1
|
Zhang P, Wang J, Sweetman A, Ge L, Xing R, Ji H, Yan J, Xiao Q, Cui Y, Ma H, Xu S. An overview on the legacy and risks of Polychlorinated Biphenyls (PCBs) and Organochlorinated Pesticides (OCPs) in the polar regions. MARINE POLLUTION BULLETIN 2024; 209:117042. [PMID: 39393231 DOI: 10.1016/j.marpolbul.2024.117042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/07/2024] [Accepted: 09/22/2024] [Indexed: 10/13/2024]
Abstract
Polychlorinated Biphenyls (PCBs) and Organochlorinated Pesticides (OCPs) are 'trapped' in a variety of environmental media and can therefore undergo further processing by geochemical cycles. By reviewing a wide range of research studies, we present and discuss the main progresses that affect legacy contaminants, such as migration and transformation processes, biological effects assessment across all Arctic media. PCBs and OCPs demonstrated an overall decreasing concentration trend over time in the Arctic. Ecological risk assessment was undertaken by comparison with two standards, suggesting that there was no ecological risk in either soil or sediment. The concentrations of HCB, ΣHCHs, ΣDDTs, chlordane, mirex, and ΣPCBs increased with trophic levels (TLs), showing a significant linear correlation (P < 0.001). The calculated trophic magnification factors (TMFs) values ranged from 0.0004 to 26.63, among which DDTs had the highest value. Future research need to focus on the long-term fate of PCBs and OCPs.
Collapse
Affiliation(s)
- Peng Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jing Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Andrew Sweetman
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Linke Ge
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| | - Rongguang Xing
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Hao Ji
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jingfeng Yan
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Qian Xiao
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yaqing Cui
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Hongrui Ma
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Sisi Xu
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, China.
| |
Collapse
|
2
|
Collard F, Tulatz F, Harju M, Herzke D, Bourgeon S, Gabrielsen GW. Can plastic related chemicals be indicators of plastic ingestion in an Arctic seabird? CHEMOSPHERE 2024; 355:141721. [PMID: 38522675 DOI: 10.1016/j.chemosphere.2024.141721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
For decades, the northern fulmar (Fulmarus glacialis) has been found to ingest and accumulate high loads of plastic due to its feeding ecology and digestive tract morphology. Plastic ingestion can lead to both physical and toxicological effects as ingested plastics can be a pathway for hazardous chemicals into seabirds' tissues. Many of these contaminants are ubiquitous in the environment and the contribution of plastic ingestion to the uptake of those contaminants in seabirds' tissues is poorly known. In this study we aimed at quantifying several plastic-related chemicals (PRCs) -PBDE209, several dechloranes and several phthalate metabolites- and assessing their relationship with plastic burdens (both mass and number) to further investigate their potential use as proxies for plastic ingestion. Blood samples from fulmar fledglings and liver samples from both fledgling and non-fledgling fulmars were collected for PRC quantification. PBDE209 and dechloranes were quantified in 39 and 33 livers, respectively while phthalates were quantified in plasma. Plastic ingestion in these birds has been investigated previously and showed a higher prevalence in fledglings. PBDE209 was detected in 28.2 % of the liver samples. Dechlorane 602 was detected in all samples while Dechloranes 601 and 604 were not detected in any sample. Dechlorane 603 was detected in 11 individuals (33%). Phthalates were detected in one third of the analysed blood samples. Overall, no significant positive correlation was found between plastic burdens and PRC concentrations. However, a significant positive relationship between PBDE209 and plastic number was found in fledglings, although likely driven by one outlier. Our study shows the complexity of PRC exposure, the timeline of plastic ingestion and subsequent uptake of PRCs into the tissues in birds, the additional exposure of these chemicals via their prey, even in a species ingesting high loads of plastic.
Collapse
Affiliation(s)
- France Collard
- Norwegian Polar Institute (NPI), Fram Centre, N-9296, Tromsø, Norway; Norwegian Institute for Water Research (NIVA), Fram Centre, N-9296, Tromsø, Norway.
| | - Felix Tulatz
- Norwegian Polar Institute (NPI), Fram Centre, N-9296, Tromsø, Norway
| | - Mikael Harju
- The Climate and Environmental Research Institute (NILU), Fram Centre, N-9296, Tromsø, Norway
| | - Dorte Herzke
- The Climate and Environmental Research Institute (NILU), Fram Centre, N-9296, Tromsø, Norway
| | - Sophie Bourgeon
- Department of Arctic and Marine Biology, The Arctic University of Norway (UiT), N-9037, Tromsø, Norway
| | - Geir W Gabrielsen
- Norwegian Polar Institute (NPI), Fram Centre, N-9296, Tromsø, Norway
| |
Collapse
|
3
|
Boutet V, Dominique M, Eccles KM, Branigan M, Dyck M, van Coeverden de Groot P, Lougheed SC, Rutter A, Langlois VS. An exploratory spatial contaminant assessment for polar bear (Ursus maritimus) liver, fat, and muscle from northern Canada. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120663. [PMID: 36395907 PMCID: PMC10163957 DOI: 10.1016/j.envpol.2022.120663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 05/08/2023]
Abstract
Since the industrial era, chemicals have been ubiquitous in worldwide ecosystems. Despite the discontinued release of highly toxic persistent organic pollutants (POPs) in the environment, the levels of some POPs are still being measured in the Canadian Arctic. These contaminants are of great concern due to their persistence, toxicity, and levels of bioaccumulation in food chains. Animals occupying top trophic positions in the Canadian Arctic, particularly polar bears, are exposed to these contaminants mainly through their diet. Our study investigated the levels of 30 metals (including total and methyl mercury) alkaline and alkaline earth metals, 15 polycyclic aromatic compounds and their alkyl congeners (PACs), 6 chlordanes (CHLs), and 20 polychlorinated biphenyls (PCBs), in 49 polar bears from the Canadian Arctic. Contaminant burden was measured in liver, muscle, and fat in bears of different sex, age, and locations. A principal component analysis did not distinguish differences between age and sex profiles for most contaminants. However, the concentrations measured and their distribution in the tissues confirm findings observed in past studies. This study highlights the importance of continual monitoring of polar bear health (e.g., newly detected PACs were measured within this study) and evaluating those impacts for the next generations of polar bears.
Collapse
Affiliation(s)
- V Boutet
- Institut national de la recherche scientifique (INRS), Québec, Canada
| | - M Dominique
- Institut national de la recherche scientifique (INRS), Québec, Canada
| | - K M Eccles
- National Institute of Environmental Health Science, Division of the National Toxicology Program, Durham, USA
| | - M Branigan
- Government of the Northwest Territories, Canada
| | - M Dyck
- Government of Nunavut, Department of Environment, Igloolik, NU, Canada
| | | | - S C Lougheed
- Biology Department, Queen's University, Kingston, ON, Canada
| | - A Rutter
- School of Environmental Studies, Queen's University, Kingston, ON, Canada
| | - V S Langlois
- Institut national de la recherche scientifique (INRS), Québec, Canada.
| |
Collapse
|
4
|
McGovern M, Borgå K, Heimstad E, Ruus A, Christensen G, Evenset A. Small Arctic rivers transport legacy contaminants from thawing catchments to coastal areas in Kongsfjorden, Svalbard. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119191. [PMID: 35364186 DOI: 10.1016/j.envpol.2022.119191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Decades of atmospheric and oceanic long-range transport from lower latitudes have resulted in deposition and storage of persistent organic pollutants (POPs) in Arctic regions. With increased temperatures, melting glaciers and thawing permafrost may serve as a secondary source of these stored POPs to freshwater and marine ecosystems. Here, we present concentrations and composition of legacy POPs in glacier- and permafrost-influenced rivers and coastal waters in the high Arctic Svalbard fjord Kongsfjorden. Targeted contaminants include polychlorinated biphenyls (PCBs), hexachlorobenzene (HCB), dichlorodiphenyltrichloroethanes (DDTs), hexachlorocyclohexanes (HCHs) and chlordane pesticides. Dissolved (defined as fraction filtered through 0.7 μm GF/F filter) and particulate samples were collected from rivers and near-shore fjord stations along a gradient from the heavily glaciated inner fjord to the tundra-dominated catchments at the outer fjord. There were no differences in contaminant concentration or pattern between glacier and tundra-dominated catchments, and the general contaminant pattern reflected snow melt with some evidence of pesticides released with glacial meltwater. Rivers were a small source of chlordane pesticides, DDTs and particulate HCB to the marine system and the particle-rich glacial meltwater contained higher concentrations of particle associated contaminants compared to the fjord. This study provides rare insight into the role of small Arctic rivers in transporting legacy contaminants from thawing catchments to coastal areas. Results indicate that the spring thaw is a source of contaminants to Kongsfjorden, and that expected increases in runoff on Svalbard and elsewhere in the Arctic could have implications for the contamination of Arctic coastal food-webs.
Collapse
Affiliation(s)
- Maeve McGovern
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579, Oslo, Norway; Department of Arctic Marine Biology, UiT, The Arctic University of Norway, 9027, Tromsø, Norway.
| | - Katrine Borgå
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Eldbjørg Heimstad
- NILU-Norwegian Institute for Air Research, Fram-High North Research Centre for Climate and the Environment, 9296, Tromsø, Norway
| | - Anders Ruus
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579, Oslo, Norway; Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Guttorm Christensen
- Akvaplan-niva, Fram-High North Research Centre for Climate and the Environment, 9296, Tromsø, Norway
| | - Anita Evenset
- Department of Arctic Marine Biology, UiT, The Arctic University of Norway, 9027, Tromsø, Norway; Akvaplan-niva, Fram-High North Research Centre for Climate and the Environment, 9296, Tromsø, Norway.
| |
Collapse
|
5
|
Kannan VM, Gopikrishna VG, Saritha VK, Krishnan KP, Mohan M. PCDD/Fs, dioxin-like, and non-dioxin like PCBs in the sediments of high Arctic fjords, Svalbard. MARINE POLLUTION BULLETIN 2022; 174:113277. [PMID: 34995883 DOI: 10.1016/j.marpolbul.2021.113277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) are highly toxic organic compounds, and very few studies on their presence in polar environments have been conducted. This study assessed the concentration and distribution of PCDD/Fs, dioxin-like polychlorinated biphenyls (DL-PCBs), and non-dioxin-like polychlorinated biphenyls in selected fjords of the Svalbard archipelago in Norway. The ∑PCDD/Fs observed for Raudfjorden, Smeerenburgfjorden, Magdalenefjorden, and Kongsfjorden were 22.80 pg/g, 25.65 pg/g, 18.27 pg/g, 33.50 pg/g, and 21.69 pg/g, respectively. The WHO's toxic equivalents values of both ∑PCDD/Fs and ∑DL-PCBs were comparatively higher than those reported in other polar regions. Of the four fjords studied, the sediments from Kongsfjorden exhibited the presence of the most toxic materials, including PCB-126 and PCB-169, of DL-PCBs. More than 80% of the total analysed PCDD/Fs were comprised of highly chlorinated congeners (hexa-to-octa forms). More studies are required to understand the destination and transport of these hazardous pollutants in high Arctic sediments.
Collapse
Affiliation(s)
- V M Kannan
- School of Environmental Sciences, Mahatma Gandhi University, Kerala 686560, India
| | - V G Gopikrishna
- School of Environmental Sciences, Mahatma Gandhi University, Kerala 686560, India
| | - V K Saritha
- School of Environmental Sciences, Mahatma Gandhi University, Kerala 686560, India
| | - K P Krishnan
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Goa 403802, India
| | - Mahesh Mohan
- School of Environmental Sciences, Mahatma Gandhi University, Kerala 686560, India; International Centre for Polar Studies, Mahatma Gandhi University, Kerala 686560, India.
| |
Collapse
|
6
|
Li Y, Li C, Li B, Ma Z. Trifluralin residues in soils from main cotton fields of China and associated ecological risk. CHEMOSPHERE 2021; 284:131300. [PMID: 34225126 DOI: 10.1016/j.chemosphere.2021.131300] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Trifluralin is a widely used dinitroaniline herbicide in cotton fields of China but is highly persistent in the environment and can act as a biotoxin and cause genotoxicity to terrestrial organisms, including humans. In this study, the concentrations and distribution of trifluralin residues in 139 soil samples from the major cotton-producing areas of China were investigated. The trifluralin concentrations ranged from ND (not detected) to 66.39 μg/kg dry weight (dw), with a geometric mean of 4.13 μg/kg dw. The detection frequency of trifluralin in Hebei (75%) was higher than that in Xinjiang (66%) and Shandong (40%), but the mean trifluralin concentration was highest in Xinjiang (5.98 μg/kg dw), followed by Hebei (5.06 μg/kg dw) and Shandong (3.19 μg/kg dw). No trifluralin residues were detected in cotton soil in Anhui, Jiangxi and Hunan. The residual amount of trifluralin in soil was significantly correlated with the soil organic matter content. The risk quotient method was used to evaluate the ecological risks associated with trifluralin. Results indicated that trifluralin in all the samples had a low risk to earthworms, but trifluralin in same cotton soils showed high risks to wheat, barley and lucerne. Overall, our work is helpful to understand the residual situation of trifluralin in Chinese cotton soil, to assess the environmental risk of trifluralin, and to control the use and safety of trifluralin in cotton field cultivation.
Collapse
Affiliation(s)
- Yang Li
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture PR China, Beijing, 100097, China
| | - Cheng Li
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture PR China, Beijing, 100097, China
| | - Bingru Li
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture PR China, Beijing, 100097, China
| | - Zhihong Ma
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture PR China, Beijing, 100097, China.
| |
Collapse
|
7
|
Prenatal exposure to persistent organic pollutants and metals and problematic child behavior at 3-5 years of age: a Greenlandic cohort study. Sci Rep 2021; 11:22182. [PMID: 34772976 PMCID: PMC8589846 DOI: 10.1038/s41598-021-01580-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022] Open
Abstract
High levels of persistent organic pollutants (POPs) and heavy metals are found in Arctic populations. POP and heavy metals are linked to impaired cognitive development. This study examined associations between prenatal POP and metals exposure and problematic child behavior using the Strength and Difficulties Questionnaire (SDQ). POPs and metals were measured in 102 pregnant Greenlandic women. During follow-up at 3–5 years, parents answered an assisted questionnaire including children’s SDQ scores. Associations were analyzed using linear and logistic regression analyses and adjusted for maternal plasma cotinine, educational level and age at delivery. In the adjusted analyses, the medium tertile of hexachlorobenzene (β = 3.06, p = 0.010), β-hexachlorocyclohexane (β = 3.58, p = 0.004) and trans-nonachlor (β = 2.06, p = 0.082) were positively associated with SDQ scores. The continuous cis-nonachlor (OR = 1.09, p = 0.079), dichloro-diphenyl-dichloroethylene (OR = 1.01, p = 0.077), trans-nonachlor (OR = 1.01, p = 0.091), and sum Organochlorine-Pesticides (OR = 1.00, p = 0.094) were positively associated with abnormal SDQ score and the continuous mirex (OR = 1.28, p = 0.096), oxychlordane (OR = 1.04, p = 0.066), and trans-nonachlor (OR = 1.02, p = 0.071) with abnormal hyperactivity score. We found no consistent evidence of associations between polychlorinated biphenyls, perfluoroalkylated substances and heavy metals and problematic behavior. Prenatal organochlorine pesticide exposure associated significantly with problematic behavior in 3–5 year old children.
Collapse
|
8
|
Liu L, Zhen X, Wang X, Zhang D, Sun L, Tang J. Spatio-temporal variations and input patterns on the legacy and novel brominated flame retardants (BFRs) in coastal rivers of North China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117093. [PMID: 33857880 DOI: 10.1016/j.envpol.2021.117093] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Decabromodiphenyl ether (BDE209) has been subject to restrictions since 2018 in developed countries but is still manufacturing in China. Decabromodiphenyl ethane (DBDPE) is widely used as a replacement for BDE209. To better understand the behaviors and fates of these legacy and novel brominated flame retardants (BFRs), water samples were collected from the estuaries of 36 rivers that drain into the Bohai Sea (BS) and North Yellow Sea (NYS) in 2017 and 2018. The results showed that BDE209 was still the predominant compound with a median concentration of 2470 pg L-1, whereas DBDPE had a median concentration of 129 pg L-1. Spatially, relatively high concentrations were observed in the rivers near Laizhou Bay (LB), which is the manufacturing hub of BFRs. BDE209 concentrations were significantly higher in dry season than in wet season, which indicates a dominant process of dilution by precipitation during the wet season. DBDPE concentration showed no significant seasonal difference. This implies that wet deposition was the major additional source of DBDPE during the wet season, and the concentration increased further during the autumn as a result of a time-lag effect. The BFR concentrations in urban rivers were lower than those reported by a study undertaken in August 2013. An increase in the BFR concentrations in rural rivers since 2013 suggested increases in the use and non-point source emissions of BFRs in some remote aquatic environments. The estimated annual inputs of BDE209 and DBDPE into the BS were ∼95.9 kg yr-1 and ∼26.8 kg yr-1, respectively, whereas those into the NYS were ∼24.1 kg yr-1 and ∼8.38 kg yr-1. The results revealed an ecological risk of BDE209 in winter especially in the Xiaoqing River, thus suggesting the impact of BDE209 on the aquatic environment and human health.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou, 510640, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), CAS, Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaomei Zhen
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou, 510640, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), CAS, Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou, 510640, China
| | - Daochang Zhang
- Yantai Municipal Bureau of Hydrology, Yantai, 264000, China
| | - Linting Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), CAS, Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianhui Tang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), CAS, Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
9
|
Johansen S, Poste A, Allan I, Evenset A, Carlsson P. Terrestrial inputs govern spatial distribution of polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) in an Arctic fjord system (Isfjorden, Svalbard). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 281:116963. [PMID: 33823300 DOI: 10.1016/j.envpol.2021.116963] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Considerable amounts of previously deposited persistent organic pollutants (POPs) are stored in the Arctic cryosphere. Transport of freshwater and terrestrial material to the Arctic Ocean is increasing due to ongoing climate change and the impact this has on POPs in marine receiving systems is unknown This study has investigated how secondary sources of POPs from land influence the occurrence and fate of POPs in an Arctic coastal marine system. Passive sampling of water and sampling of riverine suspended particulate matter (SPM) and marine sediments for analysis of polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) was carried out in rivers and their receiving fjords in Isfjorden system in Svalbard. Riverine SPM had low contaminant concentrations (<level of detection-28 pg/g dw ΣPCB14, 16-100 pg/g dw HCB) compared to outer marine sediments 630-880 pg/g dw ΣPCB14, 530-770 pg/g dw HCB). There was a strong spatial gradient in sediment PCB and HCB concentrations with lowest concentrations in river estuaries and in front of marine-terminating glaciers and increasing concentrations toward the outer fjord. This suggests that rather than leading to increased concentrations, inputs of SPM from land lead to a dilution of contaminant concentrations in nearshore sediments. Preliminary estimates of SPM:water activity ratios suggest that terrestrial particles (with low contaminant concentrations) may have the potential to act as sorbents of dissolved contaminants in the coastal water column, with implications for bioavailability of POPs to the marine food web. There is concern that ongoing increases in fluxes of freshwater, sediments and associated terrestrial material (including contaminants) from land to the Arctic Ocean will lead to increased mobilization and transport of POPs to coastal ecosystems. However, the results of this study indicate that on Svalbard, inputs from land may in fact have the opposite effect, leading to reduced concentrations in coastal sediments and waters.
Collapse
Affiliation(s)
- Sverre Johansen
- Norwegian Institute for Water Research, Tromsø, Norway; Norwegian University of Life Sciences, Ås, Norway; Norwegian Institute for Water Research, Oslo, Norway
| | - Amanda Poste
- Norwegian Institute for Water Research, Tromsø, Norway
| | - Ian Allan
- Norwegian Institute for Water Research, Oslo, Norway
| | - Anita Evenset
- Akvaplan-niva, Tromsø, Norway; UiT, The Arctic University of Norway, Tromsø, Norway
| | | |
Collapse
|
10
|
Yan J, Wang D, Meng Z, Yan S, Teng M, Jia M, Li R, Tian S, Weiss C, Zhou Z, Zhu W. Effects of incremental endosulfan sulfate exposure and high fat diet on lipid metabolism, glucose homeostasis and gut microbiota in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115697. [PMID: 33070067 DOI: 10.1016/j.envpol.2020.115697] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/29/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
The influence of pollutants on metabolic diseases such as type 2 diabetes mellitus is an emerging field in environmental medicine. Here, we explored the effects of a low-dose endosulfan sulfate (ES), a major metabolite of the pesticide endosulfan and a bio-persistent contaminant detected in environmental and human samples, on the progress of obesity and metabolic disorders. Pregnant CD-1 mice were given ES from gestational day 6 to postnatal day 21 (short-term). After weaning, male pups of exposed dams were provided with a low-fat or a high-fat diet (LFD or HFD) and assessed after an additional 12 weeks. At the same time, one group of male pups continuously received ES (long-term). Treatment with low-dose ES, short or long-term, alleviated the development of obesity and accumulation of hepatic triglycerides induced by HFD. Analysis of gene expression, metabolic profile and gut microbiome indicates that ES treatment inhibits adipogenesis induced by HFD due to enhanced lipid catabolism, fatty acid oxidation and disturbance of gut microbiota composition. However, impaired glucose and insulin homeostasis were still conserved in HFD-fed mice exposed to ES. Furthermore, ES treatment impaired glucose tolerance, affected hepatic gene expression, fatty acids composition and serum metabolic profile, as well as disturbed gut microbiota in LFD-fed mice. In conclusion, ES treatment at levels close to the accepted daily intake during fetal development directly impact glucose homeostasis, hepatic lipid metabolism, and gut microbiome dependent on the type of diet consumed. These findings provide a better understanding of the complex interactions of environmental pollutants and diet at early life stages also in the context of metabolic disease.
Collapse
Affiliation(s)
- Jin Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Dezhen Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Zhiyuan Meng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Sen Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Miaomiao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Ming Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Ruisheng Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Sinuo Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Carsten Weiss
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Campus North, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Wentao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
11
|
Zafar MI, Kali S, Ali M, Riaz MA, Naz T, Iqbal MM, Masood N, Munawar K, Jan B, Ahmed S, Waseem A, Niazi MBK. Dechlorane Plus as an emerging environmental pollutant in Asia: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42369-42389. [PMID: 32864714 DOI: 10.1007/s11356-020-10609-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
Dechlorane Plus (DP) is an unregulated, highly chlorinated flame retardant. It has been manufactured from past 40 years but its presence in the environment was initially reported in 2006. Later, it has been found in various biotic and abiotic environmental matrices. However, little attention has been paid to monitor its presence in Asia. Many studies have reported the occurrence of DP in the environment of Asia, yet the data are scarce, and studies are limited to few regions. The objective of present review is to summarize the occurrence, distribution, and toxicity of this ubiquitous pollutant in various environmental matrices (biotic and abiotic). DP has also been reported in the areas with no emission sources, which proves its long-range transport. Moreover, urbanization and industrialization also affect the distribution of DP, i.e., high levels of DP have been found in urban areas relative to the rural. Tidal movement also incorporates in transport of DP across the aquatic system. Further, bioaccumulation trend of DP in various tissues is kidney > liver > muscle tissues, whereas, blood brain barrier resists its accumulation in brain tissues. Additionally, gender-based accumulation trends revealed high DP levels in females in comparison to males due to strong metabolism of males. Furthermore, methodological aspects and instrumental analysis used in previous studies have also been summarized here. However, data on biomagnification in aquatic ecosystem and bioaccumulation of DP in terrestrial food web are still scarce. Toxicity behavior of syn-DP and anti-DP is still unknown which might gain the interest for future studies.
Collapse
Affiliation(s)
- Mazhar Iqbal Zafar
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Sundas Kali
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Mehtabidah Ali
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Asam Riaz
- Department of Entomology, University of Georgia, Athens, GA, 30602-2603, USA
- Department of Entomology, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Tayyaba Naz
- Environmental Science Research Group, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
- Environmental Stress Physiology Laboratory, Institute of Soil and Environmental, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Mazhar Iqbal
- Laboratory of Analytical Chemistry and Applied Eco-chemistry, Department of Applied Analytical and Physical Chemistry, Ghent University, Ghent, Belgium
- Soil and Water Testing Laboratory, Department of Agriculture, Government of Punjab, Chiniot, Pakistan
| | - Noshin Masood
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Kashif Munawar
- Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Bilal Jan
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Sohail Ahmed
- Department of Agricultural Entomology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Amir Waseem
- Department of Chemistry, Faculty of Natural Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | |
Collapse
|
12
|
Li R, Gao H, Ji Z, Jin S, Ge L, Zong H, Jiao L, Zhang Z, Na G. Distribution and sources of polycyclic aromatic hydrocarbons in the water column of Kongsfjorden, Arctic. J Environ Sci (China) 2020; 97:186-193. [PMID: 32933734 DOI: 10.1016/j.jes.2020.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 03/08/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Kongsfjorden is known for its characteristic multi-layer water mass formed by the convergence of freshwaters from nearby glaciers and rivers and saline water from the Atlantic and Arctic. The distribution of polycyclic aromatic hydrocarbons (PAHs) in the water column of Kongsfjorden was investigated and their potential sources were analyzed. The total concentrations of 16 PAHs in the surface seawater and river water were in the range of 33.4-79.8 ng/L (mean 48.5 ng/L) and 2.3-201.4 ng/L (mean 126.1 ng/L), respectively. Horizontally, PAHs were mainly concentrated around river estuaries and the glacier front in the dissolved phase. Vertically, the PAHs in the particulate phase followed surface-enrichment and depth-depletion patterns in most stations, with the maximum concentration found at 50 m depth in the central area of Kongsfjorden. The compositions of PAHs in seawater and rivers were similar, with two-ring and tricyclic PAHs comprising the majority of the dissolved and particulate phases. PAHs found in Kongsfjorden waters appeared to be derived from multiple sources such as petroleum and coal combustion. PAHs in the bay mouth of Kongsfjorden were mainly introduced by the West Spitsbergen Current and the Arctic waters, while in the inner bay, atmospheric deposition and local sources were the major contributors. The distribution of PAHs was mainly attributed to the suspended particulate distribution.
Collapse
Affiliation(s)
- Ruijing Li
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Hui Gao
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Zhongqiang Ji
- Key Laboratory of Marine Ecosystems and Biogeochemistry, Second Institute of Oceanography, Ministry of Nature Resources, Hangzhou 310012, China
| | - Shuaichen Jin
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Linke Ge
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Humin Zong
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Liping Jiao
- Key Laboratory of Ocean-Atmospheric Chemistry and Global Change, Third Institute of Oceanography, Ministry of Nature Resources, Xiamen 361005, China
| | - Zhifeng Zhang
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Guangshui Na
- National Marine Environmental Monitoring Center, Dalian 116023, China; Hainan Tropical Ocean University, Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Ministry of Education, China.
| |
Collapse
|
13
|
Qiu YW, Wang DX, Zhang G. Assessment of persistent organic pollutants (POPs) in sediments of the Eastern Indian Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136335. [PMID: 31926415 DOI: 10.1016/j.scitotenv.2019.136335] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 05/24/2023]
Abstract
The concentrations of persistent organic pollutants (POPs) in sediments from the Eastern Indian Ocean were analyzed by GC-MS/MS to explore the status of contamination, distribution and their potential sources and risk. The average (±SD) concentrations of total polycyclic aromatic hydrocarbons (∑16PAHs), polybrominated diphenyl ethers (∑10PBDEs), dechlorane plus (∑2DP), organochlorine pesticides (∑22OCPs) and polychlorinated biphenyls (∑31PCBs) in sediments were 79,900 ± 31,400, 173 ± 62, 42 ± 24, 1051 ± 305 and 147 ± 24 pg g-1 dw (or 11,200 ± 7200, 28 ± 26, 6 ± 6, 168 ± 121 and 24 ± 17 ng g-1 organic carbon), respectively. The concentrations of POPs in sediments were generally at low to median levels compared to those recorded in other ocean sediments. Composition analyses suggest that PAHs originate from both petrogenic and pyrogenic sources, while dichlorodiphenyltrichloroethane (DDT) mainly comes from technical-DDT, hexachlorocyclohexane (HCH) from lindane, and chlordane from fresh inputs. The risk assessments show that the targeted chemicals except for chlordane and naphthalene in sediments do not pose potential biological effects to the organisms in the Eastern Indian Ocean. The present study contributes to the very rare data on PAHs, PBDEs, DP, OCPs and PCBs in the vast deep-ocean and will deepen our knowledge of the fate of POPs in ocean environments.
Collapse
Affiliation(s)
- Yao-Wen Qiu
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China; Guangdong Key Laboratory of Ocean Remote Sensing, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Dong-Xiao Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
14
|
Asaoka S, Umehara A, Haga Y, Matsumura C, Yoshiki R, Takeda K. Persistent organic pollutants are still present in surface marine sediments from the Seto Inland Sea, Japan. MARINE POLLUTION BULLETIN 2019; 149:110543. [PMID: 31543483 DOI: 10.1016/j.marpolbul.2019.110543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Although persistent organic pollutants (POPs) are currently banned or strictly controlled under the Stockholm Convention on Persistent Organic Pollutants, POPs are still distributed worldwide due to their environmental persistence, atmospheric transport, and bioaccumulation. Herein we investigated the current concentrations of POPs in the sediments from Seto Inland Sea, Japan and sought to clarify the factors currently controlling the POPs concentration of the surface sediments from Seto Inland Sea. The concentrations of hexachlorocyclohexane isomers (HCHs), dichlorodiphenyltrichloroethane and its metabolites (DDTs), and chlordane isomers (CHLs) in sediments from Seto Inland Sea were <0.002-1.20 ng g-1, 0.01-2.51 ng g-1, and 0.01-0.48 ng g-1, respectively. Resuspension increased the concentrations of HCHs, HCB, and DDTs in the surface sediment with the release of historically contaminated pollutants accumulated in a lower layer. We speculate that CHLs in air that were removed by atmospheric deposition affects the concentration of CHLs in surface sediments.
Collapse
Affiliation(s)
- Satoshi Asaoka
- Research Center for Inland Seas, Kobe University, 5-1-1 Fukae-minami, Higashinada, Kobe 658-0022, Japan.
| | - Akira Umehara
- Environmental Research and Management Center, Hiroshima University, 1-5-3, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8513, Japan
| | - Yuki Haga
- Hyogo Prefectural Institute of Environmental Sciences, 3-1-18 Yukuhira, Suma, Kobe 654-0037, Japan
| | - Chisato Matsumura
- Hyogo Prefectural Institute of Environmental Sciences, 3-1-18 Yukuhira, Suma, Kobe 654-0037, Japan
| | - Ryosuke Yoshiki
- Hyogo Prefectural Institute of Environmental Sciences, 3-1-18 Yukuhira, Suma, Kobe 654-0037, Japan
| | - Kazuhiko Takeda
- Graduate School of Integrated Science of Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521, Japan
| |
Collapse
|
15
|
Bank-Nielsen PI, Long M, Bonefeld-Jørgensen EC. Pregnant Inuit Women's Exposure to Metals and Association with Fetal Growth Outcomes: ACCEPT 2010⁻2015. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1171. [PMID: 30939809 PMCID: PMC6479494 DOI: 10.3390/ijerph16071171] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/23/2022]
Abstract
Environmental contaminants such as heavy metals are transported to the Arctic regions via atmospheric and ocean currents and enter the Arctic food web. Exposure is an important risk factor for health and can lead to increased risk of a variety of diseases. This study investigated the association between pregnant women's levels of heavy and essential metals and the birth outcomes of the newborn child. This cross-sectional study is part of the ACCEPT birth cohort (Adaption to Climate Change, Environmental Pollution, and dietary Transition) and included 509 pregnant Inuit women ≥18 years of age. Data were collected in five Greenlandic regions during 2010⁻2015. Population characteristics and birth outcomes were obtained from medical records and midwives, respectively, and blood samples were analyzed for 13 metals. Statistical analysis included one-way ANOVA, Spearman's rho, and multiple linear and logistic regression analyses. The proportion of current smokers was 35.8%. The levels of cadmium, chromium, and nickel were higher compared to reported normal ranges. Significant regional differences were observed for several metals, smoking, and parity. Cadmium and copper were significantly inversely related to birth outcomes. Heavy metals in maternal blood can adversely influence fetal development and growth in a dose⁻response relationship. Diet and lifestyle factors are important sources of toxic heavy metals and deviant levels of essential metals. The high frequency of smokers in early pregnancy is of concern, and prenatal exposure to heavy metals and other environmental contaminants in the Greenlandic Inuit needs further research.
Collapse
Affiliation(s)
- Per I. Bank-Nielsen
- Centre for Arctic Health and Molecular Epidemiology, Department of Public Health, Aarhus University, 8000 Aarhus C, Denmark; (P.I.B.-N.); (M.L.)
| | - Manhai Long
- Centre for Arctic Health and Molecular Epidemiology, Department of Public Health, Aarhus University, 8000 Aarhus C, Denmark; (P.I.B.-N.); (M.L.)
| | - Eva C. Bonefeld-Jørgensen
- Centre for Arctic Health and Molecular Epidemiology, Department of Public Health, Aarhus University, 8000 Aarhus C, Denmark; (P.I.B.-N.); (M.L.)
- Greenland Center for Health Research, University of Greenland, 3900 Nuuk, Greenland
| |
Collapse
|
16
|
Carlsson P, Vrana B, Sobotka J, Borgå K, Bohlin Nizzetto P, Varpe Ø. New brominated flame retardants and dechlorane plus in the Arctic: Local sources and bioaccumulation potential in marine benthos. CHEMOSPHERE 2018; 211:1193-1202. [PMID: 30223335 DOI: 10.1016/j.chemosphere.2018.07.158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 05/13/2023]
Abstract
The aim of the present study was to investigate the presence and bioaccumulation of new flame retardants (nBFRs), polybrominated diphenyl ethers (PBDEs) and dechlorane plus (DDC-CO) in the marine environment close to an Arctic community. Passive sampling of air and water and grab sampling of sediment and amphipods was used to obtain samples to study long-range transport versus local contributions for regulated and emerging flame retardants in Longyearbyen, Svalbard. BDE-47 and -99, α- and β-tetrabromoethylcyclohexane (DBE-DBCH), syn- and anti-dechlorane plus (DDC-CO) were detected in all investigated matrices and the DDC-COss at higher concentrations in the air than reported from other remote Arctic areas. Water concentrations of ΣDDC-COSs were low (3 pg/L) and comparable to recent Arctic studies. ΣnBFR was 37 pg/L in the water samples while ΣPBDE was 3 pg/L. In biota, ΣDDC-COSs dominated (218 pg/g ww) followed by ΣnBFR (95 pg/g ww) and ΣPBDEs (45 pg/g ww). When compared with other areas and their relative distribution patterns, contributions from local sources of the analysed compounds cannot be ruled out. This should be taken into account when assessing long-range transport of nBFRs and DDC-COs to the Arctic. High concentrations of PBDEs in the sediment indicate that they might originate from a small, local source, while the results for some of the more volatile compounds such as hexabromobenzene (HBBz) suggest long-range transport to be more important than local sources. We recommend that local sources of flame retardants in remote areas receive more attention in the future.
Collapse
Affiliation(s)
- Pernilla Carlsson
- Norwegian Institute for Water Research (NIVA), Tromsø Office, Fram-Centre, P.O. Box 6606 Langnes, 9296, Tromsø, Norway; Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Pavilion A29, 625 00, Brno, Czech Republic.
| | - Branislav Vrana
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Pavilion A29, 625 00, Brno, Czech Republic
| | - Jaromír Sobotka
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Pavilion A29, 625 00, Brno, Czech Republic
| | - Katrine Borgå
- University of Oslo, Section for Aquatic Biology and Toxicology, P.O. Box 1066, 0316, Oslo, Norway
| | | | - Øystein Varpe
- Akvaplan-niva, Fram-Centre, P.O. Box 6606 Langnes, 9296, Tromsø, Norway; University Centre in Svalbard (UNIS), Department of Arctic Biology, P.O. Box 156, 9171, Longyearbyen, Svalbard, Norway
| |
Collapse
|
17
|
Yan J, Wang D, Miao J, Liu C, Wang Y, Teng M, Zhou Z, Zhu W. Discrepant effects of α-endosulfan, β-endosulfan, and endosulfan sulfate on oxidative stress and energy metabolism in the livers and kidneys of mice. CHEMOSPHERE 2018; 205:223-233. [PMID: 29702342 DOI: 10.1016/j.chemosphere.2018.04.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 04/08/2018] [Accepted: 04/17/2018] [Indexed: 06/08/2023]
Abstract
Endosulfan, an organochloride pesticide, has been used for many commercial purposes. Endosulfan is composed of two isomers, α-endosulfan and β-endosulfan. In biological and soil systems, endosulfan is metabolized into endosulfan sulfate. In this study, the different toxicological effects of α-endosulfan, β-endosulfan, and endosulfan sulfate on the livers and kidneys of mice were comprehensively investigated. The results demonstrated that both endosulfan isomers and endosulfan sulfate disturbed the hepatic and renal antioxidant systems. Furthermore, 1H NMR metabolomics analysis revealed that endogenous metabolites involved in oxidative stress and energy metabolism were altered after exposure to these compounds. In the liver, the changes in hepatic endogenous metabolites and the induction of hepatic CYP450 mRNA isoforms were similar among mice treated with the three compounds, and the sulfate metabolite was the exclusive exogenous compound detected. Therefore, the metabolism of α- and β-endosulfan to endosulfan sulfate is likely the main cause of toxicological effects in the livers of mice. However, in kidneys, the changes in the metabolome and in CYP450 mRNA expression induced by α-endosulfan and β-endosulfan were stereoselective. Additionally, endosulfan sulfate, which induced a significant increase of renal Cyp3a11, showed a more robust disturbance of renal metabolites than either of the two isomers. These findings revealed that more attention should be given to the toxicological evaluation of endosulfan sulfate in the future.
Collapse
Affiliation(s)
- Jin Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Dezhen Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Jiyan Miao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Chang Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Yao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Miaomiao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
18
|
Aamir M, Khan S, Niu L, Zhu S, Khan A. Occurrence, enantiomeric signature and ecotoxicological risk assessment of HCH isomers and DDT metabolites in the sediments of Kabul River, Pakistan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2017; 39:779-790. [PMID: 27356508 DOI: 10.1007/s10653-016-9847-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 06/23/2016] [Indexed: 06/06/2023]
Abstract
Hexachlorocyclohexane (HCH) isomers and dichlorodiphenyltrichloroethane (DDT) metabolites were analyzed in sediments of three different depths (0-10, 10-20 and 20-30 cm) collected from Kabul River, Pakistan, in February 2014. The occurrence levels, enantiomer fractions and potential ecological risk of these organochlorine pesticides (OCPs) were evaluated. The total concentrations of ∑HCHs and ∑DDTs in surface sediments ranged from 4.9-23.9 ng g-1 and from 6.4-18.8 ng g-1 (dry weight basis), respectively. The vertical contamination profile of DDTs was found in order of 20-30 cm >10-20 cm >0-10 cm, indicated that the residue levels of DDTs gradually decreased after it was banned. The ratios of β-HCH/HCHs ranged from 0.04 to 0.73 (69 % of samples below 0.5) suggesting the fresh input of HCHs, while isomeric ratios of α-HCH/γ-HCH (ranged from 0.02 to 7.94), with 76 % of samples less than 3, indicating the cocktail use of technical grade HCH and lindane in the study area. The ratio of (DDE + DDD)/DDTs (ranged from 0.42 to 0.90) indicated long-term biodegradation of parent DDT. The enantiomer of α-HCH was generally racemic or close to racemic for most of the samples, with enantiomeric fraction (EF) value <0.5 for some of the samples indicated the preferential biodegradation of (+)-α-HCH enantiomer, while for o,p'-DDT the EF values >0.5 indicated the depletion of (-)-o,p'-DDT enantiomer in most of the samples. According to sediment quality guidelines (SQGs), HCH contamination is the main concern for ecotoxicological risk in Kabul River.
Collapse
Affiliation(s)
- Muhammad Aamir
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
- IJRC-PTS, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sardar Khan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Lili Niu
- IJRC-PTS, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Siyu Zhu
- IJRC-PTS, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Anwarzeb Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| |
Collapse
|
19
|
Li Q, Yang K, Li K, Liu X, Chen D, Li J, Zhang G. New halogenated flame retardants in the atmosphere of nine urban areas in China: Pollution characteristics, source analysis and variation trends. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:679-688. [PMID: 28258858 DOI: 10.1016/j.envpol.2017.02.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 02/12/2017] [Accepted: 02/22/2017] [Indexed: 06/06/2023]
Abstract
Since the ban of polybrominated diphenyl ethers (PBDEs) excluding deca-BDE in China, new halogenated flame retardants (NHFRs), such as new brominated flame retardants and Dechlorane Plus, have become widely used. In this study, we assessed the atmospheric gaseous and particulate levels of eight NHFRs in nine urban areas in China. We detected high mean atmospheric (vapour plus particle phases) concentrations of tetrabromophthalate (TBPH) (74.8 pg m-3) and decabromodiphenyl ethane (DBDPE) (68.8 pg m-3), two major NHFRs. Most of the gaseous and particulate NHFR concentrations presented seasonal variations (from summer to autumn), possibly driven by temperature. Spatially, concentrations and patterns of the NHFRs differed among the nine cities. Significantly higher concentrations were detected in cities with higher gross domestic products. The composition, especially the DBDPE/TBPH ratio (S), were clearly different among the cities, which pattern in each city are likely driven by variations in the type of industries operating in each city. Based on the temporal analysis of other researches and our data, PBDE levels have decreased markedly, while NHFRs levels have increased. Since high NHFR levels had detrimental effects on public health, NHFRs research warrants more attention.
Collapse
Affiliation(s)
- Qilu Li
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Kong Yang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Kechang Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xin Liu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Duohong Chen
- Guangdong Environmental Monitoring Center, Guangzhou 510308, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
20
|
Jin M, Fu J, Xue B, Zhou S, Zhang L, Li A. Distribution and enantiomeric profiles of organochlorine pesticides in surface sediments from the Bering Sea, Chukchi Sea and adjacent Arctic areas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 222:109-117. [PMID: 28069371 DOI: 10.1016/j.envpol.2016.12.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/27/2016] [Indexed: 06/06/2023]
Abstract
The spatial distribution, compositional profiles, and enantiomer fractions (EFs) of organochlorine pesticides (OCPs), including hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs), and chlordanes (CHLs), in the surface sediments in the Bering Sea, Chukchi Sea and adjacent areas were investigated. The total concentrations of DDTs, HCHs and CHLs varied from 0.64 to 3.17 ng/g dw, 0.19-0.65 ng/g dw, and 0.03-0.16 ng/g dw, respectively. No significant difference was observed between the Bering Sea and Chukchi Sea for most pollutants except for trans-CHL, ΣCHLs (sum of trans- and cis-chlordane) and p,p'-DDD. Concentration ratios (e.g., α-HCH/γ-HCH, o,p'-DDT/p,p'-DDT) indicated that the contamination in the studied areas may result from inputs from multiple sources (e.g., historical usage of technical HCHs as well as new input of dicofol). Chiral analysis showed great variation in the enantioselective degradation of OCPs, resulting in excess of (+)-enantiomer for α-HCH in thirty of the 32 detectable samples, preferential depletion of (-)-enantiomer for o,p'-DDT in nineteen of the 35 detectable samples, and nonracemic in most samples for trans- and cis-chlordane. The ecological risks of the individual OCPs as well as the mixture were assessed based on the calculation of toxic units (TUs), and the results showed the predominance of DDT and γ-HCH in the mixture toxicity of the sediment. Overall, the TUs of OCPs in sediments from both the Bering and Chukchi Seas are less than one, indicating low ecological risk potential.
Collapse
Affiliation(s)
- Meiqing Jin
- College of Materials Science and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, PR China
| | - Jie Fu
- College of Environment, Zhejiang University of Technology, Hangzhou, PR China
| | - Bin Xue
- Key Laboratory of Marine Ecosystem and Biogeochemistry, The Second Institute of Oceanography, State Oceanic Administration, Hangzhou, PR China
| | - Shanshan Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, PR China.
| | - Lina Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, PR China
| | - An Li
- College of Environment, Zhejiang University of Technology, Hangzhou, PR China; School of Public Health, University of Illinois at Chicago, Chicago, United States
| |
Collapse
|
21
|
Xue R, Chen L, Lu Z, Wang J, Yang H, Zhang J, Cai M. Spatial distribution and source apportionment of PAHs in marine surface sediments of Prydz Bay, East Antarctica. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 219:528-536. [PMID: 27318541 DOI: 10.1016/j.envpol.2016.05.084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/23/2016] [Accepted: 05/29/2016] [Indexed: 05/15/2023]
Abstract
This paper reports the concentrations of polycyclic aromatic hydrocarbons (PAHs) in marine sediments sampled from Prydz Bay, East Antarctica. Total PAH concentrations ranged from 12.95 to 30.93 ng/g, with a mean of 17.99 ± 5.57 ng/g. Two- and three-ring PAHs were the most abundant compounds found at the majority of the sampling stations of Prydz Bay. Long-range atmospheric transportation was found to play an important role in determining the spatial distribution of PAHs in the sediments sampled here. However, transport by ocean currents and release from melting glaciers were also found to influence PAH distributions in the sediments of East Antarctica. The vertical migration of PAHs in sediments showed a decreasing trend with depth, with higher concentrations in the relatively shallow-water regions (<500 m) found on the Fram and Four Ladies banks compared with those of the intermediate-depth (500-1000 m) and deep-water regions (>1000 m) of the Amery Basin and associated Canyons, respectively. A Pearson correlation analysis between PAH concentrations and sediment parameters demonstrated that PAHs has poor correlations with grain size, but has positive correlation with total organic carbon, indicated complex processing during transfer to remote environments. The results of qualitative and quantitative analyses indicate that the PAHs sampled here were derived mainly from a mixture of biomass combustion, traffic emissions, and petrogenic sources.
Collapse
Affiliation(s)
- Rui Xue
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; State Key Laboratory on Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
| | - Ling Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; State Key Laboratory on Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
| | - Zhibo Lu
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; State Key Laboratory on Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China.
| | - Juan Wang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; State Key Laboratory on Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
| | - Haizhen Yang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; State Key Laboratory on Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
| | - Jie Zhang
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, 200136, China
| | - Minghong Cai
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, 200136, China.
| |
Collapse
|
22
|
The persistence of pesticides in atmospheric particulate phase: An emerging air quality issue. Sci Rep 2016; 6:33456. [PMID: 27628441 PMCID: PMC5024296 DOI: 10.1038/srep33456] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/16/2016] [Indexed: 11/08/2022] Open
Abstract
The persistent organic pollutants (POPs) due to their physicochemical properties can be widely spread all over the globe; as such they represent a serious threat to both humans and wildlife. According to Stockholm convention out of 24 officially recognized POPs, 16 are pesticides. The atmospheric life times of pesticides, up to now were estimated based on their gas-phase reactivity. It has been only speculated that sorption to aerosol particles may increase significantly the half-lives of pesticides in the atmosphere. The results presented here challenge the current view of the half-lives of pesticides in the lower boundary layer of the atmosphere and their impact on air quality and human health. We demonstrate that semivolatile pesticides which are mostly adsorbed on atmospheric aerosol particles are very persistent with respect to the highly reactive hydroxyl radicals (OH) that is the self-cleaning agent of the atmosphere. The half-lives in particulate phase of difenoconazole, tetraconazole, fipronil, oxadiazon, deltamethrin, cyprodinil, permethrin, and pendimethalin are in order of several days and even higher than one month, implying that these pesticides can be transported over long distances, reaching the remote regions all over the world; hence these pesticides shall be further evaluated prior to be confirmed as POPs.
Collapse
|
23
|
Routti H, Gabrielsen GW, Herzke D, Kovacs KM, Lydersen C. Spatial and temporal trends in perfluoroalkyl substances (PFASs) in ringed seals (Pusa hispida) from Svalbard. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 214:230-238. [PMID: 27089420 DOI: 10.1016/j.envpol.2016.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
This study investigates concentrations of perfluoroalkyl carboxylates (PFCAs), perfluoroalkyl sulfonates (PFSAs) and perfluoroalkane sulfonamides (FASA) in plasma from ringed seals sampled in the period 1990-2010 (n = 71) in Svalbard, Norway. Perfluorooctane sulfonate was dominant among the perfluoroalkyl substances. PFCAs were dominated by perfluoroundecanoate followed by perfluorononanoate. C4C8 PFCAs and perfluorooctane sulfonamide (FOSA) were detected in ≤42% of the samples. PFSA and PFCA concentrations were higher in seals sampled from Kongsfjorden, a fjord influenced by strong inflows of Atlantic Water compared to seals from fjords dominated by Arctic Water (e.g. Billefjorden). Sex, age and body condition of the seals did not influence PFAS concentrations. Due to the confounding effect of year and sampling area, temporal trends were assessed only in seals sampled from Kongsfjorden (5 years, n = 51). PFHxS and PFOS concentrations did not show significant linear trends during the whole study period, but a decrease was observed since 2004. Concentrations of all of the detected PFCAs (C9C13 PFCAs) increased until 2004 after which they have declined or stabilized.
Collapse
Affiliation(s)
- Heli Routti
- Norwegian Polar Institute, Fram Centre, 9296, Tromsø, Norway.
| | | | - Dorte Herzke
- Norwegian Institute for Air Research, Fram Centre, 9296, Tromsø, Norway
| | - Kit M Kovacs
- Norwegian Polar Institute, Fram Centre, 9296, Tromsø, Norway
| | | |
Collapse
|
24
|
Wang P, Zhang Q, Zhang H, Wang T, Sun H, Zheng S, Li Y, Liang Y, Jiang G. Sources and environmental behaviors of Dechlorane Plus and related compounds - A review. ENVIRONMENT INTERNATIONAL 2016; 88:206-220. [PMID: 26760718 DOI: 10.1016/j.envint.2015.12.026] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 06/05/2023]
Abstract
Although Dechlorane Plus (DP) has been used as a polychlorinated flame retardant for almost half a century, its detection in the environment was not reported until 2006. The subsequent intensive research has confirmed its global ubiquity. A few reviews have presented the properties, analytical methods and environmental occurrence of DP and related compounds in the past several years. The present review emphasizes on the environmental behavior of DP isomers which is assessed by the variation of the isomer ratio of DP in various matrices. Other aspects including the analytical methods, emission sources, general environmental occurrence and bioaccumulation of DP are also summarized. In this review, three typical emission sources in the environment are categorized after introducing the measurement method of DP. The temporal-spatial distribution is then evaluated at the global scale, which provides an integrated representation of the environmental occurrence of DP and potential impact on the human health and ecosystems. The variations of DP isomer ratio in various matrices reinforce its source related distribution and their stereoselective bioaccumulation. Thereafter, DP related compounds and dechlorinated analogs are briefly summarized in regards to their occurrence in various matrices, suggesting their ubiquity in the environment and bioavailability. Further studies are required to better assess the exposures and toxicological effects of DP and its analogs. A special concern is the serious contamination in e-waste recycling areas in developing countries, where long-term monitoring data on the association of DP exposure and adverse effects to human health and ecosystems is urgently needed.
Collapse
Affiliation(s)
- Pu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Haidong Zhang
- Department of Geography and Environment, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Thanh Wang
- MTM Research Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Huizhong Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shucheng Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
25
|
Sühring R, Barber JL, Wolschke H, Kötke D, Ebinghaus R. Fingerprint analysis of brominated flame retardants and Dechloranes in North Sea sediments. ENVIRONMENTAL RESEARCH 2015; 140:569-578. [PMID: 26037108 DOI: 10.1016/j.envres.2015.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/27/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
53 brominated and chlorinated flame retardants were investigated in sediment samples from the German rivers Elbe and Weser, the German Bight, Jadebusen, East Frisian Coast as well as the UK East coast. The aim of the presented study was to investigate the prevalence of different halogenated flame retardant groups as contaminants in North Sea sediments, identify determining factors for the distribution and levels as well as to identify area specific fingerprints that could help identify sources. In order to do that a fast and effective ASE extraction method with an on-line clean-up was developed as well as a GC-EI-MSMS and LC-ESI-MSMS method to analyse PBDEs, MeOBDEs, alternate BFRs, Dechloranes as well as TBBPA and HBCDD. A fingerprinting method was adopted to identify representative area-specific patterns based on detection frequency as well as concentrations of individual compounds. Concentrations in general were low, with<1 ng g(-1) dw for most compounds. Exceptions were the comparably high concentrations of BDE-209 with up to 7 ng g(-1) dw in selected samples and TBBPA in UK samples with 2.7±1.5 ng g(-1) dw. Apart from BDE-209 and TBBPA, alternate BFRs and Dechloranes were predominant in all analysed samples, displaying the increasing relevance of these compounds as environmental contaminants.
Collapse
Affiliation(s)
- Roxana Sühring
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research, Department for Environmental Chemistry, 21502 Geesthacht, Germany; Leuphana University Lüneburg, Institute of Sustainable and Environmental Chemistry, 21335 Lüneburg, Germany.
| | - Jonathan L Barber
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - Hendrik Wolschke
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research, Department for Environmental Chemistry, 21502 Geesthacht, Germany; Leuphana University Lüneburg, Institute of Sustainable and Environmental Chemistry, 21335 Lüneburg, Germany
| | - Danijela Kötke
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research, Department for Environmental Chemistry, 21502 Geesthacht, Germany
| | - Ralf Ebinghaus
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research, Department for Environmental Chemistry, 21502 Geesthacht, Germany
| |
Collapse
|