1
|
Esteves AM, Alves R, Rocha E, Rocha MJ. PCBs contamination in water and Mytilus edulis along the north Portuguese Atlantic Ocean coastline and analysis of potential carcinogenic risk to human health. MARINE POLLUTION BULLETIN 2024; 207:116823. [PMID: 39226820 DOI: 10.1016/j.marpolbul.2024.116823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 08/03/2024] [Indexed: 09/05/2024]
Abstract
Seven seawater polychlorinated biphenyls (PCBs) were measured in water (DAP), suspended particulate matter (SPM), and blue mussels (Mytilus edulis) collected from four beaches in northwest Portugal. PCBs were extracted using solid-phase-extraction, ultrasound-extraction and QuEChERS before GC-MS analysis. The two-year annual average concentrations of PCBs in DAP, SPM and the four-year analysis in mussels were ∼ 4.4 ng/L, ∼15.9 μg/kg, and ∼ 56.0 μg/kg. The results suggest higher concentrations of PCBs in summer for SPM and in spring for mussels, mainly those collected close to the Ave River estuary. The origins of PCBs remain uncertain. Risk assessment shows that PCBs in water are unlikely to harm local biota due to their low thyroid hormone toxicity equivalents (TEQ-TH; ∼1.4E-04 ng/L and ∼ 4.1E-04 μg/kg) and on WHO toxicity equivalents (TEQ-WHO; ∼2.1E-05 ng/L and ∼ 4.9E-05 μg/kg). However, the lifetime carcinogenic risk (LCR) for humans consuming local bivalves is concerning, as it exceeds 1.0E-06.
Collapse
Affiliation(s)
- Ana Margarida Esteves
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - School of Medicine and Biomedical Sciences, U.Porto - University of Porto, Portugal; Animal Morphology and Toxicology Team, CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, U.Porto - University of Porto, Portugal
| | - Rodrigo Alves
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - School of Medicine and Biomedical Sciences, U.Porto - University of Porto, Portugal; Animal Morphology and Toxicology Team, CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, U.Porto - University of Porto, Portugal
| | - Eduardo Rocha
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - School of Medicine and Biomedical Sciences, U.Porto - University of Porto, Portugal; Animal Morphology and Toxicology Team, CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, U.Porto - University of Porto, Portugal.
| | - Maria João Rocha
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - School of Medicine and Biomedical Sciences, U.Porto - University of Porto, Portugal; Animal Morphology and Toxicology Team, CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, U.Porto - University of Porto, Portugal.
| |
Collapse
|
2
|
Heo H, Park MK, Cho IG, Kim J, Shin ES, Chang YS, Choi SD. Assessment of polychlorinated naphthalenes in Korean foods: Levels, profiles, and dietary intake. Food Chem 2024; 451:139498. [PMID: 38703730 DOI: 10.1016/j.foodchem.2024.139498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
Concerns about dioxin-like compounds have increased; however, the monitoring of polychlorinated naphthalenes (PCNs) in food and the assessment of dietary intake remain limited. In this study, various foods were collected from Korean markets and analyzed for PCNs. Fishery products exhibited the highest mean concentration (48.0 pg/g ww) and toxic equivalent (TEQ) (0.0185 pg-TEQ/g ww). Agricultural products were the largest contributors (35.7%) to the total dietary intake of PCNTEQ, followed by livestock products (33.6%), fishery products (20.2%), and processed foods (10.5%). The mean intake of PCNTEQ for the Korean population was 0.901 pg-TEQ/day for males and 0.601 pg-TEQ/day for females. Generally, males and younger groups had higher daily intakes of PCNTEQ, but they did not exceed the tolerable weekly intakes. Nonetheless, it is important to manage potential health risks associated with PCNs and other dioxin-like compounds by identifying major food items contributing to PCN exposure and considering age and gender differences.
Collapse
Affiliation(s)
- Hyeji Heo
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Min-Kyu Park
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - In-Gyu Cho
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jongchul Kim
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eun-Su Shin
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yoon-Seok Chang
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sung-Deuk Choi
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
3
|
Yang X, Huang L, Zhang L, Zhu L, Cheng Y, Wang C, Kang B, Zhao S, Yang Y. Distribution and biomagnification of Hexabromocyclododecanes (HBCDs) in edible marine fish in the Beibu Gulf, China: Implication for seafood dietary risk. MARINE POLLUTION BULLETIN 2024; 206:116737. [PMID: 39053263 DOI: 10.1016/j.marpolbul.2024.116737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/05/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
Hexabromocyclododecanes (HBCDs) are legacy additive brominated flame retardant. In present study, the distribution, biomagnification and potential human health risk associated with HBCDs were investigated in six edible marine fish species collected from three bays in the Beibu Gulf, China, between March and October 2021. The concentration of HBCDs ranged from 0.05 to 200 ng/g lipid weight (lw), with Scoliodon laticaudus and Trichiurus nanhaiensis having the highest and lowest concentration, respectively. The α-HBCD was dominant in most studied fish, expect for Scoliodon laticaudus. Dietary source was the primary factor for the diastereomeric profiles of HBCDs in fish. Only γ-HBCD demonstrated trophic magnification in the studied fish species. Finally, the estimated daily intake (EDI) was 0.18 ng/kg/day for adults, 0.17 ng/kg/day for teenager and children, and all corresponding margin of exposure (MOE) values were lager than 8 indicating relatively low human exposure risks from fish consumption.
Collapse
Affiliation(s)
- Xi Yang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Liangliang Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, Guangxi 541004, China.
| | - Li Zhang
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, Guangxi 536009, China
| | - Liang Zhu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yanan Cheng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Caiguang Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Bin Kang
- College of Fisheries, Ocean University of China, Qingdao, Shandong 266100, China
| | - Shuwen Zhao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yiheng Yang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
4
|
Okeke ES, Nwankwo CE, Ezeorba TPC, Iloh VC, Enochoghene AE. Occurrence and ecotoxicological impacts of polybrominated diphenyl ethers (PBDEs) in electronic waste (e-waste) in Africa: Options for sustainable and eco-friendly management strategies. Toxicology 2024; 506:153848. [PMID: 38825032 DOI: 10.1016/j.tox.2024.153848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) are persistent contaminants used as flame retardants in electronic products. PBDEs are contaminants of concern due to leaching and recalcitrance conferred by the stable and hydrophobic bromide residues. The near absence of legislatures and conscious initiatives to tackle the challenges of PBDEs in Africa has allowed for the indiscriminate use and consequent environmental degradation. Presently, the incidence, ecotoxicity, and remediation of PBDEs in Africa are poorly elucidated. Here, we present a position on the level of contamination, ecotoxicity, and management strategies for PBDEs with regard to Africa. Our review shows that Africa is inundated with PBDEs from the proliferation of e-waste due to factors like the increasing growth in the IT sector worsened by the procurement of second-hand gadgets. An evaluation of the fate of PBDEs in the African environment reveals that the environment is adequately contaminated, although reported in only a few countries like Nigeria and Ghana. Ultrasound-assisted extraction, microwave-assisted extraction, and Soxhlet extraction coupled with specific chromatographic techniques are used in the detection and quantification of PBDEs. Enormous exposure pathways in humans were highlighted with health implications. In terms of the removal of PBDEs, we found a gap in efforts in this direction, as not much success has been reported in Africa. However, we outline eco-friendly methods used elsewhere, including microbial degradation, zerovalent iron, supercritical fluid, and reduce, reuse, recycle, and recovery methods. The need for Africa to make and implement legislatures against PBDEs holds the key to reduced effect on the continent.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China; Department of Biochemistry, Faculty of Biological Science, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; College of Medicine and Veterinary Medicine, Deanery of Molecular, Genetic and Population Health Sciences, University of Edinburgh, United Kingdom.
| | - Chidiebele Emmanuel Nwankwo
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Department of Microbiology, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China
| | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Science, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Department of Environmental Health and Risk Management, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Veronica Chisom Iloh
- School of Pharmacy and Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | | |
Collapse
|
5
|
Pitt S, Kałuża J, Widenfalk A, Åkesson A, Wolk A. Adherence to the EAT-Lancet diet in relation to mortality and exposure to food contaminants in population-based cohorts of Swedish men and women. ENVIRONMENT INTERNATIONAL 2024; 184:108495. [PMID: 38354461 DOI: 10.1016/j.envint.2024.108495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND The EAT-Lancet diet was created to support dietary transition towards sustainable diets. Current evidence indicates that adherence to the EAT-Lancet diet may reduce mortality risk, yet how adherence may impact dietary exposure to food contaminants remains unexplored. We aimed to estimate the association between adherence to the EAT-Lancet diet and i) all-cause, cardiovascular-, and cancer-mortality and ii) predicted dietary exposure to the following food contaminants: cadmium, methylmercury, polychlorinated biphenyls (PCBs), and pesticide residues. METHODS We used self-reported dietary data from a 96-item food frequency questionnaire of two population-based cohorts - the Cohort of Swedish Men (n = 35,687) and the Swedish Mammography Cohort (n = 32,488). The EAT-Lancet Adherence Index (EAI) was created by scoring consumption of the 14 dietary components included in the EAT-Lancet diet (totalling 0-14 points). Cox proportional hazards regression models were applied to assess the association between EAI and mortality outcomes, presented as multivariable-adjusted hazard ratios (HR) and 95 % confidence intervals (CI). Descriptive statistics were used to characterise predicted exposure to food contaminants, and the correlations between EAI and food contaminants assessed using Spearman's rank correlation. RESULTS Increased adherence to the EAT-Lancet diet was associated with a lower risk of all-cause mortality (per 3-point increase in EAI: HR = 0.93; CI:0.90,0.97 and HR = 0.91; CI:0.87,0.95 for men and women, respectively) and cardiovascular-mortality (corresponding HR = 0.94; CI:0.88,1.00 and HR = 0.93; CI:0.87,1.00). No clear association was found with cancer-mortality. Increasing EAI was correlated with increased predicted dietary exposure to cadmium, methylmercury, PCBs, and pesticide residues and their median predicted dietary exposures were greater in the high adherence group, compared to the low adherence group. CONCLUSION High adherence to the EAT-Lancet diet is associated with a reduction in risk of all-cause and cardiovascular-mortality, but also increased dietary exposure to food contaminants.
Collapse
Affiliation(s)
- Stephanie Pitt
- Institute of Environmental Medicine, Karolinska Institutet, 17 177 Stockholm, Sweden.
| | - Joanna Kałuża
- Institute of Environmental Medicine, Karolinska Institutet, 17 177 Stockholm, Sweden; Department of Human Nutrition, Warsaw University of Life Sciences-SGGW, 02-787 Warsaw, Poland
| | - Anneli Widenfalk
- Swedish Food Agency, Livsmedelsverket, Box 622, 751 26 Uppsala, Sweden
| | - Agneta Åkesson
- Institute of Environmental Medicine, Karolinska Institutet, 17 177 Stockholm, Sweden
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, 17 177 Stockholm, Sweden
| |
Collapse
|
6
|
Sunya S, Yenuthok A, Paengphua P, Sangsuay S. Estimation of dietary intake of polychlorinated dibenzo-p-dioxins and dibenzofurans and dioxin-like polychlorinated biphenyls from the Thai total diet study in 2019. Food Chem Toxicol 2023; 182:114154. [PMID: 37898235 DOI: 10.1016/j.fct.2023.114154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Dietary intakes of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) were assessed in the Thai Total Diet Study (TDS) in 2019. Food samples including portable water (n = 1048) were collected from four regions of Thailand to represent a whole diet of Thai population, prepared as consumed and analyzed. To estimate the dietary intakes of PCDD/Fs and DL-PCBs, the concentrations in 18 food groups were combined with the respective food consumption from the national consumption data of Thailand and with a mean body weight of 57.57 kg for Thai population aged ≥ 3 years. The dietary intakes of PCDD/Fs, DL-PCBs and ∑PCDD/Fs/DL-PCBs were estimated to be 8.09, 4.93 and 13.02 pg WHO2005-TEQ kg-1 body weight month-1, respectively (upper bound). The major contributors to the total dietary intake were marine animals, followed by milk and milk products, freshwater animals, pork and pork products, and eggs, corresponding to 26, 22, 21, 10 and 9%, respectively. In comparison to health-based guidance value (HBGV), the intake of ∑PCDD/Fs/DL-PCBs (upper bound) was equal to 19% of the provisional tolerable monthly intake set by JECFA in 2001. Moreover, a comparison with other HBGVs was additionally presented and discussed.
Collapse
Affiliation(s)
- Sirichai Sunya
- Bureau of Quality and Safety of Food, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, 11000, Thailand.
| | - Aekgphoonnada Yenuthok
- Bureau of Quality and Safety of Food, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Piyawat Paengphua
- Bureau of Quality and Safety of Food, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Supat Sangsuay
- Bureau of Quality and Safety of Food, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, 11000, Thailand
| |
Collapse
|
7
|
Pineda S, Lignell S, Gyllenhammar I, Lampa E, Benskin JP, Lundh T, Lindh C, Kiviranta H, Glynn A. Exposure of Swedish adolescents to elements, persistent organic pollutants (POPs), and rapidly excreted substances - The Riksmaten adolescents 2016-17 national survey. Int J Hyg Environ Health 2023; 251:114196. [PMID: 37279611 DOI: 10.1016/j.ijheh.2023.114196] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023]
Abstract
Adolescence is a period of significant physiological changes, and likely a sensitive window to chemical exposure. Few nation-wide population-based studies of chemical body burdens in adolescents have been published. In the national dietary survey Riksmaten Adolescents (RMA) 2016-17, over 13 chemical substance groups, including elements, chlorinated/brominated/fluorinated persistent organic pollutants (POPs) were analysed in blood, and in urine metabolites of phthalates/phthalate alternatives, phosphorous flame retardants, polycyclic aromatic hydrocarbons (PAHs), and pesticides, along with bisphenols and biocide/preservative/antioxidant/UV filter substances (N = 1082, ages 11-21). The aim was to characterize the body burdens in a representative population of adolescents in Sweden, and to compare results with human biomonitoring guidance values (HBM-GVs). Cluster analyses and Spearman's rank order correlations suggested that concentrations of substances with known common exposure sources and similar toxicokinetics formed obvious clusters and showed moderate to very strong correlations (r ≥ 0.4). No clusters were formed between substances from different matrices. Geometric mean (GM) concentrations of the substances were generally less than 3-fold different from those observed among adolescents in NHANES (USA 2015-16) and GerES V (Germany 2014-17). Notable exceptions were brominated diphenyl ethers (PBDEs) with >20-fold lower GM concentrations, and the biocide triclosan and ultraviolet (UV) filter benzophenone-3 with >15-fold lower mean concentrations in RMA compared to NHANES. Exceedance of the most conservative HBM-GVs were observed for aluminium (Al, 26% of subjects), perfluorooctanesulfonic acid (PFOS, 19%), perfluorooctanoic acid (PFOA, 12%), lead (Pb, 12%), MBP (dibutyl phthalate metabolite, 4.8%), hexachlorobenzene (HCB, 3.1%) and 3-phenoxybenzoic acid (PBA, pyrethroid metabolite, 2.2%). Males showed a higher proportion of exceedances than females for Pb, HCB and PFOS; otherwise no gender-related differences in exceedances were observed. A higher proportion of males than females had a Hazard Index (HI) of substances with liver and kidney toxicity and neurotoxicity >1. Industrialized countries with similarly high standards of living, with some exceptions, show comparable average body burdens of a variety of toxic chemicals among adolescents from the general population. The exceedances of HBM-GVs and HIs strongly suggests that further efforts to limit chemical exposure are warranted.
Collapse
Affiliation(s)
- Sebastian Pineda
- Department of Biomedicine and Veterinary Public Health Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Sanna Lignell
- Department of Risk and Benefit Assessment, Swedish National Food Agency, Uppsala, Sweden
| | - Irina Gyllenhammar
- Department of Risk and Benefit Assessment, Swedish National Food Agency, Uppsala, Sweden
| | - Erik Lampa
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jonathan P Benskin
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Thomas Lundh
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Christian Lindh
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Hannu Kiviranta
- Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Anders Glynn
- Department of Biomedicine and Veterinary Public Health Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
8
|
Tran-Lam TT, Quan TC, Pham PT, Phung ATT, Bui MQ, Dao YH. Occurrence, distribution, and risk assessment of halogenated organic pollutants (HOPs) in marine fish muscle: The case study of Vietnam. MARINE POLLUTION BULLETIN 2023; 192:114986. [PMID: 37163792 DOI: 10.1016/j.marpolbul.2023.114986] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023]
Abstract
Halogenated organic pollutants (HOPs), including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and chlorophenols (CPs), were identified in three marine fish species in Vietnam. Total PCBs, OCPs, and CPs concentrations ranged from 4.5 to 711.6 ng g-1 lipid weight (lw), 69.9-2360 ng g-1 lw, and 208.1-3941.2 ng g-1 lw, respectively. CPs were the most frequently detected pollutants in the marine environment of Vietnam of the three HOPs studied, followed by OCPs and PCBs. There are significant differences in HOPs between three types of seafood in Vietnam, including yellowstripe scad, Indian mackerel, and silver pomfret in this study. Notably, the types and amounts of HOPs found in the fish were differently influenced by the economic and industrial activities of the sampled areas. Despite these findings, the consumption of HOP-contaminated fish from the study areas was found not to pose any significant health risks to Vietnam's coastal population.
Collapse
Affiliation(s)
- Thanh-Thien Tran-Lam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Viet Nam; Institute of Mechanics and Applied Informatics, VAST, 291 Dien Bien Phu, Ward 7, District 3, Ho Chi Minh City 70000, Viet Nam
| | - Thuy Cam Quan
- Viet Tri University of Industry, 9 Tien Son, Tien Cat, Viet Tri, Phu Tho 75000, Viet Nam
| | - Phuong Thi Pham
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 10000, Viet Nam
| | - Anh-Tuyet Thi Phung
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 10000, Viet Nam
| | - Minh Quang Bui
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Viet Nam.
| | - Yen Hai Dao
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 10000, Viet Nam.
| |
Collapse
|
9
|
Silva CR, Masini JC. Ethylene vinyl acetate copolymer is an efficient and alternative passive sampler of hydrophobic organic contaminants. A comparison with silicone rubber. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121258. [PMID: 36775134 DOI: 10.1016/j.envpol.2023.121258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/29/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
There is a growing demand for assessing the concentrations of Hydrophobic Organic Contaminants (HOCs) in aquatic environments, including Persistent Organic Pollutants (POPs). The hydrophobicity of POPs challenges their quantification in waters due to the sub-trace concentrations, especially when using conventional spot sampling. The results from the conventional samples are only a "snapshot" of the concentrations (if detected) at the specific sampling moment. Contrary, passive sampling provides average concentration levels over weeks or months from the quantification of accumulated pollutants during the deployment period. The present work compared ethylene vinyl acetate (EVA) and silicon rubber (SR) as monophasic passive samplers to measure dissolved concentrations of HOCs. Four classes of POPs were studied: (i) polychlorinated dibenzo-p-dioxins (PCDDs), (ii) polychlorinated dibenzofurans (PCDFs), (iii) polychlorinated biphenyls (PCBs), including the dioxin-like congeners, and (iv) the polybrominated diphenyl ethers (PBDEs). The polymer-water partition coefficients (Kpw), determined by the cosolvent and crossed calibrations, were, on average, one logarithmic unit larger in EVA than in the SR. The diffusion coefficients (Dp) estimated by the "film-stacking" method were, on average, two orders of magnitude smaller in the EVA than in the SR. For both polymers, the theoretical model of mass transfer resistance confirmed that the water boundary layer controlled the absorption, thus allowing the use of Performance Reference Compounds (PRCs) to estimate the in-situ sampling rates. Larger Kpw's in EVA may be an advantage because they imply longer time scales to reach equilibrium, higher absorption capacities and hence a higher absorbed contaminant mass, especially for compounds that reach equilibrium relatively faster (log Kow < 5). In addition, the longer times to attain equilibrium for EVA maintain this sampler longer in the linear phase of absorption, and the time-weighted average concentration may only be assessed in this phase when the compounds have not yet reached equilibrium.
Collapse
Affiliation(s)
- Camila R Silva
- CETESB - Environmental Company of São Paulo State, Av. Prof. Frederico Hermann Jr 345, 05459-900, São Paulo, SP, Brazil.
| | - Jorge C Masini
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil
| |
Collapse
|
10
|
Khoury N, Martínez MÁ, Paz-Graniel I, Martínez-González MÁ, Corella D, Castañer O, Martínez JA, Alonso-Gómez ÁM, Wärnberg J, Vioque J, Romaguera D, López-Miranda J, Estruch R, Tinahones FJ, Lapetra J, Serra-Majem JL, Bueno-Cavanillas A, Tur JA, Sanjurjo SC, Pintó X, Gaforio JJ, Matía-Martín P, Vidal J, Vázquez C, Daimiel L, Ros E, Sayon-Orea C, Sorli JV, Pérez-Vega KA, Garcia-Rios A, Bellvert NG, Gómez-Gracia E, Zulet MA, Chaplin A, Casas R, Salcedo-Bellido I, Tojal-Sierra L, Bernal-Lopez MR, Vazquez Z, Asensio EM, Goday A, Peña-Orihuela PJ, Pastor AS, Garcia-Arellano A, Fitó M, Babio N, Salas-Salvadó J. Dietary intake of polychlorinated dibenzo-p-dioxins and furans, adiposity and obesity status. ENVIRONMENTAL RESEARCH 2023; 227:115697. [PMID: 36972775 DOI: 10.1016/j.envres.2023.115697] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
INTRODUCTION The principal source of exposure to Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo-p-furans (PCDD/Fs) in humans comes from food intake. PCDD/Fs, are a family of potential endocrine disruptors and have been associated with different chronic diseases such as diabetes and hypertension. However, studies assessing the relationship between dietary exposure to PCDD/Fs and adiposity or obesity status in a middle-aged population are limited. OBJECTIVE To assess cross-sectionally and longitudinally the associations between estimated dietary intake (DI) of PCDD/Fs and body mass index (BMI), waist circumference, and the prevalence/incidence of obesity and abdominal obesity in a middle-aged population. METHODS In 5899 participants aged 55-75 years (48% women) living with overweight/obesity from the PREDIMED-plus cohort, PCDD/Fs DI was estimated using a 143-item validated food-frequency questionnaire, and the levels of food PCDD/F expressed as Toxic Equivalents (TEQ). Consequently, cross-sectional and prospective associations between baseline PCDD/Fs DI (in pgTEQ/week) and adiposity or obesity status were assessed at baseline and after 1-year follow-up using multivariable cox, logistic or linear regression models. RESULTS Compared to participants in the first PCDD/F DI tertile, those in the highest tertile presented a higher BMI (β-coefficient [confidence interval]) (0.43kg/m2 [0.22; 0.64]; P-trend <0.001), a higher waist circumference (1.11 cm [0.55; 1.66]; P-trend <0.001), and a higher prevalence of obesity and abdominal obesity (1.05 [1.01; 1.09] and 1.02 [1.00; 1.03]; P-trend = 0.09 and 0.027, respectively). In the prospective analysis, participants in the top PCDD/F DI baseline tertile showed an increase in waist circumference compared with those in the first tertile after 1-year of follow-up (β-coefficient 0.37 cm [0.06; 0.70]; P-trend = 0.015). CONCLUSION Higher DI of PCDD/Fs was positively associated with adiposity parameters and obesity status at baseline and with changes in waist circumference after 1-year of follow-up in subjects living with overweight/obesity. Further large prospective studies using a different population with longer follow-up periods are warranted in the future to strengthen our results.
Collapse
Affiliation(s)
- Nadine Khoury
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Universitat Rovira I Virgili, Departament de Bioquímica I Biotecnologia, Unitat de Nutrició, Reus, Spain; Institut D'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - María Ángeles Martínez
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Universitat Rovira I Virgili, Departament de Bioquímica I Biotecnologia, Unitat de Nutrició, Reus, Spain; Institut D'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.
| | - Indira Paz-Graniel
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Universitat Rovira I Virgili, Departament de Bioquímica I Biotecnologia, Unitat de Nutrició, Reus, Spain; Institut D'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Miguel Ángel Martínez-González
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; University of Navarra, Department of Preventive Medicine and Public Health, IDISNA, Pamplona, Spain; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Dolores Corella
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Olga Castañer
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Unit of Cardiovascular Risk and Nutrition, Institut Hospital Del Mar de Investigaciones Médicas Municipal D`Investigació Médica (IMIM), Barcelona, Spain
| | - J Alfredo Martínez
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Department of Nutrition, Food Sciences, and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain; Precision Nutrition and Cardiometabolic Health Program. IMDEA Food, CEI UAM + CSIC, Madrid, Spain
| | - Ángel M Alonso-Gómez
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Bioaraba Health Research Institute, Cardiovascular, Respiratory and Metabolic Area; Osakidetza Basque Health Service, Araba University Hospital; University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Julia Wärnberg
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; EpiPHAAN Research Group, School of Health Sciences, University of Málaga - Instituto de Investigación Biomédica en Málaga (IBIMA), Málaga, Spain
| | - Jesús Vioque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante. Universidad Miguel Hernández (ISABIAL-UMH). Alicante, Spain
| | - Dora Romaguera
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - José López-Miranda
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Ramon Estruch
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Department of Internal Medicine, Hospital Clinic, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Institut de Recerca en Nutrició I Seguretat Alimentària (INSA), University of Barcelona, Barcelona, Spain
| | - Francisco J Tinahones
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Virgen de La Victoria Hospital, Department of Endocrinology, Instituto de Investigación Biomédica de Málaga (IBIMA). University of Málaga, Málaga, Spain
| | - José Lapetra
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Department of Family Medicine, Research Unit, Distrito Sanitario Atención Primaria Sevilla, Sevilla, Spain
| | - J Lluís Serra-Majem
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria & Centro Hospitalario Universitario Insular Materno Infantil (CHUIMI), Canarian Health Service, Las Palmas de Gran Canaria, Spain
| | - Aurora Bueno-Cavanillas
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| | - Josep A Tur
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Research Group on Community Nutrition & Oxidative Stress, University of Balearic Islands, Palma de Mallorca, Spain
| | - Sergio Cinza Sanjurjo
- CS Milladoiro, Área Sanitaria de Santiago de Compostela, Spain; Instituto de Investigación de Santiago de Compostela (IDIS), Spain; Centro de Investigación Biomédica en Red-Enfermedades Cardiovasculares (CIBERCV) , Spain
| | - Xavier Pintó
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Lipids and Vascular Risk Unit, Internal Medicine, Hospital Universitario de Bellvitge-IDIBELL, Hospitalet de Llobregat, Barcelona Spain
| | - José Juan Gaforio
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Departamento de Ciencias de La Salud, Instituto Universitario de Investigación en Olivar y Aceites de Oliva, Universidad de Jaén, Jaén, Spain
| | - Pilar Matía-Martín
- Department of Endocrinology and Nutrition, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Josep Vidal
- CIBER Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Endocrinology, Institut D'Investigacions Biomédiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Clotilde Vázquez
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Department of Endocrinology and Nutrition, Hospital Fundación Jimenez Díaz. Instituto de Investigaciones Biomédicas IISFJD. University Autonoma, Madrid, Spain
| | - Lidia Daimiel
- Nutritional Control of the Epigenome Group. Precision Nutrition and Obesity Program. IMDEA Food, CEI UAM + CSIC, Madrid, Spain
| | - Emili Ros
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Lipid Clinic, Department of Endocrinology and Nutrition, Institut D'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
| | - Carmen Sayon-Orea
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; University of Navarra, Department of Preventive Medicine and Public Health, IDISNA, Pamplona, Spain
| | - Jose V Sorli
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Karla-Alejandra Pérez-Vega
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Unit of Cardiovascular Risk and Nutrition, Institut Hospital Del Mar de Investigaciones Médicas Municipal D`Investigació Médica (IMIM), Barcelona, Spain
| | - Antonio Garcia-Rios
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | | | - Enrique Gómez-Gracia
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; EpiPHAAN Research Group, School of Health Sciences, University of Málaga - Instituto de Investigación Biomédica en Málaga (IBIMA), Málaga, Spain
| | - M A Zulet
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Department of Nutrition, Food Sciences, and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain; Precision Nutrition and Cardiometabolic Health Program. IMDEA Food, CEI UAM + CSIC, Madrid, Spain
| | - Alice Chaplin
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - Rosa Casas
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Department of Internal Medicine, Hospital Clinic, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Institut de Recerca en Nutrició I Seguretat Alimentària (INSA), University of Barcelona, Barcelona, Spain
| | - Inmaculada Salcedo-Bellido
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| | - Lucas Tojal-Sierra
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Bioaraba Health Research Institute, Cardiovascular, Respiratory and Metabolic Area; Osakidetza Basque Health Service, Araba University Hospital; University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Maria-Rosa Bernal-Lopez
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Internal Medicine Clinical Management Unit, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, Spain
| | - Zenaida Vazquez
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; University of Navarra, Department of Preventive Medicine and Public Health, IDISNA, Pamplona, Spain
| | - Eva M Asensio
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Albert Goday
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Unit of Cardiovascular Risk and Nutrition, Institut Hospital Del Mar de Investigaciones Médicas Municipal D`Investigació Médica (IMIM), Barcelona, Spain
| | - Patricia J Peña-Orihuela
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Antonio Signes Pastor
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante. Universidad Miguel Hernández (ISABIAL-UMH). Alicante, Spain
| | - Ana Garcia-Arellano
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; University of Navarra, Department of Preventive Medicine and Public Health, IDISNA, Pamplona, Spain
| | - Montse Fitó
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Unit of Cardiovascular Risk and Nutrition, Institut Hospital Del Mar de Investigaciones Médicas Municipal D`Investigació Médica (IMIM), Barcelona, Spain
| | - Nancy Babio
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Universitat Rovira I Virgili, Departament de Bioquímica I Biotecnologia, Unitat de Nutrició, Reus, Spain; Institut D'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Jordi Salas-Salvadó
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Universitat Rovira I Virgili, Departament de Bioquímica I Biotecnologia, Unitat de Nutrició, Reus, Spain; Institut D'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.
| |
Collapse
|
11
|
Zhu L, Wang C, Huang L, Ding Y, Cheng Y, Rad S, Xu P, Kang B. Halogenated organic pollutants (HOPs) in marine fish from the Beibu Gulf, South China Sea: Levels, distribution, and health risk assessment. MARINE POLLUTION BULLETIN 2022; 185:114374. [PMID: 36410197 DOI: 10.1016/j.marpolbul.2022.114374] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/21/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Six marine fish species, collected from the Beibu Gulf were statistically analyzed for polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), and dichlorodiphenyltrichloroethanes (DDTs). The concentrations of ∑14PBDEs, ∑26PCBs, and ∑6DDTs ranged from 11.8-1431, 8.74-495, and 9.47-1263 ng g-1 lipid weight (lw), respectively. In general, PBDEs were the predominant halogenated organic pollutants (HOPs) in the Beibu Gulf. The homologues profiles of Mugil cephalus and Trichiurus nanhaiensis differed from other four species. For example, the contributions of deca-BDEs in M. cephalus (14 %) and T. nanhaiensis (1 %) were lower than other four species (56 %). The ratio of (DDE + DDD)/ΣDDTs in all samples was >0.5, indicating that DDTs were mainly derived from historical residues. Intakes of HOPs through the consumption of the marine fish from the study areas might not subject residents of the coastal areas in the Beibu Gulf to health risks.
Collapse
Affiliation(s)
- Liang Zhu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Caiguang Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Liangliang Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, Guangxi 541004, China.
| | - Yang Ding
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education of the People's Republic of China, Guangxi Normal University, Guilin, Guangxi 541004, China; Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi 541004, China.
| | - Yanan Cheng
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Saeed Rad
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Peng Xu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi 535011, China
| | - Bin Kang
- College of Fisheries, Ocean University of China, Qingdao, Shandong 266100, China
| |
Collapse
|
12
|
Domingo JL. Dioxins and furans in cow milk and dairy products: A review of the scientific literature. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Jose L Domingo
- School of Medicine, Laboratory of Toxicology and Environmental Health Universitat Rovira i Virgili San Llorenç 21 Reus Catalonia 43201 Spain
| |
Collapse
|
13
|
Abass K, Unguryanu T, Junqué E, Mazej D, Tratnik JS, Horvat M, Grimalt JO, Myllynen P, Rautio A. Pilot study on the concentrations of organochlorine compounds and potentially toxic elements in pregnant women and local food items from the Finnish Lapland. ENVIRONMENTAL RESEARCH 2022; 211:113122. [PMID: 35314163 DOI: 10.1016/j.envres.2022.113122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
In the Arctic, main sources of persistent organic pollutants and potentially toxic elements are industry and agriculture in the lower latitudes. However, there are also local sources of pollution. Our study was focused on possible pollution in the Finnish Lapland, transferred from the Pechenganikel industrial complex located in the borders of Russia, Finland and Norway. Local food items and blood samples of pregnant women from the Inari municipality were collected and organochlorine compounds (OCs) and metal(oid)s analyzed. Most of the examined food samples showed detectable levels of these compounds. The mean concentrations of DDTs and polychlorobiphenyls (PCBs) were higher in fish (0.18-0.32 ng/g and 0.34-0.64 ng/g, respectively), than in the other food groups (0.027-0.047 ng/g and 0.11-0.20 ng/g, respectively). PCBs were found at the highest concentrations in blood samples of the pregnant women, and congeners 153 and 118 were dominant. The mean concentration of PCB153, 0.29 μg/kg serum lipid, was lower than those described in many other studies. Concerning DDTs, the 4,4'-DDT/4,4'-DDE ratio, 0.092, in the blood samples was lower than that observed in the food items, 0.25-0.71, reflecting old uses of the DDT pesticide. None of the observed levels of selected potentially toxic elements in blood samples and in food items exceeded the known safe limits. Higher concentrations of PCB52 and γ-HCH were observed in the serum of pregnant women who consumed greater amounts of meat, and berries and mushrooms, respectively. The OC concentrations from the pregnant women currently studied were lower than those observed fourteen years ago with pregnant women from the same municipality. Compounds whose occurrence is likely related to a long-distance transport showed clear decreases, e.g., 63% for PCBs, and for those from pesticides, decreases were 93% and 97% for 4,4'-DDE and β-HCH, respectively. No obvious influence from the Pechenganikel complex is observed from the results.
Collapse
Affiliation(s)
- Khaled Abass
- Arctic Health, Faculty of Medicine, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland; Department of Pesticides, Menoufia University, P.O. Box 32511, Menoufia, Egypt.
| | - Tatiana Unguryanu
- Department of Hygiene and Medical Ecology, Northern State Medical University, Troitsky Ave., 51, Arkhangelsk, 163000, Russia; Department of General Hygiene, Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya str., 2, building 2, Moscow, 119435, Russia
| | - Eva Junqué
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034, Barcelona, Catalonia, Spain
| | - Darja Mazej
- Jožef Stefan Institute, Department of Environmental Sciences, Ljubljana, Slovenia
| | - Janja Snoj Tratnik
- Jožef Stefan Institute, Department of Environmental Sciences, Ljubljana, Slovenia
| | - Milena Horvat
- Jožef Stefan Institute, Department of Environmental Sciences, Ljubljana, Slovenia
| | - Joan O Grimalt
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain
| | - Päivi Myllynen
- Department of Clinical Chemistry, Cancer and Translational Medicine Research Unit, Medical Research Center, University of Oulu and Northern Finland Laboratory Centre NordLab, Oulu University Hospital, Oulu, Finland
| | - Arja Rautio
- Arctic Health, Faculty of Medicine, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland; Thule Institute and University of the Arctic, P.O. Box 7300, University of Oulu, FI-90014 Oulu, Finland
| |
Collapse
|
14
|
Qian Z, Tang S, Liu Z, Luo F, Wei S. Levels, distribution and risk assessment of hexabromocyclododecane (HBCD) in fish in Xiamen, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:371. [PMID: 35430711 DOI: 10.1007/s10661-022-10049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
In this study, hexabromocyclododecane (HBCD) was detected in 114 fish samples collected from 6 administrative regions of Xiamen city, China. HBCD amounts ranged between ND (not detected) and 2.216 ng g-1 ww (mean, 0.127 ± 0.318 ng g-1 ww). Besides, α-HBCD was the main diastereoisomer in these fish specimens, followed by β-HBCD. Meanwhile, γ-HBCD was not detected in any of the samples. Significant differences were recorded among fish species. The results indicated that the levels and detection rates of HBCD were higher in Trachinotus ovatus compared with other aquatic organisms. Therefore, Trachinotus ovatus could be used as a marine biological indicator of HBCD. Within the regions investigated, Siming was significantly different from Jimei, Haicang, and Xiang'an. The spatial distribution of HBCD concentrations indicated higher mean levels in samples collected from Haicang, Jimei, and Xiang'an, respectively, with the highest detection rates in Jimei and Xiang'an, which might be related to geographical location and intense industrial and urban activities. Estimation of daily HBCD intake was performed according to fish consumption in Xiamen residents. The medium bound HBCD amounts in fish were approximately 0.073 and 0.088 ng kg bw-1d-1 for male and female residents of Xiamen, respectively. Exposure doses of HBCD indicated no health concern for Xiamen residents.
Collapse
Affiliation(s)
- Zhuozhen Qian
- Fisheries Research Institute of Fujian, 7 Haishan Road, Xiamen, 361013, China.
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, 7 Haishan Road, Xiamen, 361013, China.
| | - Shuifen Tang
- Fisheries Research Institute of Fujian, 7 Haishan Road, Xiamen, 361013, China
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, 7 Haishan Road, Xiamen, 361013, China
| | - Zhiyu Liu
- Fisheries Research Institute of Fujian, 7 Haishan Road, Xiamen, 361013, China
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, 7 Haishan Road, Xiamen, 361013, China
| | - Fangfang Luo
- Fisheries Research Institute of Fujian, 7 Haishan Road, Xiamen, 361013, China
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, 7 Haishan Road, Xiamen, 361013, China
| | - Shaohong Wei
- Fisheries Research Institute of Fujian, 7 Haishan Road, Xiamen, 361013, China
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, 7 Haishan Road, Xiamen, 361013, China
| |
Collapse
|
15
|
Xu S, Hansen S, Rautio A, Järvelin MR, Abass K, Rysä J, Palaniswamy S, Huber S, Grimalt JO, Dumas P, Odland JØ. Monitoring temporal trends of dioxins, organochlorine pesticides and chlorinated paraffins in pooled serum samples collected from Northern Norwegian women: The MISA cohort study. ENVIRONMENTAL RESEARCH 2022; 204:111980. [PMID: 34474033 DOI: 10.1016/j.envres.2021.111980] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
The ubiquitous presence of legacy and emerging persistent organic pollutants (POPs) in the environmental matrices poses a potential hazard to the humans and creating public health concerns. The present study aimed to evaluate dioxins, dioxin-like polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and chlorinated paraffins (CPs) concentrations in serum of women (postpartum, pregnant and non-pregnant) from Northern Norway to better understand their exposure and contamination status as well as temporal trends across 2007-2009 (MISA 1) to 2019 (MISA 2). Sixty-two blood samples from the MISA 1 cohort and 38 samples from MISA 2 were randomly selected in this study (n = 100). Ninety samples from postpartum (MISA 1) and pregnant women (MISA 2) were randomly combined into 9 pools, with 9-11 individual samples contributing to each pool keeping the groups of pregnant and postpartum women. Remaining 10 samples from non-pregnant women (MISA 2) were allocated into separate group. Geometric mean, minimum and maximum were used to describe the serum concentrations of pooled POPs in MISA cohort. Mann-Whitney U test and independent sample t-test were applied for trend analysis of blood levels of POPs between MISA 1 and MISA 2. We found the serum concentrations of selected POPs in this study to be at lower range. Serum concentrations of dibenzo-p-dioxins (PCDDs) (p = 0.010), polychlorinated dibenzofurans (PCDFs) (p = 0.002), dioxins-like PCBs (p = 0.001), hexachlorobenzene (HCB) (p < 0.001) and p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) (p = 0.002) were decreased between the studied time. In contrast, the serum concentrations of medium chain chlorinated paraffins showed an increasing trend between 2007 and 2009 and 2019 (p = 0.019). Our findings report a particular concern of emerging contaminant medium chain chlorinated paraffin exposure to humans. Future observational studies with repeated measurements of chlorinated paraffins in general populations worldwide and large sample size are warranted.
Collapse
Affiliation(s)
- Shanshan Xu
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Solrunn Hansen
- Department of Health and Care Sciences, UiT the Arctic University of Norway, Tromsø, 9037, Norway
| | - Arja Rautio
- Arctic Health, Faculty of Medicine, University of Oulu, Oulu, Finland; Thule Institute, University of Arctic, University of Oulu, Oulu, Finland
| | - Marjo-Riitta Järvelin
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom; Unit of Primary Care, Oulu University Hospital, Oulu, Finland; MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom; Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Khaled Abass
- Arctic Health, Faculty of Medicine, University of Oulu, Oulu, Finland; Department of Pesticides, Menoufia University, Menoufia, Egypt
| | - Jaana Rysä
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Saranya Palaniswamy
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Sandra Huber
- Department of Laboratory Medicine, University Hospital of North Norway, Sykehusveien 38, Tromsø, NO-9038, Norway
| | - Joan O Grimalt
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, Barcelona, Catalonia, 08034, Spain
| | - Pierre Dumas
- Institut Nacional de Santé Publique du Québec (INSPQ), Québec City, Canada
| | - Jon Øyvind Odland
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, 7491, Norway; Department of General Hygiene I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119992, Russia.
| |
Collapse
|
16
|
Varakina Y, Aksenov A, Lakhmanov D, Trofimova A, Korobitsyna R, Belova N, Kotsur D, Sorokina T, Grjibovski AM, Popova L, Chashchin V, Odland JØ, Thomassen Y. Geographic and Ethnic Variations in Serum Concentrations of Legacy Persistent Organic Pollutants among Men in the Nenets Autonomous Okrug, Arctic Russia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031379. [PMID: 35162396 PMCID: PMC8835178 DOI: 10.3390/ijerph19031379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 12/10/2022]
Abstract
The overwhelming majority of Arctic biomonitoring studies in humans include either pregnant or non-pregnant women of reproductive age while little attention is paid to toxic compounds concentrations in men. This study contributes with information of the present amounts of persistent organic pollutants (POPs) in men living in Arctic Russia. We studied the serum concentrations of 11 polychlorinated biphenyl (PCB) congeners and 17 organochlorine pesticides (OCPs) and some of their metabolites in samples collected from 92 adult men (mean age 43 years) from seven different settlements in Nenets Autonomous Okrug (NAO). The median concentrations of individual PCB congeners increased in the order PCB 183, PCB 180, PCB 118, PCB 138, PCB 153. The concentrations of o, p′-DDD, p, p′-DDD, aldrin, mirex and 1,2,3,5-TCB were in most cases below the quantification limit. The observed concentrations of PCBs and chlorinated pesticides were in the same range as those found in similar groups of women of these territories, but lower than of men in other Arctic countries. However, significant geographic differences between the settlements were observed with exceptionally high concentrations of PCBs in the Islands group. The highest serum ∑PCBs and β-HCH levels were observed in adult males aged 60–78 years. We found significant variations in serum concentrations of POPs across settlements and ethnic groups with exceptionally high concentrations of PCBs among the residents of the Arctic islands. At the same time, our findings suggest a considerable decrease in serum concentration of POPs over the last decade.
Collapse
Affiliation(s)
- Yulia Varakina
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (A.A.); (A.T.); (R.K.); (N.B.); (D.K.); (T.S.); (A.M.G.); (V.C.); (Y.T.)
- Correspondence: ; Tel.: +7-911-597-6935
| | - Andrey Aksenov
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (A.A.); (A.T.); (R.K.); (N.B.); (D.K.); (T.S.); (A.M.G.); (V.C.); (Y.T.)
| | - Dmitry Lakhmanov
- Laboratory of Environmental Analytical Chemistry, Core Facility Center “Arktika”, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia;
| | - Anna Trofimova
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (A.A.); (A.T.); (R.K.); (N.B.); (D.K.); (T.S.); (A.M.G.); (V.C.); (Y.T.)
| | - Rimma Korobitsyna
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (A.A.); (A.T.); (R.K.); (N.B.); (D.K.); (T.S.); (A.M.G.); (V.C.); (Y.T.)
| | - Natalia Belova
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (A.A.); (A.T.); (R.K.); (N.B.); (D.K.); (T.S.); (A.M.G.); (V.C.); (Y.T.)
- Northern State Medical University, Troitskiy Ave. 51, 163000 Arkhangelsk, Russia
| | - Dmitry Kotsur
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (A.A.); (A.T.); (R.K.); (N.B.); (D.K.); (T.S.); (A.M.G.); (V.C.); (Y.T.)
- N. Laverov Federal Center for Integrated Arctic Research, Ural Branch of the Russian Academy of Sciences, Naberezhnaya Severnoy Dvini 23, 163000 Arkhangelsk, Russia
| | - Tatiana Sorokina
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (A.A.); (A.T.); (R.K.); (N.B.); (D.K.); (T.S.); (A.M.G.); (V.C.); (Y.T.)
| | - Andrej M. Grjibovski
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (A.A.); (A.T.); (R.K.); (N.B.); (D.K.); (T.S.); (A.M.G.); (V.C.); (Y.T.)
- Northern State Medical University, Troitskiy Ave. 51, 163000 Arkhangelsk, Russia
- Department of Epidemiology and Modern Vaccination Technology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str., 8-2, 119991 Moscow, Russia
- West Kazakhstan Marat Ospanov Medical University, Aktobe 0300190, Kazakhstan
| | - Ludmila Popova
- Department of Chemistry and Chemical Ecology, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia;
| | - Valery Chashchin
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (A.A.); (A.T.); (R.K.); (N.B.); (D.K.); (T.S.); (A.M.G.); (V.C.); (Y.T.)
- North-Western State Medical University Named after I. I. Mechnikov, Kirochnaya ul. 41, 191015 Saint-Petersburg, Russia
- Institute of Ecology, National Research University Higher School of Economics, Myasnitskaya Str. 20, 101000 Moscow, Russia
| | - Jon Øyvind Odland
- Department of Public Health and Nursing, Norwegian University of Science and Technology, 7491 Trondheim, Norway;
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str., 8-2, 119992 Moscow, Russia
| | - Yngvar Thomassen
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (A.A.); (A.T.); (R.K.); (N.B.); (D.K.); (T.S.); (A.M.G.); (V.C.); (Y.T.)
- Institute of Ecology, National Research University Higher School of Economics, Myasnitskaya Str. 20, 101000 Moscow, Russia
- National Institute of Occupational Health, Gydas vei 8, N-0304 Oslo, Norway
| |
Collapse
|
17
|
Fernandes AR, Zwickel T, Schächtele A. Ensuring the reliability of brominated flame retardant data on food and feed occurrence through harmonised analytical criteria and proficiency testing. CHEMOSPHERE 2022; 286:131921. [PMID: 34426293 DOI: 10.1016/j.chemosphere.2021.131921] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
The volume of occurrence data on food and animal feed contaminants such as polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDDs) is slowly increasing as more laboratories develop analytical capability. This data allows an evaluation of current background levels in different countries and regions and is also useful for estimating the health risk through dietary exposure and as evidence for the formulation of future control strategies. Existing data varies in the number of analytes reported and the quality measures applied. In order to ensure reliability and comparability, guidance on analytical criteria such as precision and trueness, limits of quantitation, recovery, positive identification, etc. is provided. These parameters are based on several years of collective experience and allow validation and regular quality control of analysis of individual PBDE congeners and HBCDD stereoisomers. The criteria-based approach also allows laboratories the flexibility to use different analytical methodologies and techniques for generating data. The effectiveness of this approach has been demonstrated by a successful proficiency testing scheme that has been used for a number of years and has attracted an increasing number of participants. The majority of participating laboratories (>80%) have been able to demonstrate performance within the 95% confidence interval (│z-score│≤ 2) and a further 10% of laboratories demonstrated performance with a z-score of (2 <│z-score│< 3). The combined support of these guidance criteria backed by successful proficiency testing will ensure the reliability and comparability of results, in particular, to refine risk assessments and to help the formulation of regulatory policy.
Collapse
Affiliation(s)
- Alwyn R Fernandes
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
| | - Theresa Zwickel
- European Union Reference Laboratory (EURL) for Halogenated POPs in Feed and Food, Bissierstraße 5, Freiburg, D-79114, Germany
| | - Alexander Schächtele
- European Union Reference Laboratory (EURL) for Halogenated POPs in Feed and Food, Bissierstraße 5, Freiburg, D-79114, Germany
| |
Collapse
|
18
|
Chen K, Huang T, Zhang X, Liu X, Huang Y, Wang L, Zhao Y, Gao H, Tao S, Liu J, Jian X, Gusev A, Ma J. The footprint of dioxins in globally traded pork meat. iScience 2021; 24:103255. [PMID: 34755094 PMCID: PMC8564055 DOI: 10.1016/j.isci.2021.103255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/30/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022] Open
Abstract
The bioaccumulation of polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), known as dioxins, in fatty meat is one of primary pathways of entry into the human body, but levels of human exposure to dioxins in fatty meat subject to global trade are unknown. We show high dioxin estimated dietary intake (EDI) via pork consumption in Europe, the United States, and China, owing to stronger dioxin environmental contamination and high pork consumption in these countries. The dioxin risk transfer embodied in pork trade is mostly significant in high-latitude countries and regions of Canada, Russia, and Greenland because these regions with low dioxin environmental levels import large amounts of pork meat from more severely dioxin-contaminated Europe and the United States. We demonstrate that global pig feed trading decreases the exposure of pork consumers to dioxins via the import of feed from countries with low dioxin environmental contamination by pig breeding countries.
Collapse
Affiliation(s)
- Kaijie Chen
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Tao Huang
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaodong Zhang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xinrui Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yufei Huang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Linfei Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yuan Zhao
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hong Gao
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shu Tao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Junfeng Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xiaohu Jian
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Alexey Gusev
- Meteorological Synthesizing Centre-East, Convention on Long-Range Transboundary Air Pollution, Moscow, Russia
| | - Jianmin Ma
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.,Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
19
|
Sharma BM, Bharat GK, Chakraborty P, Martiník J, Audy O, Kukučka P, Přibylová P, Kukreti PK, Sharma A, Kalina J, Steindal EH, Nizzetto L. A comprehensive assessment of endocrine-disrupting chemicals in an Indian food basket: Levels, dietary intakes, and comparison with European data. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117750. [PMID: 34265562 DOI: 10.1016/j.envpol.2021.117750] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) in diet are a health concern and their monitoring in food has been introduced in the European Union. In developing countries, EDC dietary exposure data are scarce, especially from areas perceived as pollution hotspots, including industrialized countries like India. Several persistent organic pollutants (POPs) act as EDCs and pose a pressure to human health mainly through dietary exposure. In the present study, a range of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), dioxins and furans were measured in several food items collected from Indian urban (Delhi) and peri-urban (Dehradun) areas. Food basket contamination data were used to estimate EDC dietary exposure and compare it with that of the average European population estimated from available monitoring data. All the target contaminants were found in most food items, especially in dairies and meat products. OCPs were the main contributers to the measured EDC contamination. Food supplied to Delhi's markets had higher EDC contamination than that supplied to the peri-urban market in Dehradun. Despite lax compliance and control measures, Indian dietary exposure of OCPs and PBDEs were comparable with that of Europe and were lower for PCBs and dioxins. Higher meat consumption in Europe only partly explained this pattern which was driven also by the higher EDC residues in some European food items. A substantial part of endocrine disrupting potential in the diet derives from food and animal feeds internationally traded between developed and developing countries. With increasingly globalized food systems, internationally harmonized policies on EDC content in food can lead to better protection of health in both these contexts.
Collapse
Affiliation(s)
| | - Girija K Bharat
- Mu Gamma Consultants Pvt. Ltd., 122018, Gurugram, Haryana, India
| | - Paromita Chakraborty
- SRM Institute of Science and Technology, 603203, Kattankulathur, Tamil Nadu, India
| | - Jakub Martiník
- RECETOX, Masaryk University, 62500, Brno, Czech Republic
| | - Ondřej Audy
- RECETOX, Masaryk University, 62500, Brno, Czech Republic
| | - Petr Kukučka
- RECETOX, Masaryk University, 62500, Brno, Czech Republic
| | | | | | - Anežka Sharma
- RECETOX, Masaryk University, 62500, Brno, Czech Republic
| | - Jiří Kalina
- RECETOX, Masaryk University, 62500, Brno, Czech Republic
| | - Eirik Hovland Steindal
- Norwegian Institute for Water Research (NIVA), Gaustadalleen 21, 0349, Oslo, Norway; Norwegian University of Life Sciences (NMBU), Universitetstunet 3, 1432 Ås, Norway
| | - Luca Nizzetto
- RECETOX, Masaryk University, 62500, Brno, Czech Republic; Norwegian Institute for Water Research (NIVA), Gaustadalleen 21, 0349, Oslo, Norway.
| |
Collapse
|
20
|
Simonnet-Laprade C, Bayen S, Le Bizec B, Dervilly G. Data analysis strategies for the characterization of chemical contaminant mixtures. Fish as a case study. ENVIRONMENT INTERNATIONAL 2021; 155:106610. [PMID: 33965766 DOI: 10.1016/j.envint.2021.106610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/02/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Thousands of chemicals are potentially contaminating the environment and food resources, covering a wide spectrum of molecular structures, physico-chemical properties, sources, environmental behavior and toxic profiles. Beyond the description of the individual chemicals, characterizing contaminant mixtures in related matrices has become a major challenge in ecological and human health risk assessments. Continuous analytical developments, in the fields of targeted (TA) and non-targeted analysis (NTA), have resulted in ever larger sets of data on associated chemical profiles. More than ever, the implementation of advanced data analysis strategies is essential to elucidate profiles and extract new knowledge from these large data sets. Specifically focusing on the data analysis step, this review summarizes the recent progress in integrating data analysis tools into TA and NTA workflows to address the challenging characterization of chemical mixtures in environmental and food matrices. As fish matrices are relevant in both aquatic pollution and consumer exposure perspectives, fish was chosen as the main theme to illustrate this review, although the present document is equally relevant to other food and environmental matrices. The key features of TA and NTA data sets were reviewed to illustrate the challenges associated with their analysis. Advanced filtering strategies to mine NTA data sets are presented, with a particular focus on chemical filters and discriminant analysis. Further, the applications of supervised and unsupervised multivariate analysis methods to characterize exposure to chemical mixtures, and their associated challenges, is discussed.
Collapse
Affiliation(s)
- Caroline Simonnet-Laprade
- Laboratoire d'Étude des Résidus et Contaminants dans les Aliments (LABERCA), Oniris, INRAE, F-44307 Nantes, France.
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Bruno Le Bizec
- Laboratoire d'Étude des Résidus et Contaminants dans les Aliments (LABERCA), Oniris, INRAE, F-44307 Nantes, France
| | - Gaud Dervilly
- Laboratoire d'Étude des Résidus et Contaminants dans les Aliments (LABERCA), Oniris, INRAE, F-44307 Nantes, France.
| |
Collapse
|
21
|
González N, Domingo JL. Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in food and human dietary intake: An update of the scientific literature. Food Chem Toxicol 2021; 157:112585. [PMID: 34571053 DOI: 10.1016/j.fct.2021.112585] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
It is well established that for non-occupationally exposed populations, dietary intake is, by far, the main way of human exposure to polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo-p-furans (PCDD/Fs), a family of environmental POPs with a well-known potential toxicity -including carcinogenicity-in humans. We here summarize the results of recent studies (2010-2021) (databases: Scopus and PubMed), focused on determining the levels of PCDD/Fs in food samples of different origins, as well as the dietary intake of these pollutants. We have revised studies conducted in various Asian, American and European countries. However, information is rather limited, with no recent data for most countries over the world. Due to the enormous differences in the methodologies of the studies, to conduct a detailed comparison of the results for the different regions and countries has not been possible. Notwithstanding, where data over time are available, important reductions have been observed. These reductions have been linked to the decreases in the environmental emissions of PCDD/Fs noted in recent years. Interestingly, reductions in the levels of PCDD/Fs in biological tissues are also occurring in parallel. In general, the tolerable daily/weekly/monthly dietary intakes of PCDD/Fs are not being currently exceeded where data are available.
Collapse
Affiliation(s)
- Neus González
- Universitat Rovira i Virgili Laboratory of Toxicology and Environmental Health, School of Medicine, 43201, Reus, Catalonia, Spain
| | - José L Domingo
- Universitat Rovira i Virgili Laboratory of Toxicology and Environmental Health, School of Medicine, 43201, Reus, Catalonia, Spain.
| |
Collapse
|
22
|
Feiteiro J, Mariana M, Cairrão E. Health toxicity effects of brominated flame retardants: From environmental to human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117475. [PMID: 34087639 DOI: 10.1016/j.envpol.2021.117475] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Hexabromocyclododecane (HBCD) and Tetrabromobisphenol A (TBBP-A) are brominated flame retardants widely used in variety of industrial and consumer products (e.g., automobiles, electronics, furniture, textiles and plastics) to reduce flammability. HBCD and TBBPA can also contaminate the environment, mainly water, dust, air and soil, from which human exposure occurs. This constant exposure has raised some concerns against human health. These compounds can act as endocrine disruptors, a property that gives them the ability to interfere with hormonal function and quantity, when HBCD and TBBPA bind target tissues in the body. Studies in human and animals suggest a correlation between HBCD and TBBPA exposure and adverse health outcomes, namely thyroid disorders, neurobehavior and development disorders, reproductive health, immunological, oncological and cardiovascular diseases. However, in humans these effects are still poorly understood, once only a few data evaluated the human health effects. Thus, the purpose of this review is to present the toxicity effects of HBCD and TBBPA and how these compounds affect the environment and health, resorting to data and knowledge of 255 published papers from 1979 to 2020.
Collapse
Affiliation(s)
- Joana Feiteiro
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, University of Beira Interior, Covilhã, Portugal; FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Melissa Mariana
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrão
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, University of Beira Interior, Covilhã, Portugal; FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
23
|
Barone G, Storelli A, Busco A, Mallamaci R, Storelli MM. Polychlorinated dioxins, furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs) in food from Italy: Estimates of dietaryintake and assessment. J Food Sci 2021; 86:4741-4753. [PMID: 34494668 PMCID: PMC9293089 DOI: 10.1111/1750-3841.15901] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 11/28/2022]
Abstract
Abstract Dietary intake of polychlorinated dioxins and furans (PCDD/Fs) and dioxin‐like polychlorinated biphenyls (dl‐PCBs) from various foods (fish and seafood, meat and meat‐based products, milk and dairy products, hen eggs, olive oil and fats) was investigated for various sex/age groups of the Italian population. The concentrations of PCDD/Fs and dl‐PCBs and their contribution to total TEQ values varied depending on food matrix. Fish (0.50 pg WHO‐TEQ/g wet weight) and seafood (0.16 pg WHO‐TEQ/g wet weight) showed the highest mean concentrations of PCDD/Fs plus dl‐PCBs, followed by meat (1.70 pg WHO‐TEQ/g lipid weight), meat based products (1.03 pg WHO‐TEQ/g lipid weight), milk and dairy products (0.78 pg WHO‐TEQ/g lipid weight), hen eggs (0.71 pg WHO‐TEQ/g lipid weight), fats (0.27 pg WHO‐TEQ/g lipid weight) and olive oil (0.09 pg WHO‐TEQ/g lipid weight). In all samples WHO‐TEQ PCDD/F plus dl‐PCB concentrations fulfilled the European Union food law, except in pork loin samples (1.39 pg WHO‐TEQ/g lipid weight). Differences in exposure depending on the sex/age groups (children > teenagers > adults > elders) and hypotheses considered (lower bound and upper bound) were encountered. Non‐cancer risk values showed a low exposure. Carcinogenicity risk results revealed that highly exposed individuals were distributed over all sex/age groups, even though the proportion of individuals exceeding the safe limit was higher in children. These data once again underline the importance of trying to control the levels of these contaminants in fishery products, particularly in fish, who represents one of the main exposure sources for consumers. Practical Application This paper may help the consumer in making food choices to minimize the exposure risk to dioxins, furans and PCBs
Collapse
Affiliation(s)
- Grazia Barone
- Biosciences, Biotechnologies and Biopharmaceutical Department, University of Bari "Aldo Moro"-Strada Prov. le per Casamassima Km 3, Valenzano, BA, Italy
| | - Arianna Storelli
- Biosciences, Biotechnologies and Biopharmaceutical Department, University of Bari "Aldo Moro"-Strada Prov. le per Casamassima Km 3, Valenzano, BA, Italy
| | - Antonio Busco
- Biosciences, Biotechnologies and Biopharmaceutical Department, University of Bari "Aldo Moro"-Strada Prov. le per Casamassima Km 3, Valenzano, BA, Italy
| | - Rosanna Mallamaci
- Biosciences, Biotechnologies and Biopharmaceutical Department, University of Bari "Aldo Moro"-Strada Prov. le per Casamassima Km 3, Valenzano, BA, Italy
| | - Maria M Storelli
- Biosciences, Biotechnologies and Biopharmaceutical Department, University of Bari "Aldo Moro"-Strada Prov. le per Casamassima Km 3, Valenzano, BA, Italy
| |
Collapse
|
24
|
Ezekiel CN, Ayeni KI, Akinyemi MO, Sulyok M, Oyedele OA, Babalola DA, Ogara IM, Krska R. Dietary Risk Assessment and Consumer Awareness of Mycotoxins among Household Consumers of Cereals, Nuts and Legumes in North-Central Nigeria. Toxins (Basel) 2021; 13:635. [PMID: 34564639 PMCID: PMC8472633 DOI: 10.3390/toxins13090635] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/28/2022] Open
Abstract
This study characterized the health risks due to the consumption of mycotoxin-contaminated foods and assessed the consumer awareness level of mycotoxins in households in two north-central Nigerian states during the harvest and storage seasons of 2018. Twenty-six mycotoxins and 121 other microbial and plant metabolites were quantified by LC-MS/MS in 250 samples of cereals, nuts and legumes. Aflatoxins were detected in all food types (cowpea, maize, peanut and sorghum) except in millet. Aflatoxin B1 was the most prevalent mycotoxin in peanut (64%) and rice (57%), while fumonisin B1 occurred most in maize (93%) and beauvericin in sorghum (71%). The total aflatoxin concentration was highest in peanut (max: 8422 µg/kg; mean: 1281 µg/kg) and rice (max: 955 µg/kg; mean: 94 µg/kg), whereas the totals of the B-type fumonisins and citrinin were highest in maize (max: 68,204 µg/kg; mean: 2988 µg/kg) and sorghum (max: 1335 µg/kg; mean: 186 µg/kg), respectively. Citrinin levels also reached 51,195 µg/kg (mean: 2343 µg/kg) in maize. Aflatoxin and citrinin concentrations in maize were significantly (p < 0.05) higher during storage than at harvest. The estimated chronic exposures to aflatoxins, citrinin and fumonisins were high, resulting in as much as 247 new liver cancer cases/year/100,000 population and risks of nephrotoxicity and esophageal cancer, respectively. Children who consumed the foods were the most vulnerable. Mycotoxin co-occurrence was evident, which could increase the health risk of the outcomes. Awareness of mycotoxin issues was generally low among the households.
Collapse
Affiliation(s)
- Chibundu N. Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo 121103, Ogun State, Nigeria; (K.I.A.); (M.O.A.); (O.A.O.)
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz-Str. 20, A-3430 Tulln, Austria; (M.S.); (R.K.)
| | - Kolawole I. Ayeni
- Department of Microbiology, Babcock University, Ilishan Remo 121103, Ogun State, Nigeria; (K.I.A.); (M.O.A.); (O.A.O.)
| | - Muiz O. Akinyemi
- Department of Microbiology, Babcock University, Ilishan Remo 121103, Ogun State, Nigeria; (K.I.A.); (M.O.A.); (O.A.O.)
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz-Str. 20, A-3430 Tulln, Austria; (M.S.); (R.K.)
| | - Oluwawapelumi A. Oyedele
- Department of Microbiology, Babcock University, Ilishan Remo 121103, Ogun State, Nigeria; (K.I.A.); (M.O.A.); (O.A.O.)
| | - Daniel A. Babalola
- Department of Agriculture and Industrial Technology, Babcock University, Ilishan Remo 121103, Ogun State, Nigeria;
| | - Isaac M. Ogara
- Faculty of Agriculture, Lafia Campus, Nasarawa State University, Keffi 950101, Nasarawa State, Nigeria;
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz-Str. 20, A-3430 Tulln, Austria; (M.S.); (R.K.)
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, University Road, Belfast BT7 1NN, UK
| |
Collapse
|
25
|
Choi M, Lee IS. Decreases in Concentrations and Human Dietary Intakes of Polychlorinated Biphenyls (PCBs) and Polybrominated Diphenyl Ethers (PBDEs) in Korean Seafood Between 2005 and 2017. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 81:199-209. [PMID: 34081169 DOI: 10.1007/s00244-021-00860-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Concentrations of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) were measured in 23 seafood species widely consumed by the Korean population in the periods of 2005-2007, 2010-2011, and 2015-2017. The Σ82PCB (sum of 82 PCB congeners) and Σ19PBDE (sum of 19 PBDE congeners) concentrations in the seafood samples of 2015-2017 were 0.06-6.69 ng/g wet weight and 0.01-1.60 ng/g wet weight, respectively. The Σ82PCB and Σ19PBDE concentrations in the samples were significantly correlated. Elevated PCB and PBDE concentrations were found in fatty fish, such as herring, mackerel, and tuna. The current human intakes of PCBs and PBDEs were much lower than the tolerable daily intake or lowest observed adverse effect level. The levels and human dietary intakes of PCBs and PBDEs in the 2015-2017 survey showed decreases of 17-73% and 57-86%, respectively, compared with those in 2005-2007 and 2010-2011 surveys. This indicates that global bans on PCBs and PBDEs have been effective, and their levels and human exposure to them have been gradually declining.
Collapse
Affiliation(s)
- Minkyu Choi
- South Sea Fisheries Institute, National Institute of Fisheries Science (NIFS), Yeo-Su, Republic of Korea
| | - In-Seok Lee
- Southeast Sea Fisheries Institute, NIFS, Tong-Yeong, Republic of Korea.
| |
Collapse
|
26
|
Ohoro CR, Adeniji AO, Okoh AI, Okoh OO. Polybrominated diphenyl ethers in the environmental systems: a review. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1229-1247. [PMID: 34150307 PMCID: PMC8172818 DOI: 10.1007/s40201-021-00656-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/31/2021] [Indexed: 05/26/2023]
Abstract
PBDEs are human-influenced chemicals utilized massively as flame retardants. They are environmentally persistent, not easily degraded, bioaccumulate in the biological tissue of organisms, and bio-magnify across the food web. They can travel over a long distance, with air and water being their possible transport media. They can be transferred to non-target organisms by inhalation, oral ingestion, breastfeeding, or dermal contact. These pollutants adsorb easily to solid matrices due to their lipophilicity and hydrophobicity; thus, sediments from rivers, lakes, estuaries, and ocean are becoming their major reservoirs aquatic environments. They have low acute toxicity, but the effects of interfering with the thyroid hormone metabolism in the endocrine system are long term. Many congeners of PBDEs are considered to pose a danger to humans and the aquatic environment. They have shown the possibility of causing many undesirable effects, together with neurologic, immunological, and reproductive disruptions and possible carcinogenicity in humans. PBDEs have been detected in small amounts in biological samples, including hair, human semen, blood, urine, and breastmilk, and environmental samples such as sediment, soil, sewage sludge, air, biota, fish, mussels, surface water, and wastewater. The congeners prevailing in environmental samples, with soil being the essential matrix, are BDE 47, 99, and 100. BDE 28, 47, 99, 100, 153, 154, and 183 are more frequently detected in human tissues, whereas in sediment and soil, BDE 100 and 183 predominate. Generally, BDE 153 and 154 appear very often across different matrices. However, BDE 209 seems not frequently determined, owing to its tendency to quickly breakdown into smaller congeners. This paper carried out an overview of PBDEs in the environmental, human, and biota niches with their characteristics, physicochemical properties, and fate in the environment, human exposure, and health effects.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700 South Africa
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700 South Africa
| | - Abiodun Olagoke Adeniji
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700 South Africa
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700 South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700 South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700 South Africa
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Omobola Oluranti Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700 South Africa
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700 South Africa
| |
Collapse
|
27
|
Witczak A, Harada D, Aftyka A, Cybulski J. Endocrine-disrupting organochlorine xenobiotics in fish products imported from Asia-an assessment of human health risk. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:132. [PMID: 33590385 PMCID: PMC7884584 DOI: 10.1007/s10661-021-08914-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
The sources of endocrine-disrupting persistent organochlorine compounds (OC) are environmental pollutants. Contaminated food is a direct result of environmental pollution, and fish are considered as the main source of OC in the human diet. This study aimed to analyze the contamination of imported fish fillets with organochlorine pesticides (OCPs) and polychlorinated biphenyl (PCB) congeners in the context of potential health risks of consumers in Poland in the light of the new tolerable weekly intake (TWI) values. The tested compounds in fish products were determined by liquid-liquid extraction and gas chromatography mass spectrometry (GS-MS) method. Despite the detection of almost all pesticides analyzed in the fish fillets tested, the risk factor (hazard quotient) was significantly lower than 1.0, ranging from 0.003 to 0.013. Considering the previous recommended TWI value (14 pg-TEQ/kg bw/week), the estimated weekly intake was lower at 43-53% of TWI. However, according to the new TWI values set by the EFSA in 2018, the estimated weekly intake was about three times higher than the TWI. This raises concerns regarding threats to consumer health.
Collapse
Affiliation(s)
- Agata Witczak
- Department of Toxicology, Dairy Technology and Food Storage, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, Szczecin, Poland
| | - Daiki Harada
- Laboratory of Regulation of Metabolism and Behavior, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Aleksandra Aftyka
- Department of Toxicology, Dairy Technology and Food Storage, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, Szczecin, Poland
| | - Jacek Cybulski
- Department of Toxicology, Dairy Technology and Food Storage, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, Szczecin, Poland
| |
Collapse
|
28
|
Sun S, Cao R, Lu X, Zhang Y, Gao Y, Chen J, Zhang H. Levels and patterns of polychlorinated dibenzo-p-dioxins and dibenzofurans and polychlorinated biphenyls in foodstuffs of animal origin from Chinese markets and implications of dietary exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 273:116344. [PMID: 33453698 DOI: 10.1016/j.envpol.2020.116344] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
The concentrations and distribution profiles of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) were measured in representative animal origin foodstuffs randomly collected from markets located in five regions of the Chinese mainland during 2018-2019. The collected foodstuffs were classified into 11 pools consisting of pork, beef, mutton, poultry meat, chicken eggs, pure milk, mixed animal fat, fish, shrimp, shellfish, and cephalopods. The levels of tri-to octa-CDD/Fs (∑PCDD/Fs), tri-to deca-CBs (∑PCBs), and WHO-TEQ in the collected animal foods were found to be in the ranges of 0.4-14.3 pg/g, 0.04-2.8 ng/g, and 0.013-0.75 pg/g on a fresh weight basis, respectively. The concentrations of PCDD/Fs and PCBs in most of the animal food groups from coastal regions were obviously higher than those from inland regions. Remarkable differences in the homologue and congener distribution of PCDD/Fs and PCBs were observed between terrestrial and aquatic animal foods. The dietary intakes of WHO-TEQ via consumption of animal foods by a standard adult in the five regions were estimated to be in the range of 3.57-19.63 pg WHO-TEQ/kg body weight/month. Consumption of the aquatic animal food and pork categories contributed most of the estimated dietary intakes of WHO-TEQ in the coastal regions, whereas consumption of beef, mutton, and milk made up the primary contributions in Northwest region.
Collapse
Affiliation(s)
- Shuai Sun
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Cao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xianbo Lu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yichi Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yuan Gao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
29
|
Ma J, Li X, Ma S, Zhang X, Li G, Yu Y. Temporal trends of "old" and "new" persistent halogenated organic pollutants in fish from the third largest freshwater lake in China during 2011-2018 and the associated health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115497. [PMID: 32889513 DOI: 10.1016/j.envpol.2020.115497] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
The study aimed to investigate temporal trends of "old" and "new" persistent halogenated organic pollutants (HOPs) in Taihu Lake, the third largest freshwater lake in China, and the associated health risks. Five fish species were consecutively collected from the lake every year during 2011-2018. HOPs including 37 polychlorinated biphenyls (PCBs), 10 organochlorine pesticides (OCPs), short- and medium-chain chlorinated paraffins (SCCPs and MCCPs), 19 polybrominated diphenyl ethers (PBDEs), and 10 new brominated flame retardants (NBFRs), were measured. The results showed that all the HOPs were detected, with MCCPs and NBFRs showing the highest and lowest concentrations, respectively. The levels of SCCPs and MCCPs were several orders of magnitude higher than those of the other HOPs. There were obvious increasing trends for SCCPs, MCCPs, and hexachlorobenzene, but a decreasing trend for PBDEs. No obvious increasing or decreasing trends were observed for the other HOPs. The present study indicated that the use of NBFRs to replace PBDEs was not yet clearly observed. Fish consumption did not result in non-carcinogenic risks, but posed low carcinogenic risks, with PCBs and DDTs being the highest-risk contaminants because of historical residues. This is the first study for the temporal variations of the HOPs in the lake.
Collapse
Affiliation(s)
- Jinjing Ma
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Xiangnan Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Shengtao Ma
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Synergy Innovation Institute of GDUT, Shantou, 515041, PR China
| | - Xiaolan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
30
|
Munschy C, Bely N, Héas-Moisan K, Olivier N, Pollono C, Hollanda S, Bodin N. Tissue-specific bioaccumulation of a wide range of legacy and emerging persistent organic contaminants in swordfish (Xiphias gladius) from Seychelles, Western Indian Ocean. MARINE POLLUTION BULLETIN 2020; 158:111436. [PMID: 32753219 DOI: 10.1016/j.marpolbul.2020.111436] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Swordfish (Xiphias gladius) is a major marine resource of high economic value to industrial and artisanal fisheries. As a top predator with a long lifespan, it is prone to accumulate high levels of contaminants. The bioaccumulation of a wide range of both legacy and emerging persistent organic contaminants was investigated in the muscle, liver and gonads of swordfish collected from the Seychelles, western Indian Ocean. The detection of all target contaminants, some at frequencies above 80%, highlights their widespread occurrence, albeit at low levels. Mean concentrations in muscle were 5637, 491 and 331 pg g-1 ww for organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and perfluoroalkyl substances (PFASs), respectively. ∑BFR mean concentrations were far below, i.e. 47 pg g-1 ww. The data are among the first obtained for such a high diversity of contaminants in an oceanic top predator worldwide and constitute a benchmark of the contamination of Indian Ocean ecosystems.
Collapse
Affiliation(s)
- C Munschy
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 3, France.
| | - N Bely
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 3, France
| | - K Héas-Moisan
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 3, France
| | - N Olivier
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 3, France
| | - C Pollono
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 3, France
| | - S Hollanda
- SFA (Seychelles Fishing Authority), Fishing Port, Victoria, Mahé, Seychelles
| | - N Bodin
- SFA (Seychelles Fishing Authority), Fishing Port, Victoria, Mahé, Seychelles; IRD (French Research Institute for Sustainable Development), Fishing Port, Victoria, Mahé, Seychelles
| |
Collapse
|
31
|
Munschy C, Vigneau E, Bely N, Héas-Moisan K, Olivier N, Pollono C, Hollanda S, Bodin N. Legacy and emerging organic contaminants: Levels and profiles in top predator fish from the western Indian Ocean in relation to their trophic ecology. ENVIRONMENTAL RESEARCH 2020; 188:109761. [PMID: 32562947 DOI: 10.1016/j.envres.2020.109761] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/07/2020] [Accepted: 05/28/2020] [Indexed: 05/24/2023]
Abstract
Tuna and billfish are large pelagic fish of ecological importance in open oceans. As top predators with a long lifespan, they are prone to exposure to various contaminants such as persistent organic pollutants (POPs) and contaminants of emerging concern. In this study, three pollutant families were investigated, including polychlorinated biphenyls (PCBs), organochlorinated pesticides (OCPs) and perfluoroalkyl substances (PFASs), including perfluorooctane sulfonate (PFOS) and perfluorocarboxylic acids (PFCAs). Contamination was investigated in individuals from three tropical tuna species, namely bigeye (Thunnus obesus), skipjack (Katsuwonus pelamis) and yellowfin (Thunnusalbacares) tunas and the billfish swordfish (Xiphias gladius), collected from various areas of the western Indian Ocean (WIO) in 2013-2014. Contamination levels and profiles were examined in fish muscle, together with biological parameters (fish length / age, sex, lipid content) and ecological tracers (carbon and nitrogen stable isotopes). POP levels were low in all species in comparison to other locations worldwide, revealing a low impact of anthropogenic organic contaminants in the WIO. A predominance of OCPs (especially DDTs) versus PCBs was highlighted in all species; PFASs were predominant over chlorinated POPs in tunas. Among the studied PFASs, long-chain PFCAs were found to prevail over PFOS in all species. Organic contaminant profiles differed across species according to their foraging habitat; swordfish and bigeye tuna, which both feed in deep oceanic layers, showed similarities in their contaminant profiles. Geographically, the distinct DDT profiles of fish from the Mozambique Channel suggested an exposure to different DDT sources, in line with regional use of this insecticide and coupled with an extended residence time of fish in the Channel. To our knowledge, the data presented here are among the first obtained for legacy and emerging organic contaminants in various species of large pelagic predators from the WIO.
Collapse
Affiliation(s)
- C Munschy
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de L'Ile D'Yeu, BP 21105, 44311, Nantes Cedex 3, France.
| | - E Vigneau
- StatSC, ONIRIS, INRA, 44322, Nantes, France
| | - N Bely
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de L'Ile D'Yeu, BP 21105, 44311, Nantes Cedex 3, France
| | - K Héas-Moisan
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de L'Ile D'Yeu, BP 21105, 44311, Nantes Cedex 3, France
| | - N Olivier
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de L'Ile D'Yeu, BP 21105, 44311, Nantes Cedex 3, France
| | - C Pollono
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de L'Ile D'Yeu, BP 21105, 44311, Nantes Cedex 3, France
| | - S Hollanda
- SFA (Seychelles Fishing Authority), Fishing Port, Victoria, Mahé, Seychelles
| | - N Bodin
- SFA (Seychelles Fishing Authority), Fishing Port, Victoria, Mahé, Seychelles; Research Institute for Sustainable Development (IRD), UMR MARBEC, Fishing Port, Victoria, Mahé, Seychelles
| |
Collapse
|
32
|
Gonçalves ÍFS, Souza TM, Vieira LR, Marchi FC, Nascimento AP, Farias DF. Toxicity testing of pesticides in zebrafish-a systematic review on chemicals and associated toxicological endpoints. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10185-10204. [PMID: 32062774 DOI: 10.1007/s11356-020-07902-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
The use of zebrafish (Danio rerio) has arisen as a promising biological platform for toxicity testing of pesticides such as herbicides, insecticides, and fungicides. Therefore, it is relevant to assess the use of zebrafish in models of exposure to investigate the diversity of pesticide-associated toxicity endpoints which have been reported. Thus, this review aimed to assess the recent literature on the use of zebrafish in pesticide toxicity studies to capture data on the types of pesticide used, classes of pesticides, and zebrafish life stages associated with toxicity endpoints and phenotypic observations. A total of 352 articles published between September 2012 and May 2019 were curated. The results show an increased trend in the use of zebrafish for testing the toxicity of pesticides, with a great diversity of pesticides (203) and chemical classes (58) with different applications (41) being used. Furthermore, experimental outcomes could be clustered in 13 toxicity endpoints, mainly developmental toxicity, oxidative stress, and neurotoxicity. Organophosphorus, pyrethroid, azole, and triazine were the most studied classes of pesticides and associated with various toxicity endpoints. Studies frequently opted for early life stages (embryos and larvae). Although there is an evident lack of standardization of nomenclatures and phenotypic alterations, the information gathered here highlights associations between (classes of) pesticides and endpoints, which can be used to relate mechanisms of action specific to certain classes of chemicals.
Collapse
Affiliation(s)
- Íris Flávia Sousa Gonçalves
- Laboratory of Risk Assessment for Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, Campus I, CEP, João Pessoa, 58051-900, Brazil
- Post-Graduation Program in Biochemistry, Federal University of Ceara, Campus Pici, CEP, Fortaleza, 60440-900, Brazil
| | - Terezinha Maria Souza
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, 6229 ER, The Netherlands.
| | - Leonardo Rogério Vieira
- Post-Graduation Program in Biochemistry, Federal University of Ceara, Campus Pici, CEP, Fortaleza, 60440-900, Brazil
| | - Filipi Calbaizer Marchi
- Laboratory of Risk Assessment for Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, Campus I, CEP, João Pessoa, 58051-900, Brazil
| | - Adailton Pascoal Nascimento
- Laboratory of Risk Assessment for Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, Campus I, CEP, João Pessoa, 58051-900, Brazil
| | - Davi Felipe Farias
- Laboratory of Risk Assessment for Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, Campus I, CEP, João Pessoa, 58051-900, Brazil.
- Post-Graduation Program in Biochemistry, Federal University of Ceara, Campus Pici, CEP, Fortaleza, 60440-900, Brazil.
| |
Collapse
|
33
|
Ameur WB, Annabi A, El Megdiche Y, Mhadhbi T, Hassine SB, Barhoumi B, Touil S, Driss MR, Barceló D, Eljarrat E. Legacy and Emerging Brominated Flame Retardants in Bizerte Lagoon Murex (Hexaplex Trunculus): Levels and Human Health Risk Assessment. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 78:337-349. [PMID: 31938850 DOI: 10.1007/s00244-019-00694-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Occurrence of traditional (PBDEs) and novel (HBB, PBEB, DBDPE) brominated flame retardants, as well as the natural compounds of MeO-PBDEs, were studied in a shellfish species (Hexaplex trunculus) sampled from Bizerte Lagoon. PBDE and MeO-PBDE mean concentrations in murex soft tissues were 187 and 264 ng g-1 lw respectively. The alternative flame retardants were not identified. The sum of PBDE and MeO-PBDE levels recorded in murex from the investigated aquatic ecosystem were comparable or a relatively lower than those reported for other organisms from other regions across the world. The amount of PBDE and MeO-PBDE concentrations from the Bizerte Lagoon recorded in murex were comparable or a relatively lower than those recorded from other areas across the world for other species. There is not a danger to the population health with regard to PBDE intakes associated with the consumption of murex in Bizerte city. We believe that this is the first study of the analysis of these pollutants in marine gastropod mollusks from Tunisian aquatic areas.
Collapse
Affiliation(s)
- Walid Ben Ameur
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia.
| | - Ali Annabi
- Department of Life Sciences, Faculty of Sciences of Gabes, University of Gabes, Gabès, Tunisia
| | - Yassine El Megdiche
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia
| | - Takoua Mhadhbi
- Department of Life Sciences, Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia
| | - Sihem Ben Hassine
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia
| | - Badreddine Barhoumi
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia
| | - Soufiane Touil
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia
| | - Mohamed Ridha Driss
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia
| | - Damia Barceló
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Ethel Eljarrat
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| |
Collapse
|
34
|
Jian K, Zhao L, Ya M, Zhang Y, Su H, Meng W, Li J, Su G. Dietary intake of legacy and emerging halogenated flame retardants using food market basket estimations in Nanjing, eastern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113737. [PMID: 31838397 DOI: 10.1016/j.envpol.2019.113737] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/22/2019] [Accepted: 12/04/2019] [Indexed: 05/06/2023]
Abstract
Food products are inevitably contaminated by flame retardants throughout their lifecycle (i.e., during production, use, and disposal). In order to evaluate the dietary intake of legacy and emerging halogenated flame retardants (HFRs) in typical market food in China, we investigate the distribution and profile of 27 legacy polybrominated diphenyl ethers (PBDEs) and 16 emerging HFRs (EHFRs) in 9 food categories (meat, poultry, aquatic food, eggs, dairy products, cereals, vegetables, nuts and fruits, and sugar). A total of 105 food samples collected from three markets in Nanjing, eastern China were included for evaluation. The highest concentrations of PBDEs and EHFRs were found in aquatic foods (means of 0.834 ng/g wet weight (ww) and 0.348 ng/g ww, respectively), and the lowest concentrations were found in sugar (means of 0.020 ng/g ww for PBDEs and 0.014 ng/g ww for EHFRs). 2,2',4-tribromodiphenyl ether (BDE-17), a legacy HFR, and hexabromobenzene (HBBz), an EHFR, were the predominant pollutants in the investigated food samples. Concentrations of HBBz and 2,3-dibromopropyl tribromophenyl ether (DPTE) were comparable to those of some PBDEs in certain food samples. The concentrations of the total EHFRs and total PBDEs found in animal-based food samples were significantly greater than those in plant-based food samples. Comparison of the estimated total dietary intake of HFRs and their corresponding non-cancer reference dose (United States Environmental Protection Agency) suggests a low overall health risk. To the best of our knowledge, the present study is the first to simultaneously determine 27 PBDEs and 16 EHFRs in representative foods from Chinese markets. BDE-17, HBBz, and DPTE were the predominant congeners among the 43 investigated HFRs and meat and aquatic foods were the primary sources of PBDEs and EHFRs to the total local dietary intake.
Collapse
Affiliation(s)
- Kang Jian
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Luming Zhao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Miaolei Ya
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Yayun Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Huijun Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Weikun Meng
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Jianhua Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| |
Collapse
|
35
|
Aznar-Alemany Ò, Eljarrat E. Food contamination on flame retardants. EMERGING HALOGENATED FLAME RETARDANTS IN THE ENVIRONMENT 2020. [DOI: 10.1016/bs.coac.2019.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
36
|
Lü H, Ma XJ, Huang XJ, Lu S, Huang YH, Mo CH, Cai QY, Wong MH. Distribution, diastereomer-specific accumulation and associated health risks of hexabromocyclododecanes (HBCDs) in soil-vegetable system of the Pearl River Delta region, South China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 248:109321. [PMID: 31394478 DOI: 10.1016/j.jenvman.2019.109321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/15/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
The distribution and diastereomeric profiles of hexabromocyclododecanes (HBCDs, identified as persistent organic pollutants) in soil-vegetable system of open fields remain unknown. In this study, three main HBCD diastereoisomers (α-, β-, and γ-HBCDs) were analyzed in paired soil and vegetable samples from vegetable farms in four cities (Guangzhou, Jiangmen, Huizhou, Foshan) of the Pearl River Delta region, Southern China. The sum concentrations of the three diastereoisomers (∑HBCDs) in soils varied from 0.99 to 18.4 ng/g (dry weight) with a mean of 5.77 ng/g, decreasing in the order of Jiangmen > Guangzhou > Huizhou > Foshan. The distributions of HBCDs in both soil and vegetable were diastereomer-specific, with γ-HBCD being predominant. The ∑HBCDs in vegetables ranged from 0.87 to 32.7 ng/g (dry weight) with a mean of 16.6 ng/g, generally higher than those of the corresponding soils. Thus bioconcentration factors (BCFs, the ratio of contaminant concentration in vegetable to that in soil) of HBCDs were generally greater than 1.0, implying higher accumulation in vegetable. The estimated daily intake (EDI) of ΣHBCDs via consumption of vegetables varied from 0.26 to 9.35 ng/kg bw/day with a mean of 3.60 ng/kg bw/day for adults and from 0.32 to 11.5 ng/kg bw/day with a mean of 4.41 ng/kg bw/day for Children, far lower than the oral reference dose (RfD, 2 × 105 ng/kg bw/day) proposed by US National Research Council. These results suggest that HBCD in the vegetables posed low health risk for the local population. These data are the first report on HBCD occurrence and health risk in soil-vegetable system of open fields.
Collapse
Affiliation(s)
- Huixiong Lü
- College of Natural Resources and Environment, Integrate Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao-Jing Ma
- College of Natural Resources and Environment, Integrate Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Xue-Jing Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Shaoyou Lu
- POPs Lab, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yu-Hong Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Ming-Hung Wong
- College of Natural Resources and Environment, Integrate Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China; Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| |
Collapse
|
37
|
Zhang C, Li X, Li H, Chen Y, Ma T, Li X, Gao Y, Zhang Q. Determination of polybrominated diphenyl ethers in fish tissue using gas chromatography-isotope dilution tandem inductively coupled plasma mass spectrometry with a mass-shift mode. Anal Chim Acta 2019; 1075:38-48. [DOI: 10.1016/j.aca.2019.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/27/2019] [Accepted: 05/03/2019] [Indexed: 01/02/2023]
|
38
|
Pietron W, Pajurek M, Mikolajczyk S, Maszewski S, Warenik-Bany M, Piskorska-Pliszczynska J. Exposure to PBDEs associated with farm animal meat consumption. CHEMOSPHERE 2019; 224:58-64. [PMID: 30807914 DOI: 10.1016/j.chemosphere.2019.02.067] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/08/2019] [Accepted: 02/09/2019] [Indexed: 06/09/2023]
Abstract
One of the ways to reduce the number of fires and the amount of damage caused by them is to use flame retardants (FRs). Polybrominated diphenyl ethers (PBDEs), like other FRs, have been used in a wide array of easily flammable products. As they are not chemically bonded with materials, PBDEs can be released from polymers into the environment. PBDEs can act as endocrine disruptors and affect neurological and thyroid activity. Although human intake of PBDEs is mainly through food, data about meat as a PBDE source and human exposure through diet are limited. The objective of the present study was to develop a comprehensive database of congener-specific PBDE concentrations in farm animal muscle and to characterize potential consumer exposure. For exposure assessment, two consumption scenarios were used for adults and children. The dietary exposure to PBDE congeners is based on the assumed portion size of 100 g of different meat species. Calculations for the participants were performed using food consumption data of the Statistical Yearbook (2015/2016). The intake of PBDEs was estimated as the median (P50) and the average for all kinds of tested meat. For health risk assessment, the margin of exposure (MOE) approach was used. MOE values were in range from 5 to 149 352 132. The obtained results indicate that concentrations of ten tested congeners (BDE-28,47,49,99,100,138,153,154,183,209) in different kinds of farm animal meat (cow, chicken, farm deer, horse, ostrich, pig, rabbit, sheep, turkey) are low and meat consumption does not pose a risk for human health.
Collapse
Affiliation(s)
- Wojciech Pietron
- Department of Radiobiology, National Veterinary Research Institute, Partyzantow 57, 24-100, Pulawy, Poland.
| | - Marek Pajurek
- Department of Radiobiology, National Veterinary Research Institute, Partyzantow 57, 24-100, Pulawy, Poland.
| | - Szczepan Mikolajczyk
- Department of Radiobiology, National Veterinary Research Institute, Partyzantow 57, 24-100, Pulawy, Poland.
| | - Sebastian Maszewski
- Department of Radiobiology, National Veterinary Research Institute, Partyzantow 57, 24-100, Pulawy, Poland.
| | - Malgorzata Warenik-Bany
- Department of Radiobiology, National Veterinary Research Institute, Partyzantow 57, 24-100, Pulawy, Poland.
| | | |
Collapse
|
39
|
Green determination of brominated flame retardants and organochloride pollutants in fish oils by vortex assisted liquid-liquid microextraction and gas chromatography-tandem mass spectrometry. Talanta 2019; 195:251-257. [DOI: 10.1016/j.talanta.2018.11.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 11/19/2022]
|
40
|
Puschner B, Gallego SM. Chemical hazards associated with milk and dairy. CHEMICAL HAZARDS IN FOODS OF ANIMAL ORIGIN 2019. [DOI: 10.3920/978-90-8686-877-3_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Birgit Puschner
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, 149 Briggs Hall, Davis, CA 95616, USA
| | - Steven M. Gallego
- California Department of Food and Agriculture, Animal Health and Food Safety Services, 2135 Civic Center Drive, Redding, CA 96001, USA
| |
Collapse
|
41
|
Babalola B, Adeyi A. Levels, dietary intake and risk of polybrominated diphenyl ethers (PBDEs) in foods commonly consumed in Nigeria. Food Chem 2018; 265:78-84. [DOI: 10.1016/j.foodchem.2018.05.073] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 12/17/2022]
|
42
|
Ojuri OT, Ezekiel CN, Sulyok M, Ezeokoli OT, Oyedele OA, Ayeni KI, Eskola MK, Šarkanj B, Hajšlová J, Adeleke RA, Nwangburuka CC, Elliott CT, Krska R. Assessing the mycotoxicological risk from consumption of complementary foods by infants and young children in Nigeria. Food Chem Toxicol 2018; 121:37-50. [DOI: 10.1016/j.fct.2018.08.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/12/2018] [Accepted: 08/13/2018] [Indexed: 12/22/2022]
|
43
|
Junqué E, Garí M, Llull RM, Grimalt JO. Drivers of the accumulation of mercury and organochlorine pollutants in Mediterranean lean fish and dietary significance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:170-180. [PMID: 29627539 DOI: 10.1016/j.scitotenv.2018.03.335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/09/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
An integrated assessment of lean fish of commercial value as Hg and organochlorine compound source into the population of the Balearic Islands were reported. Dependences between pollutant concentrations, trophic level, fish species, specimen weight and physical-chemical properties were evaluated. Hg and total DDTs showed highest variability between fish species whereas PCBs and HCB displayed more constant median values. The organochlorine compounds found in highest concentrations were those with highest hydrophobicity, consistently with their higher bioaccumulation potential. These pollutant concentrations were higher in Mediterranean than Atlantic fish. Higher median total DDT and PCBs concentrations were also observed in the third than the second trophic level species. The observed concentrations were below the threshold recommended by the EU for human consumption (75ng/g wet weight). The Hg concentrations were higher in Mediterranean than Atlantic fish, with average values of 1.5μg/g ww and 0.43μg/g ww, respectively. Forty-one percent of the specimens from the Mediterranean and 25% of dusky grouper specimens from the Atlantic Ocean showed Hg concentrations above the EU recommended limits for human consumption, either 0.5μg/g ww or 1μg/g ww. In the third trophic level, a significant dependence between median Hg concentrations and weight of each studied species was observed, which remained significant in specimen weight correlations. Independent species correlations of Hg concentrations vs individual weight generally showed higher concentrations at higher weight. Weight/size of the individuals was therefore an important factor for Hg accumulation but the trend was modulated by a species effect. Extrapolation of the observed Hg concentrations in Mediterranean fish to Provisional Tolerable Weekly Intakes (PTWIs) showed higher intakes than the thresholds recommended by EFSA for adults and children, 110% and 140%, respectively. The estimated PTWIs for MeHg corresponded to 310% and 400% of the recommended threshold values. The PTWI values for organochlorine compounds were lower than those recommended.
Collapse
Affiliation(s)
- Eva Junqué
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain
| | - Mercè Garí
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain; Department of Earth and Ocean Dynamics, Universitat de Barcelona (UB), Barcelona, Catalonia, Spain
| | - Rosa Maria Llull
- General Direction of Public Health and Consumption, Ministry of Health, Family and Social Welfare, Government of the Balearic Islands, Palma, Mallorca, Spain
| | - Joan O Grimalt
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain.
| |
Collapse
|
44
|
Huang CC, Zeng YH, Luo XJ, Tang B, Liu YE, Ren ZH, Mai BX. Level changes and human dietary exposure assessment of halogenated flame retardant levels in free-range chicken eggs: A case study of a former e-waste recycling site, South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:509-515. [PMID: 29631140 DOI: 10.1016/j.scitotenv.2018.03.386] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/18/2018] [Accepted: 03/31/2018] [Indexed: 06/08/2023]
Abstract
To assess the impacts of e-waste regulations on environmental pollution, we built on a previous study from 2010 to investigate the levels and human dietary exposure of halogenated flame retardants (HFRs) in free-range chicken eggs from Baihe village in 2013 and 2016. The concentrations of PBDEs, PBBs, HBCDs, and DBDPE showed a significant decrease (p<0.05) from 2010 to 2013/2016, suggesting the efficacy of regulatory policies. The relative contribution of BDE209 were higher in 2013 and 2016 than in 2010, accounting for 67.8%, 61.4%, and 27.7%, respectively. The concentration ratios of PBB209:PBB153 were much lower in 2013 (1.51) and 2016 (1.32) than in 2010 (29.5). These observed different profiles likely due to the different environmental behaviors of HFRs (e.g. the different atmospheric migration abilities of PBDE congeners and degradation of PBB209). Our exposure estimates suggested high dietary intake of HFRs via home-produced eggs. As for PBDEs, considering the worst situation (highly polluted eggs were consumed), the margin of exposure (MOE) of BDE99 for both adults and children were 1.5 and 0.3 in 2013, and 1.1 and 0.2 in 2016, respectively, which were below 2.5. According to the CONTAM panel, an MOE larger than 2.5 indicates no health concern. Therefore, these MOE values represent a significant potential health concern due to the adverse impacts of PBDEs on human neurodevelopment and fertility.
Collapse
Affiliation(s)
- Chen-Chen Huang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Hong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Bin Tang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yin-E Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-He Ren
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
45
|
Shi Z, Zhang L, Li J, Wu Y. Legacy and emerging brominated flame retardants in China: A review on food and human milk contamination, human dietary exposure and risk assessment. CHEMOSPHERE 2018; 198:522-536. [PMID: 29428767 DOI: 10.1016/j.chemosphere.2018.01.161] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 06/08/2023]
Abstract
Brominated flame retardants (BFRs) are a large group of widely used chemicals, which have been produced and used since 1970s. As a consequence of substantial and long-term usage, BFRs have been found to be ubiquitous in humans, wildlife, and abiotic matrices around the world. Although several reports have reviewed BFRs contamination in general, none have focused specifically on foods and human milk, and the corresponding dietary exposure. Foods (including human milk) have long been recognized as a major pathway of BFRs intake for non-occupationally exposed persons. This review summarizes most available BFRs data in foods and human milk from China in recent years, and emphasizes several specific aspects, i.e., contamination levels of legacy and emerging BFRs, dietary exposure assessment and related health concerns, comparison between various BFRs, and temporal changes in BFRs contamination.
Collapse
Affiliation(s)
- Zhixiong Shi
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lei Zhang
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health, and China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Jingguang Li
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health, and China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yongning Wu
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health, and China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| |
Collapse
|
46
|
Poma G, Malysheva SV, Goscinny S, Malarvannan G, Voorspoels S, Covaci A, Van Loco J. Occurrence of selected halogenated flame retardants in Belgian foodstuff. CHEMOSPHERE 2018; 194:256-265. [PMID: 29216545 DOI: 10.1016/j.chemosphere.2017.11.179] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
This paper reports on the occurrence of halogenated flame retardants (HFRs), namely PBDEs, HBCDs, TBBPA, brominated phenols (BrPhs), dechlorane plus (DP) and emerging FRs in a variety of Belgian foodstuffs. A total of 183 composite food samples were analyzed by GC-MS and LC-MS/MS techniques for the presence of HFRs. The analyses revealed that 72% of the samples was contaminated with HFRs to some extent. The highest number of contaminated samples was observed within the group 'Potatoes and derived products', 'Fish and fish products' and 'Meat and meat products', while the least contaminated group was 'Food for infants and small children'. The total HFR content ranged from <LOQ to 35.4 ng/g ww with an average content of 1.2 ng/g ww and median of 0.25 ng/g ww. The samples with the highest total HFR levels were canned king crab, fresh mackerel, Emmental cheese, fresh eel and plaice. The most frequently detected HFRs were PBDEs and BrPhs being present in almost all food groups, and among the individual HFRs, the most frequently found compounds were BDE-47 (53%), BDE-209 (46%) and 246-TBP (40%). TBBPA, DPs, TBPH and γ-HBCD occurred with a frequency of less than 5%. TBBPS, 26-DBP, HBB, TBB and BTBPE were not detected in any of the analyzed food samples.
Collapse
Affiliation(s)
- Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Svetlana V Malysheva
- Food, Medicines and Consumer Safety, Scientific Institute of Public Health, Juliette Wytsmanstraat 14, 1050, Brussels, Belgium.
| | - Séverine Goscinny
- Food, Medicines and Consumer Safety, Scientific Institute of Public Health, Juliette Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Govindan Malarvannan
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Stefan Voorspoels
- Flemish Institute for Technological Research (Vito NV), Boeretang 200, 2400, Mol, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium. adrian.covaci@uantwerpenbe
| | - Joris Van Loco
- Food, Medicines and Consumer Safety, Scientific Institute of Public Health, Juliette Wytsmanstraat 14, 1050, Brussels, Belgium
| |
Collapse
|
47
|
Hudson-Hanley B, Irvin V, Flay B, MacDonald M, Kile ML. Prenatal PBDE Exposure and Neurodevelopment in Children 7 Years Old or Younger: a Systematic Review and Meta-analysis. CURR EPIDEMIOL REP 2018. [DOI: 10.1007/s40471-018-0137-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Jin W, Otake M, Eguchi A, Sakurai K, Nakaoka H, Watanabe M, Todaka E, Mori C. Dietary Habits and Cooking Methods Could Reduce Avoidable Exposure to PCBs in Maternal and Cord Sera. Sci Rep 2017; 7:17357. [PMID: 29229988 PMCID: PMC5725569 DOI: 10.1038/s41598-017-17656-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/24/2017] [Indexed: 11/22/2022] Open
Abstract
Polychlorinated biphenyls (PCBs), like other persistent organic pollutants, are accumulating throughout the food chain and pose health threats to humans, especially children and foetuses. There is no protocol for reducing the contamination levels of the PCBs in humans. This study identified food items and cooking methods that reduce serum PCB levels by analysing data collected from the Chiba Study of Mother and Child Health. The sample size was 194 subjects. Serum PCB levels were measured using gas chromatography-electron capture negative ionization quadrupole mass spectrometry. Information on dietary habits was obtained from a brief diet history questionnaire that included questions about food items and cooking methods. Food items were categorized into food groups, and nutrient levels were calculated based on food item consumption. Principal component analysis and lasso regression were used as statistical methods. The analyses of food items and nutrients suggested that food items rich in dietary fibre reduce avoidable exposure to PCBs, as could grilling and deep frying of food, which could reduce avoidable exposure to serum PCBs in mothers and foetuses. (174 words).
Collapse
Affiliation(s)
- Weiwei Jin
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Masae Otake
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Akifumi Eguchi
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Kenichi Sakurai
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Hiroko Nakaoka
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Masahiro Watanabe
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Emiko Todaka
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Chisato Mori
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan.
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
49
|
Lee MH, Cho ER, Lim JE, Jee SH. Association between serum persistent organic pollutants and DNA methylation in Korean adults. ENVIRONMENTAL RESEARCH 2017; 158:333-341. [PMID: 28672131 DOI: 10.1016/j.envres.2017.06.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/17/2017] [Accepted: 06/19/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Exposure to persistent organic pollutants (POPs) has been associated with epigenetic changes such as DNA methylation, which can influence human health. However, the association between POPs and DNA methylation by sex was not shown in previous studies. OBJECTIVES We investigated the association between POPs and DNA methylation in men and women using a larger population. METHODS A cross-sectional study was conducted using the data of 444 Koreans (253 men and 191 women). Measurements for sixteen different POPs, including six organochlorine pesticides (OCPs) and ten polychlorinated biphenyls (PCBs) were taken in serum. DNA methylation via Alu and LINE-1 in peripheral leukocytes was measured by pyrosequencing. To evaluate the association between POPs and DNA methylation, the Pearson's correlation and multiple linear regression analyses were performed. RESULTS Except for PCB52 and PCB101, we found significant inverse associations between p,p'-DDE, cis-Heptachlor epoxide, and PCBs and Alu assay in men after adjusting for age, BMI, smoking status, and alcohol consumption (β = -0.67 for p,p'-DDE; -0.28 for cis-Heptachlor epoxide; in the range from -0.43 to -1.60 for PCBs). In women, PCB153 and PCB180 showed statistically significant inverse association with Alu assay (β = -0.22 for PCB153; -0.22 for PCB180). Except for PCB101, p,p'-DDE and PCBs were positively associated with LINE-1 assay in women (β = 0.48 for p,p'-DDE; in the range from 0.40-0.89 for PCBs) while p,p'-DDE, PCB153, and PCB180 showed positive associations with LINE-1 assay in men (β = 0.55 for p,p'-DDE; 0.65 for PCB153; 1.02 for PCB180). CONCLUSIONS We found that several POPs were associated with global DNA hypomethylation in the Alu assay for men and global DNA hypermethylation in the LINE-1 assay for women.
Collapse
Affiliation(s)
- Mi Hwa Lee
- Institute for Health and Society, Hanyang University, Seoul, Republic of Korea
| | - Eo Rin Cho
- Institute for Health Promotion & Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Republic of Korea
| | - Jung-Eun Lim
- Institute for Health Promotion & Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Republic of Korea; College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Sun Ha Jee
- Institute for Health Promotion & Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
50
|
Gallistl C, Lok B, Schlienz A, Vetter W. Polyhalogenated compounds (chlorinated paraffins, novel and classic flame retardants, POPs) in dishcloths after their regular use in households. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 595:303-314. [PMID: 28384585 DOI: 10.1016/j.scitotenv.2017.03.217] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/23/2017] [Accepted: 03/23/2017] [Indexed: 05/22/2023]
Abstract
Dishcloths are routinely used in the clean-up process following daily kitchen activities and are thus subject to contamination commensurate with their frequent use. Here we analyzed dishcloths for the occurrence of polyhalogenated compounds after 14days of use in household kitchens. Analysis of 19 dishcloths revealed the presence of 29 polyhalogenated contaminants with total mean/median concentrations of 6,900/3,600ng/dishcloth, respectively. The spectrum featured classic and novel halogenated flame-retardants (HFRs) like polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD), decabromodiphenyl ethane (DBDPE), pentabromoethylbenzene (PBEB), chlordene plus and dechlorane plus, as well as typical chloropesticides and background contaminants (e.g. hexachlorobenzene (HCB), p,p'-dichlorodiphenyldichloroethene (p,p'-DDE), polychlorinated biphenyls (PCBs) and lindane). The individual dishcloths showed highly variable fingerprints of polyhalogenated compounds. If present, medium-chain chlorinated paraffins (MCCPs) were by far the most prominent compound class with up to 55,400ng/dishcloth. Without consideration of chlorinated paraffins, the mean concentration of other polychlorinated compounds (270ng/dishcloth) was generally one order of magnitude lower than the mean concentration of brominated flame retardants (BFRs) (1,700ng/dishcloth). Our study verified that a wide range of polyhalogenated compounds is readily available in the kitchen environment. Furthermore, dishcloths are ordinarily handled without gloves or hand protection, given the observed concentrations of polyhalogenated compounds in dishcloths, such handling may serve as an additional exposure pathway for human users. Evaluation of this thesis was supported by conduction of a dermal uptake assessment.
Collapse
Affiliation(s)
- Christoph Gallistl
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstr. 28, D-70599 Stuttgart, Germany
| | - Bianca Lok
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstr. 28, D-70599 Stuttgart, Germany
| | - Annika Schlienz
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstr. 28, D-70599 Stuttgart, Germany
| | - Walter Vetter
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstr. 28, D-70599 Stuttgart, Germany.
| |
Collapse
|