1
|
Goulais M, Saulnier D, Rouxel J, Galgani F. Bioindicator species of plastic toxicity in tropical environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176185. [PMID: 39265680 DOI: 10.1016/j.scitotenv.2024.176185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/24/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
In French Polynesia, pearl farming represents the second economic resource of the country. The distinctive black pearls produced there are globally recognized and appreciated. However, pearl farms extensively use submerged plastic materials. Through gas chromatography coupled with tandem mass spectrometry detection (GC/MSMS) analysis, we were able to identify various POPs (Persistent Organic Pollutants) and additives released after 24 h of leaching into seawater from these "pearl plastics" composed of PE (Polyethylene) and PP (Polypropylene). Subsequently, we tested different concentrations of this plastic leachate on five tropical species commonly raised in the pearl and aquaculture sector in Polynesia: Pinctada margaritifera, Saccostrea cucullata, Holothuria whitmaei, Litopenaeus stylirostris, and Tripneustes gratilla. Monitoring the embryo-larval development of these organisms allowed us to establish a correlation between the decrease in the percentage of normal larvae and the plastic concentration. Through the use of regression models, the EC50 (Effective Concentration) of the plastic leachate for each species was determined, and demonstrated to range from 6.6 to 71.5 g/L, depending on the species. The most sensitive species was the black teatfish Holothuria whitmaei, a tropical sea cucumber used for the first time for ecotoxicological tests. The sensitivity of this species, its large distribution in tropical areas, and the various advantages presented by its cultivation make it an interesting bio-indicator species for monitoring plastic pollution in tropical lagoons.
Collapse
Affiliation(s)
- M Goulais
- Ifremer, Université de la Polynésie Française, ILM, IRD, UMR 241 SECOPOL, F-98719 Tahiti, French Polynesia, France.
| | - D Saulnier
- Ifremer, Université de la Polynésie Française, ILM, IRD, UMR 241 SECOPOL, F-98719 Tahiti, French Polynesia, France.
| | - J Rouxel
- Ifremer, Université de la Polynésie Française, ILM, IRD, UMR 241 SECOPOL, F-98719 Tahiti, French Polynesia, France.
| | - F Galgani
- Ifremer, Université de la Polynésie Française, ILM, IRD, UMR 241 SECOPOL, F-98719 Tahiti, French Polynesia, France.
| |
Collapse
|
2
|
Xia X, Mu H, Li Y, Hou Y, Li J, Zhao Z, Zhao Q, You S, Wei L. Which emerging micropollutants deserve more attention in wastewater in the post-COVID-19 pandemic period? Based on distribution, risk, and exposure analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175511. [PMID: 39147043 DOI: 10.1016/j.scitotenv.2024.175511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/25/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Aggravated accumulation of emerging micropollutants (EMs) in aquatic environments, especially after COVID-19, raised significant attention throughout the world for safety concerns. This article reviews the sources and occurrence of 25 anti-COVID-19 related EMs in wastewater. It should be pointed out that the concentration of anti-COVID-19 related EMs, such as antivirals, plasticizers, antimicrobials, and psychotropic drugs in wastewater increased notably after the pandemic. Furthermore, the ecotoxicity, ecological, and health risks of typical EMs before and after COVID-19 were emphatically compared and analyzed. Based on the environmental health prioritization index method, the priority control sequence of typical EMs related to anti-COVID-19 was identified. Lopinavir (LPV), venlafaxine (VLX), di(2-ethylhexyl) phthalate (DEHP), benzalkonium chloride (BAC), triclocarban (TCC), di-n-butyl phthalate (DBP), citalopram (CIT), diisobutyl phthalate (DIBP), and triclosan (TCS) were identified as the top-priority control EMs in the post-pandemic period. Besides, some insights into the toxicity and risk assessment of EMs were also provided. This review provides direction for proper understanding and controlling the EMs pollution after COVID-19, and is of significance to evaluate objectively the environmental and health impacts induced by COVID-19.
Collapse
Affiliation(s)
- Xinhui Xia
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huizhi Mu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yaqun Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanlong Hou
- The 404 Company Limited, CNNC, Lanzhou 732850, China
| | - Jianju Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zixuan Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shijie You
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
3
|
Wang C, Ning X, Wan N, Xu S, Jiang C, Bai Z, Ma J, Zhang X, Wang X, Zhuang X. Season and side-chain length affect the occurrences and behaviors of phthalic acid esters in wastewater treatment plants. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134934. [PMID: 38889463 DOI: 10.1016/j.jhazmat.2024.134934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Emerging pollutants (EPs) are prevalent in aquatic environments globally. Researchers strive to understand their occurrence and behavior prior to their release into the environment. In this study, we examined five wastewater treatment plants (WWTPs), collected 50 wastewater samples and 10 sludge samples. We explored the sources and destinations of phthalic acid esters (PAEs) within these WWTPs using mass balance equations. Wastewater treatment diminished the frequency and concentration of PAEs, and decreased the fraction of short-chain PAEs. We confirmed the increased concentration of PAEs post-primary treatment and modified the mass balance equation. Calculations suggest that weaker "the mix" in winter than in summer and stronger sedimentation in winter than in summer resulted in high efficiency of PAEs removal by winter wastewater treatment. The mass flux of biodegradation was influenced by the combination of biodegradation efficiency and the strength of the particular type of PAEs collected, with no seasonal differences. Mass fluxes for sludge sedimentation were mainly influenced by season and were higher in winter than in summer. This study enhances our understanding of emerging pollutants in manual treatment facilities and offers insights for optimizing wastewater treatment methods for water professionals.
Collapse
Affiliation(s)
- Cong Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojun Ning
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Na Wan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu 322000, Zhejiang, China.
| | - Cancan Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junyu Ma
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xupo Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoping Wang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
4
|
Huang C, Gong X, Qin Y, Zhang L, Cai Y, Feng S, Zhang Y, Zhao Z. Risk assessment of China's Eastern Route of the South-to-north Water Diversion Project from the perspective of Phthalate Esters occurrence in the impounded lakes. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134511. [PMID: 38772103 DOI: 10.1016/j.jhazmat.2024.134511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
Phthalate esters (PAEs) are widely utilized and can accumulate in lacustrine ecosystems, posing significant ecological and human health hazards. Most studies on PAEs focus on individual lakes, lacking a comprehensive and systematic perspective. In response, we have focused our investigation on characteristic lakes situated along the Eastern Route of the South-to-north Water Diversion Project (SNWDP-ER) in China. We have detected 16 PAE compounds in the impounded lakes of the SNWDP-ER by collecting surface water samples using solid-phase extraction followed by gas chromatography analysis. The concentration of PAEs were found to between 0.80 to 12.92 μg L-1. Among them, Bis (2-ethylhexyl) phthalate (DEHP) was the most prevalent, with mean concentration of 1.56 ± 0.62 μg L-1 (48.44%), followed by Diisobutyl phthalate (DIBP), 0.64 ± 1.40 μg L-1 (19.87%). Spatial distribution showed an increasing trend in the direction of water flow. Retention of DEHP and DIBP has led to increased environmental risks. DEHP, Dimethyl phthalate (DMP) etc. determined by agriculture and human activities. Additionally, Dibutyl phthalate (DBP) and DIBP mainly related to the use of agricultural products. To mitigate the PAEs risk, focusing on integrated management of the lakes, along with the implementation of stringent regulations to control the use of plasticizes in products.
Collapse
Affiliation(s)
- Chenyu Huang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xionghu Gong
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yu Qin
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lu Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Yongjiu Cai
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shaoyuan Feng
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Youliang Zhang
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Zhonghua Zhao
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
5
|
Chaikritsadakarn A, Witthayawirasak B, Muenhor D, DeLaune RD, Muenpo C. Di (2-ethylhexyl) phthalate effects on the growth, development, and reproduction of Moina macrocopa (Crustacea: Cladocera). Heliyon 2024; 10:e28377. [PMID: 38596063 PMCID: PMC11002546 DOI: 10.1016/j.heliyon.2024.e28377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024] Open
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is used as a plasticizer in plastics. The effects of DEHP on terrestrial vertebrates have been extensively reported but the effects of DEHP contamination on aquatic ecosystems have not been thoroughly studied. Since water bodies are one of the main mediums through which DEHP is released worldwide, the impacts of DEHP contamination should be manifested in water fleas. Therefore, maternal Moina macrocopa were exposed to 1, 10, 100, and 1000 μg/L concentrations of DEHP. Changes in growth and reproduction were evaluated. The findings demonstrated that DEHP exposure did not have a negative impact on growth or the ability to reproduce. An analysis of the ovary yolk body (YB) demonstrated that the average size and number of yolk bodies (YBs) produced by M. macrocopa exposed to 1000 μg/L DEHP were not significantly different to the average size and number of YBs produced in blank control and solvent control conditions. These outcomes support the cellular pathology data gathered by other researchers. Nevertheless, when M. macrocopa was exposed to 1000 μg/L DEHP for five days, a significant increase in YB numbers was observed with changes in YB morphology. The critical cellular pathology of YB showed morphological abnormalities, including rod-shaped YBs, and YB density was higher than in the blank and solvent controls. Even though these results suggest that antioxidative stress can be induced by DEHP exposure, growth, and reproduction were not significantly different among exposed water fleas compared to fleas in the blank and solvent controls. The result was attributed to the antioxidant response of the water flea. In conclusion, the present study enhances our understanding of previous findings from risk assessments of DEHP contamination in aquatic ecosystems.
Collapse
Affiliation(s)
- Amornrat Chaikritsadakarn
- Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Banchong Witthayawirasak
- Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Center of Excellence on Hazardous Substance Management (HSM), Bangkok, 10330, Thailand
| | - Dudsadee Muenhor
- Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Health Impact Assessment Research Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Center of Excellence on Hazardous Substance Management (HSM), Bangkok, 10330, Thailand
| | - Ronald D. DeLaune
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Chutchawan Muenpo
- Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| |
Collapse
|
6
|
Smith MN, Stump S, van Bergen SK, Davies HG, Fanning E, Eaton R, Manahan CC, Sergent A, Zarker K. A Hazard-Based Framework for Identifying Safer Alternatives to Classes of Chemicals: A Case Study on Phthalates in Consumer Products. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:45002. [PMID: 38683745 PMCID: PMC11057665 DOI: 10.1289/ehp13549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 03/11/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Humans are exposed to hazardous chemicals found in consumer products. In 2019, the Pollution Prevention for Healthy People and Puget Sound Act was passed in Washington State. This law is meant to reduce hazardous chemicals in consumer products and protect human health and the environment. The law directs the Washington State Department of Ecology to assess chemicals and chemical classes found in products, determine whether there are safer alternatives, and make regulatory determinations. OBJECTIVES To implement the law, the Department of Ecology developed a hazard-based framework for identifying safer alternatives to classes of chemicals. METHODS We developed a hazard-based framework, termed the "Criteria for Safer," to set a transparent bar for determining whether new chemical alternatives are safer than existing classes of chemicals. Our "Criteria for Safer" is a framework that builds on existing hazard assessment methodologies and published approaches for assessing chemicals and chemical classes. DISCUSSION We describe implementation of our criteria using a case study on the phthalates chemical class in two categories of consumer products: vinyl flooring and fragrances used in personal care and beauty products. Additional context and considerations that guided our decision-making process are also discussed, as well as benefits and limitations of our approach. This paper gives insight into our development and implementation of a hazard-based framework to address classes of chemicals in consumer products and will aid others working to build and employ similar approaches. https://doi.org/10.1289/EHP13549.
Collapse
Affiliation(s)
- Marissa N. Smith
- Hazardous Waste & Toxics Reduction, Washington State Department of Ecology, Lacey, Washington, USA
| | - Sascha Stump
- Hazardous Waste & Toxics Reduction, Washington State Department of Ecology, Lacey, Washington, USA
| | - Saskia K. van Bergen
- Hazardous Waste & Toxics Reduction, Washington State Department of Ecology, Lacey, Washington, USA
| | - Holly G. Davies
- Environmental Public Health Sciences, Washington State Department of Health, Tumwater, Washington, USA
| | - Elinor Fanning
- Environmental Public Health Sciences, Washington State Department of Health, Tumwater, Washington, USA
| | - Rae Eaton
- Hazardous Waste & Toxics Reduction, Washington State Department of Ecology, Lacey, Washington, USA
| | - Craig C. Manahan
- Hazardous Waste & Toxics Reduction, Washington State Department of Ecology, Lacey, Washington, USA
| | - Amber Sergent
- Hazardous Waste & Toxics Reduction, Washington State Department of Ecology, Lacey, Washington, USA
| | - Ken Zarker
- Hazardous Waste & Toxics Reduction, Washington State Department of Ecology, Lacey, Washington, USA
| |
Collapse
|
7
|
Gao X, Cui L, Mu Y, Li J, Zhang Z, Zhang H, Xing F, Duan L, Yang J. Cumulative health risk in children and adolescents exposed to bis(2-ethylhexyl) phthalate (DEHP). ENVIRONMENTAL RESEARCH 2023; 237:116865. [PMID: 37562736 DOI: 10.1016/j.envres.2023.116865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/30/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023]
Abstract
Bis(2-ethylhexyl) phthalate (DEHP) has been widely concerned owing to its widespread detection and endocrine disrupting effect. Nevertheless, systematic analysis and evaluation of the current status of DEHP contamination are still insufficient for children and adolescents. Dietary exposure and nondietary exposure to DEHP were investigated to estimate the total average daily dose (ADD). The top three contributors were dust exposure, edible oil and vegetable intake. Dietary intake contributed highly (70%) to daily exposure to DEHP. By analyzing the monitoring data on DEHP exposure, the cumulative health risks of DEHP were assessed for different age groups of children and adolescents in East China. The probability distributions of noncarcinogenic and carcinogenic risks were determined by Monte Carlo simulation. The results showed that the risk level reduced with age. The predicted mean noncarcinogenic and carcinogenic risks for all age groups exceeded the acceptable level, indicating that the general population would be at high risk by DEHP overexposure. Schoolchildren at ages 6∼<9 were more susceptible to DEHP exposure, with a 30% possibility of exceeding the safety limit Based on these results, gradual banning and restriction should be carried out to decrease DEHP contamination and potential health risks.
Collapse
Affiliation(s)
- Xiangyun Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Liang Cui
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yingming Mu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ji Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhichao Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Haiya Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fei Xing
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Liang Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jiaqi Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
8
|
Wang C, Wang J, Gao W, Ning X, Xu S, Wang X, Chu J, Ma S, Bai Z, Yue G, Wang D, Shao Z, Zhuang X. The fate of phthalate acid esters in wastewater treatment plants and their impact on receiving waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162201. [PMID: 36805063 DOI: 10.1016/j.scitotenv.2023.162201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Phthalates (PAEs) are gaining attention and being researched as an endocrine disruptor as global plastic use surge. There is an urgent need to explore the key factors affecting the removal of PAEs from wastewater and the impact of wastewater effluent on receiving water. Here we investigated the levels and distribution patterns of 16 typical PAEs in surface water and five wastewater treatment plants (WWTPs) along the Dongyang River from Yiwu, China, collecting 42 surface water and 31 wastewater samples. We found that influent PAEs concentration and treatment process were the key factors affecting the degradation efficiency of PAEs in primary and secondary treatment, respectively. In primary treatment, long-chain PAEs were more easily removed (and sometimes less likely to accumulate) than short-chain PAEs, regardless of the influent PAEs concentration (a key factor in primary treatment), while in secondary treatment, short-chain PAEs were easily removed regardless of the treatment process (a factor in secondary treatment). This was not the case for long-chain PAEs, which were only more readily removed in the A/A/O process. In addition, by comparing the significant differences between wastewater and surface water, we found that the total PAEs in the treated effluent were significantly lower than in surface water upstream and in built-up urban areas, indicating that wastewater discharges in the study area did not increase PAEs in the receiving water. Finally, river in the city center and artificial treatment facilities in the study area were identified as requiring priority attention. The results of this study can serve as a model for controlling PAEs in other similar developing cities in China and provide valuable information on the fate of endocrine disruptor from wastewater treatment in China and their impact on surface water.
Collapse
Affiliation(s)
- Cong Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinglin Wang
- Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu, Zhejiang 322000, China
| | - Wei Gao
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojun Ning
- Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu, Zhejiang 322000, China
| | - Shengjun Xu
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu, Zhejiang 322000, China
| | - Xiaoping Wang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianwen Chu
- State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Shuanglong Ma
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhihui Bai
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gecheng Yue
- Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu, Zhejiang 322000, China
| | - Dongsheng Wang
- Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu, Zhejiang 322000, China
| | - Zhiping Shao
- Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu, Zhejiang 322000, China
| | - Xuliang Zhuang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
9
|
Mohammadi A, Malakootian M, Dobaradaran S, Hashemi M, Jaafarzadeh N, De-la-Torre GE. Occurrence and ecological risks of microplastics and phthalate esters in organic solid wastes: In a landfill located nearby the Persian Gulf. CHEMOSPHERE 2023; 332:138910. [PMID: 37172626 DOI: 10.1016/j.chemosphere.2023.138910] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Landfill sites are the main source of plastic waste. Thus, municipal solid waste (MSW) in landfills may act as a reservior of microplastics (MPs) and related pollutants such as phthalate esters (PAEs) into surrounding environment. However, there is limited information on MPs and PAEs in landfill sites. Levels of MPs and PAEs in organic solid waste disposed in a landfill of Bushehr port were investigated for the first time in this study. The mean MPs and PAEs levels in organic MSW samples were 12.3 items/g and 7.99 μg/g, respectively, and the mean PAEs concentration in MPs was 87.5 μg/g. The highest number of MPs was related to the size classes of >1000 μm and <25 μm. The highest dominant type, color, and shape of MPs in organic MSW were nylon, white/transparent, and fragments, respectively. Di (2-ethylhexyl) phthalate (DEHP) and diisobutyl phthalate (DiBP) were the dominant compounds of PAEs in organic MSW. Based on the finding of present study, MPs showed a high hazard index (HI). DEHP, dioctyl phthalate (DOP), and DiBP demonstrated high-level hazards for sensitive organisms in water. This work illustrated considerable MPs and PAEs levels from an uncontrolled landfill without adequate protection, possibly contributing to their release into the environment. The sites of landfill located near marine environments, such as Bushehr port landfill adjacent to the Persian Gulf, may indicate critical threats to marine organisms and the food chain. Continuous landfills control and monitoring, especially the ones near the coastal area, is highly recommended to prevent further environmental pollution.
Collapse
Affiliation(s)
- Azam Mohammadi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran; Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad Malakootian
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran.
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, Essen, 45141, Germany.
| | - Majid Hashemi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Neemat Jaafarzadeh
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gabriel E De-la-Torre
- Biodiversity, Environment, and Society Research Group, San Ignacio de Loyola University, Lima, Peru
| |
Collapse
|
10
|
Guo J, Tu K, Zhou C, Lin D, Wei S, Zhang X, Yu H, Shi W. Methodology for Effect-Based Identification of Bioconcentratable Endocrine Disrupting Chemicals (EDCs) in Water: Establishment, Validation, and Application. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6284-6295. [PMID: 37013483 DOI: 10.1021/acs.est.2c08025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Since the wide occurrence of endocrine disrupting chemicals (EDCs) in water is associated with various adverse effects in aquatic organisms, it is urgent to identify key bioconcentratable EDCs. Currently, bioconcentration is generally ignored during the identification of key EDCs. Thus, a methodology for effect-based identification of bioconcentratable EDCs was established in Microcosm, validated in the field, and applied to typical surface water in Taihu Lake. In Microcosm, an inverted U-shaped relationship between logBCFs and logKows was observed for typical EDCs, with medium hydrophobic EDCs (3 ≤ logKow ≤ 7) exhibiting the greatest bioconcentration potentials. On this basis, enrichment methods for bioconcentratable EDCs were established using POM and LDPE, which better fitted the bioconcentration characteristics and enabled the enrichment of 71 ± 8% and 69 ± 6% bioconcentratable compounds. The enrichment methods were validated in the field, where LDPE exhibited a more significant correlation with the bioconcentration characteristics than POM, with mean correlation coefficients of 0.36 and 0.15, respectively, which was selected for further application. By application of the new methodology in Taihu Lake, 7 EDCs were prioritized from 79 identified EDCs as key bioconcentratable EDCs on consideration of their great abundance, bioconcentration potentials, and anti-androgenic potencies. The established methodology could support the evaluation and identification of bioconcentratable contaminants.
Collapse
Affiliation(s)
- Jing Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Keng Tu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chengzhuo Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Die Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, China
| |
Collapse
|
11
|
Wang R, Chen J, Cui Z, Li Y, Gao Q, Miao Y, Wang H, Xiong B. Exposure to diisononyl phthalate deteriorates the quality of porcine oocytes by inducing the apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114768. [PMID: 36917878 DOI: 10.1016/j.ecoenv.2023.114768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Diisononyl phthalate (DINP), a mixture of chemical compounds composed of diverse isononyl esters of phthalic acid, is commonly applied as a plasticizer to substitute for di (2-ethylhexyl) phthalate (DEHP). It has been demonstrated that DINP exposure impairs the functions of kidney and liver in animals. However, the effects and potential mechanisms of DINP exposure on the female reproduction, especially the oocyte quality are still poorly understood. Here, we discovered that DINP exposure weakened the porcine oocyte meiotic competency (78.9% vs 53.6%, P < 0.001) and fertilization ability (78.5% vs 34.1%, P < 0.0001) during in vitro maturation. Specifically, DINP exposure induced the persistent spindle assembly checkpoint (SAC) activation caused by the disorganized spindle/chromosome apparatus (spindle: 20.0% vs 83.3%, P < 0.001; chromosome: 20.0% vs 80.0%, P < 0.01) to arrest meiotic progression of oocytes at metaphase I stage. In addition, DINP exposure disturbed the dynamics of sperm binding (146.7 vs 58.6, P < 0.0001) and fusion proteins (19.5 vs 11.6, P < 0.0001) in oocytes to compromise their fertilization ability. In particular, transcriptome data uncovered that the action mechanism of DINP on the oocyte maturation was associated with oxidative phosphorylation, apoptosis and autophagy pathways. Lastly, we validated that DINP exposure resulted in the mitochondrial dysfunction (27.2 vs 19.8, P < 0.0001) and elevated levels of reactive oxygen species (ROS; 8.9 vs 19.9, P < 0.0001) to trigger the occurrence of apoptosis (7.2 vs 13.1, P < 0.0001) and protective autophagy (68.6 vs 139.3, P < 0.01). Altogether, our findings not only testify that DINP has a potentially adverse impact on the mammalian oocyte quality, but also provide a scientific reference regarding how environment pollutants act on the female germ cell development.
Collapse
Affiliation(s)
- Rui Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingyue Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory for Molecular Biology of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Zhaokang Cui
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Institue of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yu Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Gao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yilong Miao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huili Wang
- Institue of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
12
|
Zhao P, Du Z, Fu Q, Ai J, Hu A, Wang D, Zhang W. Molecular composition and chemodiversity of dissolved organic matter in wastewater sludge via Fourier transform ion cyclotron resonance mass spectrometry: Effects of extraction methods and electrospray ionization modes. WATER RESEARCH 2023; 232:119687. [PMID: 36758353 DOI: 10.1016/j.watres.2023.119687] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
High-resolution mass spectrometry was extensively applied in molecular composition and transformation pathways of dissolved organic matter (DOM) in wastewater sludge treatments. Sample pretreatment methods and electrospray ionization (ESI) modes significant affect the accuracy of molecular characterization for DOM. This study investigated the effects of pretreatment methods (styrene divinyl benzene polymer (PPL), octadecyl (C18), and electrodialysis (ED)) on molecular characteristics of DOM in two typical wastewater sludges (waste activated sludge (WAS) and anaerobic digestion sludge (ADS)) analyzed by FT-ICR MS in both positive ESI (ESI (+)) and negative ESI (ESI (-)) modes. The results indicated that ED pretreatment exhibited the highest recovery rate of 70% ‒ 95% for sludge-derived DOM. ED and PPL performed well in recovering the different sludge-derived DOM with a high similarity of molecular characteristics (e.g., lipids, proteins/aliphatic, and lignins/CRAM-like), and the C18 method was ineffective in extracting carbohydrates, unsaturated hydrocarbons, and amino sugars. In addition, compared with single ESI (-) analysis mode, the molecular number identified by ESI (+) analysis mode was increased by 200%, especially, more unsaturated hydrocarbons and N-containing compounds were detected. Except for biogenic DOM, plenty of emerging containments (ECs) in sludge-derived DOM were identified; ESI (-) mode was more effectively in recognizing the alkyl benzene sulfonic acids (e.g., anionic surfactants); and ESI (+) mode was more effectively for plasticizers identification, for example, dioctyl terephthalate and dibutyl phthalate. This study illustrated that ED pretreatment coupled with FT-ICR MS in dual ESI modes could give more insights in complexed molecular information for DOM in wastewater sludge, and provides a theoretical basis for subsequent sludge treatments and disposals.
Collapse
Affiliation(s)
- Peipei Zhao
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Zhengliang Du
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qinglong Fu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China.
| | - Jing Ai
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Aibin Hu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Dongsheng Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Weijun Zhang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China; National Engineering Laboratory of High Concentration Refractory Organic Wastewater Treatment Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
13
|
du Plessis M, Fourie C, Stone W, Engelbrecht AM. The impact of endocrine disrupting compounds and carcinogens in wastewater: Implications for breast cancer. Biochimie 2023; 209:103-115. [PMID: 36775066 DOI: 10.1016/j.biochi.2023.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/12/2023]
Abstract
The incidence of breast cancer is often associated with geographic variation which indicates that a person's surrounding environment can be an important etiological factor in cancer development. Environmental risk factors can include exposure to sewage- or wastewater, which consist of a complex mixture of pathogens, mutagens and carcinogens. Wastewater contains primarily carbonaceous, nitrogenous and phosphorus compounds, however it can also contain trace amounts of chemical pollutants including toxic metal cations, hydrocarbons and pesticides. More importantly, the contamination of drinking water by wastewater is a potential source of exposure to mammary carcinogens and endocrine disrupting compounds. Organic solvents and other pollutants often found in wastewater have been detected in various tissues, including breast and adipose tissues. Furthermore, these pollutants such as phenolic compounds in some detergents and plastics, as well as parabens and pesticides can mimic estrogen. High estrogen levels are a well-established risk factor for estrogen-receptor (ER) positive breast cancer. Therefore, exposure to wastewater is a risk factor for the initiation, progression and metastasis of breast cancer. Carcinogens present in wastewater can promote tumourigenesis through various mechanisms, including the formation of DNA adducts, gene mutations and oxidative stress. Lastly, the presence of endocrine disrupting compounds in wastewater can have negative implications for ER-positive breast cancers, where these molecules can activate ERα to promote cell proliferation, survival and metastasis. As such, strategies should be implemented to limit exposure, such as providing funding into treatment technologies and implementation of regulations that limit the production and use of these potentially harmful chemicals.
Collapse
Affiliation(s)
- Manisha du Plessis
- Department of Physiological Sciences, Faculty of Natural Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa.
| | - Carla Fourie
- Department of Physiological Sciences, Faculty of Natural Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa.
| | - Wendy Stone
- Stellenbosch University Water Institute, Faculty of Science, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Faculty of Natural Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa; African Cancer Institute (ACI), Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, South Africa
| |
Collapse
|
14
|
Hsu YS, Liu YH, Lin CH, Tsai CH, Wu WF. Dual bio-degradative pathways of di-2-ethylhexyl phthalate by a novel bacterium Burkholderia sp. SP4. World J Microbiol Biotechnol 2023; 39:44. [DOI: 10.1007/s11274-022-03490-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
|
15
|
Liu J, Shi J, Hernandez R, Li X, Konchadi P, Miyake Y, Chen Q, Zhou T, Zhou C. Paternal phthalate exposure-elicited offspring metabolic disorders are associated with altered sperm small RNAs in mice. ENVIRONMENT INTERNATIONAL 2023; 172:107769. [PMID: 36709676 DOI: 10.1016/j.envint.2023.107769] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 05/10/2023]
Abstract
Exposure to ubiquitous plastic-associated endocrine disrupting chemicals (EDCs) is associated with the increased risk of many chronic diseases. For example, phthalate exposure is associated with cardiometabolic mortality in humans, with societal costs ∼ $39 billion/year or more. We recently demonstrated that several widely used plastic-associated EDCs increase cardiometabolic disease in appropriate mouse models. In addition to affecting adult health, parental exposure to EDCs has also been shown to cause metabolic disorders, including obesity and diabetes, in the offspring. While most studies have focused on the impact of maternal EDC exposure on the offspring's health, little is known about the effects of paternal EDC exposure. In the current study, we investigated the adverse impact of paternal exposure to a ubiquitous but understudied phthalate, dicyclohexyl phthalate (DCHP) on the metabolic health of F1 and F2 offspring in mice. Paternal DCHP exposure led to exacerbated insulin resistance and impaired insulin signaling in F1 offspring without affecting diet-induced obesity. We previously showed that sperm small non-coding RNAs including tRNA-derived small RNAs (tsRNAs) and rRNA-derived small RNAs (rsRNAs) contribute to the intergenerational transmission of paternally acquired metabolic disorders. Using a novel PANDORA-seq, we revealed that DCHP exposure can lead to sperm tsRNA/rsRNA landscape changes that were undetected by traditional RNA-seq, which may contribute to DCHP-elicited adverse effects. Lastly, we found that paternal DCHP can also cause sex-specific transgenerational adverse effects in F2 offspring and elicited glucose intolerance in female F2 descendants. Our results suggest that exposure to endocrine disrupting phthalates may have intergenerational and transgenerational adverse effects on the metabolic health of their offspring. These findings increase our understanding of the etiology of chronic human diseases originating from chemical-elicited intergenerational and transgenerational effects.
Collapse
Affiliation(s)
- Jingwei Liu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Junchao Shi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Rebecca Hernandez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Xiuchun Li
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Pranav Konchadi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Yuma Miyake
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Qi Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, NV 89557, United States
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States.
| |
Collapse
|
16
|
Tang S, Zhang H, Xia Y, Luo S, Liu Y, Duan X, Zou Z, Chen C, Zhou L, Qiu J. Exposure to di (2-ethylhexyl) phthalate causes locomotor increase and anxiety-like behavior via induction of oxidative stress in brain. Toxicol Mech Methods 2023; 33:113-122. [PMID: 35818324 DOI: 10.1080/15376516.2022.2100303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is one of the most prevalent xenoestrogen endocrine disruptor in daily life. A growing number of studies showed that DEHP could exhibit long-term adverse health effects on the human body, particularly in the liver, kidneys, heart and reproductive systems. However, the impact of oral intake of DEHP on the nervous system is extremely limited. In the present study, the adult C57BL/6J male mice were intragastrically administered with two dosages of DEHP for 35 days. The behavioral parameters were assessed using the elevated plus maze and open-field test. The mRNA expression levels of neuropeptides and the oxidative stress-associated proteins were detected by qPCR and western blot seperately. The histopathologic alterations of the brain were observed by H&E and Nissl staining. The results demonstrated that DEHP exposure could result in neurobehavioral impairments such as locomotor increase and anxiety-like behavior. Furthermore, pathological damages were clearly observed in the cerebral cortex and hippocampus, accompanied by a decrease in neuropeptides and an increase in oxidative stress, which were all positively correlated with the dose of DEHP. Together, these findings provide valuable clues into the DEHP-induced neurotoxicity.
Collapse
Affiliation(s)
- Shixin Tang
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Hongyang Zhang
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yinyin Xia
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Shiyue Luo
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yijun Liu
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xinhao Duan
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhen Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China.,Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Lixiao Zhou
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jingfu Qiu
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
17
|
Molele RA, Zakariah M, Ibrahim MIA, Mahdy MAA, Fosgate GT, Brown G. Effect of di(n-butyl) phthalate on the blood-testis barrier during puberty onset. Anat Histol Embryol 2023; 52:411-420. [PMID: 36609917 DOI: 10.1111/ahe.12902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/17/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023]
Abstract
Di(n-butyl) phthalate (DBP) is considered a substance of serious concern because of its reproductive toxicity and endocrine-disrupting properties. Exposure to DBP causes morphological and functional changes in the male reproductive system of birds and mammals. However, there are no detailed reports on the effects of DBP on the Sertoli cell and junctional complexes of the blood-testis barrier (BTB) in birds. The present study investigated dose-related ultrastructural changes in Sertoli cells and junctional complexes of the BTB in adult Japanese quail (Coturnix coturnix japonica) exposed to DBP prior to puberty. A total of 25 Japanese quail were used for the study. Exposure to DBP doses of 50, 200 and 400 mg DBP/kg/d caused dose-related ultrastructural changes in junctional complexes including dilation and separation, while disruption of cytoplasmic membranes and mitochondria was observed in Sertoli cells. There was a significant difference in the sum of vacuoles, vacuole diameter, nuclear width, nuclear length, nuclear area, sum of damaged spherical mitochondria, width of elongated mitochondria and the sum of damaged elongated mitochondria among the five treatment groups (p ˂ 0.05). Prepubertal exposure to DBP at doses of 50, 200 and 400 mg DBP/kg/d for 30 days led to adverse effects in the adult male Japanese quail reproductive system by inducing structural changes in the Sertoli cells and junctional complexes. Such changes might disrupt the BTB and potentially interfere with spermatogenesis. Results indicated that the Sertoli cell is sensitive to DBP exposure and might be an important cellular target for DBP-induced testicular toxicity.
Collapse
Affiliation(s)
- Reneilwe A Molele
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Musa Zakariah
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa.,Department of Veterinary Anatomy, Faculty of Veterinary Medicine, PMB 1069 University of Maiduguri, Maiduguri, Nigeria
| | - Mohammed I A Ibrahim
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa.,Department of Basic Science, University of West Kordofan, Al-Fulah, Sudan
| | - Mohamed A A Mahdy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt.,Department of Anatomy and Histology, Faculty of Veterinary Medicine, King Salman International University, Ras Sudr, Egypt
| | - Geoffrey T Fosgate
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Geoffrey Brown
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
18
|
Puri M, Gandhi K, Kumar MS. The occurrence, fate, toxicity, and biodegradation of phthalate esters: An overview. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10832. [PMID: 36632702 DOI: 10.1002/wer.10832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/02/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Phthalate esters (PAEs) are a class of emerging xenobiotic compounds that are extensively used as plasticizers. In recent times, there has been an increasing concern over the risk of this pervasive pollution exposure causing endocrine disruption and carcinogenicity in humans and animals. The widespread use of PAEs in home and industrial applications has resulted in their discharge in aquatic bodies via leaching, volatilization, and precipitation. In this overview, the current state of PAE pollution, its potential origins, its fate, as well as its effects on the aquatic environment are discussed. A state-of-the-art review of several studies in the literature that focus on the biological degradation of PAEs is included in this study. The paper aims to provide a comprehensive view of current research on PAEs in the environment, highlighting its fate and alleviated risks on the aquatic biotas, their challenges, future prospects, and the need for good management and policies for its remediation. PRACTITIONER POINTS: Occurrence of phthalate esters was summarized in various environmental matrices along with its serious ecotoxicological implications on biota. Wastewater is the prime source of PAEs contamination. Lack of species-specific effects on biota due to dose, exposure route, and susceptibility. The predominant route to mineralization in PAEs is biodegradation. A critical analysis of worldwide PAE production and consumption identifies the necessity for global PAE production, consumption, and release policies.
Collapse
Affiliation(s)
- Mehak Puri
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- Academy of Scientific and Innovative Research, Kamla Nehru Nagar (AcSIR), Ghaziabad, India
| | - Kavita Gandhi
- Academy of Scientific and Innovative Research, Kamla Nehru Nagar (AcSIR), Ghaziabad, India
- Sophisticated Environmental Analytical Facility, CSIR-National Environmental Engineering Research Institute, Nagpur, India
| | - M Suresh Kumar
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- Academy of Scientific and Innovative Research, Kamla Nehru Nagar (AcSIR), Ghaziabad, India
| |
Collapse
|
19
|
Ateş H, Argun ME. Fate of phthalate esters in landfill leachate under subcritical and supercritical conditions and determination of transformation products. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 155:292-301. [PMID: 36410146 DOI: 10.1016/j.wasman.2022.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/16/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
The hypothesis of this study is that the complex organic load of landfill leachate could be reduced by supercritical water oxidation (SCWO) in a single stage, but this operation could lead to the formation of some undesired by-products of phthalate esters (PAEs). In this context, the fate of selected PAEs, butyl benzyl phthalate (BBP), di-2-ethylhexyl phthalate (DEHP) and di-n-octyl phthalate (DNOP), was investigated during the oxidation of leachate under subcritical and supercritical conditions. Experiments were conducted at various temperatures (250-500 °C), pressures (10-35 MPa), residence times (2-18 min) and dimensionless oxidant doses (DOD: 0.2-2.3). The SCWO process decreased the leachate's chemical oxygen demand (COD) from 34,400 mg/L to 1,120 mg/L (97%). Removal efficiencies of DEHP and DNOP with longer chains were higher than BBP. The DEHP, DNOP and BBP compounds were removed in the range of -35 to 100%, -18 to 92%, and 28 to 36%, respectively, by the SCWO process. Many non-target PAEs were qualitatively detected in the raw leachate apart from the selected PAEs. Besides, 97% of total PAEs including both target and non-target PAEs was mineralized at 15 MPa, 300 °C and 5 min. Although PAEs were highly mineralized during SCWO of the leachate, aldehyde, ester, amide and amine-based phthalic substances were frequently detected as by-products. These by-products have transformed into higher molecular weight by-products with binding reactions as a result of complex SCWO process chemistry. It has also been determined that some non-target PAEs such as 1,2-benzenedicarboxylic acid bis(2-methylpropyl)ester and bis(2-ethylhexyl) isophthalate can transform to the DEHP. Therefore, the suggested pathway in this study for PAEs degradation during the SCWO of the leachate includes substitution and binding reactions as well as an oxidation reaction.
Collapse
Affiliation(s)
- Havva Ateş
- Konya Technical University, Faculty of Engineering and Natural Science, Department of Environmental Engineering, Türkiye.
| | - Mehmet Emin Argun
- Konya Technical University, Faculty of Engineering and Natural Science, Department of Environmental Engineering, Türkiye.
| |
Collapse
|
20
|
Bulbul M, Bhattacharya S, Ankit Y, Yadav P, Anoop A. Occurrence, distribution and sources of phthalates and petroleum hydrocarbons in tropical estuarine sediments (Mandovi and Ashtamudi) of western Peninsular India. ENVIRONMENTAL RESEARCH 2022; 214:113679. [PMID: 35714689 DOI: 10.1016/j.envres.2022.113679] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/28/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The present study provides baseline information on the concentration levels, distribution characteristics and pollution sources of environmental contaminants, such as phthalic acid esters (PAEs or phthalates) and petroleum hydrocarbons in surface sediments of the tropical estuaries (Mandovi and Ashtamudi) from western Peninsular India. Total PAEs (∑5PAEs), hopanes, steranes and diasteranes concentrations from Ashtamudi estuary ranged from 7.77 to 1478.2 ng/g, n.d.-363.2 ng/g, n.d.-121.5 ng/g and n.d.-116.6 ng/g, respectively. Likewise, PAEs (∑6PAEs), steranes and diasteranes concentrations from Mandovi estuary ranged from 60.1 to 271.9 ng/g, 2.33-40.1 ng/g and 2.28-23.0 ng/g, respectively. The PAEs comprising di-isobutyl phthalate (DIBP), dibutyl phthalate (DBP), an isomer peak for DBP, di(2-ethylhexyl) phthalate (DEHP), di-isononyl phthalate were dominant in Ashtamudi estuary sediments, while PAEs including diethyl phthalate, DIBP, DBP and its isomer, DEHP, di(2-ethylhexyl) terephthalate were detected in the Mandovi sediment samples. The results of this study show an insignificant correlation of TOC with PAEs, and indicates that the varying spatial distributions of the PAEs in both the estuaries can be the result of discharge sources. The higher concentration of PAE congeners was noticed in Ashtamudi, a Ramsar wetland site, that can be attributed to land-based plastic waste. The petroleum biomarkers were abundantly present in Mandovi estuary due to anthropogenic activities such as boating and spillage from oil tankers. The findings of the present study will serve as a reference point for future investigation of organic contaminants in Indian estuaries, and calls for attention towards implementing effective measures in controlling the pervasion of the PAEs and petroleum biomarkers.
Collapse
Affiliation(s)
- Mehta Bulbul
- Indian Institute of Science Education and Research, Mohali, 140306, India.
| | | | - Yadav Ankit
- Indian Institute of Science Education and Research, Mohali, 140306, India
| | - Pushpit Yadav
- Indian Institute of Science Education and Research, Mohali, 140306, India
| | - Ambili Anoop
- Indian Institute of Science Education and Research, Mohali, 140306, India
| |
Collapse
|
21
|
Wu Y, Chen M, Lee HJ, A. Ganzoury M, Zhang N, de Lannoy CF. Nanocomposite Polymeric Membranes for Organic Micropollutant Removal: A Critical Review. ACS ES&T ENGINEERING 2022; 2:1574-1598. [PMID: 36120114 PMCID: PMC9469769 DOI: 10.1021/acsestengg.2c00201] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The prevalence of organic micropollutants (OMPs) and their persistence in water supplies have raised serious concerns for drinking water safety and public health. Conventional water treatment technologies, including adsorption and biological treatment, are known to be insufficient in treating OMPs and have demonstrated poor selectivity toward a wide range of OMPs. Pressure-driven membrane filtration has the potential to remove many OMPs detected in water with high selectivity as a membrane's molecular weight cutoff (MWCO), surface charge, and hydrophilicity can be easily tailored to a targeted OMP's size, charge and octanol-water partition coefficient (Kow). Over the past 10 years, polymeric (nano)composite microfiltration (MF), ultrafiltration (UF), and nanofiltration (NF) membranes have been extensively synthesized and studied for their ability to remove OMPs. This review discusses the fate and transport of emerging OMPs in water, an assessment of conventional membrane-based technologies (NF, reverse osmosis (RO), forward osmosis (FO), membrane distillation (MD) and UF membrane-based hybrid processes) for their removal, and a comparison to the state-of-the-art nanoenabled membranes with enhanced selectivity toward specific OMPs in water. Nanoenabled membranes for OMP treatment are further discussed with respect to their permeabilities, enhanced properties, limitations, and future improvements.
Collapse
Affiliation(s)
- Yichen Wu
- Department
of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | - Ming Chen
- School
of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Hye-Jin Lee
- Department
of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
- Department
of Chemical and Biological Engineering, and Institute of Chemical
Process (ICP), Seoul National University, Seoul 08826, Republic of Korea
| | - Mohamed A. Ganzoury
- Department
of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | - Nan Zhang
- Department
of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | | |
Collapse
|
22
|
Cao Y, Xu S, Zhang K, Lin H, Wu R, Lao JY, Tao D, Liu M, Leung KMY, Lam PKS. Spatiotemporal occurrence of phthalate esters in stormwater drains of Hong Kong, China: Mass loading and source identification. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119683. [PMID: 35772618 DOI: 10.1016/j.envpol.2022.119683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/08/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Urban stormwater is an important pathway for transporting anthropogenic pollutants to water bodies. Phthalate esters (PAEs) are endocrine disruptors owing to their estrogenic activity and potential carcinogenicity and their ubiquitous presence has garnered global interest. However, their transportation by urban stormwater has been largely overlooked. This study, for the first time, investigated 15 PAEs in stormwater from six major stormwater drains in the highly urbanized Hong Kong, a major metropolitan city in China. The results showed that PAEs were ubiquitous in the stormwater of Hong Kong, with total concentrations (∑15PAEs) spanning from 195 to 80,500 ng/L. Bis(2-n-butoxyethyl) phthalate (DBEP), diisopentyl phthalate (DiPP), dicyclohexyl phthalate (DCHP) and di-n-pentyl phthalate (DnPP) were detected in stormwater for the first time. Spatial variations in PAEs were observed among different stormwater drains, possibly due to the different land use patterns and intensities of human activities in their respective catchments. The highest and lowest levels of ∑15PAEs were found in Kwai Chung (3860 ± 1960 ng/L) and the Ng Tung River (672 ± 557 ng/L), respectively. Additionally, significantly higher concentrations of ∑15PAEs in stormwater were found in the wet season (2520 ± 2050 ng/L) than in the dry season (947 ± 904 ng/L). Principal component analysis classified domestic and industrial origins as two important sources of PAEs in the stormwater of Hong Kong. Stormwater played a crucial role in transporting PAEs, with an estimated annual flux of 0.705-29.4 kg. Thus, possible stormwater management measures were proposed to protect the receiving environment and local ecosystems from stormwater.
Collapse
Affiliation(s)
- Yaru Cao
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Shaopeng Xu
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Kai Zhang
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Macao SAR, 999078, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China; Research Centre for the Oceans and Human Health, The City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| | - Huiju Lin
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Rongben Wu
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Jia-Yong Lao
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Danyang Tao
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Mengyang Liu
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China; Hong Kong Metropolitan University, Hong Kong SAR, China
| |
Collapse
|
23
|
Bai L, Dong X, Wang F, Ding X, Diao Z, Chen D. A review on the removal of phthalate acid esters in wastewater treatment plants: from the conventional wastewater treatment to combined processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51339-51353. [PMID: 35614357 DOI: 10.1007/s11356-022-20977-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
In the past decades, phthalate acid esters (PAEs), as a new class of recalcitrant environmental contaminant, have attracted increasing concern due to their potential hazards to reproductive system. wastewater treatment plants (WWTPs) are generally regarded as a crucial barrier to prevent a variety of contaminants from introducing into aquatic environment. This paper reviews the occurrence, fate, and removal efficacy of six widely appearing PAEs in conventional wastewater treatment. PAEs removal appears to be compound- and process-dependent. Advanced treatment processes, including activated carbon, advanced oxidation process (AOPs), membrane filtration, and membrane bioreactor, show good performance in PAEs elimination, but many methods have been commercially limited by toxic byproducts, high operation, and maintenance costs. Even though combined processes are qualified as a promising alternative, further studies are required to optimize these processes, especially the competitiveness between technique and economy.
Collapse
Affiliation(s)
- Lin Bai
- Department of Assets and Laboratory Management, Qingdao University of Technology, Qingdao, 266033, China
| | - Xiaowan Dong
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Fangshu Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Xiaohan Ding
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Zhikai Diao
- Qingdao Agricultural University, Qingdao, 266109, China
| | - Dong Chen
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China.
| |
Collapse
|
24
|
Biswas P, Vellanki BP, Kazmi AA. Investigating a broad range of emerging contaminants in a set of anthropogenically impacted environmental compartments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153757. [PMID: 35151754 DOI: 10.1016/j.scitotenv.2022.153757] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Environmental compartments are repositories of probably thousands of emerging contaminants (ECs) released along with treated/untreated wastewater. Despite extensive studies on the detection of ECs in surface water, other environmental compartments such as sediments and groundwater are yet to be thoroughly investigated. To assess the heavy anthropogenic impact on the environment, 24 environmental samples comprising of surface water, sediment and groundwater collected from the Yamuna River basin of India were analyzed via target and suspect screening. The surface water and sediment samples were collected from upstream and downstream of densely populated cities and towns situated along the heavily contaminated river Yamuna. The groundwater samples were collected from shallow drinking water wells of the catchment. Liquid chromatography tandem mass-spectroscopy was used to quantify 10 widely consumed pharmaceuticals in the samples. The study also analyzed the potential health hazards posed by the quantified contaminants. In order to evaluate further, the surface water and groundwater samples were subjected to high resolution mass spectrometry (HRMS) screening against a library resulting in a list of 450 ECs in the surface water and 309 ECs in the groundwater. Agricultural chemicals and pharmaceuticals found abundantly in the samples and half of whom were reported first time. The risk quotient was calculated to assess the potential hazard of the target analytes.
Collapse
Affiliation(s)
- Pinakshi Biswas
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| | - Bhanu Prakash Vellanki
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| | - Absar Ahmad Kazmi
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
25
|
Uhl M, Hartmann C, Hornek-Gausterer R, Kratz K, Scharf S. [The history of emerging substances in Austria]. OSTERREICHISCHE WASSER- UND ABFALLWIRTSCHAFT 2022; 74:279-285. [PMID: 38013950 PMCID: PMC9127477 DOI: 10.1007/s00506-022-00864-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 04/06/2022] [Indexed: 11/26/2022]
Abstract
Over time, many different groups of substances became the focus of interest, so their occurrence, behaviour and effects were studied. While in the 1990s, it was detergents and the formation of foam in water, later the causes of discolouration around tanneries were researched, as well as the presence of chemicals and pollutants near industrial plants. Organochlorine pesticides, brominated flame retardants, perfluoroalkyl substances or PFAS, organotin compounds are some examples of such Emerging substances. After pesticides and industrial chemicals, active pharmaceutical ingredients, cosmetics and personal care products have also become "Emerging substances". Ultimately, however, it is the effect of the substances-whether persistent, bioaccumulative, mobile, toxic or even endocrine disruption-that attracts attention and triggers legal regulations. As the substances and the methods for their detection changed, so did the corresponding legislation. This in turn led to the use of new or slightly modified substances and substance groups. Innovative methods such as non-targeted analytics and biological effect tests or bioassays are now being utilised to address the variety and combined effects of the existing substances. In order to ensure comprehensive groundwater and water protection, the investigation and assessment methods must be developed. Furthermore, the existing and newly acquired knowledge need to be translated into regulatory consequences more quickly. Beyond that, a comprehensive societal transformation with regard to the sustainable use of natural water resources is essential for environmentally sound and healthy development. This must therefore be implemented on many different levels; with knowledge transfer and awareness-raising also having a significant role to play.
Collapse
Affiliation(s)
- Maria Uhl
- Team Studien & Beratung, Unit Umweltbundesamt – Labore, Umweltbundesamt, Spittelauer Lände 5, 1090 Wien, Österreich
| | - Christina Hartmann
- Team Studien & Beratung, Unit Umweltbundesamt – Labore, Umweltbundesamt, Spittelauer Lände 5, 1090 Wien, Österreich
| | - Romana Hornek-Gausterer
- Team Studien & Beratung, Unit Umweltbundesamt – Labore, Umweltbundesamt, Spittelauer Lände 5, 1090 Wien, Österreich
| | - Karin Kratz
- Team Studien & Beratung, Unit Umweltbundesamt – Labore, Umweltbundesamt, Spittelauer Lände 5, 1090 Wien, Österreich
| | - Sigrid Scharf
- Unit Umweltbundesamt – Labore, Umweltbundesamt, Spittelauer Lände 5, 1090 Wien, Österreich
| |
Collapse
|
26
|
Nas B, Ateş H, Dolu T, Yel E, Argun ME, Koyuncu S, Kara M, Dinç S. Evaluation of occurrence, fate and removal of priority phthalate esters (PAEs) in wastewater and sewage sludge by advanced biological treatment, waste stabilization pond and constructed wetland. CHEMOSPHERE 2022; 295:133864. [PMID: 35150704 DOI: 10.1016/j.chemosphere.2022.133864] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/29/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Phthalate Esters (PAEs), detected in high concentrations generally in treated wastewater discharged from wastewater treatment plants (WWTPs), are important pollutants that restrict the reuse of wastewater. Investigating the fate of these endocrine-disrupting chemicals in WWTPs is crucial in order to protect both receiving environments and ecosystems. For this purpose, di(2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DNOP) and benzyl butyl phthalate (BBP) in the group of PAEs were monitored in simultaneously both in wastewater and sludge lines of selected two nature-based WWTPs and one advanced biological WWTP. Although it was frequently stated that phthalates were significantly removed in WWTPs in many studies found in literature, negative removal efficiencies of selected phthalates in investigated WWTPs during the sampling period were observed generally in this study. One of the reasons for this concentration increase could be releasing of phthalates from microplastics in wastewater during the treatment process or the desorption of PAEs from treatment sludge. DNOP was the compound with the highest concentration increase at almost each treatment unit of the three WWTPs. On the other hand, total PAEs load was 1997 g d-1 in advanced biological WWTP and adsorption onto sludge of PAEs were determined as 90%. The side-stream total load returned from the decanter supernatant was 0.02% of the total PAEs load coming to advanced biological WWTP from the sewer system. As a result of detailed statistical analysis, the correlation between raw wastewater and primary clarifier (PC) effluent was determined as an increasing linear relation for DEHP and DNOP. On the other hand, moderate and strong correlations were observed both between septic tank and constructed wetland (CW) processes with raw wastewater. In the waste stabilization pond (WSP), while a significant correlation was not found between the sludge line data, homogeneous variance, strong and moderate correlations were obtained in the wastewater line data. However, while mean differences for all investigated PAEs were not significant (p > 0.05) in the wastewater line, mean differences of DEHP (p < 0.05) were significant in the sludge line according to ANOVA analysis.
Collapse
Affiliation(s)
- B Nas
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - H Ateş
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - T Dolu
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - E Yel
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - M E Argun
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - S Koyuncu
- Konya Metropolitan Municipality, Environmental Protection and Control Department, Konya, Turkey.
| | - M Kara
- Çumra Vocational High School, Selçuk University, Konya, Turkey.
| | - S Dinç
- Çumra School of Applied Sciences, Selçuk University, Konya, Turkey.
| |
Collapse
|
27
|
Liu J, Hernandez R, Li X, Meng Z, Chen H, Zhou C. Pregnane X Receptor Mediates Atherosclerosis Induced by Dicyclohexyl Phthalate in LDL Receptor-Deficient Mice. Cells 2022; 11:1125. [PMID: 35406689 PMCID: PMC8997706 DOI: 10.3390/cells11071125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 12/17/2022] Open
Abstract
Plastic-associated endocrine disrupting chemicals (EDCs) have been implicated in the etiology of cardiovascular disease (CVD) in humans, but the underlying mechanisms remain elusive. Dicyclohexyl phthalate (DCHP) is a widely used phthalate plasticizer; whether and how exposure to DCHP elicits adverse effects in vivo is mostly unknown. We previously reported that DCHP is a potent ligand of the pregnane X receptor (PXR) which acts as a xenobiotic sensor to regulate xenobiotic metabolism. PXR also functions in macrophages to regulate atherosclerosis development in animal models. In the current study, LDL receptor-deficient mice with myeloid-specific PXR deficiency (PXRΔMyeLDLR-/-) and their control littermates (PXRF/FLDLR-/-) were used to determine the impact of DCHP exposure on macrophage function and atherosclerosis. Chronic exposure to DCHP significantly increased atherosclerotic lesion area in the aortic root and brachiocephalic artery of PXRF/FLDLR-/- mice by 65% and 77%, respectively. By contrast, DCHP did not affect atherosclerosis development in PXRΔMyeLDLR-/- mice. Exposure to DCHP led to elevated expression of the scavenger receptor CD36 in macrophages and increased macrophage form cell formation in PXRF/FLDLR-/- mice. Our findings provide potential mechanisms underlying phthalate-associated CVD risk and will ultimately stimulate further investigations and mitigation of the adverse effects of plastic-associated EDCs on CVD risk in humans.
Collapse
Affiliation(s)
- Jingwei Liu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (J.L.); (R.H.); (X.L.); (Z.M.)
| | - Rebecca Hernandez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (J.L.); (R.H.); (X.L.); (Z.M.)
| | - Xiuchun Li
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (J.L.); (R.H.); (X.L.); (Z.M.)
| | - Zhaojie Meng
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (J.L.); (R.H.); (X.L.); (Z.M.)
| | - Hong Chen
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA;
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (J.L.); (R.H.); (X.L.); (Z.M.)
| |
Collapse
|
28
|
Zhang L, Li H, Wang Y, Yang Z, Zhang Z, Liu F, Tong L, Wang Y, Gong Y, Yang H. Characterizing the Semi-Volatile Organic Compounds in Runoff from Roads and Other Impervious Surfaces in a Suburban Area of Beijing. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 82:227-238. [PMID: 34490489 DOI: 10.1007/s00244-021-00884-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/30/2021] [Indexed: 05/26/2023]
Abstract
Stormwater runoff samples were collected from five different land use sites (gas station, city road, campus, park, and residential) in a precipitation event on May 22nd, 2017, from a small suburban area (5 km × 2 km) of the city of Beijing, China. There were 72 types of semi-volatile organic compounds (SVOCs) found in these runoff samples, including 33 types of monocyclic aromatic hydrocarbons (MAHs), 22 types of polycyclic aromatic hydrocarbons (PAHs), 6 types of phthalate esters (PAEs), 9 types of pesticides and 2 types of polychlorinated biphenyls (PCBs). Especially, 26 types of SVOCs (7 MAHs, 9 PAHs, 5 PAEs, and 5 pesticides) were detected in all water samples. SVOCs concentrations were higher in the samples from gas station and city road, and lower in runoff from campus, park and residential sites. The change in the ratio of anthracene to anthracene plus phenanthrene (ANT/(ANT + PHE)) in this study, reflected the importance of PAH source and land use. Di-2-ethylhexyl phthalate (DEHP) and di-n-butyl phthalate, are two of the phthalate esters 100% detected in the runoff samples. The city road runoff DEHP concentrations recorded the highest values (> 6000 ng/L), however, were still less than those wastewater DEHP pollutants measured in developed countries (e.g. UK, Canada, Finland, etc.). One-way ANOVA analysis in this study, showed that land use could significantly influence 23 SVOCs in the runoff samples, whereas the runoff SVOCs in different precipitation period showed no statistical changes in the five sites, and presented a general temporal trends "high (beginning)-low (middle period)-little raising (ending)". The findings in this study could be used in municipal management of wastewater collection and treatment.
Collapse
Affiliation(s)
- Liang Zhang
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Haiyan Li
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
- Beijing Advanced Innovation Center for Future Urban Design, Beijing, 100044, China.
| | - Youshu Wang
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- Beijing Advanced Innovation Center for Future Urban Design, Beijing, 100044, China
| | - Zhichao Yang
- Beijing Center for Physical & Chemical Analysis (BCPCA), Beijing, 100089, China
| | - Ziyang Zhang
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- Beijing Advanced Innovation Center for Future Urban Design, Beijing, 100044, China
| | - Fei Liu
- School of Water Resources and Environment, and Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences, Beijing, 100083, China
| | - Linlin Tong
- School of Water Resources and Environment, and Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences, Beijing, 100083, China
| | - Ying Wang
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yongwei Gong
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- Beijing Advanced Innovation Center for Future Urban Design, Beijing, 100044, China
| | - Hua Yang
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
- Beijing Advanced Innovation Center for Future Urban Design, Beijing, 100044, China.
| |
Collapse
|
29
|
Hajiouni S, Mohammadi A, Ramavandi B, Arfaeinia H, De-la-Torre GE, Tekle-Röttering A, Dobaradaran S. Occurrence of microplastics and phthalate esters in urban runoff: A focus on the Persian Gulf coastline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150559. [PMID: 34582879 DOI: 10.1016/j.scitotenv.2021.150559] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/26/2021] [Accepted: 09/20/2021] [Indexed: 05/05/2023]
Abstract
Urban runoff seems an obvious pathway for the transfer of microplastics (MPs) and phthalate acid esters (PAEs) from land-based sources to the marine environment; an issue that still lacks attention. This study presents the first results on MP and PAE levels in the urban runoff into the northern part of the Persian Gulf during the dry season. Average concentrations of MPs and PAEs in the urban runoff of eight selected sampling sites (N = 72) along the Bushehr coast were 1.86 items/L and 53.57 μg/L, respectively. MPs with a size range of 500-1000 μm had the highest abundance, and the mean levels of PAEs in MPs were 99.77 μg/g. The results of this study show that urban runoff is a main source of MP and PAE contaminants that are discharged into the Persian Gulf. Therefore, to decrease these pollutants from entering the aquatic environment, decision-makers in the area should consider this problem and stop the direct discharging of urban runoff into water bodies.
Collapse
Affiliation(s)
- Shamim Hajiouni
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Azam Mohammadi
- Department of Environmental Health, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hossein Arfaeinia
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Agnes Tekle-Röttering
- Westfälische Hochschule Gelsenkirchen, Neidenburger Strasse 43, Gelsenkirchen 45877, Germany
| | - Sina Dobaradaran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
30
|
Micropollutants in Urban Runoff from Traffic Areas: Target and Non-Target Screening on Four Contrasted Sites. WATER 2022. [DOI: 10.3390/w14030394] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although runoff from trafficked urban areas is recognized as a potentially significant pathway of micropollutants, runoff pollution remains poorly documented, except for relatively few historical pollutants such as some metals and hydrocarbons. Therefore, in this work, road and parking lot runoff from four sites with contrasting traffic levels were analyzed for a very broad spectrum of molecules and elements. A total of 128 pollutants and micropollutants were monitored, including inorganic (n = 41) and organic (n = 87) pollutants. Both the dissolved and particulate phases were considered. For a reduced number of samples, non-targeted screening by high-resolution mass spectrometry (HRMS) was carried out. For targeted screening, the contamination profiles were quite homogeneous, but the concentrations significantly differed between the different sites. Sites with the highest traffic density exhibited the highest concentrations for polycyclic aromatic hydrocarbons (PAHs), some traffic-related metals, alkylphenols and phthalates. Overall, for most micropollutants, the parking lot runoff exhibited the lowest concentrations, and the specificity of this site was confirmed by its HRMS fingerprint. Non-target screening allowed the sites to be discriminated based on the occurrence of specific compounds. Unlike the results of targeted screening, the HRMS intra-site variability was lower than its inter-site variability. Unknown substances were tentatively identified, either characteristic of each site or ubiquitous of all samples.
Collapse
|
31
|
Wolf Y, Oster S, Shuliakevich A, Brückner I, Dolny R, Linnemann V, Pinnekamp J, Hollert H, Schiwy S. Improvement of wastewater and water quality via a full-scale ozonation plant? - A comprehensive analysis of the endocrine potential using effect-based methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149756. [PMID: 34492496 DOI: 10.1016/j.scitotenv.2021.149756] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/02/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Micropollutants (MPs), especially endocrine disrupting compounds (EDCs), are mainly released from WWTPs into surface water bodies and can subsequently lead to adverse effects in biota. Treatment with ozone proved to be a suitable method for eliminating such MPs. This method was implemented at the WWTP Aachen-Soers by commissioning the largest full-scale ozonation plant in Europe at the moment. Recently, effect-based methods (EBMs) have been successfully proved for compliance monitoring, e.g. estrogenic compounds. Therefore, the impact of ozone treatment on endocrine potential (agonistic and antagonistic) of treated wastewater was investigated using the ERα- and AR CALUX assays. Additionally, the impact on the receiving stream and a potential preload of the water body was assessed. Therefore, the current study could deal as a case study for small rivers being highly impacted by WWTPs. The estrogenic potential was nearly fully eliminated after ozone treatment. Contrary, the antagonistic (anti-estrogenic and anti-androgenic) potential did not show a clear elimination pattern after ozone treatment independent of the applied ozone dosage and control system. Therefore, further investigations are required regarding the antagonistic potential. Additionally, preloading of the receiving stream was found during the study period. One significant impact is a rain overflow basin (ROB) located upstream of the WWTP effluent. The highest endocrine potential was found after a ROB overflow (2.7 ng EEQ/L, 2.4 μg TMX-EQ/L, 104 μg FLU-EQ/L), suggesting that such runoff events after a heavy rainfall may act as a driver of endocrine loading to the water body. This manuscript contributes significantly to the basic understanding of the efficiency of eliminating the endocrine potential of ozone treatment by, e.g., showing that there is a further need for improving the removal efficiency of antagonistic potential. Moreover, it highlights the need to include other point sources, such as ROBs, to assess polluted surface waters comprehensively.
Collapse
Affiliation(s)
- Yvonne Wolf
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| | - Sophie Oster
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Aachen, Germany; iES Institute for Environmental Science, University of Koblenz-Landau, Landau, Germany
| | - Aliaksandra Shuliakevich
- Department Evolutionary Ecology and Environmental Toxicology (E(3)T), Goethe-University Frankfurt, Frankfurt, Germany
| | | | - Regina Dolny
- Institute of Environmental Engineering, RWTH Aachen University, Aachen, Germany
| | - Volker Linnemann
- Institute of Environmental Engineering, RWTH Aachen University, Aachen, Germany
| | - Johannes Pinnekamp
- Institute of Environmental Engineering, RWTH Aachen University, Aachen, Germany
| | - Henner Hollert
- Department Evolutionary Ecology and Environmental Toxicology (E(3)T), Goethe-University Frankfurt, Frankfurt, Germany.
| | - Sabrina Schiwy
- Department Evolutionary Ecology and Environmental Toxicology (E(3)T), Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
32
|
Alygizakis N, Galani A, Rousis NI, Aalizadeh R, Dimopoulos MA, Thomaidis NS. Change in the chemical content of untreated wastewater of Athens, Greece under COVID-19 pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149230. [PMID: 34364275 PMCID: PMC8321698 DOI: 10.1016/j.scitotenv.2021.149230] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 04/14/2023]
Abstract
COVID-19 pandemic spread rapidly worldwide with unanticipated effects on mental health, lifestyle, stability of economies and societies. Although many research groups have already reported SARS-CoV-2 surveillance in untreated wastewater, only few studies evaluated the implications of the pandemic on the use of chemicals by influent wastewater analysis. Wide-scope target and suspect screening were used to monitor the effects of the pandemic on the Greek population through wastewater-based epidemiology. Composite 24 h influent wastewater samples were collected from the wastewater treatment plant of Athens during the first lockdown and analyzed by liquid chromatography mass spectrometry. A wide range of compounds was investigated (11,286), including antipsychotic drugs, illicit drugs, tobacco compounds, food additives, pesticides, biocides, surfactants and industrial chemicals. Mass loads of chemical markers were estimated and compared with the data obtained under non-COVID-19 conditions (campaign 2019). The findings revealed increases in surfactants (+196%), biocides (+152%), cationic quaternary ammonium surfactants (used as surfactants and biocides) (+331%), whereas the most important decreases were estimated for tobacco (-33%) and industrial chemicals (-52%). The introduction of social-restriction measures by the government affected all aspects of life.
Collapse
Affiliation(s)
- Nikiforos Alygizakis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | - Aikaterini Galani
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikolaos I Rousis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Reza Aalizadeh
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 15528 Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| |
Collapse
|
33
|
Removal of Emerging Pollutants in Horizontal Subsurface Flow and Vertical Flow Pilot-Scale Constructed Wetlands. Processes (Basel) 2021. [DOI: 10.3390/pr9122200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We assessed constructed wetland (CW) performance in the removal of six emerging pollutants (EPs) from university campus wastewater. The EPs considered were: diethyl phthalate (DEP), di-isobutyl phthalate (DIBP), di-n-octyl phthalate (DNOP), bis(2-ehtylxexyl) phthalate (DEHP), tris(1-chloro-2-propyl) phosphate (TCPP) and caffeine (CAF). Six pilot-scale CWs, i.e., three horizontal subsurface flow (HSF) and three vertical flow (VF), with different design configurations were used: two types of plants and one unplanted for both the HSF and the VF, two hydraulic retention times (HRT) for the HSF, and two wastewater feeding strategies for the VF units. The results showed that the median removals in the three HSF-CWs ranged between 84.3 and 99.9%, 79.0 and 95.7%, 91.4 and 99.7%, 72.2 and 81.0%, 99.1 and 99.6%, and 99.3 and 99.6% for DEP, DIBP, DNOP, DEHP, TCPP, and CAF, respectively. In the three VF-CWs, the median removal efficiencies range was 98.6–99.4%, 63.6–98.0%, 96.6–97.8%, 73.6–94.5%, 99.3–99.5% and 94.4–96.3% for DEP, DIBP, DNOP, DEHP, TCPP and CAF, respectively. The study indicates that biodegradation and adsorption onto substrate were the most prevalent removal routes of the target EPs in CWs.
Collapse
|
34
|
Liu B, Jiang T, Li Z, Ge W, Wu J, Song N, Chai C. Phthalate esters in surface sediments from fishing ports in Circum-Bohai-Sea region, China. MARINE POLLUTION BULLETIN 2021; 171:112782. [PMID: 34358790 DOI: 10.1016/j.marpolbul.2021.112782] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/16/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
The concentration, composition, distribution, and possible sources of phthalate esters (PAEs) in surface sediments from fishing ports in the Circum-Bohai-Sea region were investigated. The potential ecological risks of PAEs on three sensitive aquatic organisms (algae, crustacean, and fish) were assessed based on the risk quotient. The concentrations of 16 PAEs were in the range of 8.53-86.13 μg/g. Six PAEs, which were considered as priority pollutants by the United States Environmental Protection Agency, were main congeners. Fishing ports with high PAE concentration were located near the eastern area of the Shandong Peninsula, the southern area of the Liaodong Peninsula, and the estuary of the Yellow River. Wastewater, atmospheric deposition, plastic, and rubber products were possible sources of PAEs. The PAEs showed medium to high ecological risks on the three aquatic organisms, and the ecological risks were attributed to four PAEs, including dimethyl phthalate, diethyl phthalate, dibutyl phthalate, and benzylbutyl phthalate.
Collapse
Affiliation(s)
- Binxu Liu
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Tao Jiang
- School of Ocean, Yantai University, Yantai 264005, China
| | - Zhiying Li
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Ge
- Shandong Province Key Laboratory of Applied Mycology, Qingdao 266109, China
| | - Juan Wu
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Ningning Song
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Chao Chai
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
35
|
Le TM, Nguyen HMN, Nguyen VK, Nguyen AV, Vu ND, Yen NTH, Hoang AQ, Minh TB, Kannan K, Tran TM. Profiles of phthalic acid esters (PAEs) in bottled water, tap water, lake water, and wastewater samples collected from Hanoi, Vietnam. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147831. [PMID: 34034168 DOI: 10.1016/j.scitotenv.2021.147831] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Contamination levels and distribution patterns of ten typical phthalic acid esters (PAEs) were investigated in various types of water samples collected from Hanoi metropolitan area in Vietnam. Concentrations of 10 PAEs in bottled water, tap water, lake water, and wastewater samples were measured in the ranges of 1640-15,700 ng/L (mean/median: 6400/5820 ng/L), 2100-18,000 ng/L (mean/median: 11,200/9270 ng/L), 19,600-127,000 ng/L (mean/median: 51,800/49,300 ng/L), and 20,700-405,000 ng/L (mean/median: 121,000/115,000 ng/L), respectively. Among PAEs, di-(2-ethylhexyl) phthalate (DEHP) accounted for a major proportion of total concentrations (45%) in wastewater, followed by diisobutyl phthalate (DiBP, 10.3%), and dibutyl phthalate (DBP, 9.53%). Concentrations of PAEs in wastewater decreased significantly with distance from the wastewater treatment plants (WWTPs). Concentrations of PAEs in surface water samples did not vary greatly between locations. PAEs were found in bottled water in the following order: DBP (22.4%), DiBP (22.3%), benzylbutyl phthalate (BzBP, 20.1%), and DEHP (15.5%). The estimated mean exposure doses of 10 PAEs through consumption of drinking water for adults and children in Vietnam were 254 and 256 ng/kg-bw/day, respectively. Capsule: Highest concentrations of PAEs were measured in wastewater, followed by lake water, tap water, and bottled water.
Collapse
Affiliation(s)
- Thuy Minh Le
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 10000, Viet Nam; Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 10000, Vietnam
| | - Ha My Nu Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 10000, Viet Nam; Ha Tinh University, Cam Vinh Commune, Cam Xuyen District, Ha Tinh 45000, Viet Nam
| | - Vy Khanh Nguyen
- Chemistry Department, The College of Wooster, 1189 Beall Avenue, Wooster, OH 44691, USA
| | - Anh Viet Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 10000, Viet Nam
| | - Nam Duc Vu
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 10000, Vietnam
| | - Nguyen Thi Hong Yen
- National Institute of Hygiene and Epidemiology, 1 Yersin streat, Ha Ba Trung, Hanoi 10000, Viet Nam
| | - Anh Quoc Hoang
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 10000, Viet Nam; Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | - Tu Binh Minh
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 10000, Viet Nam
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Tri Manh Tran
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 10000, Viet Nam.
| |
Collapse
|
36
|
New Analytical Method for Determination of Phthalates in Wastewater by on Line LC-GC-MS Using the TOTAD Interface and Fraction Collector. Processes (Basel) 2021. [DOI: 10.3390/pr9060920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
There is an increasing demand for automatic, reliable and sensitive analytical methods for determining trace levels of phthalic acid esters (PAEs) in environmental samples. While on line coupled liquid chromatography-gas chromatography (LC-GC) has been proof to be a powerful tool for trace-level analyses in complex matrices, the present work presents a new totally automated on line LC-GC method, using the Through Oven Transfer Adsorption Desorption (TOTAD) interface, for the analysis of four of the main phthalates, dibuthyl phthalate (DBP), diethyl phthalate (DEP), dimethyl phthalate (DMP) and diethylhexyl phthalate (DEHP), in a matrix as complex as leachate. The sample is directly injected into the LC injector valve with no sample pretreatment other than simple filtration. The LC step separates the target analytes from matrix interference. Two different LC fractions are collected in a purposely designed fraction collector and then transferred to the TOTAD interface, which concentrates the analytes, totally eliminates the solvent and transfers the analytes to the GC-MS system, where the analysis is carried out. The LOD of the method varied from 0.1 µg/L (DEHP) to 1.4 µg/L (DMP), RSD for retention time below 0.14% and for absolute peak areas below 12% and linearity from 1 µg/L to 1000 µg/L (R2 > 0.99), except in the case of DEHP (linearity from 1 to 250 µg/L, R2 = 0.94). The method was applied to the analysis of the target analytes in samples collected from a municipal solid waste (MSW) landfill in Rosario (Argentina).
Collapse
|
37
|
Luo X, Shu S, Feng H, Zou H, Zhang Y. Seasonal distribution and ecological risks of phthalic acid esters in surface water of Taihu Lake, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144517. [PMID: 33454488 DOI: 10.1016/j.scitotenv.2020.144517] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Phthalic acid esters (PAEs) are endocrine-disrupting compounds that are ubiquitous in surface water. However, early studies on PAEs only focused on six species on the priority contaminant list, and the seasonal variation in the PAE distribution in Taihu Lake, China is unclear. The present study investigated the occurrence, spatial distribution, and ecological risks of 16 PAEs in Taihu Lake during the dry, normal, and wet seasons. The results showed that dibutyl phthalate, diethylhexyl phthalate (DEHP), and diisobutyl phthalate (DIBP) were the major species detected in the surface water of Taihu Lake. The summed concentration of the six priority PAEs accounted for less than 50% of the total, indicating that the contamination of the other PAE congeners was non-negligible. Significant seasonal effects were observed that the total PAE concentration was higher in the wet season than in the dry season, and there were significant positive correlations between the total PAE concentration and rainfall, the water reserve, and the water level. In the dry season, a relatively high PAE level was detected in the area close to the inflow river estuary and the tourist island in the lake. The concentrations of PAEs in the lakeshore area were higher than those in the lake center in the normal season, and were generally high in the wet season. DEHP posed high risks for fish regardless of the season, while butyl benzyl phthalate, DIBP, dihexyl phthalate, and diphenyl phthalate also showed high risks in the normal and wet seasons. These results suggest that the contamination and risks of congeners other than the priority PAEs are also of necessary concern, and seasonal variation should be considered for a comprehensive understanding of PAE contamination in surface water.
Collapse
Affiliation(s)
- Xin Luo
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Shu Shu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hui Feng
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China.
| | - Yun Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
38
|
Dziobak MK, Wells RS, Pisarski EC, Wirth EF, Hart LB. Demographic Assessment of Mono(2-ethylhexyl) Phthalate (MEHP) and Monoethyl Phthalate (MEP) Concentrations in Common Bottlenose Dolphins ( Tursiops truncatus) From Sarasota Bay, FL, USA. GEOHEALTH 2021; 5:e2020GH000348. [PMID: 34036207 PMCID: PMC8137278 DOI: 10.1029/2020gh000348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/22/2021] [Accepted: 04/14/2021] [Indexed: 05/15/2023]
Abstract
Common bottlenose dolphins (Tursiops truncatus) have previously demonstrated exposure to phthalate esters. Phthalates and phthalate esters are commonly added to consumer goods to enhance desirable properties. As the amount of plastic marine debris increases, these chemicals can easily leach from these products into the surrounding environment. To evaluate demographic variability in exposure, eight phthalate metabolites were quantified in urine samples collected from free-ranging bottlenose dolphins sampled in Sarasota Bay, FL, USA (2010-2019; n = 51). Approximately 75% of individual dolphins had detectable concentrations of at least one phthalate metabolite. The most frequently detected metabolites were mono(2-ethylhexyl) phthalate (MEHP; n = 28; GM = 4.57 ng/mL; 95% CI = 2.37-8.80; KM mean = 7.95; s.d. = 15.88) and monoethyl phthalate (MEP; GM = 4.51 ng/mL; 95% CI = 2.77-7.34; ROS mean = 2.24; s.d. = 5.58). Urinary concentrations of MEHP and MEP were not significantly different between sex (MEHP p = 0.09; MEP p = 0.22) or age class (i.e., calf/juvenile vs. adult; MEHP p = 0.67; MEP p = 0.13). Additionally, there were no significant group differences in the likelihood of MEHP or MEP detection for any demographic as determined by a Peto-Peto test. Frequency of detection was similar for both metabolites between males and females (MEHP p = 0.10; MEP p = 0.40) as well as between juveniles and adults (MEHP p = 0.50; MEP: p = 0.60). These findings suggest ubiquitous exposure risk for both sexes and age classes, warranting further investigation into potential sources and health implications.
Collapse
Affiliation(s)
- M. K. Dziobak
- Environmental and Sustainability Studies Graduate ProgramCollege of CharlestonCharlestonSCUSA
| | - R. S. Wells
- Chicago Zoological Society’s Sarasota Dolphin Research Programc/o Mote Marine LaboratorySarasotaFLUSA
| | - E. C. Pisarski
- CSS Inc., (Under Contract to NOAA/NOS/NCCOS)CharlestonSCUSA
| | - E. F. Wirth
- National Oceanic and Atmospheric AdministrationNational Ocean ServiceNational Centers for Coastal Ocean ScienceCharlestonSCUSA
| | - L. B. Hart
- Department of Health and Human PerformanceCollege of CharlestonCharlestonSCUSA
| |
Collapse
|
39
|
Shi Q, Tang J, Wang L, Liu R, Giesy JP. Combined cytotoxicity of polystyrene nanoplastics and phthalate esters on human lung epithelial A549 cells and its mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112041. [PMID: 33601174 DOI: 10.1016/j.ecoenv.2021.112041] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 05/06/2023]
Abstract
Awareness of risks posed by widespread presence of nanoplastics (NPs) and bioavailability and potential to interact with organic pollutants has been increasing. Inhalation is one of the more important pathways of exposure of humans to NPs. In this study, combined toxicity of concentrations of polystyrene NPs and various phthalate esters (PAEs), some of the most common plasticizers, including dibutyl phthalate (DBP) and di-(2-ethyl hexyl) phthalate (DEHP) on human lung epithelial A549 cells were investigated. When co-exposed, 20 μg NPs/mL increased viabilities of cells exposed to either DBP or DEHP and the modulation of toxic potency of DEHP was greater than that of DBP, while the 200 μg NPs/mL resulted in lesser viability of cells. PAEs sorbed to NPs decreased free phase concentrations (Cfree) of PAEs, which resulted in a corresponding lesser bioavailability and joint toxicity at the lesser concentration of NPs. The opposite effect was observed at the greater concentration of NPs, which may result from the dominated role of NPs in the combined toxicity. Furthermore, our data showed that oxidative stress and inflammatory reactions were mechanisms for combined cytotoxicities of PAEs and NPs on A549 cells. Results of this study emphasized the combined toxic effects and mechanisms on human lung cells, which are helpful for assessing the risk of the co-exposure of NPs and organic contaminants in humans.
Collapse
Affiliation(s)
- Qingying Shi
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Lan Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, China
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada; Dept. Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; Dept. Environmental Sciences, Baylor University, Waco, TX 76798-7266, USA
| |
Collapse
|
40
|
Gani KM, Hlongwa N, Abunama T, Kumari S, Bux F. Emerging contaminants in South African water environment- a critical review of their occurrence, sources and ecotoxicological risks. CHEMOSPHERE 2021; 269:128737. [PMID: 33153841 DOI: 10.1016/j.chemosphere.2020.128737] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
The release of emerging contaminants (ECs) to the environment is a serious concern due to its health implications on humans, aquatic species, and the development of anti-microbial resistance. This review focuses on the critical analysis of available literature on the prevalence of ECs in the aquatic environment and their removal from wastewater treatment plants (WWTPs) in South Africa. Besides, a risk assessment is performed on the reported ECs from the South African surface water to augment the knowledge towards mitigation of EC pollution, and prioritisation of ECs to assist future monitoring plans and regulation framework. A zone wise classification approach was carried out to identify the spatial inferences and data deficiencies that revealed a non-uniformity in the monitoring of ECs throughout South Africa, with few zones rendering no data. The overarching data mining further revealed that unmanaged urine diverted toilets could be a potential source of EC pollution to groundwater in South Africa. Based on the available literature, it can be deduced that the complete adoption of EC management practices from developed countries might only contribute partly in the mitigation of EC pollution in South Africa. Therefore, an EC monitoring programme specific to the country is recommended which should be based on their occurrence levels, sources and removal in WWTPs.
Collapse
Affiliation(s)
- Khalid Muzamil Gani
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Nhlanhla Hlongwa
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa; Department of Chemistry, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Taher Abunama
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
41
|
Deng Y, Yan Z, Shen R, Huang Y, Ren H, Zhang Y. Enhanced reproductive toxicities induced by phthalates contaminated microplastics in male mice (Mus musculus). JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124644. [PMID: 33321324 DOI: 10.1016/j.jhazmat.2020.124644] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
It has been demonstrated that microplastics (MPs) can transport phthalate esters (PAEs) into the tissues of mice. However, the influence of MPs on accumulation of PAEs and the combined toxicity need profound investigation. In this study, the bioaccumulation of PAEs and reproductive toxicity due to contaminated MPs exposure were investigated. After exposure to PAE-contaminated MPs for 30 days, significantly increased accumulation of PAE was observed in the liver and gut but not in the testis, which are ascribed to the distribution of MPs in tissues. Herein, most micro-size MPs accumulated in the gut and liver, while only a few nano-size MPs entered the Sertoli cells. Compared with virgin MPs and PAEs alone, PAE-contaminated MPs induced enhanced reproductive toxicities manifested by greater alterations in sperm physiology and spermatogenesis. The enhanced toxicities were also confirmed by the testicular transcriptomic alterations and aggravated oxidative stress induced by PAE-contaminated MPs. These aggravated reproductive toxicities were not caused solely by PAE, but may also be caused by the sensitization effect of oxidative stress induced by MPs. Our results highlight the potential reproductive toxicity on male terrestrial mammals due to co-exposure of MPs and plastic additives and provide valuable insights into the mechanism of combined toxicity of MPs and other pollutants.
Collapse
Affiliation(s)
- Yongfeng Deng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zehua Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ruqin Shen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yichao Huang
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong 510632, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
42
|
Takdastan A, Niari MH, Babaei A, Dobaradaran S, Jorfi S, Ahmadi M. Occurrence and distribution of microplastic particles and the concentration of Di 2-ethyl hexyl phthalate (DEHP) in microplastics and wastewater in the wastewater treatment plant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111851. [PMID: 33360551 DOI: 10.1016/j.jenvman.2020.111851] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/06/2020] [Accepted: 12/12/2020] [Indexed: 05/22/2023]
Abstract
Wastewater treatment plant (WWTP) is one of the significant sources of Microplastics (MPs) release to the environment. Di 2-ethyl hexyl phthalate (DEHP) is used as an additive for more flexibility of plastics. In this study, we determined the number, size, shape, and color distribution of MPs as well as the concentration of DEHP in MPs and wastewater during the wastewater treatment process in WWTP. Samples were collected from 4 stations of different treatment stages of WWTP. The microplastic particles and the concentration of DEHP were detected via the fluorescence and polarized light microscopy and GC/MS instrument, respectively. The number of MPs decreased from 9.2 (station 1) to 0.84 MP/L (the final treated effluent) during the wastewater treatment process. Also, the size of MPs at the last station was smaller than the other stations. The mean concentrations of DEHP in MPs in stations 1, 2, 3 and 4 had the respective values of 83.3, 61.05, 30.62 and 17.49 μg/g, while the mean concentrations of DEHP in wastewater in stations 1, 2, 3 and 4 were 30.08, 25.07, 9.56, and 8.13 μg/L, respectively. This study shows that despite the removal of high amounts of MPs and DEHP in the final effluent of WWTP, due to the high volume of this effluent (2.828 × 108 L/d), significant amount of MPs (2.419 × 107 MP/day) and DEHP enter the aquatic environment daily, which may threaten the health of the fish and aquatic organisms and ultimately on the health of the local population.
Collapse
Affiliation(s)
- Afshin Takdastan
- Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Hazrati Niari
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Aliakbar Babaei
- Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran; The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sahand Jorfi
- Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Ahmadi
- Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
43
|
Santana-Mayor Á, Socas-Rodríguez B, Rodríguez-Ramos R, Herrera-Herrera AV, Rodríguez-Delgado MÁ. Quality assessment of environmental water by a simple and fast non-ionic hydrophobic natural deep eutectic solvent-based extraction procedure combined with liquid chromatography tandem mass spectrometry for the determination of plastic migrants. Anal Bioanal Chem 2021; 413:1967-1981. [PMID: 33534021 PMCID: PMC7856334 DOI: 10.1007/s00216-021-03166-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/22/2020] [Accepted: 01/07/2021] [Indexed: 02/01/2023]
Abstract
A non-ionic hydrophobic natural deep eutectic solvent (HNADES) based on thymol and menthol was proposed for the liquid-liquid microextraction of fourteen phthalates and one adipate from environmental water samples. Separation, identification, and quantification were achieved by ultra-high-performance liquid chromatography coupled to tandem mass spectrometry. The main factors affecting the extraction efficiency were thoroughly studied. Sample pH of 8 and 100 μL of thymol:menthol at molar ratio 2:1 were selected as the best conditions, while ionic strength and type of dispersant solvent were not relevant for the extraction of the target compounds. The whole methodology was validated for treated wastewater, runoff, and pond water matrices, using di-n-butyl phthalate-3,4,5,6-d4 and dihexyl phthalate-3,4,5,6-d4 as surrogates. Recovery ranged from 70 to 127% with relative standard deviation values lower than 14%. Limits of quantification of the method were in the range 0.042-0.425 μg/L for treated wastewater, 0.015-0.386 μg/L for runoff, and 0.013-0.376 μg/L for pond water. The methodology was applied for the analysis of real treated wastewater, runoff, and pond water samples from different places of Tenerife and Gran Canaria (Canary Islands) finding the presence of diethyl phthalate, diallyl phthalate, dipropyl phthalate, benzylbutyl phthalate, di-n-butyl phthalate, bis-(2-n-butoxyethyl) phthalate, di-n-pentyl phthalate, dicyclohexyl phthalate, and bis-(2-ethylhexyl) phthalate at concentrations between 105.2 and 3414 ng/L.
Collapse
Affiliation(s)
- Álvaro Santana-Mayor
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain
| | - Bárbara Socas-Rodríguez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049, Madrid, Spain.
| | - Ruth Rodríguez-Ramos
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain
| | - Antonio V Herrera-Herrera
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, 2, 38206, San Cristóbal de La Laguna, Spain
| | - Miguel Ángel Rodríguez-Delgado
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain.
| |
Collapse
|
44
|
Pang X, Skillen N, Gunaratne N, Rooney DW, Robertson PKJ. Removal of phthalates from aqueous solution by semiconductor photocatalysis: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123461. [PMID: 32688192 DOI: 10.1016/j.jhazmat.2020.123461] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
While phthalate esters are commonly used as plasticizers to improve the flexibility and workability of polymeric materials, their presence and detection in various environments has become a significant concern. Phthalate esters are known to have endocrine-disrupting effects, which affects reproductive health and physical development. As a result, there is now increased focus and urgency to develop effective and energy efficient technologies capable of removing these harmful compounds from the environment. This review explores the use of semiconductor photocatalysis as an efficient and promising solution towards achieving removal and degradation of phthalate esters. A comprehensive review of photocatalysts reported in the literature demonstrates the range of materials including commercial TiO2, solar activated catalysts and composite materials capable of enhancing adsorption and degradation. The degradation pathways and kinetics are also considered to provide the reader with an insight into the photocatalytic mechanism of removal. In addition, through the use of two key platforms (the technology readiness level scale and electrical energy per order), the crucial parameters associated with advancing photocatalysis for phthalate ester removal are discussed. These include enhanced surface interaction, catalyst platform development, improved light delivery systems and overall system energy requirements with a view towards pilot scale and industrial deployment.
Collapse
Affiliation(s)
- Xinzhu Pang
- School of Chemistry and Chemical Engineering, Queens University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK
| | - Nathan Skillen
- School of Chemistry and Chemical Engineering, Queens University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK.
| | - Nimal Gunaratne
- School of Chemistry and Chemical Engineering, Queens University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK
| | - David W Rooney
- School of Chemistry and Chemical Engineering, Queens University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK
| | - Peter K J Robertson
- School of Chemistry and Chemical Engineering, Queens University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK.
| |
Collapse
|
45
|
Kotowska U, Kapelewska J, Sawczuk R. Occurrence, removal, and environmental risk of phthalates in wastewaters, landfill leachates, and groundwater in Poland. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115643. [PMID: 33254702 DOI: 10.1016/j.envpol.2020.115643] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 06/12/2023]
Abstract
Phthalates or phthalic acid esters (PAEs) are chemical compounds whose use is exceptionally widespread in everyday materials but, at the same time, have been proven to have harmful effects on living organisms. Effluents from municipal wastewater treatment plants (WWTP) and leachates from municipal solid waste (MSW) landfills are important sources of phthalates with respect to naturally occurring waters. The main aim of this research was determination, mass loads, removal rates and ecological risk assessment of eight phthalates in municipal wastewaters, landfill leachates and groundwater from Polish WWTPs and MSW landfills. Solid-phase microextraction and gas chromatography with mass spectrometry were used for the extraction and determination of analytes. Summed up concentrations of eight phthalates ranged from below LOD to 596 μg/L in influent wastewater with the highest concentration found for bis-2-ethylhexyl phthalate (DEHP) (143 μg/L). The average degree of phthalate removal varies depending on the capacity of a given treatment plant with larger treatment plants coping better than smaller ones. The highest treatment efficiency for all tested treatment plants, over 90%, was reported for dimethyl phthalate (DMP) and diethyl phthalate (DEP). Overall concentrations of phthalates in leachates ranged from below LOD to 303 μg/L while the highest maximum concentration was registered for DEHP (249 μg/L). Overall concentrations of phthalic acid esters in groundwater from upstream monitoring wells ranged from below LOD to 1.8 μg/L and from LOD to 27.9 μg/L in samples from wells downstream of MSW landfills. The obtained data shows that diisobutyl phthalate (DIBP), dibutyl phthalate (DBP), DEHP, and diisononyl phthalate (DINP) pose a high risk for all trophic levels being considered in effluent wastewaters. In the case of groundwater high environmental risk was recorded for DBP and DEHP for all tested trophic levels. Phthalates, in concentrations that pose a high environmental risk, are present in Polish municipal after-treatment wastewater as well as in groundwater under municipal solid waste landfills.
Collapse
Affiliation(s)
- Urszula Kotowska
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1K Street, 15-245, Bialystok, Poland.
| | - Justyna Kapelewska
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1K Street, 15-245, Bialystok, Poland
| | - Róża Sawczuk
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1K Street, 15-245, Bialystok, Poland
| |
Collapse
|
46
|
Zhang Q, Hao LC, Hong Y. Exposure evaluation of diisononyl phthalate in the adults of Drosophila melanogaster: Potential risks in fertility, lifespan, behavior, and modes of action. Comp Biochem Physiol C Toxicol Pharmacol 2020; 238:108847. [PMID: 32781294 DOI: 10.1016/j.cbpc.2020.108847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 11/19/2022]
Abstract
Diisononyl phthalate (DINP) as a phthalate plasticizer is widely used in daily life and production, which shows endocrine disruption effects and has several adverse effects on the normal physiological function. Here, the effects of DINP (0.1%, 0.2%, 0.5%, and 1.0%) (v/v) on the fertility, lifespan, climbing behavior, anti-starvation ability of Drosophila melanogaster and the potential modes of action were investigated. The results showed that DINP impaired fertility in a dose-dependent manner and smaller ovarian volume, lower hatching rate, and fewer offspring was observed at higher concentrations. The effect of DINP on the lifespan showed gender-specific, and mortality was increased after exposure above 0.2% DINP. The climbing ability increased at 0.1% DINP compared with the vehicle group, while it manifested a dose-dependent decrease at higher concentrations. The anti-starvation ability exhibited hormesis after short-term culture and reduced as culture time extending. By measuring the redox status (catalase (CAT) and reactive oxygen species (ROS)) of adult flies after two exposure methods, it was found that DINP induced redox instability, which may explain the above effects at the molecular level. This study provides data to support a comprehensive analysis of DINP potential toxicity and to guide its rational use and management better.
Collapse
Affiliation(s)
- Qing Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Li-Chong Hao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yu Hong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
47
|
Kingsley O, Witthayawirasak B. Deterministic Assessment of the Risk of Phthalate Esters in Sediments of U-Tapao Canal, Southern Thailand. TOXICS 2020; 8:E93. [PMID: 33114562 PMCID: PMC7712367 DOI: 10.3390/toxics8040093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/10/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022]
Abstract
This baseline study evaluated the ecological risk associated with the concentration of six common Phthalate esters (PAEs) in sediment samples collected from the U-Tapao canal in Southern Thailand. Deterministic approaches consisting of standard sediment quality guidelines (SQGs) and Risk quotient (RQ) were used to evaluate the potential ecological risk of individuals and a mixture of Phthalate esters (PAEs) detected in sediment samples. Of the 6 PAEs measured, only three, including di-n-butyl phthalate (DBP), di-2-ethyl hexyl phthalate (DEHP) and di-isononyl phthalate (DiNP), were identified and quantified. The total concentration of the 3 PAEs congeners found in the sediment samples ranged from 190 to 2010 ng/g dw. The results from the SQGs and RQ were not consistent with each other. The SQGs results for individual PAEs showed that DEHP and DBP found in sediment was estimated to cause moderate risk on benthic organisms, DiNP was not estimated due to lack of SQGs data. However, the RQ method indicated a low risk of DEHP and DBP on algae, crustacean and fish, whereas DiNP poses no risk on crustacean. Furthermore, based on the result obtained in this study, the consensus SQGs for mixture effects prove to be a more protective tool than the RQ concentration addition approach in predicting mixture effects. Despite inevitable uncertainties, the integration of several screening approaches of ecological risk assessment (ERA) can help get a more inclusive and credible result of the first tier of individuals and a mixture of these pollutants.
Collapse
Affiliation(s)
- Okpara Kingsley
- Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
- Research Program of Municipal Solid Waste and Hazardous Waste Management, Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand
| | - Banchong Witthayawirasak
- Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
- Research Program of Municipal Solid Waste and Hazardous Waste Management, Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand
| |
Collapse
|
48
|
Hart LB, Dziobak MK, Pisarski EC, Wirth EF, Wells RS. Sentinels of synthetics - a comparison of phthalate exposure between common bottlenose dolphins (Tursiops truncatus) and human reference populations. PLoS One 2020; 15:e0240506. [PMID: 33057361 PMCID: PMC7561143 DOI: 10.1371/journal.pone.0240506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/29/2020] [Indexed: 11/26/2022] Open
Abstract
Phthalates are chemical esters used as additives in common consumer goods, such as plastics, household cleaners, and personal care products. Phthalates are not chemically bound to the items to which they are added and can easily leach into the surrounding environment. Anthropogenic drivers, such as coastal plastic pollution and wastewater runoff, increase the exposure potential for coastal marine fauna. Phthalate exposure in free-ranging bottlenose dolphins has been the focus of recent study, with indications of heightened exposure to certain phthalate compounds. The objective of this study was to compare urinary phthalate metabolite concentrations among bottlenose dolphins (Tursiops truncatus) sampled in Sarasota Bay, FL, to levels reported in human samples collected as part of the Centers for Disease Control and Prevention's (CDC) National Health and Nutrition Examination Survey (NHANES). Monoethyl phthalate (MEP) and mono-(2-ethylhexyl) phthalate (MEHP) were the most prevalent metabolites detected in dolphin urine (n = 51; MEP = 29.41%; MEHP = 54.90%). The geometric mean (GM) concentration of MEP was significantly lower for dolphins (GM = 4.51 ng/mL; 95% CI: 2.77-7.34 ng/mL) compared to humans (p<0.05), while dolphin concentrations of MEHP (GM = 4.57 ng/mL; 95% CI: 2.37-8.80 ng/mL) were significantly higher than levels reported in NHANES (p<0.05). Health impacts to bottlenose dolphins resulting from elevated exposure to the MEHP parent compound (diethyl-2-ethylhexyl phthalate, DEHP) are currently unknown. However, given the evidence of endocrine disruption, reproductive impairment, and abnormal development in humans, pursuing investigations of potential health effects in exposed bottlenose dolphins would be warranted.
Collapse
Affiliation(s)
- Leslie B. Hart
- Department of Health and Human Performance, College of Charleston, Charleston, SC, United States of America
| | - Miranda K. Dziobak
- Environmental and Sustainability Studies Graduate Program, College of Charleston, Charleston, SC, United States of America
| | - Emily C. Pisarski
- CSS Inc., NOAA NCCOS Charleston Lab, Charleston, SC, United States of America
| | - Edward F. Wirth
- National Oceanic and Atmospheric Administration, NOAA NCCOS Charleston Lab, Charleston, SC, United States of America
| | - Randall S. Wells
- Chicago Zoological Society’s Sarasota Dolphin Research Program, c/o Mote Marine Laboratory, Sarasota, FL, United States of America
| |
Collapse
|
49
|
Deng Y, Yan Z, Shen R, Wang M, Huang Y, Ren H, Zhang Y, Lemos B. Microplastics release phthalate esters and cause aggravated adverse effects in the mouse gut. ENVIRONMENT INTERNATIONAL 2020; 143:105916. [PMID: 32615348 DOI: 10.1016/j.envint.2020.105916] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 05/21/2023]
Abstract
Increasing evidence shows that microplastics (MPs) have the potential to act as carriers and transport contaminants into organisms, as well as induce serious health risks. Here we endeavored to address for the first time whether MPs could transport and release phthalate esters (PAEs) into mouse gut and the consequential toxic effects. As a result, MPs could adsorb PAEs, transport PAEs into the gut and cause intestinal accumulation. The accumulation of PAE in the gut followed the order of DEHP > DBP > DEP > DMP, which was the same order for the adsorption of PAEs on MPs. After exposed to DEHP-contaminated MPs for 30 days, significantly increased intestinal permeability and enhanced intestinal inflammation were induced compared with individual MPs and DEHP according to biochemical and histological analysis. Transcriptomic analysis found that 703 genes were differentially regulated and these genes are involved in oxidative stress, immune response, lipid metabolism, and hormone metabolism. Moreover, gut microbiota analysis found that the combined exposure of MPs and DEHP also caused alterations in gut microbiota composition, especially some energy metabolism and immune function related bacteria were significantly changed in the relative abundance. The aggravated effects on intestinal inflammation and metabolic disorders caused by DEHP-contaminated MPs may attribute to increased DEHP accumulation, changed exposure pathway, and shared toxic mechanisms. Our results provide valuable information for the health risk of MPs and plastic additives.
Collapse
Affiliation(s)
- Yongfeng Deng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zehua Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ruqin Shen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Meng Wang
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Yichao Huang
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong 510632, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Bernardo Lemos
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
50
|
Park CB, Kim GE, Kim YJ, On J, Park CG, Kwon YS, Pyo H, Yeom DH, Cho SH. Reproductive dysfunction linked to alteration of endocrine activities in zebrafish exposed to mono-(2-ethylhexyl) phthalate (MEHP). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114362. [PMID: 32806436 DOI: 10.1016/j.envpol.2020.114362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/27/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to investigate the effect of mono-(2-ethylhexyl) phthalate (MEHP), one of the major phthalate metabolites that are widespread in aquatic environments, on reproductive dysfunction, particularly on endocrine activity in adult male and female zebrafish. For 21 days, the zebrafish were exposed to test concentrations of MEHP (0, 2, 10, and 50 μg/mL) that were determined based on the effective concentrations (ECx) for zebrafish embryos. Exposure to 50 μg/mL MEHP in female zebrafish significantly decreased the number of ovulated eggs as well as the hepatic VTG mRNA abundance when those of the control group. Meanwhile, in female zebrafish, the biosynthetic concentrations of 17β-estradiol (E2) and the metabolic ratio of androgen to estrogen were remarkably increased in all MEHP exposed group compared with those in the control group, along with the elevated levels of cortisol. However, no significant difference was observed between these parameters in male zebrafishes. Therefore, exposure to MEHP causes reproductive dysfunction in female zebrafishes and this phenomenon can be attributed to the alteration in endocrine activities. Moreover, the reproductive dysfunction in MEHP-exposed female zebrafishes may be closely associated with stress responses, such as elevated cortisol levels. To further understand the effect of MEHP on the reproductive activities of fish, follow-up studies are required to determine the interactions between endocrine activities and stress responses. Overall, this study provides a response biomarker for assessing reproductive toxicity of endocrine disruptors that can serve as a methodological approach for an alternative to chronic toxicity testing.
Collapse
Affiliation(s)
- Chang-Beom Park
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology (KIT), Gyeonsangnam-do, 52834, Republic of Korea
| | - Go-Eun Kim
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology (KIT), Gyeonsangnam-do, 52834, Republic of Korea
| | - Young Jun Kim
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrücken, 661c23, Germany
| | - Jiwon On
- Department of Chemistry, Korea University, Seoul, 02792, Republic of Korea; Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Chang-Gyun Park
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrücken, 661c23, Germany
| | - Young-Sang Kwon
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology (KIT), Gyeonsangnam-do, 52834, Republic of Korea
| | - Heesoo Pyo
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Dong-Huk Yeom
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology (KIT), Gyeonsangnam-do, 52834, Republic of Korea
| | - Sung-Hee Cho
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea.
| |
Collapse
|