1
|
Porras-Rivera G, Górski K, Colin N. Behavioral biomarkers in fishes: A non-lethal approach to assess the effects of chemical pollution on freshwater ecosystems. ENVIRONMENTAL RESEARCH 2024; 260:119607. [PMID: 39002628 DOI: 10.1016/j.envres.2024.119607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
The expansion of the human population and the escalating use of chemical products pose a considerable threat to aquatic biodiversity. Consequently, there is an imperative need for the implementation of non-lethal, cost-effective, and easily deployable biomonitoring tools. In this context, fish and their behavior as biomarkers have gained prominence in monitoring of freshwater ecosystems. The aim of this study was to assess the state of art in the use of behavioral biomarkers in ecotoxicology, emphasizing their role as informative tools for global environmental monitoring. Through a systematic literature search, ninety-two articles focusing on the evaluation of behavioral changes in freshwater fish in response to pollution were identified. The most prevalent keywords were "behavior" (7%) and "zebrafish" (6%). Experiments were conducted in countries with expansive territories, such as the United States (18%) and Brazil (17%). Exotic species were primarily employed (58%), with Danio rerio (26%) being the most frequently studied species. Among pollutants, pesticides (32%) and medicines (25%) were the most frequently studied, while locomotion (38%) and social behaviors (18%) were the most frequently evaluated behaviors. Across these studies, authors consistently reported significant changes in the behavior of fish exposed to contaminants, including decreased swimming speed and compromised feeding efficiency. The review findings affirm that evaluating behavioral biomarkers in freshwater fish offers an informative, non-lethal, cost-effective, and easily implementable approach to understanding pollution impacts on freshwater ecosystems. Although few studies on behavioral biomarkers were available to date, the number has rapidly increased in recent years. Furthermore, a variety of novel approaches and study models are being included. Research into behavioral biomarkers is crucial for understanding and managing environmental risks in freshwater ecosystems. Nevertheless, further studies are needed to enhance our understanding of behavioral toxicity indicators, considering factors such as life stage, sex, and breeding season in the tested species.
Collapse
Affiliation(s)
- Geraldine Porras-Rivera
- Doctorado en Ciencias Mención Ecología y Evolución, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile; Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile
| | - Konrad Górski
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile; Facultad de Ciencias, Universidad Católica de La Santísima Concepción, Concepción, 4030000, Chile
| | - Nicole Colin
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile; Programa Austral Patagonia, Universidad Austral de Chile, Valdivia, 5090000, Chile.
| |
Collapse
|
2
|
Bertram MG, Ågerstrand M, Thoré ESJ, Allen J, Balshine S, Brand JA, Brooks BW, Dang Z, Duquesne S, Ford AT, Hoffmann F, Hollert H, Jacob S, Kloas W, Klüver N, Lazorchak J, Ledesma M, Maack G, Macartney EL, Martin JM, Melvin SD, Michelangeli M, Mohr S, Padilla S, Pyle G, Saaristo M, Sahm R, Smit E, Steevens JA, van den Berg S, Vossen LE, Wlodkowic D, Wong BBM, Ziegler M, Brodin T. EthoCRED: a framework to guide reporting and evaluation of the relevance and reliability of behavioural ecotoxicity studies. Biol Rev Camb Philos Soc 2024. [PMID: 39394884 DOI: 10.1111/brv.13154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024]
Abstract
Behavioural analysis has been attracting significant attention as a broad indicator of sub-lethal toxicity and has secured a place as an important subdiscipline in ecotoxicology. Among the most notable characteristics of behavioural research, compared to other established approaches in sub-lethal ecotoxicology (e.g. reproductive and developmental bioassays), are the wide range of study designs being used and the diversity of endpoints considered. At the same time, environmental hazard and risk assessment, which underpins regulatory decisions to protect the environment from potentially harmful chemicals, often recommends that ecotoxicological data be produced following accepted and validated test guidelines. These guidelines typically do not address behavioural changes, meaning that these, often sensitive, effects are not represented in hazard and risk assessments. Here, we propose a new tool, the EthoCRED evaluation method, for assessing the relevance and reliability of behavioural ecotoxicity data, which considers the unique requirements and challenges encountered in this field. This method and accompanying reporting recommendations are designed to serve as an extension of the "Criteria for Reporting and Evaluating Ecotoxicity Data (CRED)" project. As such, EthoCRED can both accommodate the wide array of experimental design approaches seen in behavioural ecotoxicology, and could be readily implemented into regulatory frameworks as deemed appropriate by policy makers of different jurisdictions to allow better integration of knowledge gained from behavioural testing into environmental protection. Furthermore, through our reporting recommendations, we aim to improve the reporting of behavioural studies in the peer-reviewed literature, and thereby increase their usefulness to inform chemical regulation.
Collapse
Affiliation(s)
- Michael G Bertram
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, Umeå, 907 36, Sweden
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, Stockholm, 114 18, Sweden
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Melbourne, 3800, Australia
| | - Marlene Ågerstrand
- Department of Environmental Science, Stockholm University, Svante Arrhenius väg 8c, Stockholm, 114 18, Sweden
| | - Eli S J Thoré
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, Umeå, 907 36, Sweden
- Laboratory of Adaptive Biodynamics, Research Unit of Environmental and Evolutionary Biology, Institute of Life, Earth, and Environment, University of Namur, Rue de Bruxelles 61, Namur, 5000, Belgium
- TRANSfarm, Science, Engineering, and Technology Group, KU Leuven, Bijzondereweg 12, Bierbeek, 3360, Belgium
| | - Joel Allen
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. EPA, 26 Martin Luther King Drive West, Cincinnati, 45268, Ohio, USA
| | - Sigal Balshine
- Department of Psychology, Neuroscience, & Behaviour, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Ontario, Canada
| | - Jack A Brand
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, Umeå, 907 36, Sweden
- Institute of Zoology, Zoological Society of London, Outer Circle, Regent's Park, London, NW1, 4RY, UK
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, 76798-7266, Texas, USA
| | - ZhiChao Dang
- National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, Bilthoven, 3721 MA, the Netherlands
| | - Sabine Duquesne
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, 06844, Germany
| | - Alex T Ford
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, PO4 9LY, UK
| | - Frauke Hoffmann
- Department of Chemical and Product Safety, The German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, Berlin, 10589, Germany
| | - Henner Hollert
- Goethe University Frankfurt, Max-von-Laue-Straße 13, Frankfurt am Main, 60438, Germany
| | - Stefanie Jacob
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, 06844, Germany
| | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin, 12587, Germany
| | - Nils Klüver
- Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, Leipzig, 04318, Germany
| | - Jim Lazorchak
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. EPA, 26 Martin Luther King Drive West, Cincinnati, 45268, Ohio, USA
| | - Mariana Ledesma
- Swedish Chemicals Agency (KemI), Löfströms allé 5, Stockholm, 172 66, Sweden
| | - Gerd Maack
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, 06844, Germany
| | - Erin L Macartney
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, Stockholm, 114 18, Sweden
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Biological Sciences North (D26), Sydney, 2052, Australia
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, John Hopkins Drive, Sydney, 2006, Australia
| | - Jake M Martin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, Umeå, 907 36, Sweden
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, Stockholm, 114 18, Sweden
- School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, 3216, Australia
| | - Steven D Melvin
- Australian Rivers Institute, School of Environment and Science, Griffith University, Edmund Rice Drive, Southport, 4215, Australia
| | - Marcus Michelangeli
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, Umeå, 907 36, Sweden
- School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, 4111, Australia
| | - Silvia Mohr
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, 06844, Germany
| | - Stephanie Padilla
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. EPA, 109 T.W. Alexander Drive, Durham, 27711, North Carolina, USA
| | - Gregory Pyle
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, T1K 3M4, Alberta, Canada
| | - Minna Saaristo
- Environment Protection Authority Victoria, EPA Science, 2 Terrace Way, Macleod, 3085, Australia
| | - René Sahm
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, 06844, Germany
- Department of Freshwater Ecology in Landscape Planning, University of Kassel, Gottschalkstraße 24, Kassel, 34127, Germany
| | - Els Smit
- National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, Bilthoven, 3721 MA, the Netherlands
| | - Jeffery A Steevens
- Columbia Environmental Research Center, U.S. Geological Survey (USGS), 4200 New Haven Road, Columbia, 65201, Missouri, USA
| | - Sanne van den Berg
- Wageningen University and Research, P.O. Box 47, Wageningen, 6700 AA, the Netherlands
| | - Laura E Vossen
- Department of Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences, Ulls väg 26, Uppsala, 756 51, Sweden
| | - Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, 289 McKimmies Road, Melbourne, 3083, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Melbourne, 3800, Australia
| | - Michael Ziegler
- Eurofins Aquatic Ecotoxicology GmbH, Eutinger Strasse 24, Niefern-Öschelbronn, 75223, Germany
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, Tübingen, 72076, Germany
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, Umeå, 907 36, Sweden
| |
Collapse
|
3
|
Albers JL, Ivan LN, Clark BW, Nacci DE, Klingler RH, Thrash A, Steibel JP, Vinas NGR, Carvan MJ, Murphy CA. Impacts on Atlantic Killifish from Neurotoxicants: Genes, Behavior, and Population-Relevant Outcomes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17235-17246. [PMID: 39287556 PMCID: PMC11447911 DOI: 10.1021/acs.est.4c04207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Molecular, cellular, and organismal alterations are important descriptors of toxic effects, but our ability to extrapolate and predict ecological risks is limited by the availability of studies that link measurable end points to adverse population relevant outcomes such as cohort survival and growth. In this study, we used laboratory gene expression and behavior data from two populations of Atlantic killifish Fundulus heteroclitus [one reference site (SCOKF) and one PCB-contaminated site (NBHKF)] to inform individual-based models simulating cohort growth and survival from embryonic exposures to environmentally relevant concentrations of neurotoxicants. Methylmercury exposed SCOKF exhibited brain gene expression changes in the si:ch211-186j3.6, si:dkey-21c1.4, scamp1, and klhl6 genes, which coincided with changes in feeding and swimming behaviors, but our models simulated no growth or survival effects of exposures. PCB126-exposed SCOKF had lower physical activity levels coinciding with a general upregulation in nucleic and cellular brain gene sets (BGS) and downregulation in signaling, nucleic, and cellular BGS. The NBHKF, known to be tolerant to PCBs, had altered swimming behaviors that coincided with 98% fewer altered BGS. Our models simulated PCB126 decreased growth in SCOKF and survival in SCOKF and NBHKF. Overall, our study provides a unique demonstration linking molecular and behavioral data to develop quantitative, testable predictions of ecological risk.
Collapse
Affiliation(s)
- Janice L Albers
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| | - Lori N Ivan
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| | - Bryan W Clark
- Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, U.S. Environmental Protection Agency, Narragansett, Rhode Island 02882, United States
| | - Diane E Nacci
- Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, U.S. Environmental Protection Agency, Narragansett, Rhode Island 02882, United States
| | - Rebekah H Klingler
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53204, United States
| | - Adam Thrash
- Biocomputing and Biotechnology, Institute for Genomics, Mississippi State University, Starkville, Mississippi 39759, United States
| | - Juan P Steibel
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| | - Natalia Garcia-Reyero Vinas
- Environmental Laboratory, US Army Engineer Research and Development Center, U.S. Army Corps of Engineers, Vicksburg, Mississippi 39180, United States
| | - Michael J Carvan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53204, United States
| | - Cheryl A Murphy
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
4
|
Chen Y, Yu X, Chen S, Lu P. Stereoselective toxicity: Investigating the adverse effects of benzovindiflupyr on Xenopus laevis tadpoles. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135789. [PMID: 39276749 DOI: 10.1016/j.jhazmat.2024.135789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/25/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
The novel chiral fungicide benzovindiflupyr exerts adverse effects on aquatic organisms; however, its toxic mechanism and stereoselectivity remain largely unknown. The current study aimed to investigate the enantioselective ecotoxicity mechanism of benzovindiflupyr in Xenopus laevis tadpoles using a 28-day exposure experiment. Results of the acute toxicity assessment indicated that (1S,4R)- and (1R,4S)-benzovindiflupyr exhibited high toxicity, with (1S,4R)- demonstrating approximately 75 times greater toxicity than (1R,4S)-. Compared to the latter, (1S,4R)-benzovindiflupyr significantly affected the growth, movement behavior, and oxidative stress of X. laevis tadpoles. The integration of metabolomics and transcriptomics data revealed that (1S,4R)-benzovindiflupyr disrupted the glycine, serine, and threonine metabolic pathways by modulating the activities of key enzymes. This dysregulation resulted in aberrant carbohydrate utilization, antioxidant pathways, and structural protein synthesis and degradation. Molecular docking confirmed that (1S,4R)-benzovindiflupyr exhibited superior docking activity with key enzymes, potentially contributing to its stereoselective toxicity. This study offers novel molecular perspectives on the enantioselective ecotoxicity mechanism of benzovindiflupyr toward aquatic organisms and highlights potential target proteins implicated in metabolic disorders.
Collapse
Affiliation(s)
- Yafang Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Xiang Yu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Shaoqin Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Ping Lu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
5
|
Pardo C, Bellati A, Polverino G, Canestrelli D. The dark side of organic farming: Copper sulphate compromises the life history and behaviour of the walking stick insect, Bacillus rossius. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173626. [PMID: 38844229 DOI: 10.1016/j.scitotenv.2024.173626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Organic farming is considered the most sustainable form of modern soil cultivation. Yet it often relies on the use of chemical compounds that are not necessarily harmless for the surrounding wildlife. In this study, we tested the effects of realistic concentrations of copper sulphate-largely used in organic farming as a fungicide-on ecologically-relevant traits of the walking stick insect Bacillus rossius, a species commonly found in the proximity of cultivated fields across Europe. By using second-generation progeny of wild-caught parthenogenetic females bred in common gardens, we measured the impact of copper sulphate (CuSO4) on both the life-history (body condition, number of eggs, and hatching success) and behavioural traits (activity and maximum vertical speed) of the individuals. We observed strong negative effects of high, realistic concentrations of copper sulphate on most traits within 12 days of exposure, while effects were less evident at lower concentrations of the pollutant. Our results reveal that realistic concentrations of copper sulphate can compromise important traits that regulate both the survival and reproduction of animals in the wild, with such effects that are, however, dose dependent. We suggest that common practices in organic farming require further consideration on their ecological and evolutionary impact on wildlife.
Collapse
Affiliation(s)
- Claudio Pardo
- Department of Ecological and Biological Sciences, University of Tuscia, Italy
| | - Adriana Bellati
- Department of Ecological and Biological Sciences, University of Tuscia, Italy
| | - Giovanni Polverino
- Department of Ecological and Biological Sciences, University of Tuscia, Italy; School of Biological Sciences, Monash University, Australia; School of Biological Sciences, The University of Western Australia, Australia.
| | - Daniele Canestrelli
- Department of Ecological and Biological Sciences, University of Tuscia, Italy
| |
Collapse
|
6
|
Soloperto S, Renaux M, Lecarpentier L, Minier C, Aroua S, Halm-Lemeille MP, Jozet-Alves C. 17α-Ethinylestradiol exposure disrupts anxiety-like behaviours but not social preference in sea bass larvae (Dicentrarchus labrax). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55708-55719. [PMID: 39243328 DOI: 10.1007/s11356-024-34922-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Endocrine-disrupting chemicals (EDCs) are widespread pollutants known to interfere with hormonal pathways and to disrupt behaviours. Standardised behavioural procedures have been developed in common fish model species to assess the impact of various pollutants on behaviours such as locomotor activity and anxiety-like as well as social behaviours. These procedures need now to be adapted to improve our knowledge on the behavioural effects of EDCs on less studied marine species. In this context, the European sea bass (Dicentrarchus labrax) is emerging as a valuable species representative of the European marine environment. Here, we designed and validated a two-step procedure allowing to sequentially assess anxiety-like behaviours (novel tank test) and social preference (visual social preference test) in sea bass. Thereafter, using this procedure, we evaluated whether social behavioural disruption occurs in 2-month-old larvae after an 8-day exposure to a xenoestrogen, the 17α-ethinylestradiol (EE2 at 0.5 and 50 nM). Our results confirmed previous studies showing that exposure to 50 nM of EE2 induces a significant increase in anxiety-like behaviours in sea bass larvae. On the contrary, social preference seemed unaffected whatever the EE2 concentration, suggesting that social behaviour has more complex mechanical regulations than anxiety.
Collapse
Affiliation(s)
- Sofia Soloperto
- Normandie Univ, UNIHAVRE, UMR-I 02 INERIS-URCA-ULH SEBIO, FR CNRS 3730 Scale, 25, Rue Philippe Lebon, 76063, Le Havre Cedex, France.
| | - Maelle Renaux
- Unité Littoral Ifremer, LITTORAL, 14520, Port-en-Bessin, France
| | - Lucas Lecarpentier
- Normandie Univ, Unicaen, CNRS, 14000, Caen, EthoS, France
- Univ Rennes, CNRS, EthoS (Éthologie Animale Et Humaine) - UMR 6552, 35000, Rennes, France
| | - Christophe Minier
- Normandie Univ, UNIHAVRE, UMR-I 02 INERIS-URCA-ULH SEBIO, FR CNRS 3730 Scale, 25, Rue Philippe Lebon, 76063, Le Havre Cedex, France
| | - Salima Aroua
- Normandie Univ, UNIHAVRE, UMR-I 02 INERIS-URCA-ULH SEBIO, FR CNRS 3730 Scale, 25, Rue Philippe Lebon, 76063, Le Havre Cedex, France
| | | | - Christelle Jozet-Alves
- Normandie Univ, Unicaen, CNRS, 14000, Caen, EthoS, France
- Univ Rennes, CNRS, EthoS (Éthologie Animale Et Humaine) - UMR 6552, 35000, Rennes, France
| |
Collapse
|
7
|
Qin F, Zhao N, Yin G, Wang T, Jv X, Han S, An L. Rapid Response of Daphnia magna Motor Behavior to Mercury Chloride Toxicity Based on Target Tracking. TOXICS 2024; 12:621. [PMID: 39330549 PMCID: PMC11435506 DOI: 10.3390/toxics12090621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
A rapid and timely response to the impacts of mercury chloride, which is indispensable to the chemical industry, on aquatic organisms is of great significance. Here, we investigated whether the YOLOX (improvements to the YOLO series, forming a new high-performance detector) observation system can be used for the rapid detection of the response of Daphnia magna targets to mercury chloride stress. Thus, we used this system for the real-time tracking and observation of the multidimensional motional behavior of D. magna. The results obtained showed that the average velocity (v¯), average acceleration (a¯), and cumulative travel (L) values of D. magna exposed to mercury chloride stress changed significantly under different exposure times and concentrations. Further, we observed that v¯, a¯ and L values of D. magna could be used as indexes of toxicity response. Analysis also showed evident D. magna inhibition at exposure concentrations of 0.08 and 0.02 mg/L after exposure for 10 and 25 min, respectively. However, under 0.06 and 0.04 mg/L toxic stress, v¯ and L showed faster toxic response than a¯, and overall, v¯ was identified as the most sensitive index for the rapid detection of D. magna response to toxicity stress. Therefore, we provide a strategy for tracking the motile behavior of D. magna in response to toxic stress and lay the foundations for the comprehensive screening of toxicity in water based on motile behavior.
Collapse
Affiliation(s)
- Feihu Qin
- University of Science and Technology of China, Hefei 230026, China; (F.Q.); (X.J.); (L.A.)
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (T.W.); (S.H.)
- Key Laboratory of Optical Monitoring Technology for Environmental, Hefei 230031, China
| | - Nanjing Zhao
- University of Science and Technology of China, Hefei 230026, China; (F.Q.); (X.J.); (L.A.)
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (T.W.); (S.H.)
- Key Laboratory of Optical Monitoring Technology for Environmental, Hefei 230031, China
| | - Gaofang Yin
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (T.W.); (S.H.)
- Key Laboratory of Optical Monitoring Technology for Environmental, Hefei 230031, China
| | - Tao Wang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (T.W.); (S.H.)
| | - Xinyue Jv
- University of Science and Technology of China, Hefei 230026, China; (F.Q.); (X.J.); (L.A.)
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (T.W.); (S.H.)
| | - Shoulu Han
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (T.W.); (S.H.)
| | - Lisha An
- University of Science and Technology of China, Hefei 230026, China; (F.Q.); (X.J.); (L.A.)
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (T.W.); (S.H.)
| |
Collapse
|
8
|
Lin P, Liu L, Ma Y, Du R, Yi C, Li P, Xu Y, Yin H, Sun L, Li ZH. Neurobehavioral toxicity induced by combined exposure of micro/nanoplastics and triphenyltin in marine medaka (Oryzias melastigma). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024:124334. [PMID: 38852665 DOI: 10.1016/j.envpol.2024.124334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/19/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Microplastics/nanoplastics (MNPs) inevitably coexist with other pollutants in the natural environment, making it crucial to study the interactions between MNPs and other pollutants as well as their combined toxic effects. In this study, we investigated neurotoxicity in marine medaka (Oryzias melastigma) exposed to polystyrene micro/nanoplastics (PS-MNPs), triphenyltin (TPT), and PS-MNPs + TPT from physiological, behavioral, biochemical, and genetic perspectives. The results showed that marine medaka exposed to 200 ng/L TPT or 200 μg/L PS-NPs alone exhibited some degree of neurodevelopmental deficit, albeit with no significant behavioral abnormalities observed. However, in the PS-MP single exposure group, the average acceleration of short-term behavioral indices was significantly increased by 78.81%, indicating a highly stress-responsive locomotor pattern exhibited by marine medaka. After exposure to PS-MNPs + TPT, the swimming ability of marine medaka significantly decreased. In addition, PS-MNPs + TPT exposure disrupted normal neural excitability as well as activated detoxification processes in marine medaka larvae. Notably, changes in neural-related genes suggested that combined exposure to PS-MNPs and TPT significantly increased the neurotoxic effects observed with exposure to PS-MNPs or TPT alone. Furthermore, compared to the PS-MPs + TPT group, PS-NPs + TPT significantly inhibited swimming behavior and thus exacerbated the neurotoxicity. Interestingly, the neurotoxicity of PS-MPs was more pronounced than that of PS-NPs in the exposure group alone. However, the addition of TPT significantly enhanced the neurotoxicity of PS-NPs compared to PS-MPs + TPT. Overall, the study underscores the combined neurotoxic effects of MNPs and TPT, providing in-depth insights into the ecotoxicological implications of MNPs coexisting with pollutants and furnishing comprehensive data.
Collapse
Affiliation(s)
- Peiran Lin
- SDU-ANU Joint Science College, Weihai, Shandong, 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Yuqing Ma
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Renyan Du
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Chuansen Yi
- SDU-ANU Joint Science College, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Yanan Xu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Haiyang Yin
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Le Sun
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
9
|
Sawada A, Dorcas U, Horie Y. Behavioral profile alterations and predation susceptibility of Japanese medaka fish exposed to phenytoin, an antiepileptic drug. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104474. [PMID: 38763435 DOI: 10.1016/j.etap.2024.104474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Antiepileptic drugs, such as phenytoin, are often leaked into aquatic systems through sewage facilities due to their low metabolic rate. Fish, such as the Japanese medaka (Oryzias latipes), demonstrate abnormal swimming behavior such as equilibrium abnormalities, rotational behavior, and vertical swimming, when exposed to phenytoin. Therefore, it is hypothesized that predator avoidance may be hindered. This study aimed to investigate the effects of phenytoin exposure-induced behavioral abnormalities in predator avoidance in Japanese medaka. The results showed that individuals with behavioral abnormalities had a reduced ability to avoid danger. Furthermore, the fish demonstrated a delayed recognition reaction to approaching predators. Additionally, predatory fish, such as silver pike characin (Ctenolucius hujeta), were more likely to prey upon abnormal individuals. In conclusion, the fish exposed to phenytoin demonstrated behavioral changes that increased its predation risk. This study is the first to determine the effects of behavioral abnormalities in Japanese medaka which was induced after phenytoin exposure on predator risk avoidance.
Collapse
Affiliation(s)
- Ayaka Sawada
- Graduate School of Maritime Science, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan
| | - Uaciquete Dorcas
- Graduate School of Maritime Science, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan
| | - Yoshifumi Horie
- Graduate School of Maritime Science, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan; Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan.
| |
Collapse
|
10
|
Tamura Y, Takai Y, Miyamoto H, SeokHyun L, Liu Y, Qiu X, Kang LJ, Simasaki Y, Shindo C, Suda W, Ohno H, Oshima Y. Alteration of shoaling behavior and dysbiosis in the gut of medaka (Oryzias latipes) exposed to 2-μm polystyrene microplastics. CHEMOSPHERE 2024; 353:141643. [PMID: 38447901 DOI: 10.1016/j.chemosphere.2024.141643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/27/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
There is global concern that microplastics may harm aquatic life. Here, we examined the effects of fine polystyrene microplastics (PS-MPs, 2-μm diameter, 0.1 mg/L, 2.5 × 107 particles/L) on the behavior and the microbiome (linked to brain-gut interaction) of a fish model using medaka, Oryzias latipes. We found that shoaling behavior was reduced in PS-MP-exposed medaka compared with control fish during the exposure period, but it recovered during a depuration period. There was no difference in swimming speed between the PS-MP-exposed and control groups during the exposure period. Analysis of the dominant bacterial population (those comprising ≥1% of the total bacterial population) in the gut of fish showed that exposure to PS-MPs tended to increase the relative abundance of the phylum Fusobacteria and the genus Vibrio. Furthermore, structural-equation modeling of gut bacteria on the basis of machine-learning data estimated strong relationship involved in the reduction of the functional bacterial species of minority (<1% of the total bacterial population) such as the genera Muribaculum (an undefined role), Aquaspirillum (a candidate for nitrate metabolism and magnetotactics), and Clostridium and Phascolarctobacterium (potential producers of short-chain fatty acids, influencing behavior by affecting levels of neurotransmitters) as a group of gut bacteria in association with PS-MP exposure. Our results suggest that fish exposure to fine microplastics may cause dysbiosis and ultimately cause social behavior disorders linked to brain-gut interactions. This effect could be connected to reduction of fish fitness in the ecosystem and reduced fish survival.
Collapse
Affiliation(s)
- Yui Tamura
- Laboratory of Marine Environmental Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Yuki Takai
- Laboratory of Marine Environmental Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Hirokuni Miyamoto
- RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, 230-0045, Japan; Graduate School of Horticulture, Chiba University, Matsudo, Chiba, 271-8501, Japan
| | - Lee SeokHyun
- Laboratory of Marine Environmental Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Yangqing Liu
- Laboratory of Marine Environmental Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Lk Joon Kang
- School of Interdisciplinary Science and Innovation, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yohei Simasaki
- Laboratory of Marine Environmental Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Chie Shindo
- RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Wataru Suda
- RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Hiroshi Ohno
- RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuji Oshima
- Laboratory of Marine Environmental Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan; Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
11
|
Rickward RA, Santostefano F, Wilson AJ. Among-individual behavioural variation in the ornamental red cherry shrimp, Neocaridina heteropoda. Ecol Evol 2024; 14:e11049. [PMID: 38389999 PMCID: PMC10883255 DOI: 10.1002/ece3.11049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Personality variation, defined as among-individual differences in behaviour that are repeatable across time and context, is widely reported across animal taxa. From an evolutionary perspective, characterising the amount and structure of this variation is useful since differences among individuals are the raw material for adaptive behavioural evolution. However, behavioural variation among individuals also has implications for more applied areas of evolution and ecology-from invasion biology to ecotoxicology and selective breeding in captive systems. Here, we investigate the structure of personality variation in the red cherry shrimp, Neocaridina heteropoda, a popular ornamental species that is readily kept and bred under laboratory conditions and is emerging as a decapod crustacean model across these fields, but for which basic biological, ecological and behavioural data are limited. Using two assays and a repeated measures approach, we quantify behaviours putatively indicative of shy-bold variation and test for sexual dimorphism and/or size-dependent behaviours (as predicted by some state-dependent models of personality). We find moderate-to-high behavioural repeatabilities in most traits. Although strong individual-level correlations across behaviours are consistent with a major personality axis underlying these observed traits, the multivariate structure of personality variation does not fully match a priori expectations of a shy-bold axis. This may reflect our ecological naivety with respect to what really constitutes bolder, more risk-prone, behaviour in this species. We find no evidence for sexual dimorphism and only weak support for size-dependent behaviour. Our study contributes to the growing literature describing behavioural variation in aquatic invertebrates. Furthermore, it lays a foundation for further studies harnessing the potential of this emerging model system. In particular, this existing behavioural variation could be functionally linked to life-history traits and invasive success and serve as a target of artificial selection or bioassays. It thus holds significant promise in applied research across ecotoxicology, aquaculture and invasion biology.
Collapse
Affiliation(s)
| | - Francesca Santostefano
- Centre for Ecology and ConservationUniversity of ExeterCornwallUK
- Département des Sciences BiologiquesUniversité du Québec à MontréalMontréalQuebecCanada
| | | |
Collapse
|
12
|
Bai Y, Henry J, Cheng E, Perry S, Mawdsley D, Wong BBM, Kaslin J, Wlodkowic D. Toward Real-Time Animal Tracking with Integrated Stimulus Control for Automated Conditioning in Aquatic Eco-Neurotoxicology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19453-19462. [PMID: 37956114 DOI: 10.1021/acs.est.3c07013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Aquatic eco-neurotoxicology is an emerging field that requires new analytical systems to study the effects of pollutants on animal behaviors. This is especially true if we are to gain insights into one of the least studied aspects: the potential perturbations that neurotoxicants can have on cognitive behaviors. The paucity of experimental data is partly caused by a lack of low-cost technologies for the analysis of higher-level neurological functions (e.g., associative learning) in small aquatic organisms. Here, we present a proof-of-concept prototype that utilizes a new real-time animal tracking software for on-the-fly video analysis and closed-loop, external hardware communications to deliver stimuli based on specific behaviors in aquatic organisms, spanning three animal phyla: chordates (fish, frog), platyhelminthes (flatworm), and arthropods (crustacean). The system's open-source software features an intuitive graphical user interface and advanced adaptive threshold-based image segmentation for precise animal detection. We demonstrate the precision of animal tracking across multiple aquatic species with varying modes of locomotion. The presented technology interfaces easily with low-cost and open-source hardware such as the Arduino microcontroller family for closed-loop stimuli control. The new system has potential future applications in eco-neurotoxicology, where it could enable new opportunities for cognitive research in diverse small aquatic model organisms.
Collapse
Affiliation(s)
- Yutao Bai
- The Neurotoxicology Laboratory, School of Science, RMIT University, Melbourne, VIC 3083, Australia
| | - Jason Henry
- The Neurotoxicology Laboratory, School of Science, RMIT University, Melbourne, VIC 3083, Australia
| | - Eva Cheng
- Faculty of Engineering and IT, School of Electrical and Data Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Stuart Perry
- Faculty of Engineering and IT, School of Electrical and Data Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - David Mawdsley
- Defence Science and Technology Group, Melbourne, VIC 3207, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Donald Wlodkowic
- The Neurotoxicology Laboratory, School of Science, RMIT University, Melbourne, VIC 3083, Australia
| |
Collapse
|
13
|
Arcanjo C, Trémolet G, Duflot A, Giusti-Petrucciani N, Coulaud R, Xuereb B, Forget-Leray J, Boulangé-Lecomte C. The copepod Eurytemora affinis as a relevant species to assess estuarine sediment toxicity: Effects on gene expression and swimming behavior. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122482. [PMID: 37660773 DOI: 10.1016/j.envpol.2023.122482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Compared to freshwater ecosystems, the health status of estuarine waters remains little studied despite their importance for many species. They represent a zone of interest for Human settlements that make them the final sink of pollution in both the water column and sediment. Once in sediments, pollutants could represent a threat to benthic as well as pelagic estuarine species through resuspension events. In the Seine estuary, the copepod Eurytemora affinis has been previously presented as a relevant species to assess resuspended sediment contamination through fitness-related effects at the individual level. The aim of the present study was to use E. affinis copepods to assess estuarine sediment-derived elutriates toxicity at environmental concentrations of particles using a molecular (i.e. transcriptomics) and a behavioral approach. Two sites along the Seine estuary were sampled. The analysis of sediments reveals that both sites have the same granulometric composition and close contamination profiles with the detection of PCBs, PAHs and pyrethroid insecticides. The transcriptomic analysis reveals that exposure to elutriates from both sites triggers the dysregulation of genes involved in biological function as defense response, immunity, ecdysone pathway or neurotoxicity with 66% and 36% of shared genes at the highest concentration for Tancarville and Fatouville. This analysis also reveals a higher count of dysregulated genes in the Fatouville site compared to the Tancarville (271 vs 148) despite their close contamination profile. These results emphasize the molecular approach sensitivity to assess environmental matrix toxicity with E. affinis. The analysis of the swimming behavior of E. affinis did not highlight significant effects after elutriate exposure. However, our strategy to assess E. affinis swimming behavior allows the discrimination of basal swimming behavior i.e. dark/light velocity changes and strong thigmotaxis behavior. Thus, it represents a promising standardized tool to assess copepods swimming behavior in ecotoxicological studies.
Collapse
Affiliation(s)
- Caroline Arcanjo
- Université Le Havre Normandie, Normandie Univ, FR CNRS 3730 SCALE, UMR-I 02 SEBIO, Le Havre, F-76600, Le Havre, France
| | - Gauthier Trémolet
- Université Le Havre Normandie, Normandie Univ, FR CNRS 3730 SCALE, UMR-I 02 SEBIO, Le Havre, F-76600, Le Havre, France
| | - Aurélie Duflot
- Université Le Havre Normandie, Normandie Univ, FR CNRS 3730 SCALE, UMR-I 02 SEBIO, Le Havre, F-76600, Le Havre, France
| | - Nathalie Giusti-Petrucciani
- Université Le Havre Normandie, Normandie Univ, FR CNRS 3730 SCALE, UMR-I 02 SEBIO, Le Havre, F-76600, Le Havre, France
| | - Romain Coulaud
- Université Le Havre Normandie, Normandie Univ, FR CNRS 3730 SCALE, UMR-I 02 SEBIO, Le Havre, F-76600, Le Havre, France
| | - Benoit Xuereb
- Université Le Havre Normandie, Normandie Univ, FR CNRS 3730 SCALE, UMR-I 02 SEBIO, Le Havre, F-76600, Le Havre, France
| | - Joëlle Forget-Leray
- Université Le Havre Normandie, Normandie Univ, FR CNRS 3730 SCALE, UMR-I 02 SEBIO, Le Havre, F-76600, Le Havre, France
| | - Céline Boulangé-Lecomte
- Université Le Havre Normandie, Normandie Univ, FR CNRS 3730 SCALE, UMR-I 02 SEBIO, Le Havre, F-76600, Le Havre, France.
| |
Collapse
|
14
|
Liu J, Feng Q, Yang H, Fan X, Jiang Y, Wu T. Acute toxicity of tire wear particles and leachate to Daphnia magna. Comp Biochem Physiol C Toxicol Pharmacol 2023; 272:109713. [PMID: 37544637 DOI: 10.1016/j.cbpc.2023.109713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Tire wear particles (TWP) are a new pollutant widely present in the environment, and have been identified as microplastics (MPs), which are receiving increasing attention due to their toxic effects on aquatic organisms. In this study, D. magna was used as test organism, and the leachate from TWP was prepared by hot water extraction for 30 (30-E) and 120 min (120-E). The acute toxic effects of particles and leachate on D. magna were studied under different exposure concentrations. The results showed that zinc and pyrene were the highest detected contaminants in the leachate. The 48 h-LC50 values for particles and leachate were determined to be 56.99, 461.30 (30-E), and 153.00 mg/L (120-E), respectively. Following a 48 h exposure period, the immobilization of D. magna exposed to the particles and their leachate were increased with the concentration increase. The physical damage of the gut was found to be a possible mechanism for particle-induced biotoxicity. The compounds leached from TWP were responsible for the acute toxicity of leachate. Particles usually demonstrated a greater degree of toxicity in comparison to their leachate, especially at environmentally relevant concentrations. Exposure to particles and leachate resulted in the inhibition of swimming speed, swimming acceleration, filtration rate, and ingestion rate in D. magna. Furthermore, thoracic limb activity was observed to be inhibited. The heart rate of D. magna was significantly increased by the presence of particles at a concentration of 200 mg/L and leachate at concentrations of 400 and 800 mg/L (120-E). The observed alterations in behavior and physiological endpoints may be related to oxidative stress and neurotoxicity in the organism. Reduced superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) activities indicated that D. magna may suffer from excessive oxidative stress, whereas the increase of acetylcholinesterase (AChE) activity may serve as a biomarker of susceptibility to evaluate the environmental risks of TWP and corresponding leachates as potential aquatic pollutants.. Therefore, a more comprehensive risk assessment of TWP in the environment is necessary.
Collapse
Affiliation(s)
- Jiaqiang Liu
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China; College of Environmental Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu 221111, China
| | - Qiyan Feng
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China.
| | - Haohan Yang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Xiulei Fan
- College of Environmental Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu 221111, China
| | - Yuanyuan Jiang
- Xuzhou Environmental Monitoring Center, Xuzhou, Jiangsu 221018, China
| | - Tao Wu
- Xuzhou Environmental Monitoring Center, Xuzhou, Jiangsu 221018, China
| |
Collapse
|
15
|
Hou C, Shi T, Wang W, Han M, Pan X, Wang L, Lee DJ. Toxicological sensitivity of protozoa to pesticides and nanomaterials: A prospect review. CHEMOSPHERE 2023; 339:139749. [PMID: 37549748 DOI: 10.1016/j.chemosphere.2023.139749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/09/2023]
Abstract
Protozoa are sensitive indicators of pollutant toxicity. This review presents and discusses the toxicological studies of protozoa and the toxicological conventional test species (Daphnia magna) by pesticides and nanomaterials, particularly comparing the sensitivity of through relative tolerance analysis, Z-score, and species sensitivity index. The sensitivity of different species of protozoa varies greatly. The protozoa Paramecium sp. and Tetrahymena sp. are not sensitive species; conversely, Urostyla sp. is sensitive to dimethoate and nanomaterials Ag-NPs, respectively ZnO-NPs, and CuO-NPs, fits the use as an indicator species on these substances. The prospects to explore scientific toxicity exposure protocols, expand the protozoan species examined, and screen the sensitive species under the protocols are discussed. This prospect review advances the knowledge for including the sensitive protozoa as an indicator species in comprehensive toxicological analysis for pesticides and nanomaterials.
Collapse
Affiliation(s)
- Chunyu Hou
- Laboratory of Protozoa, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang Province, 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, Heilongjiang Province, 150025, China
| | - Tianyi Shi
- Laboratory of Protozoa, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang Province, 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, Heilongjiang Province, 150025, China
| | - Wenyuan Wang
- Laboratory of Protozoa, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang Province, 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, Heilongjiang Province, 150025, China
| | - Mei Han
- Laboratory of Protozoa, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang Province, 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, Heilongjiang Province, 150025, China
| | - Xuming Pan
- Laboratory of Protozoa, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang Province, 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, Heilongjiang Province, 150025, China
| | - Li Wang
- Laboratory of Protozoa, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang Province, 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, Heilongjiang Province, 150025, China.
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, 999077, Hong Kong.
| |
Collapse
|
16
|
Belamy T, Legeay A, Cachot J, Clérandeau C, Baudrimont M. Locomotion behavior of juveniles of the freshwater pearl mussel Margaritifera margaritifera: A new non-invasive tool for the evaluation of stress effects. CHEMOSPHERE 2023; 327:138521. [PMID: 36990359 DOI: 10.1016/j.chemosphere.2023.138521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
The lack of knowledge about the sensitivity of the endangered freshwater pearl mussel (FWPM) Margaritifera margaritifera to environmental pollution and the rapid decline of its populations in Europe, have led to the need of developing non-destructive experimental protocols in order to assess the impact of such pollution. This species has a complex life cycle and the early life stages are considered the most sensitive. This study deals with the development of a methodology for the assessment of juvenile mussels' locomotor behavior using an automated video tracking system. Different parameters were determined such as the duration of the video recording and light exposure as a stimulus during the experiment. Locomotion behavior pattern of juveniles was assessed in control condition and also following exposure to sodium chloride as a positive control in order to validate the experimental protocol developed in this study. Results showed that juveniles locomotion behavior was stimulated under light exposure. Moreover, exposure to sublethal concentrations of sodium chloride (0.8 and 1.2 g/L) for 24 h was found to decrease juveniles' locomotion by almost three-times, thus validating our experimental methodology. This study allowed to provide a new tool for the assessment of stress condition impacts on the juveniles of the endangered FWPM, highlighting the interest of such non-destructive biomarker of health for protected species. Consequently, this will help in the improvement of our knowledge on M. margaritifera sensitivity to environmental pollution.
Collapse
Affiliation(s)
- Tiare Belamy
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France; University of French Polynesia, EIO, UMR 241, F-98702, Faa'a, Tahiti, French Polynesia.
| | - Alexia Legeay
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France
| | - Jérôme Cachot
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France
| | | | - Magalie Baudrimont
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France.
| |
Collapse
|
17
|
Chen Q, Zhao H, Liu Y, Jin L, Peng R. Factors Affecting the Adsorption of Heavy Metals by Microplastics and Their Toxic Effects on Fish. TOXICS 2023; 11:490. [PMID: 37368590 DOI: 10.3390/toxics11060490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/22/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023]
Abstract
Fish not only constitute an important trophic level in aquatic ecosystems but also serve as an important source of protein for human beings. The health of fish is related to the sustained and healthy development of their entire aquatic ecosystem. Due to the widespread use, mass production, high disposal frequency, and degradation resistance of plastics, these pollutants are released into aquatic environments on a large scale. They have become one of the fastest growing pollutants and have a substantial toxic effect on fish. Microplastics have intrinsic toxicity and can absorb heavy metals discharged into water. The adsorption of heavy metals onto microplastics in aquatic environments is affected by many factors and serves as a convenient way for heavy metals to migrate from the environment to organisms. Fish are exposed to both microplastics and heavy metals. In this paper, the toxic effects of heavy metal adsorption by microplastics on fish are reviewed, and the focus is on the toxic effects at the individual (survival, feeding activity and swimming, energy reserves and respiration, intestinal microorganisms, development and growth, and reproduction), cellular (cytotoxicity, oxidative damage, inflammatory response, neurotoxicity, and metabolism) and molecular (gene expression) levels. This facilitates an assessment of the pollutants' impact on ecotoxicity and contributes to the regulation of these pollutants in the environment.
Collapse
Affiliation(s)
- Qianqian Chen
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Haiyang Zhao
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yinai Liu
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Libo Jin
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Renyi Peng
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
18
|
Malinovska V, Kuklina I, Grabicová K, Buřič M, Kozák P. Short-term effects of an environmentally relevant concentration of organic UV filters on signal crayfish Pacifastacus leniusculus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115012. [PMID: 37209570 DOI: 10.1016/j.ecoenv.2023.115012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
Personal care products, including organic UV filters, are considered emerging contaminants, with their toxic effects being a concern in recent decades. UV filters continually enter surface waters via wastewater and human activity. Despite the presence of organic UV filters in the freshwater environment, little is known of their impact on aquatic biota. In this study, we evaluated the cardiac and locomotor responses of signal crayfish Pacifastacus leniusculus exposed to environmentally relevant concentrations of either 2-Phenylbenzimidazole-5-sulfonic acid (PBSA, 3 µg/L) or 5-Benzoyl-4-hydroxy-2-methoxybenzenesulfonic acid (BP4, 2.5 µg/L). Specimens exposed to the tested compounds for 30 min exhibited significantly greater changes in distance moved and time active than did unexposed controls. Significant differences of mean heart rate change compared to control were detected in both PBSA and BP4 experimental groups. Such behavior and physiological alterations demonstrate ecological effects of personal care products with the tested sunscreen compounds even with a short exposure. Evidence of the consequences of organic UV filters on aquatic organisms is scarce and is an important topic for future research.
Collapse
Affiliation(s)
- Viktoriia Malinovska
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic.
| | - Iryna Kuklina
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Miloš Buřič
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Pavel Kozák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| |
Collapse
|
19
|
Schuijt LM, Olusoiji O, Dubey A, Rodríguez-Sánchez P, Osman R, Van den Brink PJ, van den Berg SJP. Effects of the antidepressant fluoxetine on the swimming behaviour of the amphipod Gammarus pulex: Comparison of short-term and long-term toxicity in the laboratory and the semi-field. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162173. [PMID: 36775155 DOI: 10.1016/j.scitotenv.2023.162173] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/18/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Fluoxetine is one of the worlds most prescribed antidepressant, and frequently detected in surface waters. Once present in the aquatic environment, fluoxetine has been shown to disrupt the swimming behaviour of fish and invertebrates. However, swimming behaviour is also known to be highly variable according to experimental conditions, potentially concealing relevant effects. Therefore, the aims of this study were two-fold: i) investigate the swimming and feeding behaviour of Gammarus pulex after exposure to the antidepressant fluoxetine (0.2, 2, 20, and 200 μg/L), and ii) assess to what degree the experimental test duration (short-term and long-term) and test location (laboratory and semi-field conditions) affect gammarid's swimming behaviour. We used automated video tracking and analysis to asses a range of swimming behaviours of G. pulex, including swimming speed, startle responses after light transition, acceleration, curvature and thigmotaxis. We found larger effects on the swimming behaviour of G. pulex due to experimental conditions than due to tested antidepressant concentrations. Gammarids swam faster, more straight and showed a stronger startle response during light transition when kept under semi-field conditions compared to the laboratory. Effects found for different test durations were opposite in the laboratory and semi-field. In the laboratory gammarids swam slower and spent more time at the inner zone of the arena after 2 days compared to 21 days while for the semi-field the reverse was observed. Fluoxetine had only minor impacts on the swimming behaviour of G. pulex, but experimental conditions influenced behavioural outcomes in response to fluoxetine exposure. Overall, our results highlight the importance of standardizing and optimizing experimental protocols that assess behaviour to achieve reproducible results in ecotoxicology.
Collapse
Affiliation(s)
- Lara M Schuijt
- Aquatic Ecology and Water Quality Management group, Wageningen University and Research, P.O. box 47, 6700 AA Wageningen, the Netherlands.
| | | | - Asmita Dubey
- Aquatic Ecology and Water Quality Management group, Wageningen University and Research, P.O. box 47, 6700 AA Wageningen, the Netherlands; Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, the Netherlands
| | | | - Rima Osman
- Wageningen Environmental Research, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management group, Wageningen University and Research, P.O. box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Sanne J P van den Berg
- Aquatic Ecology and Water Quality Management group, Wageningen University and Research, P.O. box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
20
|
He Z, Chen Y, Huo D, Gao J, Xu Y, Yang R, Yang Y, Yu G. Combined methods elucidate the multi-organ toxicity of cylindrospermopsin (CYN) on Daphnia magna. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121250. [PMID: 36813104 DOI: 10.1016/j.envpol.2023.121250] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Global water bodies are now at risk from inevitable cyanobacterial blooms and their production of multiple cyanotoxins, in particular cylindrospermopsin (CYN). However, research on the CYN toxicity and its molecular mechanisms is still limited, whilst the responses of aquatic species against CYN are uncovered. By integrating behavioral observations, chemical detections and transcriptome analysis, this study demonstrated that CYN exerted multi-organ toxicity to model species, Daphnia magna. The present study confirmed that CYN could cause protein inhibition by undermining total protein contents, and altered the gene expression related to proteolysis. Meantime, CYN induced oxidative stress by increasing reactive oxygen species (ROS) level, decreasing the glutathione (GSH) concentration, and interfered with protoheme formation process molecularly. Neurotoxicity led by CYN was solidly determined by abnormal swimming patterns, reduced acetylcholinesterase (AChE), and downward expression of muscarinic acetylcholine receptor (CHRM). Importantly, for the first time, this research determined CYN directly interfered with energy metabolism in cladocerans. CYN distinctively reduced filtration and ingestion rate by targeting on heart and thoracic limbs, which declined the energy intake, and could be further displayed by the reduction of motional strength and the trypsin concentration. These phenotypic alterations were supported by transcriptomic profile, including the down-regulation of oxidative phosphorylation and ATP synthesis. Moreover, CYN was speculated to trigger the self-defense responses of D. magna, known as "abandon-ship" by moderating lipid metabolism and distribution. This study, overall, comprehensively demonstrated the CYN toxicity and the responses of D. magna against it, which is of great significance to the advancements of CYN toxicity knowledge.
Collapse
Affiliation(s)
- Zhongshi He
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Youxin Chen
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Da Huo
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jin Gao
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yewei Xu
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Rui Yang
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiming Yang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Gongliang Yu
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
21
|
Pravdová M, Kolářová J, Grabicová K, Janáč M, Randák T, Ondračková M. Response of Parasite Community Composition to Aquatic Pollution in Common Carp ( Cyprinus carpio L.): A Semi-Experimental Study. Animals (Basel) 2023; 13:ani13091464. [PMID: 37174501 PMCID: PMC10177495 DOI: 10.3390/ani13091464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
The response of parasite communities to aquatic contamination has been shown to vary with both type of pollutant and parasite lifestyle. In this semi-experimental study, we examined uptake of pharmaceutical compounds in common carp (Cyprinus carpio L.) restocked from a control pond to a treatment pond fed with organic pollution from a sewage treatment plant and assessed changes in parasite community composition and fish biometric parameters. The parasite community of restocked fish changed over the six-month exposure period, and the composition of pharmaceutical compounds in the liver and brain was almost the same as that in fish living in the treatment pond their whole life. While fish size and weight were significantly higher in both treatment groups compared to the control, condition indices, including condition factor, hepatosomatic index, and splenosomatic index, were significantly higher in control fish. Parasite diversity and species richness decreased at the polluted site, alongside a significant increase in the abundance of a single parasite species, Gyrodactylus sprostonae. Oviparous monogeneans of the Dactylogyridae and Diplozoidae families and parasitic crustaceans responded to pollution with a significant decrease in abundance, the reduction in numbers most likely related to the sensitivity of their free-living stages to pollution.
Collapse
Affiliation(s)
- Markéta Pravdová
- Czech Academy of Sciences, Institute of Vertebrate Biology, Květná 8, 603 00 Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Jitka Kolářová
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Kateřina Grabicová
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Michal Janáč
- Czech Academy of Sciences, Institute of Vertebrate Biology, Květná 8, 603 00 Brno, Czech Republic
| | - Tomáš Randák
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Markéta Ondračková
- Czech Academy of Sciences, Institute of Vertebrate Biology, Květná 8, 603 00 Brno, Czech Republic
| |
Collapse
|
22
|
Reilly K, Ellis LJA, Davoudi HH, Supian S, Maia MT, Silva GH, Guo Z, Martinez DST, Lynch I. Daphnia as a model organism to probe biological responses to nanomaterials-from individual to population effects via adverse outcome pathways. FRONTIERS IN TOXICOLOGY 2023; 5:1178482. [PMID: 37124970 PMCID: PMC10140508 DOI: 10.3389/ftox.2023.1178482] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
The importance of the cladoceran Daphnia as a model organism for ecotoxicity testing has been well-established since the 1980s. Daphnia have been increasingly used in standardised testing of chemicals as they are well characterised and show sensitivity to pollutants, making them an essential indicator species for environmental stress. The mapping of the genomes of D. pulex in 2012 and D. magna in 2017 further consolidated their utility for ecotoxicity testing, including demonstrating the responsiveness of the Daphnia genome to environmental stressors. The short lifecycle and parthenogenetic reproduction make Daphnia useful for assessment of developmental toxicity and adaption to stress. The emergence of nanomaterials (NMs) and their safety assessment has introduced some challenges to the use of standard toxicity tests which were developed for soluble chemicals. NMs have enormous reactive surface areas resulting in dynamic interactions with dissolved organic carbon, proteins and other biomolecules in their surroundings leading to a myriad of physical, chemical, biological, and macromolecular transformations of the NMs and thus changes in their bioavailability to, and impacts on, daphnids. However, NM safety assessments are also driving innovations in our approaches to toxicity testing, for both chemicals and other emerging contaminants such as microplastics (MPs). These advances include establishing more realistic environmental exposures via medium composition tuning including pre-conditioning by the organisms to provide relevant biomolecules as background, development of microfluidics approaches to mimic environmental flow conditions typical in streams, utilisation of field daphnids cultured in the lab to assess adaption and impacts of pre-exposure to pollution gradients, and of course development of mechanistic insights to connect the first encounter with NMs or MPs to an adverse outcome, via the key events in an adverse outcome pathway. Insights into these developments are presented below to inspire further advances and utilisation of these important organisms as part of an overall environmental risk assessment of NMs and MPs impacts, including in mixture exposure scenarios.
Collapse
Affiliation(s)
- Katie Reilly
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Laura-Jayne A. Ellis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Hossein Hayat Davoudi
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Suffeiya Supian
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Marcella T. Maia
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Gabriela H. Silva
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Diego Stéfani T. Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
23
|
Granada L, Lemos MFL, Bossier P, Novais SC. Swimming behaviour as an alternative endpoint to assess differences in abiotic stress sensitivities between strains of Brachionus koreanus (Rotifera: Monogononta). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:56137-56147. [PMID: 36913023 PMCID: PMC10121490 DOI: 10.1007/s11356-023-26190-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Brachionus plicatilis is a cosmopolitan rotifer used as a model organism in several research areas and as live food in aquaculture. Being a species complex, responses to stressors vary even among strains of the same species and, thus, the responses of one species are not representative of the whole complex. This study aimed to address the effects of extreme salinity ranges, and different concentrations of hydrogen peroxide, copper, cadmium, and chloramphenicol, in two strains of B. koreanus (MRS10 and IBA3) from B. plicatilis species complex, by assessing effects on their survival and swimming capacity. Neonates (0-4 h old) were exposed to the stressors in 48 well-microplates, for 24 and 6 h, to evaluate lethal and behavioural effects, respectively. Tested conditions of chloramphenicol did not show any effects on rotifers. The behavioural endpoint showed to be particularly sensitive to assess the effects of high salinity, hydrogen peroxide, and copper sulfate, as swimming capacity impairment was observed for both strains in the lowest concentrations used in lethal tests. Overall, results showed that IBA3 was more tolerant to the majority of stressors, comparing to MRS10, which may be due to differences in physiological characteristics, highlighting the importance of performing multiclonal experiments. Also, swimming capacity inhibition proved to be a good alternative to the classical lethality tests, being sensitive to lower concentrations and with shorter exposure periods.
Collapse
Affiliation(s)
- Luana Granada
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Polytechnic of Leiria, 2520-641, Peniche, Portugal.
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium.
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Polytechnic of Leiria, 2520-641, Peniche, Portugal
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Sara C Novais
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Polytechnic of Leiria, 2520-641, Peniche, Portugal
| |
Collapse
|
24
|
Soloperto S, Olivier S, Poret A, Minier C, Halm-Lemeille MP, Jozet-Alves C, Aroua S. Effects of 17α-ethinylestradiol on the neuroendocrine gonadotropic system and behavior of European sea bass larvae ( Dicentrarchus labrax). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:198-215. [PMID: 36803253 DOI: 10.1080/15287394.2023.2177781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The widespread use of 17α-ethinylestradiol (EE2), and other estrogenic endocrine disruptors, results in a continuous release of estrogenic compounds into aquatic environments. Xenoestrogens may interfere with the neuroendocrine system of aquatic organisms and may produce various adverse effects. The aim of the present study was to expose European sea bass larvae (Dicentrarchus labrax) to EE2 (0.5 and 50 nM) for 8 d and determine the expression levels of brain aromatase (cyp19a1b), gonadotropin-releasing hormones (gnrh1, gnrh2, gnrh3), kisspeptins (kiss1, kiss2) and estrogen receptors (esr1, esr2a, esr2b, gpera, gperb). Growth and behavior of larvae as evidenced by locomotor activity and anxiety-like behaviors were measured 8 d after EE2 treatment and a depuration period of 20 d. Exposure to 0.5 nM EE2 induced a significant increase in cyp19a1b expression levels, while upregulation of gnrh2, kiss1, and cyp19a1b expression was noted after 8 d at 50 nM EE2. Standard length at the end of the exposure phase was significantly lower in larvae exposed to 50 nM EE2 than in control; however, this effect was no longer observed after the depuration phase. The upregulation of gnrh2, kiss1, and cyp19a1b expression levels was found in conjunction with elevation in locomotor activity and anxiety-like behaviors in larvae. Behavioral alterations were still detected at the end of the depuration phase. Evidence indicates that the long-lasting effects of EE2 on behavior might impact normal development and subsequent fitness of exposed fish.
Collapse
Affiliation(s)
- S Soloperto
- Normandie Univ, UNIHAVRE, Le Havre Cedex, France
| | - S Olivier
- Normandie Univ, UNIHAVRE, Le Havre Cedex, France
| | - A Poret
- Normandie Univ, UNIHAVRE, Le Havre Cedex, France
| | - C Minier
- Normandie Univ, UNIHAVRE, Le Havre Cedex, France
| | - M P Halm-Lemeille
- Ifremer Port-en-Bessin, LaboratoireEnvironnement Ressources de Normandie, Port-en-Bessin, France
| | - C Jozet-Alves
- Normandie Univ, Unicaen, CNRS, Caen, France
- Univ Rennes, CNRS, Rennes, France
| | - S Aroua
- Normandie Univ, UNIHAVRE, Le Havre Cedex, France
| |
Collapse
|
25
|
Cintr N-Rivera LG, Oulette G, Prakki A, Burns NM, Patel R, Cyr R, Plavicki J. Exposure to the persistent organic pollutant 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD, dioxin) disrupts development of the zebrafish inner ear. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532434. [PMID: 36993549 PMCID: PMC10054988 DOI: 10.1101/2023.03.14.532434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Dioxins are a class of highly toxic and persistent environmental pollutants that have been shown through epidemiological and laboratory-based studies to act as developmental teratogens. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most potent dioxin congener, has a high affinity for the aryl hydrocarbon receptor (AHR), a ligand activated transcription factor. TCDD-induced AHR activation during development impairs nervous system, cardiac, and craniofacial development. Despite the robust phenotypes previously reported, the characterization of developmental malformations and our understanding of the molecular targets mediating TCDD-induced developmental toxicity remains limited. In zebrafish, TCDD-induced craniofacial malformations are produced, in part, by the downregulation of SRY-box transcription factor 9b ( sox9b ), a member of the SoxE gene family. sox9b , along with fellow SoxE gene family members sox9a and sox10 , have important functions in the development of the otic placode, the otic vesicle, and, ultimately, the inner ear. Given that sox9b in a known target of TCDD and that transcriptional interactions exist among SoxE genes, we asked whether TCDD exposure impaired the development of the zebrafish auditory system, specifically the otic vesicle, which gives rise to the sensory components of the inner ear. Using immunohistochemistry, in vivo confocal imaging, and time-lapse microscopy, we assessed the impact of TCDD exposure on zebrafish otic vesicle development. We found exposure resulted in structural deficits, including incomplete pillar fusion and altered pillar topography, leading to defective semicircular canal development. The observed structural deficits were accompanied by reduced collagen type II expression in the ear. Together, our findings reveal the otic vesicle as a novel target of TCDD-induced toxicity, suggest that the function of multiple SoxE genes may be affected by TCDD exposure, and provide insight into how environmental contaminants contribute to congenital malformations. Highlights The zebrafish ear is necessary to detect changes in motion, sound, and gravity.Embryos exposed to TCDD lack structural components of the developing ear.TCDD exposure impairs formation of the fusion plate and alters pillar topography.The semicircular canals of the ear are required to detect changes in movement.Following TCDD exposure embryos fail to establish semicircular canals.
Collapse
|
26
|
Egan N, Stinson SA, Deng X, Lawler SP, Connon RE. Swimming Behavior of Daphnia magna Is Altered by Pesticides of Concern, as Components of Agricultural Surface Water and in Acute Exposures. BIOLOGY 2023; 12:biology12030425. [PMID: 36979117 PMCID: PMC10045752 DOI: 10.3390/biology12030425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Pesticides with novel modes of action including neonicotinoids and anthranilic diamides are increasingly detected in global surface waters. Little is known about how these pesticides of concern interact in mixtures at environmentally relevant concentrations, a common exposure scenario in waterways impacted by pesticide pollution. We examined effects of chlorantraniliprole (CHL) and imidacloprid (IMI) on the sensitive invertebrate, Daphnia magna. Exposures were first performed using surface waters known to be contaminated by agricultural runoff. To evaluate the seasonal variation in chemical concentration and composition of surface waters, we tested surface water samples taken at two time points: during an extended dry period and after a first flush storm event. In surface waters, the concentrations of CHL, IMI, and other pesticides of concern increased after first flush, resulting in hypoactivity and dose-dependent photomotor responses. We then examined mortality and behavior following single and binary chemical mixtures of CHL and IMI. We detected inverse photomotor responses and some evidence of synergistic effects in binary mixture exposures. Taken together, this research demonstrates that CHL, IMI, and contaminated surface waters all cause abnormal swimming behavior in D. magna. Invertebrate swimming behavior is a sensitive endpoint for measuring the biological effects of environmental pesticides of concern.
Collapse
Affiliation(s)
- Nicole Egan
- School of Veterinary Medicine, University of California at Davis, Davis, CA 95616, USA
| | - Sarah A. Stinson
- School of Veterinary Medicine, University of California at Davis, Davis, CA 95616, USA
- Correspondence:
| | - Xin Deng
- California Department of Pesticide Regulation, Sacramento, CA 95812, USA
| | - Sharon P. Lawler
- Department of Entomology and Nematology, University of California at Davis, Davis, CA 95616, USA
| | - Richard E. Connon
- School of Veterinary Medicine, University of California at Davis, Davis, CA 95616, USA
| |
Collapse
|
27
|
Alonso Á. Previous stress causes a contrasting response to cadmium toxicity in the aquatic snail Potamopyrgus antipodarum: lethal and behavioral endpoints. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41348-41358. [PMID: 36630038 PMCID: PMC10067653 DOI: 10.1007/s11356-022-24932-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
In aquatic ecosystems, animals are often exposed to a combination of stressors, including both natural and anthropogenic factors. Combined stressors may have additive or interactive effects on animals, either magnifying or reducing the effects caused by each stressor alone. Therefore, standardized bioassays can lead to overestimations or underestimations of the risk of toxicants if natural stressors are not bear in mind. The inclusion of natural stress in laboratory bioassays may help to extrapolate the laboratory results to ecosystems. This study assesses the effects of successive exposure to two sources of stress (high water conductivity and cadmium toxicity) on the behavior and survival of the aquatic snail Potamopyrgus antipodarum (Tateidae, Mollusca). I conducted a bioassay consisting on exposure to high conductivity (5000 mg NaCl/L, 7 days), followed by exposure to cadmium (0.03, 0.125, and 0.25 mg Cd/L for 7 days) and by a post-exposure period (7 days). Mortality, inactivity, and the time to start activity of active animals were monitored in each animal. In general, cadmium lethality was higher in animals previously undergoing high conductivity than in non-stressed ones. Previously stressed animals showed longer time to start activity, with a noticeable effect at the two highest cadmium concentrations. Animals submitted to the two highest cadmium concentration both, stressed and non-stressed, showed a moderate recovery during the post-exposure period. It is concluded that previous stress caused a worsening of the cadmium toxicity on the aquatic snail Potamopyrgus antipodarum, which is especially noticeable for mortality. However, there was no interactive effect between cadmium and conductivity on snail activity, which may be indicative of recovery after cadmium exposure regardless the previous stress suffered by the snails.
Collapse
Affiliation(s)
- Álvaro Alonso
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida, Unidad de Ecología, Biological Invasions Research Group, Universidad de Alcalá, Plaza de San Diego S/N, Madrid, 28801, Alcalá de Henares, Spain.
| |
Collapse
|
28
|
Huang L, Zhang W, Zhou W, Chen L, Liu G, Shi W. Behaviour, a potential bioindicator for toxicity analysis of waterborne microplastics: A review. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
29
|
Alonso Á. Post-exposure Period as a key Factor to Assess Cadmium Toxicity: Lethal vs. Behavioral Responses. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:41. [PMID: 36652007 PMCID: PMC9849298 DOI: 10.1007/s00128-022-03651-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/09/2022] [Indexed: 06/17/2023]
Abstract
The exposure of animals to pollution in ecosystems is not always chronic. Toxicants can remain in aquatic ecosystems for a short-term. To improve the extrapolation of laboratory results to natural scenarios the inclusion of post-exposure periods is a relevant issue. The present study focuses on the assessment of cadmium toxicity on survival and behavior of the aquatic snail Potamopyrgus antipodarum (Tateidae, Mollusca) during exposure and post-exposure. Animals were exposed for 48 h to cadmium (0.05, 0.14, 0.44 and 1.34 mg Cd/L) and 168 h of post-exposure. During the post-exposure period an increase in mortality in all concentrations was observed. The effects observed during the post-exposure period on the LC50 and EC50 were significant. During the post-exposure, behavior showed a clear recovery in surviving animals exposed to 0.44 mg Cd/L. Animals exposed to 0.05 mg Cd/L did not show differences with control. Therefore, mortality after exposure should be included in the ecotoxicological bioassays for a more realistic estimation of the cadmium effects. To assess the degree of animal recovery after cadmium exposure, behaviour has been shown as an adequate parameter.
Collapse
Affiliation(s)
- Álvaro Alonso
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida, Unidad Docente de Ecología, Biological Invasions Research Group, Universidad de Alcalá, Plaza San Diego s/n, 28801, Alcalá de Henares, Spain.
| |
Collapse
|
30
|
Duarte IA, Reis-Santos P, Fick J, Cabral HN, Duarte B, Fonseca VF. Neuroactive pharmaceuticals in estuaries: Occurrence and tissue-specific bioaccumulation in multiple fish species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120531. [PMID: 36397612 DOI: 10.1016/j.envpol.2022.120531] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/06/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Contamination of surface waters by pharmaceuticals is an emerging problem globally. This is because the increased access and use of pharmaceuticals by a growing world population lead to environmental contamination, threatening non-target species in their natural environment. Of particular concern are neuroactive pharmaceuticals, which are known to bioaccumulate in fish and impact a variety of individual processes such as fish reproduction or behaviour, which can have ecological impacts and compromise fish populations. In this work, we investigate the occurrence and bioaccumulation of 33 neuroactive pharmaceuticals in brain, muscle and liver tissues of multiple fish species collected in four different estuaries (Douro, Tejo, Sado and Mira). In total, 28 neuroactive pharmaceuticals were detected in water and 13 in fish tissues, with individual pharmaceuticals reaching maximum concentrations of 1590 ng/L and 207 ng/g ww, respectively. The neuroactive pharmaceuticals with the highest levels and highest frequency of detection in the water samples were psychostimulants, antidepressants, opioids and anxiolytics, whereas in fish tissues, antiepileptics, psychostimulants, anxiolytics and antidepressants showed highest concentrations. Bioaccumulation was ubiquitous, occurring in all seven estuarine and marine fish species. Notably, neuroactive compounds were detected in every water and fish brain samples, and in 95% of fish liver and muscle tissues. Despite variations in pharmaceutical occurrence among estuaries, bioaccumulation patterns were consistent among estuarine systems, with generally higher bioaccumulation in fish brain followed by liver and muscle. Moreover, no link between bioaccumulation and compounds' lipophilicity, species habitat use patterns or trophic levels was observed. Overall, this work highlights the occurrence of a highly diverse suite of neuroactive pharmaceuticals and their pervasiveness in waters and fish from estuarine systems with contrasting hydromorphology and urban development and emphasizes the urgent need for toxicity assessment of these compounds in natural ecosystems, linked to internalized body concentration in non-target species.
Collapse
Affiliation(s)
- Irina A Duarte
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| | - Patrick Reis-Santos
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, South Australia, 5005, Australia
| | - Jerker Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Bernardo Duarte
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Vanessa F Fonseca
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
31
|
Gouveneaux A, Minet A, Jozet-Alves C, Knigge T, Bustamante P, Lacoue-Labarthe T, Bellanger C. Cuttlefish color change as an emerging proxy for ecotoxicology. Front Physiol 2023; 14:1162709. [PMID: 36969601 PMCID: PMC10030679 DOI: 10.3389/fphys.2023.1162709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Lately, behavioral ecotoxicology has flourished because of increasing standardization of analyses of endpoints like movement. However, research tends to focus on a few model species, which limits possibilities of extrapolating and predicting toxicological effects and adverse outcomes at the population and ecosystem level. In this regard, it is recommended to assess critical species-specific behavioral responses in taxa playing key roles in trophic food webs, such as cephalopods. These latter, known as masters of camouflage, display rapid physiological color changes to conceal themselves and adapt to their surrounding environments. The efficiency of this process depends on visual abilities and acuity, information processing, and control of chromatophores dynamics through nervous and hormonal regulation with which many contaminants can interfere. Therefore, the quantitative measurement of color change in cephalopod species could be developed as a powerful endpoint for toxicological risk assessment. Based on a wide body of research having assessed the effect of various environmental stressors (pharmaceutical residues, metals, carbon dioxide, anti-fouling agents) on the camouflage abilities of juvenile common cuttlefish, we discuss the relevance of this species as a toxicological model and address the challenge of color change quantification and standardization through a comparative review of the available measurement techniques.
Collapse
Affiliation(s)
- Anaïd Gouveneaux
- Ethologie Animale et Humaine (EthoS), UMR 6552 CNRS, Université Caen Normandie, Caen, France
- Stress Environnementaux et Biosurveillance des Milieux Aquatiques (SEBIO), UMR-I 02, Université Le Havre Normandie, Le Havre, France
| | - Antoine Minet
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Christelle Jozet-Alves
- Ethologie Animale et Humaine (EthoS), UMR 6552 CNRS, Université Caen Normandie, Caen, France
| | - Thomas Knigge
- Stress Environnementaux et Biosurveillance des Milieux Aquatiques (SEBIO), UMR-I 02, Université Le Havre Normandie, Le Havre, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Thomas Lacoue-Labarthe
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Cécile Bellanger
- Ethologie Animale et Humaine (EthoS), UMR 6552 CNRS, Université Caen Normandie, Caen, France
- *Correspondence: Cécile Bellanger,
| |
Collapse
|
32
|
Shuliakevich A, Schröder K, Nagengast L, Muz M, Pipal M, Brückner I, Hilscherova K, Brack W, Schiwy S, Hollert H. Morphological and behavioral alterations in zebrafish larvae after exposure to contaminated river sediments collected in different weather conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:157922. [PMID: 35961394 DOI: 10.1016/j.scitotenv.2022.157922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Wastewater treatment plants (WWTPs) are the primary source of micropollutants in aquatic ecosystems. Many micropollutants tend to bind to sediments and persist until remobilizion by bioturbation or flood events. Advanced effluent treatment by ozonation has been proven to eliminate most micropollutants. The present study characterizes sediments' toxic potential regarding zebrafish embryo development, which highly complex nervous system is vulnerable to exposure to neurotoxic substances. Furthermore, behavioral changes can be induced even at low pollutant concentrations and do not cause acute toxicity. The study area includes stretches of the main waterbody, the Wurm River (sampling sites W1-W5), and its tributary the Haarbach River (sampling sites H1, and H2) in North-Rhine Westphalia, Germany. Both waterbodies serve as recipients of WWTPs' effluents. The effluent entering the Haarbach River is conventionally treated, while the Wurm River receives ozonated effluent from the Aachen-Soers WWTP. Seven sampling sites up- and downstream of the WWTPs were investigated in June of two subsequent years. The first sampling campaign in 2017 was characterized by prolonged dry weather. The second sampling campaign in 2018 occurred after prolonged rain events and the release of the rainwater overflow basin. Direct exposure of zebrafish embryos to native sediments using the sediment contact test represented an ecologically realistic scenario and showed no acute sublethal effects. Exposure of the zebrafish embryo to freeze-dried sediments representing the ecotoxicological status of sediments during flood events unfolded acute sublethal toxicity. Behavioral studies with zebrafish larvae were an essential part of environmental neurotoxicity testing. Zebrafish larvae exposed to sediments' concentrations causing no acute effects led to behavioral changes signalizing neurotoxic substances in sediments. Polyaromatic hydrocarbons, polychlorinated biphenyls, and nitroaromatic compounds were identified as potential toxicity drivers, whereby the rainwater overflow basin served as a possible source of pollution. Mixture toxicity, effect-directed analysis, and further sediment monitoring are needed.
Collapse
Affiliation(s)
- Aliaksandra Shuliakevich
- Goethe University Frankfurt/Main, Department Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany
| | - Katja Schröder
- RWTH Aachen University, Institute of Biology V, Worringerweg 1, 52074 Aachen, Germany
| | - Laura Nagengast
- RWTH Aachen University, Institute of Biology V, Worringerweg 1, 52074 Aachen, Germany
| | - Melis Muz
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Marek Pipal
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Ira Brückner
- Eifel-Rur Waterboard (WVER), Eisenbahnstr. 5, 52354 Düren, Germany
| | - Klara Hilscherova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Werner Brack
- Goethe University Frankfurt/Main, Department Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany; Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Sabrina Schiwy
- Goethe University Frankfurt/Main, Department Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany
| | - Henner Hollert
- Goethe University Frankfurt/Main, Department Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany.
| |
Collapse
|
33
|
Yancheva V, Georgieva E, Velcheva I, Iliev I, Stoyanova S, Vasileva T, Bivolarski V, Todorova-Bambaldokova D, Zulkipli N, Antal L, Nyeste K. Assessment of the exposure of two pesticides on common carp (Cyprinus carpio Linnaeus, 1758): Are the prolonged biomarker responses adaptive or destructive? Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109446. [PMID: 36030007 DOI: 10.1016/j.cbpc.2022.109446] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/04/2022] [Accepted: 08/21/2022] [Indexed: 11/03/2022]
Abstract
Chlorpyrifos (CPF) and cypermethrin (CYP) are two insecticides that have a proven negative effect on non-target aquatic organisms when they enter the surface waters. However, literature on the comparative effects of these pesticides on important aquaculture fish species, such as common carp (Cyprinus carpio Linnaeus, 1758) is not yet scientifically detailed, especially over the long-term. The idea of conducting a long-term exposure is to find out how the observed biomarkers would change compared to the short-term exposure. In the natural environment, toxicants are not present alone, but in combination. By monitoring the long-term impact of individual substances, the state of aquatic ecosystems exposed to various toxicants could be predicted. Thus, this study aimed to evaluate the toxicity of different concentrations of CYP (0.0002, 0.0003, and 0.0006 μg/L) and CPF (0.03, 0.05, and 0.10 μg/L) in 50-L glass tanks on C. carpio, exposed for 30 days under laboratory conditions. A set of histological and biochemical biomarkers in the gills and liver were applied with the chemical analyses of water and fish organs. Furthermore, the condition and hepatosomatic index were calculated to assess the physiological status of the treated carps. The behavioral responses were also monitored, and the respiration rate was analyzed. The results suggest that CYP had a more prominent effect on the histological structure of fish organs, biochemical responses of anti-oxidant enzymes, behavior, and respiration rate compared to the effect of CPF. In addition, the results also indicate that the liver is more susceptible to chronic and chemically induced cellular stress compared to the gills, with overall destructive changes in the histological biomarkers rather than adaptive. Regardless of the scenario, our results provide novel insights into pesticide exposure and the possible biological impacts on economically important freshwater fish, exposed to lower CYP and CPF concentrations, based on the EU legislation (maximum allowable concentrations, MAC-EQS).
Collapse
Affiliation(s)
- Vesela Yancheva
- Department of Ecology and Environmental Conservation, Faculty of Biology, Plovdiv University, 4000 Plovdiv, Bulgaria
| | - Elenka Georgieva
- Department of Developmental Biology, Faculty of Biology, Plovdiv University, 4000 Plovdiv, Bulgaria
| | - Iliana Velcheva
- Department of Ecology and Environmental Conservation, Faculty of Biology, Plovdiv University, 4000 Plovdiv, Bulgaria
| | - Ilia Iliev
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University, 4000 Plovdiv, Bulgaria
| | - Stela Stoyanova
- Department of Developmental Biology, Faculty of Biology, Plovdiv University, 4000 Plovdiv, Bulgaria
| | - Tonka Vasileva
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University, 4000 Plovdiv, Bulgaria
| | - Veselin Bivolarski
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University, 4000 Plovdiv, Bulgaria
| | | | - Nurfatin Zulkipli
- Department of Hydrobiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary; Pál Juhász-Nagy Doctoral School of Biology and Environmental Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - László Antal
- Department of Hydrobiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary; National Laboratory for Water Science and Water Safety, University of Debrecen, 4032 Debrecen, Hungary.
| | - Krisztián Nyeste
- Department of Hydrobiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary; National Laboratory for Water Science and Water Safety, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
34
|
De Felice B, De Pascalis F, Manenti R, Pavlovic R, di Cesare F, Nasti R, Beretta G, Parolini M. Differential biochemical and behavioral responses induced by cocaine and benzoylecgonine exposure to the red swamp crayfish Procambarus clarkii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157025. [PMID: 35777565 DOI: 10.1016/j.scitotenv.2022.157025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/28/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Cocaine (COC) and its main metabolite, the benzoylecgonine (BE), are the main illicit drugs measured in aquatic system worldwide, with concentrations up to hundreds of ng/L. Although their current environmental concentrations are low these molecules can induce adverse effects at sub-individual level in non-target organisms. In contrast, the information at individual and behavioral level are still scant. The present study aimed at investigating biochemical and behavioral effects induced by 14-days exposure to environmentally relevant concentrations (50 ng/L and 500 ng/L) of COC and BE towards Procambarus clarkii. At sub-individual level, the activity of antioxidant and detoxifying (superoxide dismutase - SOD, catalase - CAT, glutathione peroxidase - GPx and glutathione S-transferases - GST) enzymes, as well as the levels of lipid peroxidation (LPO), were measured as oxidative stress-related endpoints. We also measured the acetylcholinesterase (AChE) activity to check for neurotoxic effect of COC and BE. At individual level, the modulation of some behavioral tasks (i.e., response to external stimuli, changes in feeding activity and exploration of a new environment) were assessed. Although both COC and BE exposure did not induce an oxidative stress situation, a significant inhibition of AChE activity was noted, resulting in behavioral changes in crayfish exposed to COC only. Crayfish exposed to the higher COC concentration showed an increase in the boldness and a decrease in the feeding activity, suggesting that COC may act according to its psychotropic mode of action.
Collapse
Affiliation(s)
- Beatrice De Felice
- University of Milan, Department of Environmental Science and Policy, Via Celoria 26, I-20133 Milan, Italy.
| | - Federico De Pascalis
- University of Milan, Department of Environmental Science and Policy, Via Celoria 26, I-20133 Milan, Italy
| | - Raoul Manenti
- University of Milan, Department of Environmental Science and Policy, Via Celoria 26, I-20133 Milan, Italy
| | - Radmila Pavlovic
- University of Milan, Department of Veterinary Medicine and Animal Science, Via dell'Università 6, I-26900 Lodi, Italy
| | - Federica di Cesare
- University of Milan, Department of Veterinary Medicine and Animal Science, Via dell'Università 6, I-26900 Lodi, Italy
| | - Rita Nasti
- University of Milan, Department of Environmental Science and Policy, Via Celoria 26, I-20133 Milan, Italy
| | - Giangiacomo Beretta
- University of Milan, Department of Environmental Science and Policy, Via Celoria 26, I-20133 Milan, Italy
| | - Marco Parolini
- University of Milan, Department of Environmental Science and Policy, Via Celoria 26, I-20133 Milan, Italy
| |
Collapse
|
35
|
Alonso Á, Romero-Blanco A. Same sensitivity with shorter exposure: behavior as an appropriate parameter to assess metal toxicity. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1254-1265. [PMID: 36114325 PMCID: PMC9529696 DOI: 10.1007/s10646-022-02584-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The exposure of animals to toxicants may cause a depletion in the energy uptake, which compromises reproduction and growth. Although both parameters are ecologically relevant, they usually need long-term bioassays. This is a handicap for the availability of toxicological data for environmental risk assessment. Short-term bioassays conducted with environmental concentrations, and using relevant ecological parameters sensitive to short-term exposures, such as behavior, could be a good alternative. Therefore, to include this parameter in the risk assessment procedures, it is relevant the comparison of its sensitivity with that of growth and reproduction bioassays. The study aim was the assessment of differences between endpoints based on mortality, behaviour, reproduction, and growth for the toxicity of metals on aquatic animals. We used the ECOTOX database to gather data to construct chemical toxicity distribution (CTD) curves. The mean concentrations, the mean exposure time, and the ratio between the mean concentration and the exposure time were compared among endpoints. Our results showed that behavioral, growth, and reproduction bioassays presented similar sensitivity. The shortest exposure was found in behavioral and reproduction bioassays. In general, the amount of toxicant used per time was lower in growth and reproduction bioassays than in behavioral and mortality bioassays. We can conclude that, for metal toxicity, behavioral bioassays are less time-consuming than growth bioassays. As the sensitivity of behavior was similar to that of growth and reproduction, this endpoint could be a better alternative to longer bioassays.
Collapse
Affiliation(s)
- Álvaro Alonso
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida, Unidad de Ecología, Research Group in Biological Invasions, Campus Científico Tecnológico, Alcalá de Henares, 28805, Madrid, Spain.
| | - Alberto Romero-Blanco
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida, Unidad de Ecología, Research Group in Biological Invasions, Campus Científico Tecnológico, Alcalá de Henares, 28805, Madrid, Spain
| |
Collapse
|
36
|
Henry J, Bai Y, Wlodkowic D. Digital Video Acquisition and Optimization Techniques for Effective Animal Tracking in Behavioral Ecotoxicology. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2342-2352. [PMID: 35848752 PMCID: PMC9826254 DOI: 10.1002/etc.5434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/02/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Behavioral phenotypic analysis is an emerging and increasingly important toolbox in aquatic ecotoxicology. In this regard digital video recording has recently become a standard in obtaining behavioral data. Subsequent analysis requires applications of specialized software for detecting and reconstructing animal locomotory trajectories as well as extracting quantitative biometric endpoints associated with specific behavioral traits. Despite some profound advantages for behavioral ecotoxicology, there is a notable lack of standardization of procedures and guidelines that would aid in consistently acquiring high-quality digital videos. The latter are fundamental for using animal tracking software successfully and to avoid issues such as identification switching, incorrect interpolation, and low tracking visibility. Achieving an optimized tracking not only saves user time and effort to analyze the results but also provides high-fidelity data with minimal artifacts. In the present study we, for the first time, provide an easily accessible guide on how to set up and optimize digital video acquisition while minimizing pitfalls in obtaining the highest-quality data for subsequent animal tracking. We also discuss straightforward digital video postprocessing techniques that can be employed to further enhance tracking consistency or improve the videos that were acquired in otherwise suboptimal settings. The present study provides an essential guidebook for any aquatic ecotoxicology studies that utilize digital video acquisition systems for evaluation of behavioral endpoints. Environ Toxicol Chem 2022;41:2342-2352. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Jason Henry
- The Neurotox Lab, School of ScienceRMIT UniversityMelbourneVictoriaAustralia
| | - Yutao Bai
- The Neurotox Lab, School of ScienceRMIT UniversityMelbourneVictoriaAustralia
| | - Donald Wlodkowic
- The Neurotox Lab, School of ScienceRMIT UniversityMelbourneVictoriaAustralia
| |
Collapse
|
37
|
Orford JT, Ozeki S, Brand JA, Henry J, Wlodkowic D, Alton LA, Martin JM, Wong BBM. Effects of the agricultural pollutant 17β-trenbolone on morphology and behaviour of tadpoles (Limnodynastes tasmaniensis). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 251:106289. [PMID: 36087492 DOI: 10.1016/j.aquatox.2022.106289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Pollutants, such as endocrine disrupting chemicals (EDCs), are increasingly being detected in organisms and ecosystems globally. Agricultural activities, including the use of hormonal growth promotants (HGPs), are a major source of EDC contamination. One potent EDC that enters into the environment through the use of HGPs is 17β-trenbolone. Despite EDCs being repeatedly shown to affect reproduction and development, comparatively little is known regarding their effects on behaviour. Amphibians, one of the most imperilled vertebrate taxa globally, are at particular risk of exposure to such pollutants as they often live and breed near agricultural operations. Yet, no previous research on amphibians has explored the effects of 17β-trenbolone exposure on foraging or antipredator behaviour, both of which are key fitness-related behavioural traits. Accordingly, we investigated the impacts of 28-day exposure to two environmentally realistic concentrations of 17β-trenbolone (average measured concentrations: 10 and 66 ng/L) on the behaviour and growth of spotted marsh frog tadpoles (Limnodynastes tasmaniensis). Contrary to our predictions, there was no significant effect of 17β-trenbolone exposure on tadpole growth, antipredator response, anxiety-like behaviour, or foraging. We hypothesise that the differences in effects found between this study and those conducted on fish may be due to taxonomic differences and/or the life stage of the animals used, and suggest further research is needed to investigate the potential for delayed manifestation of the effects of 17β-trenbolone exposure.
Collapse
Affiliation(s)
- Jack T Orford
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia.
| | - Shiho Ozeki
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Jack A Brand
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Jason Henry
- The Neurotoxicology Laboratory, School of Science, RMIT University, Bundoora, VIC, 3083, Australia
| | - Donald Wlodkowic
- The Neurotoxicology Laboratory, School of Science, RMIT University, Bundoora, VIC, 3083, Australia
| | - Lesley A Alton
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Jake M Martin
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
38
|
Cao X, Rao C, Cui H, Sun D, Li L, Guo S, Zhou J, Yuan R, Yang S, Chen J. Toxic effects of glyphosate on the intestine, liver, brain of carp and on epithelioma papulosum cyprinid cells: Evidence from in vivo and in vitro research. CHEMOSPHERE 2022; 302:134691. [PMID: 35489457 DOI: 10.1016/j.chemosphere.2022.134691] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Glyphosate (GLY) is the most widely used organophosphorus herbicide in agriculture. The present study aimed to analyze the comprehensive toxicological effects of GLY on juvenile common carp and an epithelioma papulosum cyprinid (EPC) cell line. In the in vivo experiments, exposure to GLY (5 and 15 mg/L) for 30 days induced liver inflammation and oxidative damage in common carp and changed the physical barrier of the intestine. Histopathological analysis of the intestine, liver, brain, and changes in oxidative stress biomarkers provided evidence of damage and immune system responses to GLY. Moreover, an inhibitory effect of 15 mg/L GLY on acetylcholinesterase (AChE) activity was found in the brain, which may be an important reason for the significant decrease in both swimming distance and average acceleration of common carp. Cell experiments showed that 0.65 and 3.25 mg/L GLY inhibited the viability of EPCs. Furthermore, oxidative DNA damage, mitochondrial dysfunction, and reactive oxygen species (ROS) production were observed in EPC cells following GLY exposure. Taken together, this study not only highlights the negative effects of GLY on common carp but also enriches the knowledge of the cytotoxicity mechanism to further clarify the comprehensive toxicity of GLY in common carp.
Collapse
Affiliation(s)
- Xianglin Cao
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China.
| | - Chenyang Rao
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| | - Han Cui
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China.
| | - Dandan Sun
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| | - Lulu Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| | - Suqi Guo
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| | - Jiameng Zhou
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| | - Rongjie Yuan
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| | - Shuai Yang
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| | - Jianjun Chen
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| |
Collapse
|
39
|
Li D, Sun W, Lei H, Li X, Hou L, Wang Y, Chen H, Schlenk D, Ying GG, Mu J, Xie L. Cyclophosphamide alters the behaviors of adult Zebrafish via neurotransmitters and gut microbiota. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 250:106246. [PMID: 35917676 DOI: 10.1016/j.aquatox.2022.106246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Cyclophosphamide, one of the earliest prescribed alkylating anticancer drugs, has been frequently detected in aquatic environments. However, its effects on fish behavior and associated mechanisms remain largely unknown. In this study, the behaviors, neurochemicals, and gut microbiota of adult zebrafish were investigated after 2 months of exposure to CP at 0.05, 0.5, 5, and 50 µg/L. Behavioral assays revealed that CP increased locomotion and anxiety, and decreased the cognition of zebrafish. The alteration of neurotransmitters and related gene expressions in the dopamine and gamma-aminobutyric acid pathways induced by CP may be responsible for the observed changes in locomotion and cognition of adult zebrafish. Meanwhile, CP increased the anxiety of adult zebrafish through the serotonin, acetylcholine, and histamine pathways in the brain. In addition, increased abundances of Fusobacteriales, Reyanellales, Staphylococcales, Rhodobacterals, and Patescibateria in the intestine at the CP-50 treatment were observed. The study has demonstrated that CP affects the locomotion, anxiety, and cognition in zebrafish, which might be linked with the dysfunction of neurochemicals in the brain. This study further suggests that the gut-brain axis might interact to modulate fish behaviors upon exposure to CP (maybe other organic pollutants). Further research is warranted to test this hypothesis.
Collapse
Affiliation(s)
- Dan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Weijun Sun
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Haojun Lei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Yongzhuang Wang
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Nanning Normal University, Ministry of Education, Nanning 530001, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California Riverside, Riverside, CA 92507, USA
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jingli Mu
- College of Geography and Oceanography, Minjiang University, Fuzhou 350108, PR China
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
40
|
Suryanto ME, Yang CC, Audira G, Vasquez RD, Roldan MJM, Ger TR, Hsiao CD. Evaluation of Locomotion Complexity in Zebrafish after Exposure to Twenty Antibiotics by Fractal Dimension and Entropy Analysis. Antibiotics (Basel) 2022; 11:1059. [PMID: 36009928 PMCID: PMC9404773 DOI: 10.3390/antibiotics11081059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Antibiotics are extensively used in aquaculture to prevent bacterial infection and the spread of diseases. Some antibiotics have a relatively longer half-life in water and may induce some adverse effects on the targeted fish species. This study analyzed the potential adverse effects of antibiotics in zebrafish at the behavioral level by a phenomic approach. We conducted three-dimensional (3D) locomotion tracking for adult zebrafish after acute exposure to twenty different antibiotics at a concentration of 100 ppb for 10 days. Their locomotor complexity was analyzed and compared by fractal dimension and permutation entropy analysis. The dimensionality reduction method was performed by combining the data gathered from behavioral endpoints alteration. Principal component and hierarchical analysis conclude that three antibiotics: amoxicillin, trimethoprim, and tylosin, displayed unique characteristics. The effects of these three antibiotics at lower concentrations (1 and 10 ppb) were observed in a follow-up study. Based on the results, these antibiotics can trigger several behavioral alterations in adult zebrafish, even in low doses. Significant changes in locomotor behavioral activity, such as total distance activity, average speed, rapid movement time, angular velocity, time in top/bottom duration, and meandering movement are highly related to neurological motor impairments, anxiety levels, and stress responses were observed. This study provides evidence based on an in vivo experiment to support the idea that the usage of some antibiotics should be carefully addressed since they can induce a significant effect of behavioral alterations in fish.
Collapse
Affiliation(s)
- Michael Edbert Suryanto
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Chun-Chuen Yang
- Department of Physics, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Department of Physics, National Central University, Chung-Li 32001, Taiwan
| | - Gilbert Audira
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Ross D. Vasquez
- Department of Pharmacy, Faculty of Pharmacy, University of Santo Tomas, Manila 1015, Philippines
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1015, Philippines
- The Graduate School, University of Santo Tomas, Manila 1015, Philippines
| | | | - Tzong-Rong Ger
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| |
Collapse
|
41
|
Bertram MG, Martin JM, McCallum ES, Alton LA, Brand JA, Brooks BW, Cerveny D, Fick J, Ford AT, Hellström G, Michelangeli M, Nakagawa S, Polverino G, Saaristo M, Sih A, Tan H, Tyler CR, Wong BB, Brodin T. Frontiers in quantifying wildlife behavioural responses to chemical pollution. Biol Rev Camb Philos Soc 2022; 97:1346-1364. [PMID: 35233915 PMCID: PMC9543409 DOI: 10.1111/brv.12844] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 12/26/2022]
Abstract
Animal behaviour is remarkably sensitive to disruption by chemical pollution, with widespread implications for ecological and evolutionary processes in contaminated wildlife populations. However, conventional approaches applied to study the impacts of chemical pollutants on wildlife behaviour seldom address the complexity of natural environments in which contamination occurs. The aim of this review is to guide the rapidly developing field of behavioural ecotoxicology towards increased environmental realism, ecological complexity, and mechanistic understanding. We identify research areas in ecology that to date have been largely overlooked within behavioural ecotoxicology but which promise to yield valuable insights, including within- and among-individual variation, social networks and collective behaviour, and multi-stressor interactions. Further, we feature methodological and technological innovations that enable the collection of data on pollutant-induced behavioural changes at an unprecedented resolution and scale in the laboratory and the field. In an era of rapid environmental change, there is an urgent need to advance our understanding of the real-world impacts of chemical pollution on wildlife behaviour. This review therefore provides a roadmap of the major outstanding questions in behavioural ecotoxicology and highlights the need for increased cross-talk with other disciplines in order to find the answers.
Collapse
Affiliation(s)
- Michael G. Bertram
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
| | - Jake M. Martin
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
| | - Erin S. McCallum
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
| | - Lesley A. Alton
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
| | - Jack A. Brand
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
| | - Bryan W. Brooks
- Department of Environmental ScienceBaylor UniversityOne Bear PlaceWacoTexas76798‐7266U.S.A.
| | - Daniel Cerveny
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of HydrocenosesUniversity of South Bohemia in Ceske BudejoviceZátiší 728/IIVodnany389 25Czech Republic
| | - Jerker Fick
- Department of ChemistryUmeå UniversityLinnaeus väg 10UmeåVästerbottenSE‐907 36Sweden
| | - Alex T. Ford
- Institute of Marine SciencesUniversity of PortsmouthWinston Churchill Avenue, PortsmouthHampshirePO1 2UPU.K.
| | - Gustav Hellström
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
| | - Marcus Michelangeli
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
- Department of Environmental Science and PolicyUniversity of California350 E Quad, DavisCaliforniaCA95616U.S.A.
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South Wales, Biological Sciences West (D26)SydneyNSW2052Australia
| | - Giovanni Polverino
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
- Centre for Evolutionary Biology, School of Biological SciencesUniversity of Western Australia35 Stirling HighwayPerthWA6009Australia
- Department of Ecological and Biological SciencesTuscia UniversityVia S.M. in Gradi n.4ViterboLazio01100Italy
| | - Minna Saaristo
- Environment Protection Authority VictoriaEPA Science2 Terrace WayMacleodVictoria3085Australia
| | - Andrew Sih
- Department of Environmental Science and PolicyUniversity of California350 E Quad, DavisCaliforniaCA95616U.S.A.
| | - Hung Tan
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
| | - Charles R. Tyler
- Biosciences, College of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterDevonEX4 4QDU.K.
| | - Bob B.M. Wong
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
| |
Collapse
|
42
|
Scarlett KR, Lovin LM, Steele WB, Kim S, Brooks BW. Identifying Behavioral Response Profiles of Two Common Larval Fish Models to a Salinity Gradient. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 83:180-192. [PMID: 35976388 DOI: 10.1007/s00244-022-00951-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Salinization of aquatic systems is an emerging global issue projected to increase in magnitude, frequency, and duration with climate change and landscape modifications. To consider influences of salinity on locomotor activity of common fish models, we examined behavioral response profiles of two species, zebrafish (Danio rerio) and fathead minnow (Pimephales promelas), across a gradient of sodium chloride. Following each experiment, behavior was recorded with automated tracking software and then behavioral response variables, including locomotor (e.g., distance traveled, number of movements, duration of movements) and photolocomotor changes, were examined at several speed thresholds (bursting, cruising, freezing) to identify potential salinity responses. Zebrafish responses were significantly (p < 0.05) reduced at the highest treatment level (5.78 g/L) for multiple behavioral endpoints during both dark and light phases; however, fathead minnow responses were more variable and not consistently concentration dependent. Future efforts are needed to understand behavioral response profiles in combination with anthropogenic contaminants and natural toxins across the freshwater to marine continuum, considering salinization of inland waters, sea level rise, and transport of anthropogenic contaminants and algal toxins from inland waters to coastal systems.
Collapse
Affiliation(s)
- Kendall R Scarlett
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, 76798, USA
| | - Lea M Lovin
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, 76798, USA
| | - W Baylor Steele
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, 76798, USA
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76798, USA
| | - Sujin Kim
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, 76798, USA
| | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, 76798, USA.
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76798, USA.
| |
Collapse
|
43
|
Fu CW, Horng JL, Chou MY. Fish Behavior as a Neural Proxy to Reveal Physiological States. Front Physiol 2022; 13:937432. [PMID: 35910555 PMCID: PMC9326089 DOI: 10.3389/fphys.2022.937432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Behaviors are the integrative outcomes of the nervous system, which senses and responds to the internal physiological status and external stimuli. Teleosts are aquatic organisms which are more easily affected by the surrounding environment compared to terrestrial animals. To date, behavioral tests have been widely used to assess potential environmental risks using fish as model animals. In this review, we summarized recent studies regarding the effects of internal and external stimuli on fish behaviors. We concluded that behaviors reflect environmental and physiological changes, which have possible implications for environmental and physiological assessments.
Collapse
Affiliation(s)
- Chih-Wei Fu
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- *Correspondence: Ming-Yi Chou,
| |
Collapse
|
44
|
Wlodkowic D, Bownik A, Leitner C, Stengel D, Braunbeck T. Beyond the behavioural phenotype: Uncovering mechanistic foundations in aquatic eco-neurotoxicology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154584. [PMID: 35306067 DOI: 10.1016/j.scitotenv.2022.154584] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
During the last decade, there has been an increase in awareness of how anthropogenic pollution can alter behavioural traits of diverse aquatic organisms. Apart from understanding profound ecological implications, alterations in neuro-behavioural indices have emerged as sensitive and physiologically integrative endpoints in chemical risk assessment. Accordingly, behavioural ecotoxicology and broader eco-neurotoxicology are becoming increasingly popular fields of research that span a plethora of fundamental laboratory experimentations as well as applied field-based studies. Despite mounting interest in aquatic behavioural ecotoxicology studies, there is, however, a considerable paucity in deciphering the mechanistic foundations underlying behavioural alterations upon exposure to pollutants. The behavioural phenotype is indeed the highest-level integrative neurobiological phenomenon, but at its core lie myriads of intertwined biochemical, cellular, and physiological processes. Therefore, the mechanisms that underlie changes in behavioural phenotypes can stem among others from dysregulation of neurotransmitter pathways, electrical signalling, and cell death of discrete cell populations in the central and peripheral nervous systems. They can, however, also be a result of toxicity to sensory organs and even metabolic dysfunctions. In this critical review, we outline why behavioural phenotyping should be the starting point that leads to actual discovery of fundamental mechanisms underlying actions of neurotoxic and neuromodulating contaminants. We highlight potential applications of the currently existing and emerging neurobiology and neurophysiology analytical strategies that should be embraced and more broadly adopted in behavioural ecotoxicology. Such strategies can provide new mechanistic discoveries instead of only observing the end sum phenotypic effects.
Collapse
Affiliation(s)
- Donald Wlodkowic
- The Neurotox Laboratory, School of Science, RMIT University, Melbourne, Australia.
| | - Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, Faculty of Environmental Biology, University of Life Sciences, Lublin, Poland
| | - Carola Leitner
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| | - Daniel Stengel
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| |
Collapse
|
45
|
The Influence of the Recording Time in Modelling the Swimming Behaviour of the Freshwater Inbenthic Copepod Bryocamptus pygmaeus. WATER 2022. [DOI: 10.3390/w14131996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The analysis of copepod behaviour gained an increasing impetus over the past decade thanks to the advent of computer-assisted video analysis tools. Since the automated tracking consists in detecting the animal’s position frame by frame and improving signals corrupted by strong background noise, a crucial role is played by the length of the video recording. The aim of this study is to: (i) assess whether the recording time influences the analysis of a suite of movement descriptive parameters; (ii) understand if the recording time influences the outcome of the statistical analyses when hypotheses on the effect of toxicants/chemicals on the freshwater invertebrate behaviour are tested. We investigated trajectory parameters commonly used in behavioural studies—swimming speed, percentage of activity and trajectory convex hull—derived from the trajectories described by the inbenthic–interstitial freshwater copepod Bryocamptus pygmaeus exposed to a sub-lethal concentration of diclofenac. The analyses presented in this work indicate that the recording time did not influence the outcome of the results for the swimming speed and the percentage of activity. For the trajectory convex hull area, our results showed that a recording session lasting at least 3 min provided robust results. However, further investigations are needed to disentangle the role of concurrent factors, such as the behavioural analysis of multiple individuals simultaneously, whether they are of the same or opposite sex and the implications on sexual behaviour, competition for resources and predation.
Collapse
|
46
|
Seo SY, Park YH, Jung SK, Kim J. Acute Toxicity Evaluation of the Disinfectant Containing Percarbonate and Tetraacetylethylenediamine by Measuring Behavioral Responses of Small Fish Using Image Analysis. BIOTECHNOL BIOPROC E 2022; 27:687-696. [PMID: 35730032 PMCID: PMC9188641 DOI: 10.1007/s12257-021-0419-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 11/30/2022]
Abstract
Disinfectants containing percarbonate and tetraacetylethylenediamine (TAED) has been developed as an effective and relatively safe disinfectant to destroy viruses and bacteria in animals and humans, however it is known that most disinfectants can cause danger to living organisms including humans. In the current study, acute toxicity of the disinfectant composed of percarbonate and TAED was assessed by measuring behavioral responses as well as lethal concentrations of aquatic organisms such as medaka and zebrafish when they were exposed to it. First, the breeding water properties were determined by measuring dissolved oxygen (DO) and pH changes over time up to 96 h in acute toxicity tests using the medaka, and the lethal concentration 50% (LC50, 88.39 ppm) was calculated using the lethality rate of the fish. This experiment was conducted in compliance with traditional OECD guidelines. Second, the assessment of behavioral responses (locomotive activity and swimming speed) with the zebrafish were assessed by the image analysis to capture the images per second for three hours, and the collected data were processed using image analysis to calculate the locomotive activity and swimming speed. Finally, the LC50 (135.76 ppm) of the disinfectant to the fish was also measured after three hours. Overall, the data revealed that LC50 of the disinfectant may be affected by the pH of the water exposed to the disinfectant, not by the DO in the water. In addition, the results from the image analysis indicated that the behavioral responses of the fish can further assess the acute toxicity of the disinfectant at concentrations below the LC50 and there was a relationship (R2 = 0.85) between the behavioral responses and the survival rate of the fish.
Collapse
Affiliation(s)
- Seung-Yoon Seo
- Department of Biological & Chemical Engineering, Hongik University, Sejong, 30016 Korea
| | - Yeon-Ho Park
- Department of Biological & Chemical Engineering, Hongik University, Sejong, 30016 Korea
| | - Sang-Kyu Jung
- Department of Biological & Chemical Engineering, Hongik University, Sejong, 30016 Korea
| | - Jinku Kim
- Department of Biological & Chemical Engineering, Hongik University, Sejong, 30016 Korea
| |
Collapse
|
47
|
Alonso Á, Gómez-de-Prado G, Romero-Blanco A. Behavioral Variables to Assess the Toxicity of Unionized Ammonia in Aquatic Snails: Integrating Movement and Feeding Parameters. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 82:429-438. [PMID: 35332359 PMCID: PMC8971178 DOI: 10.1007/s00244-022-00920-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Behavioral endpoints are important parameters to assess the effects of toxicants on aquatic animals. These endpoints are useful in ecotoxicology because several toxicants modify the animal behavior, which may cause adverse effects at higher levels of ecological organization. However, for the development of new bioassays and for including the behavior in ecotoxicological risk assessment, the comparison of sensitivity between different behavioral endpoints is necessary. Additionally, some toxicants remain in aquatic environments for a few hours or days, which may lead to animal recovery after toxicant exposure. Our study aimed to assess the effect of unionized ammonia on the movement and feeding behaviors of the aquatic gastropod Potamopyrgus antipodarum (Tateidae, Mollusca) and its recovery after exposure. Four treatments were used: a control and three nominal concentrations of unionized ammonia (0.25, 0.5 and 1 mg N-NH3/L). Each treatment was replicated eight times, with six animals in each replicate. Animals were exposed to unionized ammonia for 48 h (exposure period) and, subsequently, to control water for 144 h (post-exposure period). Two movement variables were monitored without food and five feeding behavioral variables were monitored in the presence of food. Some of the feeding behavioral variables showed higher sensitivity (LOEC = 0.25-0.5 mg N-NH3/L) than the movement behavior variables monitored without food (LOEC = 1 mg N-NH3/L). After exposure to unionized ammonia, animals showed a recovery of most behavioral endpoints. The inclusion of post-exposure period and feeding behaviors in bioassays may make studies more realistic, which is crucial for a proper ecotoxicological risk assessment.
Collapse
Affiliation(s)
- Álvaro Alonso
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida, Unidad Docente de Ecología, Biological Invasions Research Group, Universidad de Alcalá, Plaza de San Diego S/N, 28801, Alcalá de Henares, Madrid, Spain.
| | - Gloria Gómez-de-Prado
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida, Unidad Docente de Ecología, Biological Invasions Research Group, Universidad de Alcalá, Plaza de San Diego S/N, 28801, Alcalá de Henares, Madrid, Spain
| | - Alberto Romero-Blanco
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida, Unidad Docente de Ecología, Biological Invasions Research Group, Universidad de Alcalá, Plaza de San Diego S/N, 28801, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
48
|
Jewett E, Arnott G, Connolly L, Vasudevan N, Kevei E. Microplastics and Their Impact on Reproduction-Can we Learn From the C. elegans Model? FRONTIERS IN TOXICOLOGY 2022; 4:748912. [PMID: 35399297 PMCID: PMC8987311 DOI: 10.3389/ftox.2022.748912] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
Biologically active environmental pollutants have significant impact on ecosystems, wildlife, and human health. Microplastic (MP) and nanoplastic (NP) particles are pollutants that are present in the terrestrial and aquatic ecosystems at virtually every level of the food chain. Moreover, recently, airborne microplastic particles have been shown to reach and potentially damage respiratory systems. Microplastics and nanoplastics have been shown to cause increased oxidative stress, inflammation, altered metabolism leading to cellular damage, which ultimately affects tissue and organismal homeostasis in numerous animal species and human cells. However, the full impact of these plastic particles on living organisms is not completely understood. The ability of MPs/NPs to carry contaminants, toxic chemicals, pesticides, and bioactive compounds, such as endocrine disrupting chemicals, present an additional risk to animal and human health. This review will discusses the current knowledge on pathways by which microplastic and nanoplastic particles impact reproduction and reproductive behaviors from the level of the whole organism down to plastics-induced cellular defects, while also identifying gaps in current knowledge regarding mechanisms of action. Furthermore, we suggest that the nematode Caenorhabditis elegans provides an advantageous high-throughput model system for determining the effect of plastic particles on animal reproduction, using reproductive behavioral end points and cellular readouts.
Collapse
Affiliation(s)
- Elysia Jewett
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Gareth Arnott
- The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Lisa Connolly
- The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Nandini Vasudevan
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Eva Kevei
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
49
|
Duarte IA, Fick J, Cabral HN, Fonseca VF. Bioconcentration of neuroactive pharmaceuticals in fish: Relation to lipophilicity, experimental design and toxicity in the aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152543. [PMID: 34953825 DOI: 10.1016/j.scitotenv.2021.152543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Uptake of contaminants is linked to their toxicity and is usually estimated through their lipophilicity (logKow). Here, we review current literature regarding bioconcentration, i.e. uptake of contaminants from the external environment only, and the effects of exposure to neuroactive pharmaceuticals in fish. We aim to determine if lipophilicity is a suitable predictor of bioconcentration of these compounds in fish, to identify major drivers of bioconcentration and explore the link between bioconcentration potential and toxicity, focusing on survival, growth, condition, behaviour and reproduction endpoints. Additionally, we compare concentrations known to elicit significant effects in fish with current environmental concentrations, identifying exposure risk in ecosystems. The majority of studies have focused on antidepressants, mainly fluoxetine, and encompasses mostly freshwater species. Few studies determined pharmaceuticals bioconcentration, and even a smaller portion combined bioconcentration with other toxicity endpoints. Results show that lipophilicity isn't a good predictor of neuroactive pharmaceuticals' bioconcentration in fish, which in turn is highly influenced by experimental parameters, including abiotic conditions, species and life-stage. The need for increased standardization of experimental settings is key towards improving accuracy of environmental risk assessments and application in future regulatory schemes. Still, increased fish lethality was linked to increased bioconcentration, yet no other correlations were observed when considering effects on growth, condition, behaviour or reproduction, likely as a result of insufficient and variable data. In the context of current environmental concentrations, several neuroactive pharmaceuticals were found to be potentially threatening, while data on occurrence is lacking for some compounds, particularly in brackish/marine systems. Specifically, nine compounds (fluoxetine, citalopram, sertraline, amitriptyline, venlafaxine, clozapine, carbamazepine, metamfetamine and oxazepam) were found at concentrations either above or critically close to minimum response concentrations, thus likely to affect fish in freshwater and brackish or marine environments, which supports further exploration in risk management strategies and monitoring programs in aquatic environments.
Collapse
Affiliation(s)
- Irina A Duarte
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Jerker Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Vanessa F Fonseca
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
50
|
Salahinejad A, Attaran A, Meuthen D, Chivers DP, Niyogi S. Proximate causes and ultimate effects of common antidepressants, fluoxetine and venlafaxine, on fish behavior. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150846. [PMID: 34626640 DOI: 10.1016/j.scitotenv.2021.150846] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Antidepressant (AD) drugs are widely prescribed for the treatment of psychiatric disorders, including depression and anxiety disorders. The continuous use of ADs causes significant quantities of these bioactive chemicals to enter the aquatic ecosystems mainly through wastewater effluent discharge. This may result in many aquatic organisms being inadvertently affected by these drugs. Fluoxetine (FLX) and venlafaxine (VEN) are currently among the most widely detected ADs in aquatic systems. A growing body of experimental evidence demonstrates that FLX and VEN have a substantial capacity to induce neurotoxicity and cause behavioral dysfunctions in a wide range of teleost species. At the same time, these studies often report seemingly contradictory results that are confounding in nature. Hence, we clearly require comprehensive reviews that attempt to find overarching patterns and establish possible causes for these variable results. This review aims to explore the current state of knowledge regarding the neurobehavioral effects of FLX and VEN on fishes. This study also discusses the potential mechanistic linkage between the neurotoxicity of ADs and behavioral dysfunction and identifies key knowledge gaps and areas for future research.
Collapse
Affiliation(s)
- Arash Salahinejad
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada.
| | - Anoosha Attaran
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Denis Meuthen
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Evolutionary Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| |
Collapse
|