OECD acute toxicity test (OECD-204), reproduction test (OECD-222) and Calcein-AM viability test with coelomocytes were applied in Eisenia fetida worms. For the exposure, soils collected in the landfield containing low, medium and high concentrations of pollutants were selected, and as reference LUFA 2.3 natural standard soil was chosen. While no differences were shown in the assays with L. sativa, significant differences between sludge exposed groups and control group were recorded with E. fetida, with lower coelomocyte number and viability and higher tissue metal accumulation after 28 days of exposure to polluted soils. These results confirmed the impact of contaminants to soil biota even after long periods of time.
Collapse
Affiliation(s)
- Erik Urionabarrenetxea
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain
| | - Nerea Garcia-Velasco
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain
| | - Beñat Zaldibar
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain
| | - Manu Soto
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain..
| |
Collapse
|
13
|
Chen L, Beiyuan J, Hu W, Zhang Z, Duan C, Cui Q, Zhu X, He H, Huang X, Fang L. Phytoremediation of potentially toxic elements (PTEs) contaminated soils using alfalfa (Medicago sativa L.): A comprehensive review. CHEMOSPHERE 2022; 293:133577. [PMID: 35016965 DOI: 10.1016/j.chemosphere.2022.133577] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/02/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Soil contamination with potentially toxic elements (PTEs) is an increasing environmental problem, posing serious threats to the living organisms. Phytoremediation is a sustainable and highly accepted technology for remediation of PTE-contaminated soils. Alfalfa has been widely adopted for the phytoremediation of PTE-contaminated soils due to its large biomass productivity, high PTE tolerance, and strong capacity to take up PTEs. However, there are still no literature reviews systematically summarized the potential of alfalfa in the phytoremediation. Therefore, we review the available literatures that present its PTE uptake, phytotoxicity, tolerance mechanisms, and aided techniques improving the phytoremediation efficiency. In this review, alfalfa shows high amounts of PTEs accumulation, especially in their root tissue. Meanwhile, the inner mechanisms of PTE tolerance and accumulation in alfalfa are discussed including: (i) the activation of antioxidant enzyme system, (ii) subcellular localization, (iii) production of glutathione, phytochelatins, and proline, and (iv) regulation of gene expression. Indeed, excessive PTE can overcome the defense system, which causes oxidative damage in alfalfa plants, thereby inhibiting growth and physiological processes and weakening the ability of PTE uptake. Till now, several approaches have been developed to improve the tolerance and/or accumulation of PTE in alfalfa plants as follows: (i) selection of PTE tolerant cultivars, (ii) applying plant growth regulators, (iii) addition of chelating agents, fertilizer, and biochar materials, and (iv) inoculation of soil microbes. Finally, we indicate that the selection of PTE-tolerant cultivars along with inoculation of soil microbes may be an efficient and eco-friendly strategy of the soil PTE phytoremediation.
Collapse
Affiliation(s)
- Li Chen
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Jingzi Beiyuan
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China
| | - Weifang Hu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China
| | - Zhiqing Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Chenjiao Duan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Xiaozhen Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Haoran He
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Xuguang Huang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China
| | - Linchuan Fang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China.
| |
Collapse
|
14
|
Vieira C, Marcon C, Droste A. Phytotoxic and cytogenotoxic assessment of glyphosate on Lactuca sativa L. BRAZ J BIOL 2022; 84:e257039. [PMID: 35293479 DOI: 10.1590/1519-6984.257039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/31/2022] [Indexed: 12/25/2022] Open
Abstract
The active ingredient glyphosate is the most commercialized herbicide on the world market due to its capability in eliminating weeds. However, it can harm the development of non-target organisms and threaten environmental quality. This study analyzed the effects of potentially toxic concentrations of glyphosate on germination, growth, cell cycle and genomic stability of Lactuca sativa L., and identified the most sensitive variables for assessing the toxicity of this herbicide to this biomonitor. Seeds of L. sativa were germinated in Petri dishes containing a sheet of filter paper moistened with 5 mL of a concentration of glyphosate (1.34, 3.35, 6.70, 10.05, 13.40 mg L-1). Controls consisted of distilled water (negative) and 3 mg L-1 CuSO4 (positive). Macroscopic and microscopic variables were analyzed. The germination of L. sativa was not affected by the concentrations of glyphosate. Root length and shoot height of the plants and the mitotic index decreased from the lowest concentration tested on. The chromosomal anomaly index and frequency of micronuclei increased by 3.2 and 22 times, respectively, with the presence of the lowest concentration of glyphosate compared to the negative control. The observed phytotoxic and cytogenotoxic effects demonstrate the negative influence that glyphosate has on the development of L. sativa. Root length and microscopic variables showed the highest sensitivity. This study warns of the possible harmful effects that glyphosate can have on non-target organisms and suggests greater control over the use of this herbicide to mitigate its environmental impact.
Collapse
Affiliation(s)
- C Vieira
- Universidade Feevale, Programa de Pós-graduação em Qualidade Ambiental, Laboratório de Biotecnologia Vegetal, Novo Hamburgo, RS, Brasil
| | - C Marcon
- Universidade Feevale, Programa de Pós-graduação em Qualidade Ambiental, Laboratório de Biotecnologia Vegetal, Novo Hamburgo, RS, Brasil
| | - A Droste
- Universidade Feevale, Programa de Pós-graduação em Qualidade Ambiental, Laboratório de Biotecnologia Vegetal, Novo Hamburgo, RS, Brasil
| |
Collapse
|
15
|
Rizzo PF, Young BJ, Pin Viso N, Carbajal J, Martínez LE, Riera NI, Bres PA, Beily ME, Barbaro L, Farber M, Zubillaga MS, Crespo DC. Integral approach for the evaluation of poultry manure, compost, and digestate: Amendment characterization, mineralization, and effects on soil and intensive crops. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 139:124-135. [PMID: 34968898 DOI: 10.1016/j.wasman.2021.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The egg industry has increased its production worldwide during the last decades. Several waste management strategies have been proposed to treat large volumes of poultry manure. Composting and anaerobic digestion are the main stabilization processes used. However, there are disagreements on the criteria for applying raw and treated poultry manure to the soil. We studied the relationship between physicochemical, toxicological, microbiological, parasitological, and metabarcoding parameters of raw and treated poultry manure (compost and digestate). Subsequently, we evaluated the mineralization of C, N and P, and the effects of amended soil on horticultural and ornamental crops. Compost and digestate presented better general conditions than poultry manure for use as organic soil amendments. The highest pathogenic microorganism content (total and fecal coliforms, Escherichia coli, and Salmonella spp.) was recorded for poultry manure. Multivariate analyses allowed associating a lower phytotoxicity with compost and a higher microbial diversity with digestate. Therefore, only compost presented stability and maturity conditions. We found high released CO2-C, N loss, and P accumulation in soil amended with a high dose of poultry manure during mineralization. However, high doses of poultry manure and digestate increased the biomass production in the valorization assay. We recommend the soil application of stabilized and mature poultry manure-derived amendments, which reduce the negative impacts on the environment and promote more sustainable practices in agricultural systems.
Collapse
Affiliation(s)
- Pedro Federico Rizzo
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola (IMyZA), Laboratorio de Transformación de Residuos, Las Cabañas y Los Reseros s/n, 1686, Hurlingham, Buenos Aires, Argentina.
| | - Brian Jonathan Young
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola (IMyZA), Laboratorio de Transformación de Residuos, Las Cabañas y Los Reseros s/n, 1686, Hurlingham, Buenos Aires, Argentina.
| | - Natalia Pin Viso
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Agrobiotecnología y Biología Molecular (IABiMo), Las Cabañas y Los Reseros s/n, 1686, Hurlingham, Buenos Aires, Argentina.
| | - Jazmín Carbajal
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola (IMyZA), Laboratorio de Transformación de Residuos, Las Cabañas y Los Reseros s/n, 1686, Hurlingham, Buenos Aires, Argentina.
| | - Laura Elizabeth Martínez
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Mendoza, San Martin 3853, M5534, Luján de Cuyo, Mendoza, Argentina.
| | - Nicolás Iván Riera
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola (IMyZA), Laboratorio de Transformación de Residuos, Las Cabañas y Los Reseros s/n, 1686, Hurlingham, Buenos Aires, Argentina.
| | - Patricia Alina Bres
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola (IMyZA), Laboratorio de Transformación de Residuos, Las Cabañas y Los Reseros s/n, 1686, Hurlingham, Buenos Aires, Argentina.
| | - María Eugenia Beily
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola (IMyZA), Laboratorio de Transformación de Residuos, Las Cabañas y Los Reseros s/n, 1686, Hurlingham, Buenos Aires, Argentina.
| | - Lorena Barbaro
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Cerro Azul, Ruta Nacional 14. Km. 836, 3313, Cerro Azul, Misiones, Argentina.
| | - Marisa Farber
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Agrobiotecnología y Biología Molecular (IABiMo), Las Cabañas y Los Reseros s/n, 1686, Hurlingham, Buenos Aires, Argentina.
| | - Marta Susana Zubillaga
- Cátedra de Fertilidad y Fertilizantes, Departamento de Ingeniería Agrícola y Uso de la Tierra, Facultad de Agronomía, Universidad de Buenos Aires (UBA), Av. San Martín 4453, C1417DSE Buenos Aires, Argentina.
| | - Diana Cristina Crespo
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola (IMyZA), Laboratorio de Transformación de Residuos, Las Cabañas y Los Reseros s/n, 1686, Hurlingham, Buenos Aires, Argentina.
| |
Collapse
|
16
|
López R, Antelo J, Silva AC, Bento F, Fiol S. Factors that affect physicochemical and acid-base properties of compost and vermicompost and its potential use as a soil amendment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113702. [PMID: 34517230 DOI: 10.1016/j.jenvman.2021.113702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/14/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Composting and vermicomposting have attracted attention in relation to both waste management and the potential to produce organic amendments that could improve soil quality. The main differences between compost depend on the feedstock, the production process, and the degree of maturity. In the present study, samples of compost of different origin (food and green waste, livestock waste, algae waste, urban waste or sewage sludge) or subjected to different composting methods (traditional or using earthworms) were collected for analysis. Additionally, samples collected at various stages of the composting process were compared (raw material, 15 and 30 days of composting, and final compost). Different analysis and techniques were used to establish the chemical composition, physicochemical and acid-base properties of compost samples and the organic matter extracts. The correlations obtained (between the abundance of acid groups in different extracts of the compost or between the cation exchange capacity and the C/N atomic ratio) would allow for predicting the compost behaviour based on certain characteristics, and a reduction in the number of parameters determined experimentally, thus facilitating comparisons between different compost. In addition, the potential value of the compost as amendment was tested with a Haplic Cambisol from a mining area. The application of compost increased the pH, the organic matter and nutrient content, and promoted seed germination and root growth.
Collapse
Affiliation(s)
- R López
- CRETUS, Department of Physical Chemistry, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - J Antelo
- CRETUS, Department of Soil Science and Agricultural Chemistry, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - A C Silva
- CRETUS, Department of Physical Chemistry, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain; Department of Chemistry, Center of Chemistry, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal
| | - F Bento
- Department of Chemistry, Center of Chemistry, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal
| | - S Fiol
- CRETUS, Department of Physical Chemistry, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
17
|
Siddiqui ZH, Abbas ZK. Assessment of phytotoxicity of treated water of Tabuk wastewater plant by different technologies on seed germination of chick pea (Cicer arietinum). WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:2968-2979. [PMID: 34850707 PMCID: wst_2021_287 DOI: 10.2166/wst.2021.287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The use of reclaimed water as an alternative source is a sustainable way forward for an arid country like The Kingdom of Saudi Arabia. The sewage contains organic and inorganic pollutants from households and industrial sources that may not be removed during treatment. In this study, seeds of Cicer arietinum were germinated using six different concentrations of treated water from the Tabuk wastewater treatment plant and tap water was used as control. The physicochemical properties such as total dissolved solids, electrical conductivity, total suspended solids, and turbidity values of treated water were higher, which gradually decreased on dilution with tap water. The amount of ammonia, nitrite, nitrate, and phosphate was in higher concentration in treated water as compared to control. The use of 40% treated water (T3) improved the germination percentage, speed of germination and germination index of C. arietinum. The phytotoxicity test reveals that undiluted treated water (T6) is not fit for direct use on plants. All the investigated treatments confirmed that the use of more than 40% of treated water decreased the fresh weight and dry weight of the seedlings as compared to control. The results are encouraging and help in attaining water sustainability in the Tabuk region.
Collapse
Affiliation(s)
- Zahid Hameed Siddiqui
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, KSA E-mail: ;
| | - Zahid Khorshid Abbas
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, KSA E-mail: ;
| |
Collapse
|
18
|
Yang L, Feng YX, Zhang H, Yu XZ. Estimating the synergistic and antagonistic effects of dual antibiotics on plants through root elongation test. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1598-1609. [PMID: 33180212 DOI: 10.1007/s10646-020-02308-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Antibiotics are recently recognized as a group of emerging environmental contaminants that are frequently detected in various environmental matrixes. Relative root elongation (RRE) test is a rapid and effective strategy to evaluate the water/soil quality and the toxic effects of environmental contaminants on plants. In the present study, we examine the toxicity effect of ciprofloxacin (CIP), norfloxacin (NOR), and tetracycline (TET) to pakchoi individually and in combinations. Both independent action (IA) and concentration addition (CA) models are used for toxicity assessment. Results showed that the EC50 values of CIP, NOR, and TET are 193.59, 60.81, and 40.37 μM, respectively. Combinations of TET + CIP and TET + NOR caused more inhibitory effects on root elongation than those of CIP + NOR. Toxic Unit (TU) and Synergistic Ratio (SR) analysis showed that the relatively lower (higher) EC values are observed in the combinations with lower (higher) antibiotic concentrations, suggesting an effect of low-dose synergism and high-dose antagonism. The reliability of the simulation results from IA and CA models to predict that combined toxicity is highly dependent upon the results from the analysis of TU or SR.
Collapse
Affiliation(s)
- Li Yang
- College of Environmental Science & Engineering, Guilin University of Technology, 541004, Guilin, People's Republic of China
| | - Yu-Xi Feng
- College of Environmental Science & Engineering, Guilin University of Technology, 541004, Guilin, People's Republic of China
| | - Hua Zhang
- College of Environmental Science & Engineering, Guilin University of Technology, 541004, Guilin, People's Republic of China
| | - Xiao-Zhang Yu
- College of Environmental Science & Engineering, Guilin University of Technology, 541004, Guilin, People's Republic of China.
| |
Collapse
|
19
|
Mamo M, Kassa H, Ingale L, Dondeyne S. Evaluation of compost quality from municipal solid waste integrated with organic additive in Mizan-Aman town, Southwest Ethiopia. BMC Chem 2021; 15:43. [PMID: 34281617 PMCID: PMC8290552 DOI: 10.1186/s13065-021-00770-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/01/2021] [Indexed: 11/10/2022] Open
Abstract
Background The present study evaluated the compost quality from municipal solid waste (MSW) and organic additives of coffee by-products and leaf of Millettia ferruginea. Compost sample (n = 30) was taken from fresh compost materials and MSW and different organic additive treatments (T1, T2, T3, T4, and T5). Compost treatments phytotoxicity test was conducted using lettuce seed (Lactuca Sativa L. var. crispa). Analysis of variance (ANOVA) was performed using SPSS (version 22) on major compost quality characteristics. Results The compost Physico-chemical characteristics like temperature (26.4 °C), moisture content (45.5%), electrical conductivity (4.6 mS/cm), pH (7.9), total nitrogen (1.2%) and phosphorous content (2918 ppm) in T4 and T5 were analogous but both are significantly different from T3, T2 and T1 compost treatments. Phytotoxicity test using 100% compost treatment media showed that T4 (101%) and T5 (102%) are phytonutrient for lettuce plant. While, T3 and T2; and T1 compost treatments are non-phytotoxic and moderately phytotoxic respectively to lettuce plant. Conclusion Therefore, compost from MSW + M. ferruginea (T4) and MSW + coffee pulp + M. ferruginea (T5) are important for improving the physico-chemical characteristics of compost and are phytonutrient for lettuce plant. Thus, for effectively management of the 75% of organic fraction of waste generated from households in the study area, recycling methods like composting with organic additives must be used at large. Supplementary Information The online version contains supplementary material available at 10.1186/s13065-021-00770-1.
Collapse
Affiliation(s)
- Masresha Mamo
- Department of Natural Resources Management, Mizan-Tepi University, PO. Box 391, Mizan Teferi, Ethiopia
| | - Henok Kassa
- Department of Natural Resources Management, Mizan-Tepi University, PO. Box 391, Mizan Teferi, Ethiopia.
| | - Lalit Ingale
- Department of Natural Resources Management, Mizan-Tepi University, PO. Box 391, Mizan Teferi, Ethiopia
| | - Stefaan Dondeyne
- Department of Geography, Ghent University, Krijgslaan 281 S8, 9000, Gent, Belgium
| |
Collapse
|
20
|
V. Capparelli M, Cabrera M, Rico A, Lucas-Solis O, Alvear-S D, Vasco S, Galarza E, Shiguango L, Pinos-Velez V, Pérez-González A, Espinosa R, M. Moulatlet G. An Integrative Approach to Assess the Environmental Impacts of Gold Mining Contamination in the Amazon. TOXICS 2021; 9:149. [PMID: 34206785 PMCID: PMC8309824 DOI: 10.3390/toxics9070149] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022]
Abstract
As the number of legal and illegal gold mining sites increases in the Andes-Amazonia region, integrative methods to evaluate the effects of mining pollution on freshwater ecosystems are of paramount importance. Here, we sampled water and sediments in 11 sites potentially affected by gold mining activities in the Napo province (Ecuador). The environmental impacts were evaluated using the following lines of evidence (LOEs): water physicochemical parameters, metal exposure concentrations, macroinvertebrate community response (AAMBI), and toxicity by conducting bioassays with Lactuca sativa and Daphnia magna. Dissolved oxygen and total suspended solids were under (<80%) and above (>130 mg/Ls) quality standards 65% of the sites. Ag, Al, As, Cd, Cu, Fe, Mn, Pb, and Zn in water and V, B, and Cr in sediments were detected above quality standards at sampled sites. Nine out of eleven sites were classified as having bad environmental quality based on the AAMBI. L. sativa seed germination in both water (37% to 70%) and sediment (0% to 65%) indicate significant toxicity. In five sites, neonates of D. magna showed a 25% reduction in survival compared to the control. Our integrated LOEs index ranked sites regarding their environmental degradation. We recommend environmental impact monitoring of the mining expansion at the Andes-Amazonia region using multiple LOEs.
Collapse
Affiliation(s)
- Mariana V. Capparelli
- Facultad de Ciencias de La Tierra y Agua, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador; (M.V.C.); (M.C.); (O.L.-S.); (D.A.-S.); (E.G.); (L.S.)
- Instituto de Ciencias del Mar y Limnología-Estación El Carmen, Universidad Nacional Autónoma de México, Ciudad del Carmen 24157, Mexico
| | - Marcela Cabrera
- Facultad de Ciencias de La Tierra y Agua, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador; (M.V.C.); (M.C.); (O.L.-S.); (D.A.-S.); (E.G.); (L.S.)
- Laboratorio Nacional de Referencia Del Agua, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, 28805 Alcalá de Henares, Spain;
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, 46980 Paterna, Spain
| | - Oscar Lucas-Solis
- Facultad de Ciencias de La Tierra y Agua, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador; (M.V.C.); (M.C.); (O.L.-S.); (D.A.-S.); (E.G.); (L.S.)
| | - Daniela Alvear-S
- Facultad de Ciencias de La Tierra y Agua, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador; (M.V.C.); (M.C.); (O.L.-S.); (D.A.-S.); (E.G.); (L.S.)
| | - Samantha Vasco
- Facultad de Ciencias de La Vida, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador; (S.V.); (R.E.)
| | - Emily Galarza
- Facultad de Ciencias de La Tierra y Agua, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador; (M.V.C.); (M.C.); (O.L.-S.); (D.A.-S.); (E.G.); (L.S.)
| | - Lady Shiguango
- Facultad de Ciencias de La Tierra y Agua, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador; (M.V.C.); (M.C.); (O.L.-S.); (D.A.-S.); (E.G.); (L.S.)
| | - Veronica Pinos-Velez
- Departamento de Recursos Hídricos y Ciencias Ambientales, Facultad de Ciencias Químicas, Universidad de Cuenca, Cuenca 010202, Ecuador;
- Departamento de Biociencias, Facultad de Ciencias Químicas, Universidad de Cuenca, Cuenca 010202, Ecuador
| | - Andrés Pérez-González
- Grupo de Investigación en Quimiometría y QSAR, Facultad de Ciencia y Tecnología, Universidad del Azuay, Cuenca 010204, Ecuador;
| | - Rodrigo Espinosa
- Facultad de Ciencias de La Vida, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador; (S.V.); (R.E.)
| | - Gabriel M. Moulatlet
- Facultad de Ciencias de La Tierra y Agua, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador; (M.V.C.); (M.C.); (O.L.-S.); (D.A.-S.); (E.G.); (L.S.)
| |
Collapse
|
21
|
Pantano G, Mazzeo DEC, Rocha THDS, Marin-Morales MA, Fadini PS, Mozeto AA. Toxicity of the sawdust used for phosphorus recovery in a eutrophic reservoir: experiments with Lactuca sativa and Allium cepa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:18276-18283. [PMID: 33410013 DOI: 10.1007/s11356-020-11868-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Eutrophication is one of the environmental problems arising from the increase of essential nutrient concentrations, mainly phosphorus and nitrogen. In contrast to excess phosphorus, the depletion of phosphate rock deposits used for the production of fertilizers compromises the food supply. Therefore, the development of technologies that propose the recovery of the phosphorus contained in eutrophic environments for its later use for agricultural fertilization purposes is very important to ensure global food security. This work aimed to evaluate the toxic potential of the sawdust (biosorbent previously used for phosphorus adsorption) in order to enable its application in agriculture. For this, toxicity experiments with Lactuca sativa (lettuce) and Allium cepa (onion) seeds were performed. The phytotoxic potential was assessed by means of the seed germination index and physiological parameters such as radicle and hypocotyl growth. Cytotoxicity, genotoxicity, and mutagenicity tests were also performed on onion seeds. From statistical tests, it was possible to affirm that the sawdust did not promote inhibition of seed germination and radicle and hypocotyl growth. No genotoxicity, cytotoxicity and, mutagenicity were observed, which allowed to state that the sawdust is not toxic to the onion species, which reinforces the possibility of application of the biosorbent for soil fertilization purposes. Therefore, the use of sawdust for phosphorus biosorption with the subsequent agricultural application is promising and quite important from a global food security point of view.
Collapse
Affiliation(s)
- Glaucia Pantano
- Departamento de Química, Universidade Federal do Paraná, Curitiba, Paraná, 81531-980, Brazil.
| | - Dânia Elisa Christofoletti Mazzeo
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rio Claro, São Paulo, 13506-900, Brazil
| | - Thais Helena Dos Santos Rocha
- Laboratório de Biogeoquímica Ambiental - Núcleo de Estudos, Diagnósticos e Intervenções Ambientais, Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Maria Aparecida Marin-Morales
- Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rio Claro, São Paulo, 13506-900, Brazil
| | - Pedro Sergio Fadini
- Laboratório de Biogeoquímica Ambiental - Núcleo de Estudos, Diagnósticos e Intervenções Ambientais, Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Antonio Aparecido Mozeto
- Laboratório de Biogeoquímica Ambiental - Núcleo de Estudos, Diagnósticos e Intervenções Ambientais, Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| |
Collapse
|
22
|
Celletti S, Bergamo A, Benedetti V, Pecchi M, Patuzzi F, Basso D, Baratieri M, Cesco S, Mimmo T. Phytotoxicity of hydrochars obtained by hydrothermal carbonization of manure-based digestate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111635. [PMID: 33187784 DOI: 10.1016/j.jenvman.2020.111635] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/29/2020] [Accepted: 10/25/2020] [Indexed: 05/27/2023]
Abstract
The management of digestate, the main by-product of the anaerobic digestion (AD) process, is one of the most serious environmental issues. Although digestate is used on arable land as a fertilizer, it can have a negative impact on the environment due to nitrate leaching into the groundwater and ammonia volatilization into the atmosphere, with high economic and environmental disposal costs. Therefore, hydrothermal carbonization (HTC), a thermochemical biomass conversion process, could represent a sustainable and efficient alternative for digestate management. Hydrochar, the solid product of the HTC process, has been recently proposed as a plant growing medium in soilless culture systems (SCS). Here, using cow manure digestate as feedstock, we investigated the influence of the HTC process reaction temperature (180, 220 and 250 °C) and residence time (1 and 3 h) on the physical-chemical properties (pH, electrical conductivity, and mineral element concentrations) of the resulting hydrochars. Furthermore, in order to fully valorize hydrochar as a growing medium, their possible phytotoxic effects and those of their water extracts (prepared at two different concentrations and at different pHs) were tested in germination tests with cress seeds (Lepidium sativum L.). Concentrations of nutrients, heavy metals, organic acids, sugars and furan compounds were determined in the water extracts. Characterization analysis of these hydrochars revealed that they can be distinguished from each other by their physical-chemical properties, which were significantly affected by the two process parameters. Specifically, the HTC temperature had a greater effect on the composition of hydrochars than the residence time. Germination tests found hydrochar water extracts to show significantly lower phytotoxicity than the hydrochars themselves. Notably, the phytotoxic effect of the extracts decreased with increasing extraction ratio and decreasing pH. The chromatographic characterization of extracts identified the presence of potential phytotoxins, such as furan compounds (i.e., hydroxymethylfurfural and furfural). However, before using hydrochars as potential and innovative growing media for plants, their phytotoxicity should be limited, for example through their dilution with other substrates. Overall, AD-HTC coupling could represent a valuable eco-sustainable expedient in the field of biomasses, green economy and waste conversion and, therefore, further investigations in this direction are necessary.
Collapse
Affiliation(s)
- Silvia Celletti
- Faculty of Science and Technology, Free University of Bolzano-Bozen, I-39100, Bolzano, Italy.
| | - Alex Bergamo
- Faculty of Science and Technology, Free University of Bolzano-Bozen, I-39100, Bolzano, Italy
| | - Vittoria Benedetti
- Faculty of Science and Technology, Free University of Bolzano-Bozen, I-39100, Bolzano, Italy
| | - Matteo Pecchi
- Faculty of Science and Technology, Free University of Bolzano-Bozen, I-39100, Bolzano, Italy
| | - Francesco Patuzzi
- Faculty of Science and Technology, Free University of Bolzano-Bozen, I-39100, Bolzano, Italy
| | | | - Marco Baratieri
- Faculty of Science and Technology, Free University of Bolzano-Bozen, I-39100, Bolzano, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bolzano-Bozen, I-39100, Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bolzano-Bozen, I-39100, Bolzano, Italy
| |
Collapse
|
23
|
Lin YJ, Feng YX, Li YH, Yu G, Yu XZ. Fuzzy synthetic evaluation of the impact of plant growth regulators on the root phenotype traits of rice seedlings under thiocyanate stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:182-189. [PMID: 33160825 DOI: 10.1016/j.plaphy.2020.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Application of plant growth regulators (PGRs) is a novel strategy for allay of the adverse effects caused by biotic/abiotic stresses. However, no studies have vividly executed mathematic evaluation for the assessment of various PGRs on root phenotype traits (RPTs) against pollutants. In the present study, a microcosm hydroponic experiment was conducted to examine responses of RPTs under SCN- (0, 24, 96, and 300 mg SCN/L) stress in the presence of PGRs such as jasmonic acid (JA), indole-3-acetic acid (IAA), and sodium hydrosulfide (NaHS) in rice plants. Fuzzy synthetic evaluation was applied to determine the outcome of the effects of various PGRs on the RPTs under SCN- exposure. Root scanning results indicated that exogenous IAA and NaHS has the greater potential for improving the RPTs of rice seedlings under SCN- stress, while JA failed to uplift the RPTs in response to SCN- stress. Fuzzy synthetic evaluation indicated that in control plants (without SCN-), the effect of three PGRs applied on the RPTs is as follows: NaHS > IAA > JA. At 24 mg SCN/L, NaHS and IAA had consistent actuate in regulating RPTs of rice seedlings, while all PGRs amended have an affirmative impact on RPTs at 96 and 300 mg SCN/L. The present research highlights the utilization of contemporary mathematic method to screen the superior species of PGRs through the RPTs test of plants under pollutant belt.
Collapse
Affiliation(s)
- Yu-Juan Lin
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Yu-Xi Feng
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Yan-Hong Li
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Guo Yu
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Xiao-Zhang Yu
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China.
| |
Collapse
|
24
|
He X, Xu M, Wei Q, Tang M, Guan L, Lou L, Xu X, Hu Z, Chen Y, Shen Z, Xia Y. Promotion of growth and phytoextraction of cadmium and lead in Solanum nigrum L. mediated by plant-growth-promoting rhizobacteria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111333. [PMID: 32979802 DOI: 10.1016/j.ecoenv.2020.111333] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/15/2020] [Accepted: 09/10/2020] [Indexed: 05/27/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) are a specific category of microbes that improve plant growth and promote greater tolerance to metal stress through their interactions with plant roots. We evaluated the effects of phytoremediation combining the cadmium accumulator Solanum nigrum L. and two Cd- and Pb-resistant bacteria isolates. To understand the interaction between PGPR and their host plant, we conducted greenhouse experiments with inoculation treatments at Nanjing Agricultural University (Jiangsu Province, China), in June 2018. Two Cd- and Pb-resistant PGPR with various growth-promoting properties were isolated from heavy metal-contaminated soil. 16S rRNA analyses indicated that the two isolates were Bacillus genus, and they were named QX8 and QX13. Pot experiments demonstrated that inoculation may improve the rhizosphere soil environment and promote absorption of Fe and P by plants. Inoculation with QX8 and QX13 also enhanced the dry weight of shoots (1.36- and 1.7-fold, respectively) and roots (1.42- and 1.96-fold) of plants growing in Cd- and Pb-contaminated soil, and significantly increased total Cd (1.28-1.81 fold) and Pb (1.08-1.55 fold) content in aerial organs, compared to non-inoculated controls. We also detected increases of 23% and 22% in the acid phosphatase activity of rhizosphere soils inoculated with QX8 and QX13, respectively. However, we did not detect significant differences between inoculated and non-inoculated treatments in Cd and Pb concentrations in plants and available Cd and Pb content in rhizosphere soils. We demonstrated that PGPR-assisted phytoremediation is a promising technique for remediating heavy metal-contaminated soils, with the potential to enhance phytoremediation efficiency and improve soil quality.
Collapse
Affiliation(s)
- Xiaoman He
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingjing Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qingpeng Wei
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingyu Tang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Likang Guan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Laiqing Lou
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoming Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhubing Hu
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, 475001, China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing, 210095, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing, 210095, China
| | - Yan Xia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing, 210095, China.
| |
Collapse
|
25
|
Kong IC, Ko KS, Koh DC. Evaluation of the Effects of Particle Sizes of Silver Nanoparticles on Various Biological Systems. Int J Mol Sci 2020; 21:E8465. [PMID: 33187117 PMCID: PMC7696109 DOI: 10.3390/ijms21228465] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Seven biological methods were adopted (three bacterial activities of bioluminescence, enzyme, enzyme biosynthetic, algal growth, seed germination, and root and shoot growth) to compare the toxic effects of two different sizes of silver nanoparticles (AgNPs). AgNPs showed a different sensitivity in each bioassay. Overall, the order of inhibitory effects was roughly observed as follows; bacterial bioluminescence activity ≈ root growth > biosynthetic activity of enzymes ≈ algal growth > seed germination ≈ enzymatic activity > shoot growth. For all bacterial activities (bioluminescence, enzyme, and enzyme biosynthesis), the small AgNPs showed statistically significantly higher toxicity than the large ones (p < 0.0036), while no significant differences were observed among other biological activities. The overall effects on the biological activities (except shoot growth) of the small AgNPs were shown to have about 4.3 times lower EC50 (high toxicity) value than the large AgNPs. These results also indicated that the bacterial bioluminescence activity appeared to be an appropriate method among the tested ones in terms of both sensitivity and the discernment of particle sizes of AgNPs.
Collapse
Affiliation(s)
- In Chul Kong
- Department of Environmental Engineering, Yeungnam University, Gyungsan 38541, Korea;
| | - Kyung-Seok Ko
- Geologic Environment Division, Korea Institute of Geoscience & Mineral Resources (KIGAM), Daejeon 34132, Korea;
| | - Dong-Chan Koh
- Geologic Environment Division, Korea Institute of Geoscience & Mineral Resources (KIGAM), Daejeon 34132, Korea;
| |
Collapse
|
26
|
Ghilardi C, Sanmartin Negrete P, Carelli AA, Borroni V. Evaluation of olive mill waste as substrate for carotenoid production by Rhodotorula mucilaginosa. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00341-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractThe “alperujo” is a waste from the olive oil industry with great potential for valorization. It has a high organic load, with the presence of valuable compounds such as biophenols and sugars. The use of this waste can be thought of as a biorefinery from which different compounds of high added value can be obtained, whether they are present in the “alperujo” such as biophenols or can be generated from the “alperujo”. Therefore, the production of carotenoids by Rhodotorula mucilaginosa was evaluated using the liquid fraction of ‘alperujo’ (Alperujo Water, AW) or an aqueous extract (AE) of “alperujo” at different concentrations (5, 10, 20 and 30% w/V) as substrates. The AEs had an acidic pH, a total sugar concentration ranging from 1.6 to 7.6 g/L, a polyphenols content from 0.4 to 2.9 g/L and a significant amount of proteins (0.5–3 g/L). AW is similar in composition as 30% AE, but with a higher amount of total sugars. Rh. mucilaginosa was able to grow at the different mediums with consumption of glucose and fructose, a reduction in protein content and alkalinization of the medium. Maximum total carotenoid production (7.3 ± 0.6 mg/L) was achieved at AW, while the specific production was higher when the yeast grew at AW or at 30% AE (0.78 ± 0.06 and 0.73 ± 0.10 mg/g of biomass, respectively). Torulene and torularhodin were the main carotenoids produced. Polyphenol content did not change; thus, it is still possible to recover these compounds after producing carotenoids. These results demonstrate the feasibility of using alperujo-based mediums as cheap substrates to produce torularhodin and torulene and to include this bioprocess as a step in an integral approach for alperujo valorization.
Collapse
|
27
|
Kong IC, Ko KS, Koh DC, Chon CM. Comparative Effects of Particle Sizes of Cobalt Nanoparticles to Nine Biological Activities. Int J Mol Sci 2020; 21:E6767. [PMID: 32942696 PMCID: PMC7555351 DOI: 10.3390/ijms21186767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
The differences in the toxicity of cobalt oxide nanoparticles (Co-NPs) of two different sizes were evaluated in the contexts of the activities of bacterial bioluminescence, xyl-lux gene, enzyme function and biosynthesis of β-galactosidase, bacterial gene mutation, algal growth, and plant seed germination and root/shoot growth. Each size of Co-NP exhibited a different level of toxicity (sensitivity) in each biological activity. No revertant mutagenic ratio (greater than 2.0) of Salmonella typhimurium TA 98 was observed under the test conditions in the case of gene-mutation experiments. Overall, the inhibitory effects on all five bacterial bioassays were greater than those on algal growth, seed germination, and root growth. However, in all cases, the small Co-NPs showed statistically greater (total average about two times) toxicity than the large Co-NPs, except in shoot growth, which showed no observable inhibition. These findings demonstrate that particle size may be an important physical factor determining the fate of Co-NPs in the environment. Moreover, combinations of results based on various biological activities and physicochemical properties, rather than only a single activity and property, would better facilitate accurate assessment of NPs' toxicity in ecosystems.
Collapse
Affiliation(s)
- In Chul Kong
- Department of Environmental Engineering, Yeungnam University, Gyungsan 38541, Korea;
| | - Kyung-Seok Ko
- Geologic Environment Division, Korea Institute of Geoscience & Mineral Resources (KIGAM), Daejeon 34132, Korea; (D.-C.K.); (C.-M.C.)
| | - Dong-Chan Koh
- Geologic Environment Division, Korea Institute of Geoscience & Mineral Resources (KIGAM), Daejeon 34132, Korea; (D.-C.K.); (C.-M.C.)
| | - Chul-Min Chon
- Geologic Environment Division, Korea Institute of Geoscience & Mineral Resources (KIGAM), Daejeon 34132, Korea; (D.-C.K.); (C.-M.C.)
| |
Collapse
|
28
|
Hechmi S, Hamdi H, Mokni-Tlili S, Ghorbel M, Khelil MN, Zoghlami IR, Benzarti S, Jellali S, Hassen A, Jedidi N. Impact of urban sewage sludge on soil physico-chemical properties and phytotoxicity as influenced by soil texture and reuse conditions. JOURNAL OF ENVIRONMENTAL QUALITY 2020; 49:973-986. [PMID: 33016480 DOI: 10.1002/jeq2.20093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/17/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Urban sewage sludge (USS) is increasingly applied to agricultural soils, but mixed results have been reported because of variations in reuse conditions. Most field trials have been conducted in cropping systems, which conceal intrinsic soil responses to sludge amendments due to the rhizosphere effect and farming practices. Therefore, the current field study highlights long-term changes in bare soil properties in strict relationship with soil texture and USS dose. Two agricultural soils (loamy sand [LS] and sandy [S]) were amended annually with increasing sludge rates up to 120 t ha-1 yr-1 for 5 yr under unvegetated conditions. Outcomes showed a USS dose-dependent variation of all studied parameters in topsoil samples. Soil salinization was the most significant risk related to excessive USS doses. Total dissolved salts (TDS) in saturated paste extracts reached the highest concentrations of 37.2 and 43.1 g L-1 in S soil and LS soil, respectively, treated with 120 t USS ha-1 yr-1 . This was also reflected by electrical conductivity of the saturated paste extract (ECe ) exceeding 4,000 µS cm-1 in both treatments. As observed for TDS, fertility indicators and bioavailable metals varied with soil texture due to the greater retention capacity of LS soil owing to higher fine fraction content. Soil phytotoxicity was estimated by the seed germination index (GI) calculated for lettuce, alfalfa, oat, and durum wheat. The GI was species dependent, indicating different degrees of sensitivity or tolerance to increasing USS rates. Lettuce germination was significantly affected by changes in soil conditions showing negative correlations with ECe and soluble metals. In contrast, treatment with USS enhanced the GI of wheat, reflecting higher salinity tolerance and a positive effect of sludge on abiotic conditions that control germination in soil. Therefore, the choice of adapted plant species is the key factor for successful cropping trials in sludge-amended soils.
Collapse
Affiliation(s)
- Sarra Hechmi
- Water Research and Technology Center, Univ. of Carthage, P.O. Box 273, Soliman, 8020, Tunisia
| | - Helmi Hamdi
- Center for Sustainable Development, College of Arts and Sciences, Qatar Univ., P.O. Box 2713, Doha, Qatar
| | - Sonia Mokni-Tlili
- Water Research and Technology Center, Univ. of Carthage, P.O. Box 273, Soliman, 8020, Tunisia
| | - Manel Ghorbel
- Water Research and Technology Center, Univ. of Carthage, P.O. Box 273, Soliman, 8020, Tunisia
| | - Mohamed Naceur Khelil
- National Institute for Research in Rural Engineering, Water and Forestry, P.O. Box 10, Ariana, 2080, Tunisia
| | - Inès Rahma Zoghlami
- Water Research and Technology Center, Univ. of Carthage, P.O. Box 273, Soliman, 8020, Tunisia
- Arid Regions Institute, Univ. of Gabès, Médenine, 4119, Tunisia
| | | | - Salah Jellali
- Center for Environmental Studies and Research, Sultan Qaboos Univ., P.O. Box 31, Al-Khoud 123, Muscat, Oman
| | - Abdennaceur Hassen
- Water Research and Technology Center, Univ. of Carthage, P.O. Box 273, Soliman, 8020, Tunisia
| | - Naceur Jedidi
- Water Research and Technology Center, Univ. of Carthage, P.O. Box 273, Soliman, 8020, Tunisia
| |
Collapse
|
29
|
Fijalkowski KL, Kwarciak-Kozlowska A. Phytotoxicity assay to assess sewage sludge phytoremediation rate using guaiacol peroxidase activity (GPX): A comparison of four growth substrates. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 263:110413. [PMID: 32174541 DOI: 10.1016/j.jenvman.2020.110413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/28/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
Waste disposal such as sewage sludge (biosolids) in phytoremediation is a sustainable remediation alternative for fertilizers, therefore there is a need to develop a test that will allow to determine phytoremediation dose of biosolids from the best-for-plant-growth point of view. In order to determine the doses of biosolids to degraded soils, tests based on germination of seeds and root elongation are commonly used, but also, they are subjected to large errors caused by low repeatability of results and differentiation. That is why there is a need to introduce new testing solutions that will be of use based on more reliable indicators such as biochemical activity of selected plant enzymes. The aim of the study was to demonstrate high efficiency of the guaiacol peroxidase activity (GPX) in plant-based toxicity tests used as an optimal dose amendments indicator in heavy metal degraded soil phytoremediation process. GPX were measured in underground and above ground parts of Sinapis alba L. and Brassica rapa L. in relation to germination index (GI) and biomass cultivated on four different substrates (raw degraded soil, sterilized degraded soil, water extract from degraded soil solidified with agar, water extract from degraded soil solidified with Murashige-Skoog medium). Each testing soil substrate was enriched with sewage sludge (food industry origin) in the percentage share (w/w) of 5, 10, 15, 20 and 25. The process was carried out under controlled conditions of the phytotronic chamber for a period of 14 days. The obtained values were compared for each plant separately and for all substrates and amendments rates of sewage sludge. GPX activity was expressed as a percentage increase or decrease in relation to the GPX in soil substrates without addition of sewage sludge which allowed to determine their positive or negative impact on substrate toxicity. Results of GPX activity showed that the water-based soil extracts solidified with agar give more accurate results in relation to the tests on raw soil. It has been demonstrated that the optimal phytoremediation dose of sewage sludge was in the range of 15-20%, with values of 5% and 25% respectively favoring or inhibiting plant development expressed in GPX activity. The most differentiating GPX values were obtained for the roots.Measurement of GPX activity in the roots of Sinapis alba L. cultivated on soil agar-based tests is a good, new and easy additional or alternative to the old tests based on germination and increase biomass measuring as an indicator in the assessment of optimal phytoremediation sewage sludge.
Collapse
Affiliation(s)
- Krzysztof L Fijalkowski
- Institute of Environmental Engineering, Czestochowa University of Technology, Czestochowa, Poland.
| | - Anna Kwarciak-Kozlowska
- Institute of Environmental Engineering, Czestochowa University of Technology, Czestochowa, Poland
| |
Collapse
|
30
|
Shah AA, Ahmed S, Abbas M, Ahmad Yasin N. Seed priming with 3-epibrassinolide alleviates cadmium stress in Cucumis sativus through modulation of antioxidative system and gene expression. SCIENTIA HORTICULTURAE 2020; 265:109203. [DOI: 10.1016/j.scienta.2020.109203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
31
|
Capparelli MV, Moulatlet GM, Abessa DMDS, Lucas-Solis O, Rosero B, Galarza E, Tuba D, Carpintero N, Ochoa-Herrera V, Cipriani-Avila I. An integrative approach to identify the impacts of multiple metal contamination sources on the Eastern Andean foothills of the Ecuadorian Amazonia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136088. [PMID: 31887530 DOI: 10.1016/j.scitotenv.2019.136088] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Currently, several concerns have been raised over metal contamination in the upper Amazon basin. Rivers that flow from the high Andes to the lowland Amazon are threatened by anthropogenic activities, which may, in turn, lead to increased metal concentrations in both water and sediments. In the present study, the impacts of multiple metal contamination sources in these ecosystems were identified. The degree of metal contamination was assessed in water and sediment and seed phytotoxicity analyses were carried out in samples taken from 14 sites located in upper Napo River tributaries, combining geochemical and ecotoxicological techniques. These tributaries were chosen based on their degree of anthropogenic contamination and proximity to known sources of relevant pollution, such as small-scale gold mining (MI), urban pollution (UP), fish farming (FF) and non-functional municipal landfill areas (LF). Our results suggest that anthropogenic activities are introducing metals to the aquatic ecosystem, as some metals were up to 500 times above the maximum permissible limits for the preservation of aquatic life established by Ecuadorian and North American guidelines. Sites located close to small-scale gold mining and sanitary landfills presented 100 to 1000 times higher concentrations than sites classified as "few threats". In water, Cd, Pb, Cu, Zn and Hg were mostly above the maximum permissible limits in the samples, while Cd in sediment reached concentrations 5-fold above the probable effect level (PEL). Phytotoxicity was associated through the diffuse contamination present in urban and landfill areas. Overall, metal concentrations and phytotoxicity assessments suggest anthropogenic effects to environmental contamination, even though natural sources cannot be disregarded. Anthropogenic effects in the eastern Andean Rivers need to be constantly monitored in order to build a complete picture on how pollution sources may affect this strategic Amazon basin area.
Collapse
Affiliation(s)
- Mariana Vellosa Capparelli
- Facultad de Ciencias de la Tierra y Agua, Universidad Regional Amazónica Ikiam, km 7, vía a Muyuna, Tena, Napo, Ecuador.
| | - Gabriel Massaine Moulatlet
- Facultad de Ciencias de la Tierra y Agua, Universidad Regional Amazónica Ikiam, km 7, vía a Muyuna, Tena, Napo, Ecuador
| | | | - Oscar Lucas-Solis
- Facultad de Ciencias de la Tierra y Agua, Universidad Regional Amazónica Ikiam, km 7, vía a Muyuna, Tena, Napo, Ecuador
| | - Bryan Rosero
- Facultad de Ciencias de la Tierra y Agua, Universidad Regional Amazónica Ikiam, km 7, vía a Muyuna, Tena, Napo, Ecuador
| | - Emily Galarza
- Facultad de Ciencias de la Tierra y Agua, Universidad Regional Amazónica Ikiam, km 7, vía a Muyuna, Tena, Napo, Ecuador
| | - Damian Tuba
- Facultad de Ciencias de la Tierra y Agua, Universidad Regional Amazónica Ikiam, km 7, vía a Muyuna, Tena, Napo, Ecuador
| | - Natalia Carpintero
- Colegio de Ciencias e Ingenierías, Instituto Biósfera, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, 17-1200-841 Quito, Ecuador
| | - Valeria Ochoa-Herrera
- Colegio de Ciencias e Ingenierías, Instituto Biósfera, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, 17-1200-841 Quito, Ecuador; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, NC 2759, USA
| | - Isabel Cipriani-Avila
- Escuela de Química, Facultad de Ciencias Exactas y Naturales, Universidad Católica del Ecuador, Avenida 12 de Octubre 1076, 170143 Quito, Ecuador
| |
Collapse
|
32
|
Zou HX, Anastasio AE, Pfister CA. Early succession on slag compared to urban soil: A slower recovery. PLoS One 2019; 14:e0224214. [PMID: 31856201 PMCID: PMC6922358 DOI: 10.1371/journal.pone.0224214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/08/2019] [Indexed: 11/18/2022] Open
Abstract
Slag, waste from the steel-making process, contains large amounts of calcium, magnesium, iron and other heavy metals. Because of its composition, high pH and low water retention ability, slag is considered inhospitable to plants. Nevertheless, the spontaneously generated plant communities on slag are surprisingly diverse, but the assembly and structure of such communities are poorly studied. Previous studies suggest reduced rates of succession due to low growth rate and slow accumulation of topsoil. To investigate whether slag communities display similar patterns, we used two former industrial sites on the South Side of Chicago, IL, both with high pH (8-9.2) sand content (80%) and calcium concentration (> 9000 ppm). We removed all vegetation from both slag and non-slag plots to test whether recovery differed over one growing season (4 months). To directly assess plant growth, selected focal species were planted on both sites and harvested. We show that recovery from removal differed at slag and non-slag sites: the recruitment process on slag, measured by percent vegetative cover and number of species in plots, was significantly slower at 6-8 weeks of the manipulation and beyond, suggesting a potential stage-dependent effect of slag on plant growth. Certain slag plots recorded less cover than non-slag plots by >30% at maximum difference. Functional trait analysis found that graminoid and early successional species preferentially colonized slag. Overall, slag plots recovered more slowly from disturbance, suggesting a slow succession process that would hinder natural recovery. However, slag also has the potential to serve as plant refugia, hosting flora of analogous habitats native to the area: one of our industrial sites hosts nearly 80% native species with two species of highest Floristic Quality Index (10). Restoration efforts should be informed by the slow process of natural recovery, while post-industrial sites in urban areas serve as potential native plant refugia.
Collapse
Affiliation(s)
- Heng-Xing Zou
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
| | - Alison E. Anastasio
- Program on the Global Environment, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| | - Catherine A. Pfister
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
33
|
Luo Y, Liang J, Zeng G, Li X, Chen M, Jiang L, Xing W, Tang N. Responses of seeds of typical Brassica crops to tetracycline stress: Sensitivity difference and source analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109597. [PMID: 31465956 DOI: 10.1016/j.ecoenv.2019.109597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/06/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Antibiotics can induce adverse effects on plants. Brassica crop seeds, for their advantages, are used widely in seed germination test to investigate phytotoxicity of substances. However, their performances on evaluating antibiotics remain to be studied to select sensitive species for control of potential risks. In this work, common species of Chinese cabbage (Brassica rapa L.), edible rape (Brassica napus L.), and cabbage (Brassica oleracea L.) with three cultivars each were selected to compare and analyze the sensitivity difference of their seeds to tetracycline (TC) stress. Results showed that the ratio of axis to cotyledon (RAC) by fresh weight was an alternative endpoint besides radicle length (RL) in the test. The species sensitivity distribution (SSD) based on the effective concentrations causing x% inhibition (ECx) in RL of seeds exposed to TC was applied to compare the sensitivity of seeds and estimate the hazardous concentration for x% species (HCx). From the species-dependent sensitivity and the sensitivity difference of cultivars in the same species of seeds to TC, the performance of Chinese cabbage was the best in the study. The sensitivity of seeds to TC could be evaluated by EC20 related to seed physical traits and germination indices, while the extent of seeds affected by TC could be evaluated by EC50 related to the composition of seed storage reserves. We recommended that it was a new idea to analyze responses of different seeds to TC at large scale according to seed innate characteristics.
Collapse
Affiliation(s)
- Yuan Luo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Xiaodong Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Wenle Xing
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Ning Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| |
Collapse
|
34
|
Huang L, Chen D, Zhang H, Song Y, Chen H, Tang M. Funneliformis mosseae Enhances Root Development and Pb Phytostabilization in Robinia pseudoacacia in Pb-Contaminated Soil. Front Microbiol 2019; 10:2591. [PMID: 31781076 PMCID: PMC6861453 DOI: 10.3389/fmicb.2019.02591] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/25/2019] [Indexed: 12/01/2022] Open
Abstract
It is possible that arbuscular mycorrhizal fungi play a pivotal role in root development and Pb phytostabilization in plants grown in Pb-contaminated soil. In this study, a pot experiment was conducted over 4 months to evaluate the effects of Funneliformis mosseae strain BGCXJ01A on root characteristics of black locust (Robinia pseudoacacia L.) seedlings in Pb-contaminated soil. Four Pb treatments (0, 90, 900, and 3,000 mg kg–1) were applied to soil in the presence and absence of F. mosseae. Inoculation with F. mosseae prominently improved root length, surface area, volume, and tip number in the plants across all Pb treatments. The F. mosseae inoculation also increased root diameter and fork number, especially under high Pb treatments. The presence of F. mosseae significantly increased the root activity and root tolerance index. However, there was little difference in specific root length between inoculated and non-inoculated plants. The biomass of roots, stems, and leaves all increased following inoculation with F. mosseae. Inoculated plants had greater accumulation and translocation capacities for Pb in the roots and stems, but lower capacities were found in the leaves when compared with those in non-inoculated plants. These results highlight that F. mosseae can alleviate the toxic effects of Pb on root development and can immobilize Pb in the roots and stems of R. pseudoacacia grown in Pb-contaminated soil. This study provides a model system for phytoremediation of Pb-contaminated soil via reciprocal symbiosis between arbuscular mycorrhizal fungi and woody legumes.
Collapse
Affiliation(s)
- Li Huang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China.,Food Science and Engineering, Beibu Gulf University, Qinzhou, China
| | - Deqiang Chen
- Food Science and Engineering, Beibu Gulf University, Qinzhou, China
| | - Haoqiang Zhang
- College of Forestry, Northwest A&F University, Yangling, China
| | - Yingying Song
- College of Forestry, Northwest A&F University, Yangling, China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
35
|
Li B, Chen D, Yang Y, Li X. Effects of soil properties on accumulation characteristics of copper, manganese, zinc, and cadmium in Chinese turnip. PLANT DIVERSITY 2019; 41:340-346. [PMID: 31934679 PMCID: PMC6951271 DOI: 10.1016/j.pld.2019.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 05/05/2023]
Abstract
Clarifying the mechanisms of heavy metal (HM) accumulation and translocation from soil-root-leaf is crucial to coping with soil HM pollution. In this study, we analysed copper (Cu), manganese (Mn), zinc (Zn) and cadmium (Cd) accumulation characteristics in Chinese turnips and the effect of soil physicochemical properties on both HM accumulation and translocation. Our results indicate that Chinese turnips absorb and translocate Mn, Zn, and Cd at much higher levels than they do Cu. When we measured bioconcentration factors in Chinese turnips for different HMs in the same soil, we found Chinese turnip capacities for HM accumulation decrease from Zn > Mn > Cd > Cu. In addition, the translocation factor for these HMs decreases from Mn > Cd > Zn > Cu. Correlation analysis indicates that soil pH and various soil components are either negatively or positively correlated with Mn, Zn, and Cd accumulation; also, soil properties are correlated with Mn translocation from root to leaf. These findings may help evaluate HM accumulation and translocation mechanisms as well as artificially regulate HM uptake levels from soils to turnips.
Collapse
Key Words
- BCF, bioconcentration factor
- Bioconcentration
- CEC, cation exchange capacity
- Ca, calcium
- Cd, cadmium
- Cu, copper
- DW, dry weight
- EC, electrical conductivity
- HM, heavy metal
- Heavy metal
- Mn, manganese
- Pb, lead
- Phytoremediation
- Soil composition
- TF, translocation factor
- Turnip
- Zn, zinc
Collapse
Affiliation(s)
- Boqun Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Di Chen
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yongping Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiong Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Corresponding author. 132# Lanhei Road, Heilongtan, Kunming 650201, Yunnan, China.
| |
Collapse
|
36
|
Macagno J, Lescano MR, Berli CLA. Milli-channel array for direct and quick reading of root elongation bioassays. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 178:51-57. [PMID: 30991247 DOI: 10.1016/j.ecoenv.2019.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
A novel platform to perform systematic analysis and direct reading of root elongation bioassays is presented. The device was designed to include multiplexed microenvironments for the germination and growth of individual seeds, which allows observation by the naked eye or by optical systems, notably cellphone cameras. Prototypes were fabricated by laser micromachining on a highly transparent material that is fully compatible with biological systems. The effectiveness of the milli-channel array was verified against the conventional system (Petri dish). Lactuca sativa was chosen as a model species and glyphosate as a typical toxic agent. All tests were run according to standardized procedures and data analysis was carried out through different statistical indicators such as the root elongation and germination indexes. Results attained in the milli-channel array were identical to those in Petri dish, with the remarkable benefit that several steps required in the conventional system were avoided, which enormously decreases the operation time and the possibility of experimental errors. Further advantages of the milli-channel array are also reported, such as the capability to achieve live imaging of plant organs growth through a simple experiment. The developed device has been proven to be effective, versatile, easy-to-use, and integrable to cellphones, which naturally provide facilities for data recording, analysis, and networking. These improvements open the route to novel applications of bioassays in the wide field of ecotoxicology and environmental studies.
Collapse
Affiliation(s)
- Joana Macagno
- INTEC (Universidad Nacional del Litoral-CONICET), Predio CCT-CONICET, RN 168, 3000, Santa Fe, Argentina
| | - Maia R Lescano
- INTEC (Universidad Nacional del Litoral-CONICET), Predio CCT-CONICET, RN 168, 3000, Santa Fe, Argentina
| | - Claudio L A Berli
- INTEC (Universidad Nacional del Litoral-CONICET), Predio CCT-CONICET, RN 168, 3000, Santa Fe, Argentina.
| |
Collapse
|
37
|
Luo Y, Liang J, Zeng G, Li X, Chen M, Jiang L, Xing W, Tang N, Fang Y, Chen X. Evaluation of tetracycline phytotoxicity by seed germination stage and radicle elongation stage tests: A comparison of two typical methods for analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:257-263. [PMID: 31082610 DOI: 10.1016/j.envpol.2019.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/23/2019] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
Biological tests with plant seeds have been adopted in many studies to investigate the phytotoxicity of pollutants to facilitate the control of risks and remain to be optimized. In this work, the experiment with a small sample size (Experiment 1) and the experiment with a large one (Experiment 2) were designed to study the effect of tetracycline (TC) on Chinese cabbage (Brassica rapa L.) at seed germination and radicle elongation stages. At the former stage, germination number data were obtained to analyze the germination energy (GE) and to judge the probability of the number of germinated seeds (Pn) by the binomial distribution model in Experiment 1. While germination time-to-number data were obtained to analyze the mean time to germination (MGT), the estimate of mean time to germination (EMGT) by survival analysis method, the time to germination for 50% of total seeds (T50) and the germination rate (GR) besides GE in Experiment 2. At the latter stage, the data of radicle length (RL) were obtained in all the experiments and the influence from the former stage on this stage was excluded in Experiment 2 but not in Experiment 1. Results showed that TC had universal adverse effects on the latter stage but not on the former stage in the experiments. Considering the availability of germination data for statistical analysis and the robustness of RL data, the methods adopted in Experiment 2 were more feasible than those in Experiment 1. In addition, Chinese cabbage seeds with medium size have the character of rapid germination compared with the commonly used crop species and can be used to shorten the experimental cycle to study the responses of seeds to pollutants to evaluate the phytotoxicity. We introduced survival analysis method to analyze the germination time-to-number data obtained in seed germination test to evaluate the phytotoxicity of tetracycline.
Collapse
Affiliation(s)
- Yuan Luo
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Xiaodong Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Wenle Xing
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Ning Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yilong Fang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Xuwu Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| |
Collapse
|
38
|
Kapoor D, Singh MP, Kaur S, Bhardwaj R, Zheng B, Sharma A. Modulation of the Functional Components of Growth, Photosynthesis, and Anti-Oxidant Stress Markers in Cadmium Exposed Brassica juncea L. PLANTS (BASEL, SWITZERLAND) 2019; 8:E260. [PMID: 31370349 PMCID: PMC6724130 DOI: 10.3390/plants8080260] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 01/10/2023]
Abstract
Abstract: Heavy metals (including Cadmium) are being entered into the environment through various sources and cause toxicity to plants. Response of Brassica juncea L. var. RLC-1 was evaluated after exposing them to different concentration of cadmium (Cd) for seven days. Seeds of B. juncea were treated with different concentrations of Cd like 0.2-0.6 mM for 7 days, allowing them to grow in Petri-dishes, and seedlings were examined for different physiological responses. Following exposure to Cd, in the seedlings of B. juncea, growth parameters (root and shoot length), stress markers (lipid peroxidation and H2O2 content), secondary metabolites, photosynthetic pigments, and ion analysis, were estimated along with enzymatic and non-enzymatic antioxidants. We observed a significant reduction in root and shoot length after Cd treatment as compared to control seedlings. Malondialdehyde and H2O2 contents were increased accompanied by enhanced Cd uptake. Activities of antioxidative enzymes were also significantly altered following Cd exposure to the seedlings of B. juncea. Conclusively, we suggest that Cd exposure to the seedlings triggered an induction of several defense responses in B. juncea including major metabolites.
Collapse
Affiliation(s)
- Dhriti Kapoor
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
- School of Bioengineering and Biosciences, Lovely Professional University, Delhi-Jalandhar Highway Phagwara 144411, Punjab, India
| | - Mahendra P Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Delhi-Jalandhar Highway Phagwara 144411, Punjab, India
| | - Satwinderjeet Kaur
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Renu Bhardwaj
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Anket Sharma
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
39
|
Marchand C, Jani Y, Kaczala F, Hijri M, Hogland W. Physicochemical and Ecotoxicological Characterization of Petroleum Hydrocarbons and Trace Elements Contaminated Soil. Polycycl Aromat Compd 2018. [DOI: 10.1080/10406638.2018.1517101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Charlotte Marchand
- Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, Montréal, Québec, Canada
| | - Yahya Jani
- Department of Biology and Environmental Sciences, Linnaeus University, Kalmar, Sweden
| | - Fabio Kaczala
- Department of Biology and Environmental Sciences, Linnaeus University, Kalmar, Sweden
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, Montréal, Québec, Canada
| | - William Hogland
- Department of Biology and Environmental Sciences, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
40
|
Mutagen-induced phytotoxicity in maize seed germination is dependent on ROS scavenging capacity. Sci Rep 2018; 8:14078. [PMID: 30232360 PMCID: PMC6145914 DOI: 10.1038/s41598-018-32271-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/05/2018] [Indexed: 11/11/2022] Open
Abstract
Ethidium bromide (EB) and acridine orange (AO) bind to nucleic acids and are thus considered as potential mutagens. In this study, the effects of EB and AO on the germination behaviours of white, yellow, red, and purple maize seeds were investigated. The results indicate that low concentrations of EB (50 μg mL−1) and AO (500 μg mL−1) promote germination, particularly for the white and yellow seeds. However, high concentrations of EB (0.5 mg mL−1) and AO (5 mg mL−1) significantly inhibit germination, with the level of inhibition decreasing in the following order: white > yellow > red > purple. In addition, EB and AO induce H2O2 production in a concentration-dependent manner. The effects of these mutagens on seed germination were partly reversed by dimethyl thiourea, a scavenger of reactive oxygen species (ROS), and diphenylene iodonium (DPI), an inhibitor of NADPH oxidase, while the effects were enhanced by treatment with H2O2 and 3-amino-1,2,4-triazole, a specific inhibitor of catalase. In addition, AO and EB profoundly increased NADPH oxidase activities in germinating seeds. The treatment of seeds with EB and AO did not affect the growth or drought tolerance of the resultant seedlings. The findings suggest that the mechanism of mutagen toxicity is related to the induction of ROS production.
Collapse
|
41
|
Jia Y, Li H, Qu Y, Chen W, Song L. Phytotoxicity, bioaccumulation and potential risks of plant irrigations using cyanobloom-loading freshwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:704-712. [PMID: 29272839 DOI: 10.1016/j.scitotenv.2017.12.164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/12/2017] [Accepted: 12/15/2017] [Indexed: 06/07/2023]
Abstract
The toxicity of cyanotoxins on plant has been reported. However, in eutrophic waters harmful cyanobacteria are associated with other environmental pollutants, such as persistent organic pollutants (POPs) and metals. Information on the phytotoxicity and bioaccumulation of coexisted cyanotoxins and these environmental pollutants is still lacking. In this study, the combined phytotoxicities of three types of cyanobacteria-associated pollutants, i.e., microcystin-LR (MC-LR), cadmium (Cd), 2, 4, 4'-Trichlorobiphenyl (PCB-28) were systematically investigated. After 7-days exposure, strong synergistic effects can be detected when Arabidopsis thaliana seeds and seedlings exposed to binary mixtures of MC-LR+PCB-28 and PCB-28+Cd. The strongest inhibition occurred when A. thaliana exposed to their ternary mixture under both glasshouse and semi-field conditions. Moreover, bioaccumulation of MC-LR, Cd and PCB-28 was enhanced when seedlings exposed to their binary/ternary mixtures, especially when seedlings were treated with higher concentrations of toxicants (MC-LR, 1mgL-1; Cd, 10mgL-1; PCB-28, 1μgL-1). Additionally, pronounced toxic effects could be determined under 7-days after seedlings were irrigated with raw cyanobloom-containing water (collected from Lake Taihu in China)and its dilutions. Seeds production decreased significantly after the continuous irrigation with cyanoblooms-containing water. Collectively, this work will be an informative implication for risks of cyanoblooms and adequate utilization of freshwater containing cyanoblooms for crop irrigation.
Collapse
Affiliation(s)
- Yunlu Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Institute of Environmental Research, Department of Ecosystem Analysis, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Huiling Li
- College of Pharmacy, Wuhan University, Wuhan 430071, China
| | - Yueming Qu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Lirong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
42
|
Kong IC, Ko KS, Lee MH, Lee JH, Han YH. Ecotoxicity evaluation of Cu- and Fe-CNT complexes based on the activity of bacterial bioluminescence and seed germination. J Environ Sci (China) 2018; 67:198-205. [PMID: 29778153 DOI: 10.1016/j.jes.2017.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/12/2017] [Accepted: 08/25/2017] [Indexed: 06/08/2023]
Abstract
The toxic effects of the composites of Fe0 and Cu0 with different percentages of CNTs were examined based on the activity of bacterial bioluminescence and seed germination. In terms of the EC50 values, the toxic effects of Cu0 on bacterial bioluminescence and seed germination were approximately 2 and 180 times greater than that of Fe0, respectively. The toxicity increased with increasing CNT content in the Cu-CNT mixtures for both organisms, whereas opposite results were observed with Fe-CNT mixtures. The mean toxic effects of Cu-CNT (6%) were approximately 1.3-1.4 times greater than that of Cu-CNT (0%), whereas the toxic effects of Fe-CNT (6%) were approximately 2.1-2.5 times lower than that of Fe-CNT (0%) for both the bioluminescence activity and seed germination. The causes of this phenomenon are unclear at this point. More research will be needed to elucidate the mechanism of the toxicity of nano-mixture materials and the causes of the different patterns of toxicity with Cu- and Fe-CNT mixtures.
Collapse
Affiliation(s)
- In Chul Kong
- Department of Environmental Engineering, Yeungnam University, Gyungsan 38541, Republic of Korea.
| | - Kyung Seok Ko
- Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Republic of Korea
| | - Mun Hui Lee
- Department of Environmental Engineering, Yeungnam University, Gyungsan 38541, Republic of Korea
| | - Ji Hwoan Lee
- School of Materials Science and Engineering Yeungnam University, Gyungsan 38541, Republic of Korea
| | - Young-Hwan Han
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430079, China.
| |
Collapse
|
43
|
Lyu J, Park J, Kumar Pandey L, Choi S, Lee H, De Saeger J, Depuydt S, Han T. Testing the toxicity of metals, phenol, effluents, and receiving waters by root elongation in Lactuca sativa L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 149:225-232. [PMID: 29182968 DOI: 10.1016/j.ecoenv.2017.11.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/31/2017] [Accepted: 11/03/2017] [Indexed: 06/07/2023]
Abstract
Phytotoxicity tests using higher plants are among the most simple, sensitive, and cost-effective of the methods available for ecotoxicity testing. In the present study, a hydroponic-based phytotoxicity test using seeds of Lactuca sativa was used to evaluate the water quality of receiving waters and effluents near two industrial sites (Soyo and Daejon) in Korea with respect to the toxicity of 10 metals (As, Cd, Cr, Cu, Fe, Pb, Mn, Hg, Ni, Zn) and phenol, and of the receiving waters and effluents themselves. First, the L. sativa hydroponic bioassay was used to determine whether the receiving water or effluents were toxic; then, the responsible toxicant was identified. The results obtained with the L. sativa bioassay ranked the EC50 toxicities of the investigated metal ions and phenol as: Cd > Ni > Cu > Zn > Hg > phenol > As > Mn > Cr > Pb > Fe. We found that Zn was the toxicant principally responsible for toxicity in Daejeon effluents. The Daejeon field effluent had a higher Zn concentration than permitted by the effluent discharge criteria of the Ministry of Environment of Korea. Our conclusion on the importance of Zn toxicity was supported by the results of the L. sativa hydroponic assay, which showed that the concentration of Zn required to inhibit root elongation in L. sativa by 50% (EC50) was higher in the Daejeon field effluent than that of pure Zn. More importantly, we proved that the L. sativa hydroponic test method can be applied not only as an alternative tool for determining whether a given waste is acceptable for discharge into public water bodies, but also as an alternative method for measuring the safety of aquatic environments using EC20 values, with respect to the water pollutants investigated (i.e., Cd, Cr, Cu, Pb, Mn, Hg, Ni, Zn, and phenol).
Collapse
Affiliation(s)
- Jie Lyu
- Department of Life Sciences, Jilin Normal University, Siping City, Jilin Province, China
| | - Jihae Park
- Lab of Plant Growth Analysis, Ghent University Global Campus, Songomunhwa-Ro, 119, Yeonsu-gu, Incheon 21985, Republic of Korea
| | - Lalit Kumar Pandey
- Institute of Green Environmental Research Center, 169, Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea; Department of Marine Sciences, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Soyeon Choi
- Department of Marine Sciences, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Hojun Lee
- Department of Marine Sciences, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Jonas De Saeger
- Lab of Plant Growth Analysis, Ghent University Global Campus, Songomunhwa-Ro, 119, Yeonsu-gu, Incheon 21985, Republic of Korea
| | - Stephen Depuydt
- Lab of Plant Growth Analysis, Ghent University Global Campus, Songomunhwa-Ro, 119, Yeonsu-gu, Incheon 21985, Republic of Korea
| | - Taejun Han
- Department of Marine Sciences, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; Ghent University Global Campus, 119, Songdomunwha-ro, Yeonsu-gu, Incheon 21985, Republic of Korea.
| |
Collapse
|
44
|
Gattullo CE, Mininni C, Parente A, Montesano FF, Allegretta I, Terzano R. Effects of municipal solid waste- and sewage sludge-compost-based growing media on the yield and heavy metal content of four lettuce cultivars. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:25406-25415. [PMID: 28933019 DOI: 10.1007/s11356-017-0103-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 09/04/2017] [Indexed: 05/23/2023]
Abstract
Compost has been recently suggested as an alternative to peat for the preparation of growing substrates in soilless cultivation systems. However, some physico-chemical properties of compost may reduce plant performance and endanger the quality of productions, in particular for possible heavy metal accumulation in edible parts. This study aims at evaluating the suitability of a municipal solid waste compost (MSWC) and a sewage sludge compost (SSC) as components of growing media for the soilless cultivation of lettuce (Lactuca sativa L.). Heavy metal content of SSC complied with legislation limits but, in MSWC, it exceeded (Cu, Pb) or was very close (Cd, Zn) to safe limits. A greenhouse experiment was carried out by cultivating four lettuce cultivars ("Maximus," "Murai," "Patagonia," and "Aleppo") in pots containing a mixture of MSWC and perlite (MSWC + P), SSC and perlite (SSC + P), or peat and perlite (peat + P), the latter used as control. Plant biometric parameters measured after 72 days of growth revealed that the yield of plants cultivated on SSC + P was similar to control plants, independently of the cultivar. Conversely, MSWC + P suppressed in general the biomass production, especially for Murai and Patagonia cultivars. Compared to peat + P, both compost-based substrates reduced the leaf accumulation of heavy metals, with a major effect in Maximus plants. The levels of Cd and Pb in the edible part were always below the safe limits imposed by European regulation. Therefore, risks of heavy metal intake in food chain associated with the replacement of peat with compost in the growing media are negligible, even when a compost with a significant amount of heavy metals is used. Besides compost quality monitoring, also an appropriate varietal choice is crucial to obtain good yields and safe products.
Collapse
Affiliation(s)
- Concetta Eliana Gattullo
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy
| | - Carlo Mininni
- C.N.R.-National Research Council, Institute of Sciences of Food Production, Via Amendola 122/O, 70126, Bari, Italy
| | - Angelo Parente
- C.N.R.-National Research Council, Institute of Sciences of Food Production, Via Amendola 122/O, 70126, Bari, Italy.
| | - Francesco Fabiano Montesano
- C.N.R.-National Research Council, Institute of Sciences of Food Production, Via Amendola 122/O, 70126, Bari, Italy
| | - Ignazio Allegretta
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy
| | - Roberto Terzano
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy
| |
Collapse
|
45
|
Evaluation of the Effects of Nanoparticle Mixtures on Brassica Seed Germination and Bacterial Bioluminescence Activity Based on the Theory of Probability. NANOMATERIALS 2017; 7:nano7100344. [PMID: 29065519 PMCID: PMC5666509 DOI: 10.3390/nano7100344] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/11/2017] [Accepted: 10/17/2017] [Indexed: 01/24/2023]
Abstract
Effects of binary mixtures of six metal oxide nanoparticles (NPs; 54 combinations) on the activities of seed germination and bacterial bioluminescence were investigated using the theory of probability. The observed toxicities of various NPs combinations were compared with the theoretically expected toxicities, calculated based on individual NPs toxicities. Different sensitivities were observed depending on the concentrations and the types of NPs. The synergistic mode (67%; observed toxicity greater than expected toxicity) was predominantly observed in the bioluminescence test, whereas both synergistic (47%) and additive (50%) modes were prevalent in the activity of seed germination. With regard to overall analysis, a slightly high percentage (56%) of the synergistic mode of action was (30 out of 54 binary mixture combinations; p < 0.0392) observed. These results suggest that the exposure of an NPs mixture in the environment may lead to a similar or higher toxicity level than the sum of its constituent NPs would suggest. In addition, one organism for assessment did not always show same results as those from a different assessment. Therefore, combining results of different organisms exposed to a wide range of concentrations of binary mixture will more properly predict and evaluate the expected ecotoxicity of pollutants on environments.
Collapse
|
46
|
He Q, Yu G, Tu T, Yan S, Zhang Y, Zhao S. Closing CO 2 Loop in Biogas Production: Recycling Ammonia As Fertilizer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8841-8850. [PMID: 28678479 DOI: 10.1021/acs.est.7b00751] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We propose and demonstrate a novel system for simultaneous ammonia recovery, carbon capture, biogas upgrading, and fertilizer production in biogas production. Biogas slurry pretreatment (adjusting the solution pH, turbidity, and chemical oxygen demand) plays an important role in the system as it significantly affects the performance of ammonia recovery. Vacuum membrane distillation is used to recover ammonia from biogas slurry at various conditions. The ammonia removal efficiency in vacuum membrane distillation is around 75% regardless of the ammonia concentration of the biogas slurry. The recovered ammonia is used for CO2 absorption to realize simultaneous biogas upgrading and fertilizer generation. CO2 absorption performance of the recovered ammonia (absorption capacity and rate) is compared with a conventional model absorbent. Theoretical results on biogas upgrading are also provided. After ammonia recovery, the treated biogas slurry has significantly reduced phytotoxicity, improving the applicability for agricultural irrigation. The novel concept demonstrated in this study shows great potential in closing the CO2 loop in biogas production by recycling ammonia as an absorbent for CO2 absorption associated with producing fertilizers.
Collapse
Affiliation(s)
- Qingyao He
- College of Engineering, Huazhong Agricultural University , No.1, Shizishan Street, Hongshan District, Wuhan 430070, PR China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, PR China
- Department of Environmental Sciences, Macquarie University , Sydney, New South Wales 2109, Australia
| | - Ge Yu
- College of Engineering, Huazhong Agricultural University , No.1, Shizishan Street, Hongshan District, Wuhan 430070, PR China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, PR China
| | - Te Tu
- College of Engineering, Huazhong Agricultural University , No.1, Shizishan Street, Hongshan District, Wuhan 430070, PR China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, PR China
| | - Shuiping Yan
- College of Engineering, Huazhong Agricultural University , No.1, Shizishan Street, Hongshan District, Wuhan 430070, PR China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, PR China
| | - Yanlin Zhang
- College of Engineering, Huazhong Agricultural University , No.1, Shizishan Street, Hongshan District, Wuhan 430070, PR China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, PR China
| | - Shuaifei Zhao
- Department of Environmental Sciences, Macquarie University , Sydney, New South Wales 2109, Australia
| |
Collapse
|
47
|
Wang S, Gao B, Li Y, Ok YS, Shen C, Xue S. Biochar provides a safe and value-added solution for hyperaccumulating plant disposal: A case study of Phytolacca acinosa Roxb. (Phytolaccaceae). CHEMOSPHERE 2017; 178:59-64. [PMID: 28319742 DOI: 10.1016/j.chemosphere.2017.02.121] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/11/2017] [Accepted: 02/23/2017] [Indexed: 06/06/2023]
Abstract
In this work, an innovative approach using biochar technology for hyperaccumulator disposal was developed and evaluated. The heavy metal enriched P. acinosa biomass (PBM) was pyrolyzed to produce biochar (PBC). Both PBM and PBC were characterized with X-ray diffraction (XRD) for crystal phases, scanning electron microscopy (SEM) for surface topography, and analyzed for elemental composition and mobility. The results revealed that whewellite, a dominant crystal form in biomass, was decomposed to calcite after pyrolysis. Elemental analysis indicated that 91-99% total non-volatile elements in the biomass were retained in the biochar. The toxicity characteristic leaching procedure (TCLP) results revealed that 94.6% and 0.15% of total Mn was extracted for biomass and biochar, respectively. This suggests that mobility and bioavailability of Mn in biochar was much lower relative to pristine biomass. Batch sorption experiment showed that excellent removal of aqueous silver, lead, cadmium, and copper ions can be achieved with PBC. Findings from this work indicated that biochar technology can provide a value-added solution for hyperaccumulator disposal.
Collapse
Affiliation(s)
- Shengsen Wang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China; Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA.
| | - Yuncong Li
- Tropical Research and Education Center, University of Florida, Homestead, FL 33031, USA
| | - Yong Sik Ok
- Korea Biochar Research Center & School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon 24341, South Korea
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| |
Collapse
|
48
|
Vats A, Mishra S. Decolorization of complex dyes and textile effluent by extracellular enzymes of Cyathus bulleri cultivated on agro-residues/domestic wastes and proposed pathway of degradation of Kiton blue A and reactive orange 16. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:11650-11662. [PMID: 28324257 DOI: 10.1007/s11356-017-8802-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 03/10/2017] [Indexed: 06/06/2023]
Abstract
In this study, the white-rot fungus Cyathus bulleri was cultivated on low-cost agro-residues, namely wheat bran (WB), wheat straw (WS), and domestic waste orange peel (OP) for production of ligninolytic enzymes. Of the three substrates, WB and OP served as good materials for the production of laccase with no requirement of additional carbon or nitrogen source. Specific laccase activity of 94.4 U mg-1 extracellular protein and 21.01 U mg-1 protein was obtained on WB and OP, respectively. Maximum decolorization rate of 13.6 μmol h-1 U-1 laccase for reactive black 5 and 22.68 μmol h-1 U-1 laccase for reactive orange 16 (RO) was obtained with the WB culture filtrate, and 11.7 μmol h-1 U-1 laccase for reactive violet 5 was observed with OP culture filtrate. Importantly, Kiton blue A (KB), reported not to be amenable to enzymatic degradation, was degraded by culture filtrate borne activities. Products of degradation of KB and RO were identified by mass spectrometry, and a pathway of degradation proposed. WB-grown culture filtrate decolorized and detoxified real and simulated textile effluents by about 40%. The study highlights the use of inexpensive materials for the production of enzymes effective on dyes and effluents.
Collapse
Affiliation(s)
- Arpita Vats
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Saroj Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
49
|
Jain N, Bhargava A, Pareek V, Sayeed Akhtar M, Panwar J. Does seed size and surface anatomy play role in combating phytotoxicity of nanoparticles? ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:238-249. [PMID: 28083774 DOI: 10.1007/s10646-017-1758-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/01/2017] [Indexed: 06/06/2023]
Abstract
Rapid utilization of nano-based products will inevitably release nanoparticles into the environment with unidentified consequences. Plants, being an integral part of ecosystem play a vital role in the incorporation of nanoparticles in food chain and thus, need to be critically assessed. The present study assesses the comparative phytotoxicity of nanoparticle, bulk and ionic forms of zinc at different concentrations on selected plant species with varying seed size and surface anatomy. ZnO nanoparticles were chosen in view of their wide spread use in cosmetics and health care products, which allow their direct release in the environment. The impact on germination rate, shoot & root length and vigour index were evaluated. A concentration dependent inhibition of seed germination as well as seedling length was observed in all the tested plants. Due to the presence of thick cuticle on testa and root, pearl millet (xerophytic plant) was found to be relatively less sensitive to ZnO nanoparticles as compared to wheat and tomato (mesophytic plants) with normal cuticle layer. No correlation was observed between nanoparticles toxicity and seed size. The results indicated that variations in surface anatomy of seeds play a crucial role in determining the phytotoxicity of nanoparticles. The present findings significantly contribute to assess potential consequences of nanoparticle release in environment particularly with major emphasis on plant systems. It is the first report which suggests that variations observed in phytotoxicity of nanoparticles is mainly due to the predominant differences in size and surface anatomy of tested plant seeds and root architecture. Effect of various concentrations of nano ZnO, bulk ZnO and zinc sulphate on the growth of pearl millet (A), tomato (B) and wheat (C) seedlings.
Collapse
Affiliation(s)
- Navin Jain
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, India
| | - Arpit Bhargava
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, India
| | - Vikram Pareek
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, India
| | - Mohd Sayeed Akhtar
- Department of Botany, Gandhi Faiz-E-Aam College, Shahjahanpur, 242001, India
| | - Jitendra Panwar
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, India.
| |
Collapse
|
50
|
Priac A, Badot PM, Crini G. Treated wastewater phytotoxicity assessment using Lactuca sativa: Focus on germination and root elongation test parameters. C R Biol 2017; 340:188-194. [PMID: 28256413 DOI: 10.1016/j.crvi.2017.01.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 01/06/2017] [Accepted: 01/10/2017] [Indexed: 10/20/2022]
Abstract
Sensitive and simple ecotoxicological bioassays like seed germination and root elongation tests are commonly used to evaluate the phytotoxicity of waste and industrial discharge waters. Although the tests are performed following national and international standards, various parameters such as the number of seeds per dish, the test duration or the type of support used remain variable. To be able to make a correct comparison of results from different studies, it is crucial to know which parameter(s) could affect ecotoxicological diagnosis. We tested four different control waters and three seed densities. No significant differences on either germination rate or root elongation endpoints were shown. Nevertheless, we found that the four lettuce cultivars (Appia, batavia dorée de printemps, grosse blonde paresseuse, and Kinemontepas) showed significantly different responses when watered with the same and different metal-loaded industrial discharge water. From the comparison, it is clear that a differential sensitivity scale occurs among not just species but cultivars.
Collapse
Affiliation(s)
- Anne Priac
- UMR 6249, Chrono-Environment, University of Franche-Comté/CNRS, 16, route de Gray, 25000 Besançon, France
| | - Pierre-Marie Badot
- UMR 6249, Chrono-Environment, University of Franche-Comté/CNRS, 16, route de Gray, 25000 Besançon, France
| | - Grégorio Crini
- UMR 6249, Chrono-Environment, University of Franche-Comté/CNRS, 16, route de Gray, 25000 Besançon, France.
| |
Collapse
|