1
|
Carneiro RB, Gil-Solsona R, Subirats J, Restrepo-Montes E, Zaiat M, Santos-Neto ÁJ, Gago-Ferrero P. Biotransformation pathways of pharmaceuticals and personal care products (PPCPs) during acidogenesis and methanogenesis of anaerobic digestion. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135444. [PMID: 39153297 DOI: 10.1016/j.jhazmat.2024.135444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/05/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
Pharmaceuticals and personal care products (PPCPs) exhibit varying biodegradability during the acidogenic and methanogenic phases of anaerobic digestion. However, there is limited information regarding the end products generated during these processes. This work investigates the biotransformation products (BTPs) generated in a two-phase (TP) acidogenic-methanogenic (Ac-Mt) bioreactor using advanced suspect and nontarget strategies. Fourteen BTPs were confidently identified from ten parent PPCPs including carbamazepine (CBZ), naproxen (NPX), diclofenac (DCF), ibuprofen (IBU), acetaminophen (ACT), metoprolol (MTP), sulfamethoxazole (SMX), ciprofloxacin (CIP), methylparaben (MPB) and propylparaben (PPB). These BTPs were linked with oxidation reactions such as hydroxylation, demethylation and epoxidation. Their generation was related to organic acid production, since all metabolites were detected during acidogenesis, with some being subsequently consumed during methanogenesis, e.g., aminothiophenol and kynurenic acid. Another group of BTPs showed increased concentrations under methanogenic conditions, e.g., hydroxy-diclofenac and epoxy-carbamazepine. The most PPCPs showed high removal efficiencies (> 90 %) - SMX, CIP, NPX, MTP, ACT, MPB, PPB, while DCF, CBZ and IBU demonstrated higher persistence - DCF (42 %); CBZ (40 %), IBU (47 %). The phase separation of anaerobic digestion provided a deeper understanding of the biotransformation pathways of PPCPs, in addition to enhancing the biodegradability of the most persistent compounds, i.e., DCF, CBZ and IBU.
Collapse
Affiliation(s)
- Rodrigo B Carneiro
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain; Laboratory of Chromatography (CROMA), São Carlos Institute of Chemistry, University of São Paulo (USP), 400, Trabalhador São-Carlense Ave., São Carlos, São Paulo 13566-590, Brazil.
| | - Rubén Gil-Solsona
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| | - Jessica Subirats
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| | - Esteban Restrepo-Montes
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| | - Marcelo Zaiat
- Laboratory of Biological Processes (LPB), São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120 São Carlos, São Paulo, Brazil.
| | - Álvaro J Santos-Neto
- Laboratory of Chromatography (CROMA), São Carlos Institute of Chemistry, University of São Paulo (USP), 400, Trabalhador São-Carlense Ave., São Carlos, São Paulo 13566-590, Brazil.
| | - Pablo Gago-Ferrero
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| |
Collapse
|
2
|
Ferrera E, Ruigómez I, Vela-Bastos C, Ferreira A, Gouveia L, Vera L. Resources recovery from domestic wastewater by a combined process: anaerobic digestion and membrane photobioreactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49560-49573. [PMID: 39080174 PMCID: PMC11324692 DOI: 10.1007/s11356-024-34468-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/20/2024] [Indexed: 08/06/2024]
Abstract
Anaerobic and membrane technologies are a promising combination to decrease the energy consumption associated with wastewater treatment, allowing the recovery of resources: organic matter as biomethane, nutrient assimilation by microalgae and reclaimed water. In this study, domestic wastewater was treated using a combination of an upflow anaerobic sludge blanket sludge reactor (UASB) and a membrane photobioreactor (MPBR). The outdoor facilities were operated continuously for three months under unfavourable environmental conditions such as lack of temperature control, winter season with lower solar irradiation and lower daylight hours which was a challenge for the present work, not previously described. The energetic valorisation of the organic matter present in the wastewater by biomethane produced in the UASB would contribute to reducing overall facilities' energy requirements. The ultrafiltration (UF) membrane facilitated the harvesting of biomass, operating at 10 L·h-1·m-2 during the experimental period. Although the main contribution to fouling was irreversible, chemical cleanings were not necessary due to effective fouling control, which prevented the final TMP from exceeding 25 kPa. In addition, microalgae-bacterial consortium developed without prior inoculation were harvested from the MPBR using membrane assistance. The obtained biomass was also successfully tested as a biostimulant for corn germination/growth, as well as a biopesticide against Rhizoctonia solani and Fusarium oxysporum.
Collapse
Affiliation(s)
- Elvira Ferrera
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Ciencias, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez S/N, 38206, La Laguna, Spain
| | - Ignacio Ruigómez
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Ciencias, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez S/N, 38206, La Laguna, Spain
| | - Carolina Vela-Bastos
- LNEG - UBB - National Laboratory of Energy and Geology I.P., Bioenergy and Biorefineries Unit, Estrada Do Paço Do Lumiar 22, 1649-038, Lisbon, Portugal
- GreenCoLab - Green Ocean Technologies and Products Collaborative Laboratory, CCMAR, Algarve University, Faro, Portugal
| | - Alice Ferreira
- LNEG - UBB - National Laboratory of Energy and Geology I.P., Bioenergy and Biorefineries Unit, Estrada Do Paço Do Lumiar 22, 1649-038, Lisbon, Portugal
| | - Luisa Gouveia
- LNEG - UBB - National Laboratory of Energy and Geology I.P., Bioenergy and Biorefineries Unit, Estrada Do Paço Do Lumiar 22, 1649-038, Lisbon, Portugal
- GreenCoLab - Green Ocean Technologies and Products Collaborative Laboratory, CCMAR, Algarve University, Faro, Portugal
| | - Luisa Vera
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Ciencias, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez S/N, 38206, La Laguna, Spain.
| |
Collapse
|
3
|
Buakaew T, Ratanatamskul C. Unveiling the influence of microaeration and sludge recirculation on enhancement of pharmaceutical removal and microbial community change of the novel anaerobic baffled biofilm - membrane bioreactor in treating building wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172420. [PMID: 38614333 DOI: 10.1016/j.scitotenv.2024.172420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/14/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
This research aims to conduct a comparative investigation of the role played by microaeration and sludge recirculation in the novel anaerobic baffled biofilm-membrane bioreactor (AnBB-MBR) for enhancing pharmaceutical removal from building wastewater. Three AnBB-MBRs - R1: AnBB-MBR, R2: AnBB-MBR with microaeration and R3: AnBB-MBR with microaeration and sludge recirculation - were operated simultaneously to remove Ciprofloxacin (CIP), Caffeine (CAF), Sulfamethoxazole (SMX) and Diclofenac (DCF) from real building wastewater at the hydraulic retention time (HRT) of 30 h for 115 days. From the removal profiles of the targeted pharmaceuticals in the AnBB-MBRs, it was found that the fixed-film compartment (C1) could significantly reduce the targeted pharmaceuticals. The remaining pharmaceuticals were further removed with the microaeration compartment. R2 exhibited the utmost removal efficiency for CIP (78.0 %) and DCF (40.8 %), while SMX was removed most successfully by R3 (microaeration with sludge recirculation) at 91.3 %, followed by microaeration in R2 (88.5 %). For CAF, it was easily removed by all AnBB-MBR systems (>90 %). The removal mechanisms indicate that the microaeration in R2 facilitated the adsorption of CIP onto microaerobic biomass, while the enhanced biodegradation of CAF, SMX and DCF was confirmed by batch biotransformation kinetics and the adsorption isotherms of the targeted pharmaceuticals. The microbial groups involved in biodegradation of the targeted compounds under microaeration were identified as nitrogen removal microbials (Nitrosomonas, Nitrospira, Thiobacillus, and Denitratisoma) and methanotrophs (Methylosarcina, Methylocaldum, and Methylocystis). Overall, explication of the integration of AnBB-MBR with microaeration (R2) confirmed it as a prospective technology for pharmaceutical removal from building wastewater due to its energy-efficient approach characterized by minimal aeration supply.
Collapse
Affiliation(s)
- Tanissorn Buakaew
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chavalit Ratanatamskul
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Innovative Waste Treatment and Water Reuse, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
4
|
Wang L, Lei Z, Yun S, Yang X, Chen R. Quantitative structure-biotransformation relationships of organic micropollutants in aerobic and anaerobic wastewater treatments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169170. [PMID: 38072270 DOI: 10.1016/j.scitotenv.2023.169170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/05/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Biotransformation is one of the dominant processes to remove organic micropollutants (OMPs) in wastewater treatment. However, studies on the role of molecular structure in determining the biotransformation rates of OMPs are limited. We evaluated the biotransformation of 14 OMPs belonging to different chemical classes under aerobic and anaerobic conditions, and then explored the quantitative structure-biotransformation relationships (QSBRs) of the OMPs based on biotransformation rates using valid molecular structure descriptors (electrical and physicochemical parameters). Pseudo-first-order kinetic modeling was used to fit the biotransformation rate, and only 2 of the 14 OMPs showed that the biotransformation rate constant (kbio) values were higher under anaerobic conditions than aerobic conditions, indicating that aerobic conditions were more favorable for biotransformation of most OMPs. QSBRs infer that the electrophilicity index (ω) is a reliable predictor for OMPs biotransformation under aerobic conditions. ω corresponds to the interaction between OMPs and microbial enzyme active sites, this process is the rate-limiting step of biotransformation. However, under anaerobic conditions the QSBR based on ω was not significant, indicating that specific functional groups may be more critical than electrophilicity. In conclusion, QSBRs can serve as alternative tools for the prediction of the biotransformation of OMPs and provide further insights into the factors that influence biotransformation.
Collapse
Affiliation(s)
- Lianxu Wang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Zhen Lei
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Sining Yun
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Xiaohuan Yang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
5
|
Manetti M, Tomei MC. Anaerobic removal of contaminants of emerging concern in municipal wastewater: Eco-toxicological risk evaluation and strategic selection of optimal treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168895. [PMID: 38042180 DOI: 10.1016/j.scitotenv.2023.168895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
In the last decades, the interest for anaerobic process as a mainstream treatment of municipal wastewater increased due to the development of high-rate anaerobic bioreactors able to achieve removal kinetics comparable to the aerobic ones. Moreover, they have the additional advantages of energy production, nutrient recovery and reduced excess sludge yield, which are interesting features in the frame of sustainability wastewater treatment goals. These appealing factors increased the research demand to evaluate the potential of the anaerobic removal for contaminants of emerging concern (CECs) in municipal wastewater. However, despite the growing interest for the subject, literature is still fragmentary and reviews are mainly focused on specific technologies and target compounds or groups of compounds. We propose this review with the main objectives of presenting the state of knowledge, the performances of anaerobic systems for CECs' removal and, more important, to give the reader guidelines for optimal treatment selection. In the first part, a general overview of the investigated technologies at different scale, with a special focus on the recently proposed enhancements, is presented. Collected data are analysed to select the target CECs and the analysis results employed to define the optimal technological solution for their removal. A first novelty element of the paper is the original procedure for contaminant selection consisting of a risk assessment tool for CECs, based on their frequency of detection, concentration and potential for biosorption in wastewater treatment plants. Data of selected target CECs are combined with compound and technology performance data to implement a flowchart tool to evaluate the optimal treatment strategy, which constitute another, even more important, novelty element of this study.
Collapse
Affiliation(s)
- Marco Manetti
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015 Monterotondo Stazione (Rome), Italy
| | - Maria Concetta Tomei
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015 Monterotondo Stazione (Rome), Italy.
| |
Collapse
|
6
|
Franzoni RM, Bernardelli JKB, Silveira DD, Gomes SD, Lapolli FR, Carvalho KQD, Passig FH. Performance of an anaerobic-oxic-anoxic (AOA) system in the simultaneous removal of nutrients and triclosan and bacterial community. ENVIRONMENTAL TECHNOLOGY 2024; 45:544-558. [PMID: 35980262 DOI: 10.1080/09593330.2022.2114859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The constant presence of triclosan (TCS) in surface water and wastewater has been verified due to its application in several pharmaceutical and personal care products. Thus, removing this emerging contaminant is essential to minimize the contamination of water bodies. The anaerobic-aerobic-anoxic (AOA) system is an innovative alternative that combines the removal of nutrients and triclosan. This study focuses on the simultaneous removal of carbonaceous matter, nitrogen, phosphorus, and triclosan in a continuous pilot-scale AOA system from synthetic wastewater. The upflow system, in series, was operated at hydraulic retention time (HRT) of 8 h and a flowrate of 2.40 L h-1. Glucose (190 mg L-1) was added to the anoxic reactor as the external carbon source. Besides that, bacterial community structure was investigated using 16S rRNA sequencing in each reactor. The system achieved average removal efficiencies of 96% (14.03 g d-1) for Chemical Oxygen Demand (COD), 85% (2.64 g d-1) for Total Kjeldahl Nitrogen (TKN), 88% (1.40 g d-1) for Total Ammonia Nitrogen (TAN), 20% (0.12 g d-1) for Total Phosphorus (TP), and 93% (1.87 μg d-1) for Triclosan (TCS). The phyla Proteobacteria, Firmicutes, Bacteroidetes, and Chloroflexi were found in greater abundance. The main genera identified were Anaeromusa, Aeromonas, Azospira, Clostridium, and Lactococcus. The organisms related to phylum and genus corroborate the involved processes and the removal performance achieved. In addition, Lactococcus, Thermomonas, Ferruginibacter, and Dechloromonas were involved in triclosan biodegradation. The anaerobic-oxic-anoxic system successfully removed carbonaceous, nitrogenous matter, and triclosan, with glucose increasing the denitrifying activity.
Collapse
Affiliation(s)
- Ruana Mendonça Franzoni
- Civil Engineering Graduate Program, The Federal University of Technology - Paraná (UTFPR), Curitiba, Brazil
| | | | - Daniele Damasceno Silveira
- Environmental Engineering Graduate Program, Federal University of Santa Catarina - Santa Catarina (UFSC), Florianópolis, Brazil
| | - Simone Damasceno Gomes
- Agricultural Engineering Graduate Program, Western Paraná State University (UNIOESTE/CCET/PGEAGRI), Cascavel, Brazil
| | - Flávio Rubens Lapolli
- Environmental Engineering Graduate Program, Federal University of Santa Catarina - Santa Catarina (UFSC), Florianópolis, Brazil
| | - Karina Querne de Carvalho
- Academic Department of Civil Construction, The Federal University of Technology - Paraná (UTFPR), Curitiba, Brazil
| | - Fernando Hermes Passig
- Chemistry and Biology Academic Department, The Federal University of Technology - Paraná (UTFPR), Curitiba, Brazil
| |
Collapse
|
7
|
Moya-Llamas MJ, Pacazocchi MG, Trapote A. Respirometric tests in a combined UASB-MBR system treating wastewater containing emerging contaminants at different OLRs and temperatures: Biokinetic analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118643. [PMID: 37487453 DOI: 10.1016/j.jenvman.2023.118643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/06/2023] [Accepted: 07/15/2023] [Indexed: 07/26/2023]
Abstract
This research focuses on the application of respirometric techniques to provide new insights into the biokinetic behaviour of bacterial species developed in an Upflow Anaerobic Sludge Blanked -UASB reactor combined with a membrane bioreactor -MBR, treating urban wastewater with emerging contaminants frequently found in this kind of effluents. The lab-scale pilot plant was operated at different metabolic and operational conditions by limiting the organic loading rate- OLR of the influent. In a first stage, the MBR was performed with suspended biomass, while in a second stage bio-supports were introduced to operate coexisting suspended and fixed biomass. From the results of the microscopic monitoring of sludge, it was concluded that the decrease in OLR resulted in a greater disintegration of the floc structure, more dispersed growth, and a low presence of inter-floccular bonds. However, no effect of toxicity or inhibition of microorganisms caused by the presence of emerging contaminants -ECs was determined. Kinetic modelling was carried out to study the behaviour of the system. The results showed a slowing down of biomass degradative capacity at low OLR stages and operating at low temperatures of mixed liquor. In addition, a decrease in oxygen consumption was observed with decreasing biodegradable substrate, resulting in lower degradation of organic matter. Mean values of specific oxygen uptake rate and heterotrophic biomass yield at low OLR were SOUR end = 1.49 and 1.15 mg O2· g MLVSS-1 h-1 and YH,MLSSV end = 0.48 and 0.28 mg MLVSS· mg COD-1substrate at stage 1 (suspended biomass) and stage 2 (suspended and supported biomass), respectively. From the analysis of the endogenous decomposition constant (kd), a higher cell lysis was determined operating with suspended biomass (kd = 0.03 d-1) in comparison to the operation coexisting suspended and supported biomass (kd = 0.01 d-1). Heterotrophic biomass yield values (YH, MLVSS = 0.48 ± 0.06, 0.40 ± 0.01 and 0.29 ± 0.01 mg MLVSS· mg COD-1substrate at high, medium and low OLR) showed lower sludge production at low OLR due to the influence of substrate limitation on cell growth.
Collapse
Affiliation(s)
- M J Moya-Llamas
- Department of Civil Engineering and Institute of Water and Environmental Sciences, University of Alicante, Carretera de San Vicente Del Raspeig S/n, 03690 San Vicente Del Raspeig, Alicante, Spain.
| | | | - A Trapote
- Institute of Water and Environmental Sciences, University of Alicante, Carretera de San Vicente Del Raspeig S/n, 03690 San Vicente Del Raspeig, Alicante, Spain.
| |
Collapse
|
8
|
Dolu T, Nas B. Dissemination of nonsteroidal anti-inflammatory drugs (NSAIDs) and metabolites from wastewater treatment plant to soils and agricultural crops via real-scale different agronomic practices. ENVIRONMENTAL RESEARCH 2023; 227:115731. [PMID: 36958380 DOI: 10.1016/j.envres.2023.115731] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 05/08/2023]
Abstract
One of the most consumed pharmaceutical subgroups across the world is nonsteroidal anti-inflammatory drugs (NSAIDs). However, the dissemination of these compounds to the natural environments through agronomic practices is a serious global problem. The hypothesis of this study is to reveal the transition of selected NSAIDs, paracetamol (PAR), diclofenac (DCF), ibuprofen (IBU), and naproxen (NAP) together with six main metabolites, detected in raw/treated wastewater (RWW/TWW) and sewage sludge generated in an urban wastewater treatment plant (WWTP) to soils and agricultural crops (corn, barley, sunflower, and sugar beet) through two widely applied agronomic practices, irrigation with TWW and application of sewage sludge as soil amendment. In other words, the cycles of 10 NSAIDs have been evaluated by simultaneously monitoring their concentrations in RWW/TWW, sewage sludge, soils, and crops. It was determined that the parent compounds and detected metabolites were treated at quite higher removal efficiencies (93.4 - >99.9%) in the studied WWTP, while DCF was eliminated poorly (7.9-52.2%). However, although it changes seasonally for some compounds, it was determined that the concentrations of almost all investigated NSAIDs increased at the determined irrigation points in the discharge channel (DC) where agricultural irrigations were performed. Apart from that, DCF, NAP, and 2-hydroxyibuprofen (2-OH-IBU) were always detected in sewage sludge seasonally up to about 20.5, 11.3, and 3.7 ng/g, respectively. While 2-OH-IBU was determined as the dominant metabolite in RWW, TWW, and sewage sludge, the metabolite of 1-hydroxyibuprofen (1-OH-IBU) was determined as the dominant compound in soils. Although 1-OH-IBU was not detected in TWW and sewage sludge in any season, detecting this metabolite as a common compound in all investigated soils (up to 60.1 ng/kg) reveals that this compound is the primary transformation product of IBU in soils. It was observed that at least one of the metabolites of IBU (1-OH-IBU and/or 2-OH-IBU) was detected in all plants grown (up to 0.75 ng/g), especially during the periods when both agricultural practices were applied. In addition, the detection of 1-OH-IBU with increasing concentrations from root to shoots in corn grown as a result of both agronomic practices shows that this compound has a high translocation potential in the corn plant. Apart from this, it was determined that PAR was detected in corn (up to 43.3 ng/kg) and barley (up to 16.8 ng/kg) within the scope of irrigation with TWW, and NAP was detected in sugar beet (up to 11.2 ng/kg) through sewage sludge application.
Collapse
Affiliation(s)
- Taylan Dolu
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - Bilgehan Nas
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| |
Collapse
|
9
|
Iliopoulou A, Arvaniti OS, Deligiannis M, Gatidou G, Vyrides I, Fountoulakis MS, Stasinakis AS. Combined use of strictly anaerobic MBBR and aerobic MBR for municipal wastewater treatment and removal of pharmaceuticals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118211. [PMID: 37253313 DOI: 10.1016/j.jenvman.2023.118211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/01/2023]
Abstract
An integrated lab-scale wastewater treatment system consisting of an anaerobic Moving Bed Biofilm Reactor (AnMBBR) and an aerobic Membrane Bioreactor (AeMBR) in series was used to study the removal and fate of pharmaceuticals during wastewater treatment. Continuous-flow experiments were conducted applying different temperatures to the AnMBBR (Phase A: 35 °C; Phase B: 20 °C), while batch experiments were performed for calculating sorption and biotransformation kinetics. The total removal of major pollutants and target pharmaceuticals was not affected by the temperature of the AnMBBR. In Phase A, the average removal of dissolved chemical oxygen demand (COD), biological oxygen demand (BOD), and ammonium nitrogen (NH4-N) was 86%, 91% and 96% while in Phase B, 91%, 96% and 96%, respectively. Removal efficiencies ranging between 65% and 100% were observed for metronidazole (MTZ), trimethoprim (TMP), sulfamethoxazole (SMX), and valsartan (VAL), while slight (<30%) or no removal was observed for carbamazepine (CBZ) and diclofenac (DCF), respectively. Application of a mass balance model showed that the predominant mechanism for the removal of pharmaceuticals was biotransformation, while the role of sorption was of minor importance. The AeMBR was critical for VAL, SMX and TMP biodegradation; the elimination of MTZ was strongly enhanced by the AnMBBR. In both bioreactors, Bacteroidetes was the dominant phylum in both bioreactors over time. In the AnMBBR, Cloacibacterium and Bacteroides had a higher abundance in the biocarriers compared to the suspended biomass.
Collapse
Affiliation(s)
- Athanasia Iliopoulou
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, Mytilene, 81100, Greece
| | - Olga S Arvaniti
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, Mytilene, 81100, Greece; Department of Agricultural Development, Agrofood and Management of Natural Resources, National and Kapodistrian University of Athens, Psachna, 34400, Greece
| | - Michalis Deligiannis
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, Mytilene, 81100, Greece
| | - Georgia Gatidou
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, Mytilene, 81100, Greece
| | - Ioannis Vyrides
- Department of Chemical Engineering, Cyprus University of Technology, 95 Eirinis Str., Limassol, 3603, Cyprus
| | - Michalis S Fountoulakis
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, Mytilene, 81100, Greece
| | - Athanasios S Stasinakis
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, Mytilene, 81100, Greece.
| |
Collapse
|
10
|
Motteran F, Varesche MBA, Lara-Martin PA. Assessment of the aerobic and anaerobic biodegradation of contaminants of emerging concern in sludge using batch reactors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:84946-84961. [PMID: 35789461 DOI: 10.1007/s11356-022-21819-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
This work explores the degradation of xenobiotic compounds in aerobic and anaerobic batch reactors. Different inoculums were spiked with nine emerging contaminants at nominal concentrations ranging between 1 to 2 mg/L (ibuprofen, diclofenac, naproxen, acesulfame, sucralose, aspartame, cyclamate, linear alkylbenzene sulfonates, and secondary alkyl sulfonates). Ethanol was used as co-substrate in the anaerobic reactors. We found that the kinetic decay was faster in the aerobic reactors inoculated with a Spanish (Spn) inoculum compared to a Brazilian (Brz) inoculum, resulting in rection rates for LAS and SAS of 2.67 ± 3.6 h-1 and 5.09 ± 6 h-1 for the Brz reactors, and 1.3 ± 0.1 h-1 and 1.5 ± 0.2 h-1 for the Spn reactors, respectively. There was no evidence of LAS and SAS degradation under anaerobic conditions within 72 days; nonetheless, under aerobic conditions, these surfactants were removed by both the Brz and Spn inoculums (up to 86.2 ± 9.4% and 74.3 ± 0.7%, respectively) within 10 days. The artificial sweeteners were not removed under aerobic conditions, whereas we could observe a steady decrease in the anaerobic reactors containing the Spn inoculum. Ethanol aided in the degradation of surfactants in anaerobic environments. Proteiniphilum, Paraclostridium, Arcobacter, Proteiniclasticum, Acinetobacter, Roseomonas, Aquamicrobium, Moheibacter, Leucobacter, Synergistes, Cyanobacteria, Serratia, and Desulfobulbus were the main microorganisms identified in this study.
Collapse
Affiliation(s)
- Fabricio Motteran
- Geosciences Technology Center, Department of Civil and Environmental Engineering, Environmental Sanitation Laboratory and Laboratory of Molecular Biology and Environmental Technology, Federal University of Pernambuco, Ave. Arquitetura, s/n, Cidade Universitária, Recife, PA, Zipcode 50740-550, Brazil.
| | - Maria Bernadete Amâncio Varesche
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Ave Trabalhador São-Carlense, n°. 400, São Carlos, São Paulo, Zipcode 13566-590, Brazil
| | - Pablo A Lara-Martin
- Department of Physical Chemistry, Faculty of Environmental and Marine Sciences, University of Cadiz (UCA), Campus Río San Pedro, 11510, Puerto Real (Cádiz), Andalusia, Spain
| |
Collapse
|
11
|
Occurrence of Selected Emerging Contaminants in Southern Europe WWTPs: Comparison of Simulations and Real Data. Processes (Basel) 2022. [DOI: 10.3390/pr10122491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Emerging contaminants (ECs) include a diverse group of compounds not commonly monitored in wastewaters, which have become a global concern due to their potential harmful effects on aquatic ecosystems and human health. In the present work, six ECs (ibuprofen, diclofenac, erythromycin, triclosan, imidacloprid and 17α-ethinylestradiol) were monitored for nine months in influents and effluents taken from four wastewater treatment plants (WWTPs). Except for the case of ibuprofen, which was in all cases in lower concentrations than those usually found in previous works, results found in this work were within the ranges normally reported. Global removal efficiencies were calculated, in each case being very variable, even when the same EC and facility were considered. In addition, the SimpleTreat model was tested by comparing simulated and real ibuprofen, diclofenac and erythromycin data. The best agreement was obtained for ibuprofen which was the EC with the highest removal efficiencies.
Collapse
|
12
|
Cao L, Li Y, Li P, Zhang X, Ni L, Qi L, Wen H, Zhang X, Zhang Y. Application of moving bed biofilm reactor - nanofiltration - membrane bioreactor with loose nanofiltration hollow fiber membranes for synthetic roxithromycin-containing wastewater treatment: Long-term performance, membrane fouling and microbial community. BIORESOURCE TECHNOLOGY 2022; 360:127527. [PMID: 35764280 DOI: 10.1016/j.biortech.2022.127527] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The present study operated the novel moving bed biofilm reactor-nanofiltration-membrane bioreactor (MBBR-NF-MBR) with loose polyamide NF membranes for the first time to treat roxithromycin (ROX) wastewater. Results showed that both MBBR-NF-MBRs achieved superior COD removal of 98.4% and 97.2% and excellent removal of ROX at 74.1% and 65.5%, respectively. The main membrane fouling mechanism was reversible fouling caused by the combination of abundant polysaccharides, proteins and Ca-P precipitates, which could be effectively removed by acidic cleaning. Sorption and biodegradation were the main removal routes of ROX in MBBR. Partial retention of loose NF membrane contributed to microbial metabolism and increased microbial diversity, especially the genera Hyphomicrobium in attached biofilm, which was reasonable for ROX removal. The cleavage of cladinose, demethylation, phosphorylation and β-oxidation in macrolactone ring were the main biotransformation reactions of ROX. This study provides novel insights for micropollutants wastewater treatment by using loose NF membrane in MBR.
Collapse
Affiliation(s)
- Lei Cao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yuanling Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Peining Li
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xueting Zhang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Lei Ni
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Li Qi
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Tianjin Chengjian University, Tianjin 300384, China
| | - Haitao Wen
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Tianjin Chengjian University, Tianjin 300384, China
| | - Xinbo Zhang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Tianjin Chengjian University, Tianjin 300384, China
| | - Yufeng Zhang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Tianjin Chengjian University, Tianjin 300384, China.
| |
Collapse
|
13
|
Chyoshi B, Gomes Coelho LH, García J, Subtil EL. Fate and removal of emerging contaminants in anaerobic fluidized membrane bioreactor filled with thermoplastic gel as biofilm support. CHEMOSPHERE 2022; 300:134557. [PMID: 35405192 DOI: 10.1016/j.chemosphere.2022.134557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/23/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
The Anaerobic Fluidized Membrane Bioreactor (AnFMBR) is a membrane-based hybrid technology that can overcome the limitations of conventional anaerobic sewage treatment. Although previous studies have demonstrated excellent performance in the removal of conventional organic pollutants, further research into the removal paths of emerging contaminants (ECs) under various operating conditions is required for proper design and development of the AnFMBR technology. Regarding this, the fate of four ECs in a lab-scale AnFMBR filled with thermoplastic gel for biofilm growth was investigated under various Hydraulic Retention Time (HRT) conditions. When the HRT was 13 h, diclofenac and 17β-estradiol were efficiently removed at 93% and 72% respectively. Even after an HRT reduction to 6.5 h, the system was still able to maintain high ECs removals (74% for diclofenac and 69% for 17β-estradiol). However, irrespective of HRT operational condition, smaller removals of 17a-ethinylestradiol (37-52%) were observed, while only marginal removals of amoxicillin were achieved (5-29%). Biotransformation was attributed as the main route for ECs removal. The results obtained in this study indicate that the membrane-based hybrid AnFMBR can be used to treat the target ECs without influence on anaerobic process. The technology had better removal efficiency for diclofenac and 17β-estradiol. However, the AnFMBR system exhibits high variability in EC removal and low capacity for amoxicillin removal, implying that a combination of other processes is still required to properly avoid the release of these contaminants into the environment.
Collapse
Affiliation(s)
- Bruna Chyoshi
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Av. dos Estados, 5001, Santo André/SP, 09210-580, Brazil.
| | - Lucia Helena Gomes Coelho
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Av. dos Estados, 5001, Santo André/SP, 09210-580, Brazil.
| | - Joan García
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain.
| | - Eduardo Lucas Subtil
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Av. dos Estados, 5001, Santo André/SP, 09210-580, Brazil.
| |
Collapse
|
14
|
Synthetic Musk Fragrances in Water Systems and Their Impact on Microbial Communities. WATER 2022. [DOI: 10.3390/w14050692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The presence of emerging contaminants in aquatic systems and their potential effects on ecosystems have sparked the interest of the scientific community with a consequent increase in their report. Moreover, the presence of emerging contaminants in the environment should be assessed through the “One-Health” approach since all the living organisms are exposed to those contaminants at some point and several works already reported their impact on ecological interactions. There are a wide variety of concerning emerging contaminants in water sources, such as pharmaceuticals, personal care products, house-care products, nanomaterials, fire-retardants, and all the vast number of different compounds of indispensable use in routine tasks. Synthetic musks are examples of fragrances used in the formulation of personal and/or house-care products, which may potentially cause significant ecotoxicological concerns. However, there is little-to-no information regarding the effect of synthetic musks on microbial communities. This study reviews the presence of musk fragrances in drinking water and their impact on aquatic microbial communities, with a focus on the role of biofilms in aquatic systems. Moreover, this review highlights the research needed for a better understating of the impact of non-pharmaceutical contaminants in microbial populations and public health.
Collapse
|
15
|
Syed Z, Sogani M, Dongre A, Kumar A, Sonu K, Sharma G, Gupta AB. Bioelectrochemical systems for environmental remediation of estrogens: A review and way forward. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146544. [PMID: 33770608 DOI: 10.1016/j.scitotenv.2021.146544] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/13/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Globally estrogenic pollutants are a cause of concern in wastewaters and water bodies because of their high endocrine disrupting activity leading to extremely negative impacts on humans and other organisms even at very low environmental concentrations. Bioremediation of estrogens has been studied extensively and one technology that has emerged with its promising capabilities is Bioelectrochemical Systems (BESs). Several studies in the past have investigated BESs applications for treatment of wastewaters containing toxic recalcitrant pollutants with a primary focus on improvement of performance of these systems for their deployment in real field applications. But the information is scattered and further the improvements are difficult to achieve for standalone BESs. This review critically examines the various existing treatment technologies for the effective estrogen degradation. The major focus of this paper is on the technological advancements for scaling up of these BESs for the real field applications along with their integration with the existing and conventional wastewater treatment systems. A detailed discussion on few selected microbial species having the unusual properties of heterotrophic nitrification and extraordinary stress response ability to toxic compounds and their degradation has been highlighted. Based on the in-depth study and analysis of BESs, microbes and possible benefits of various treatment methods for estrogen removal, we have proposed a sustainable Hybrid BES-centered treatment system for this purpose as a choice for wastewater treatment. We have also identified three pipeline tasks that reflect the vital parts of the life cycle of drugs and integrated treatment unit, as a way forward to foster bioeconomy along with an approach for sustainable wastewater treatment.
Collapse
Affiliation(s)
- Zainab Syed
- Department of Civil Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India; Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Monika Sogani
- Department of Civil Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India; Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India.
| | - Aman Dongre
- Department of Civil Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India; Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Anu Kumar
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), L&W, Waite Campus, Urrbrae, SA, 5064, Australia.
| | - Kumar Sonu
- Department of Civil Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Gopesh Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Akhilendra Bhushan Gupta
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur 302017, Rajasthan, India
| |
Collapse
|
16
|
Bisognin RP, Wolff DB, Carissimi E, Prestes OD, Zanella R. Occurrence and fate of pharmaceuticals in effluent and sludge from a wastewater treatment plant in Brazil. ENVIRONMENTAL TECHNOLOGY 2021; 42:2292-2303. [PMID: 31810406 DOI: 10.1080/09593330.2019.1701561] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
A wide variety of pharmaceuticals are discharged in water courses on a daily basis due to their incomplete removal from effluent in treatment plants. The aim of the current study was to assess the occurrence, fate and removal of pharmaceuticals from effluent and sludge samples collected in the biggest sanitary sewer plant in Southern Brazil. In total, 13 pharmaceuticals were detected in the influent through UHPLC-MS/M - paracetamol and caffeine recorded the highest concentrations, 137.98 and 35.29 µg L-1, respectively. The treated effluent presented 11 compounds. Antibiotics were the class recording the widest diversity; metronidazole showed the lowest concentration (0.023 µg L-1) and sulfamethoxazole presented the highest concentration (1.374 µg L-1) in influent samples. Seven pharmaceuticals were absorbed by the sludge; among them, one finds caffeine, ciprofloxacin and ofloxacin, which were quantified both in the effluent and in the sludge. On the other hand, doxycycline, fenbendazole, norfloxacin and tetracycline were only detected in sludge samples - their concentrations ranged from 0.026 to 5.034 mg kg-1. Clindamycin, oxytetracycline, sulfathiazole and trimethoprim concentrations increased throughout the treatment. There were high paracetamol and caffeine removal rates (>97%), and it may have happened due to degradation, photodegradation or chemical reaction. Ciprofloxacin and ofloxacin removal rate exceeded 83% mainly due to their sorption by sludge. Finally, the mass balance analysis highlighted high pharmaceutical loads (511.466 g d-1) discharged into recipient waterbodies. This outcome demands broadening the removal of these pharmaceuticals from sewage.
Collapse
Affiliation(s)
| | - Delmira Beatriz Wolff
- Post-Graduate Program in Civil Engineering, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Elvis Carissimi
- Post-Graduate Program in Civil Engineering, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | | | - Renato Zanella
- LARP - Laboratory of Pesticide Residue Analysis, UFSM, Santa Maria, Brazil
| |
Collapse
|
17
|
Louros VL, Lima DLD, Leitão JH, Esteves VI, Nadais HGA. Impact of UASB reactors operation mode on the removal of estrone and 17α-ethinylestradiol from wastewaters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:144291. [PMID: 33401048 DOI: 10.1016/j.scitotenv.2020.144291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/13/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
This work aims to compare the performance of the continuous operation (CO) and intermittent operation (IO) of upflow anaerobic sludge blanket (UASB) reactors for the removal of estrone (E1) and 17α-ethinylestradiol (EE2) from wastewaters. Results suggest that the IO contribute to the improvement of the overall removal of estrogens (above 95% for E1 and EE2) when compared to CO (49% for E1 and 39% for EE2). For both CO and IO, biodegradation was the main removal mechanism for E1, while for EE2, adsorption to sludge was the major removal pathway. Moreover, a higher biodegradation of estrogens was obtained with the IO compared to CO (69.4% vs. 43.3% for E1 and 21.8% vs. 8.0% for EE2). The favourable effect of IO can be justified by effluent recirculation during the feedless period which promotes the adaptation of microbial biomass to estrogens' biodegradation.
Collapse
Affiliation(s)
- Vitória L Louros
- CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Diana L D Lima
- CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Jorge H Leitão
- iBB-Institute for Bioengineering and Biosciences, Bioengineering Department, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Valdemar I Esteves
- CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Helena G A Nadais
- CESAM, Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
18
|
Moya-Llamas MJ, Trapote A, Prats D. Carbamazepine removal from low-strength municipal wastewater using a combined UASB-MBR treatment system. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:1920-1931. [PMID: 33905362 DOI: 10.2166/wst.2021.096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An Upflow Anaerobic Sludge Blanket reactor combined with a two-stage membrane bioreactor were operated for 193 days in order to evaluate the biological removal of carbamazepine (CBZ) from low-strength municipal wastewater. The system worked in three different organic load stages (0.7 ± 0.1 kg COD·m-3·d-1, 0.4 ± 0.1 kg COD·m-3·d-1 and 0.1 ± 0.0 kg COD·m-3·d-1) to assess the impact of the influent OLR on operational parameters such as anaerobic and aerobic sludge retention time (SRT), acidity, volatile fatty acids (VFAs), biomass activity or biogas production. The highest carbamazepine removals were achieved during the anaerobic stage (UASB reactor), reaching averages of 48.9%, 48.0% and 38.2% operating at high, medium and low OLR, respectively. The aerobic treatment (MBR) served as post-treatment, improving the removals, and the global UASB-MBR system reached averages of 70.0%, 59.6% and 49.8% when the influent was at medium and low OLR, respectively. The results demonstrate the potential of combined biological systems on the removal of recalcitrant pharmaceuticals.
Collapse
Affiliation(s)
- M J Moya-Llamas
- Department of Civil Engineering, University of Alicante, Carretera de San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain E-mail:
| | - A Trapote
- Institute of Water and Environmental Sciences, University of Alicante, Carretera de San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - D Prats
- Institute of Water and Environmental Sciences, University of Alicante, Carretera de San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| |
Collapse
|
19
|
Silva AR, Cavaleiro AJ, Soares OSGP, Braga CS, Salvador AF, Pereira MFR, Alves MM, Pereira L. Detoxification of Ciprofloxacin in an Anaerobic Bioprocess Supplemented with Magnetic Carbon Nanotubes: Contribution of Adsorption and Biodegradation Mechanisms. Int J Mol Sci 2021; 22:ijms22062932. [PMID: 33805783 PMCID: PMC7999377 DOI: 10.3390/ijms22062932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 12/26/2022] Open
Abstract
In anaerobic bioreactors, the electrons produced during the oxidation of organic matter can potentially be used for the biological reduction of pharmaceuticals in wastewaters. Common electron transfer limitations benefit from the acceleration of reactions through utilization of redox mediators (RM). This work explores the potential of carbon nanomaterials (CNM) as RM on the anaerobic removal of ciprofloxacin (CIP). Pristine and tailored carbon nanotubes (CNT) were first tested for chemical reduction of CIP, and pristine CNT was found as the best material, so it was further utilized in biological anaerobic assays with anaerobic granular sludge (GS). In addition, magnetic CNT were prepared and also tested in biological assays, as they are easier to be recovered and reused. In biological tests with CNM, approximately 99% CIP removal was achieved, and the reaction rates increased ≈1.5-fold relatively to the control without CNM. In these experiments, CIP adsorption onto GS and CNM was above 90%. Despite, after applying three successive cycles of CIP addition, the catalytic properties of magnetic CNT were maintained while adsorption decreased to 29 ± 3.2%, as the result of CNM overload by CIP. The results suggest the combined occurrence of different mechanisms for CIP removal: adsorption on GS and/or CNM, and biological reduction or oxidation, which can be accelerated by the presence of CNM. After biological treatment with CNM, toxicity towards Vibrio fischeri was evaluated, resulting in ≈ 46% detoxification of CIP solution, showing the advantages of combining biological treatment with CNM for CIP removal.
Collapse
Affiliation(s)
- Ana R. Silva
- CEB, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (A.R.S.); (A.J.C.); (C.S.N.B.); (A.F.S.); (M.M.A.)
| | - Ana J. Cavaleiro
- CEB, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (A.R.S.); (A.J.C.); (C.S.N.B.); (A.F.S.); (M.M.A.)
| | - O. Salomé G. P. Soares
- Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; (O.S.G.P.S.); (M.F.R.P.)
| | - Cátia S.N. Braga
- CEB, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (A.R.S.); (A.J.C.); (C.S.N.B.); (A.F.S.); (M.M.A.)
| | - Andreia F. Salvador
- CEB, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (A.R.S.); (A.J.C.); (C.S.N.B.); (A.F.S.); (M.M.A.)
| | - M. Fernando R. Pereira
- Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; (O.S.G.P.S.); (M.F.R.P.)
| | - M. Madalena Alves
- CEB, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (A.R.S.); (A.J.C.); (C.S.N.B.); (A.F.S.); (M.M.A.)
| | - Luciana Pereira
- CEB, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (A.R.S.); (A.J.C.); (C.S.N.B.); (A.F.S.); (M.M.A.)
- Correspondence:
| |
Collapse
|
20
|
Hena S, Gutierrez L, Croué JP. Removal of pharmaceutical and personal care products (PPCPs) from wastewater using microalgae: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:124041. [PMID: 33265054 DOI: 10.1016/j.jhazmat.2020.124041] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/20/2020] [Accepted: 09/16/2020] [Indexed: 05/20/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are a group of emerging micro-pollutants causing detrimental effects on living organisms even at low doses. Previous investigations have confirmed the presence of PPCPs in the environment at hazardous levels, mainly due to the inefficiency of conventional wastewater treatment plants (CWWTPs). Their stable structure induces longer persistence in the environment. Microalgae are currently used to bioremediate numerous pollutants of different characteristics and properties released from the domestic, industrial, agricultural, and farm sectors. CO2 mitigation during culture and the use of biomass as feedstock for biodiesel or biofuel production are, briefly, other benefits of microalgae-mediated treatment over CWWTPs. This review provides a comprehensive summary of recent literature, an overview of approaches and treatment systems, and breakthrough in the field of algal-mediated removal of PPCPs in wastewater treatment processes. The mechanisms involved in phycoremediation, along with their experimental approaches, have been discussed in detail. Factors influencing the removal of PPCPs from aqueous media are comprehensively described and assessed. A comparative study on microalgal strains is analyzed for a more efficient implementation of future processes. The role of microalgae to mitigate the most severe environmental impacts of PPCPs and the generation of antibiotic-resistant bacteria is discussed. Also, a detailed assessment of recent research on potential toxic effects of PPCPs on microalgae was conducted. The current review highlights microalgae as a promising and sustainable approach to efficiently bio-transform or bio-adsorb PPCPs.
Collapse
Affiliation(s)
- Sufia Hena
- Department of Chemistry, Curtin Water Quality Research Centre, Curtin University, Australia
| | | | - Jean-Philippe Croué
- Institut de Chimie des Milieux et des Matériaux, IC2MP UMR 7285 CNRS, Université de Poitiers, France.
| |
Collapse
|
21
|
Martínez-Quintela M, Arias A, Alvarino T, Suarez S, Garrido JM, Omil F. Cometabolic removal of organic micropollutants by enriched nitrite-dependent anaerobic methane oxidizing cultures. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123450. [PMID: 32731114 DOI: 10.1016/j.jhazmat.2020.123450] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/16/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
The innovative and recently discovered n-damo process, based on anaerobic methane oxidation with nitrite, was developed in a membrane-based bioreactor and evaluated in terms of organic micropollutants (OMPs) removal. The main singularity of this study consisted in the evaluation of organic micropollutants (OMPs) removal in the biological reactor. A strategy consisting on progressively increasing the nitrogen loading rate in order to increase the specific denitrification activity was followed to check if the selected OMPs were co-metabolically biotransformed. Significant nitrite removal rate (24.1 mg N L-1 d-1) was achieved after only 30 days of operation. A maximum specific removal of 186.3 mg N gVSS-1 d-1 was obtained at the end of the operation, which is one of the highest previously reported. A successfully n-damo bacteria enrichment was achieved, being Candidatus Methylomirabilis the predominant bacteria during the whole operation attaining a maximum relative abundance of about 40 %. The natural hormones (E1 and E2) were completely removed in the bioreactor. The specific removal rates of erythromycin (ERY), fluoxetine (FLX), roxithromycin (ROX) and sulfamethoxazole (SMX) were successfully correlated with the specific nitrite removal rates, suggesting a co-metabolic biotransformation.
Collapse
Affiliation(s)
- Miguel Martínez-Quintela
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, Campus Vida, E-15782, Santiago de Compostela, Spain.
| | - Adrián Arias
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, Campus Vida, E-15782, Santiago de Compostela, Spain
| | - Teresa Alvarino
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, Campus Vida, E-15782, Santiago de Compostela, Spain; Galician Water Research Center Foundation (Cetaqua Galicia). Emprendia Building, University of Santiago de Compostela, Campus Vida, E-15782, Santiago de Compostela, Spain
| | - Sonia Suarez
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, Campus Vida, E-15782, Santiago de Compostela, Spain
| | - Juan Manuel Garrido
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, Campus Vida, E-15782, Santiago de Compostela, Spain
| | - Francisco Omil
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, Campus Vida, E-15782, Santiago de Compostela, Spain
| |
Collapse
|
22
|
Nguyen PY, Carvalho G, Reis MAM, Oehmen A. A review of the biotransformations of priority pharmaceuticals in biological wastewater treatment processes. WATER RESEARCH 2021; 188:116446. [PMID: 33038717 DOI: 10.1016/j.watres.2020.116446] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/19/2020] [Accepted: 09/22/2020] [Indexed: 05/18/2023]
Abstract
Wastewater effluent discharges have been considered as one of the main sources of synthetic chemicals entering into the aquatic environment. Even though they occur at low concentrations, pharmaceutically active compounds (PhACs) can have an impact on ecological toxicity that affects aquatic organisms. Moreover, new regulations in development toward preserving water quality reinforces the increasing need to monitor and abate some PhACs in wastewater treatment plants (WWTPs), where they are typically only partially eliminated. Unlike most previous reviews, we have focussed on how the main biological and chemical molecular factors impact the biotransformations of key PhACs in biological WWTP processes. Biotransformations have been found to be an important contributor towards the removal of PhACs from WWTP effluents. This review paper critically assesses these aspects and the recent advances that have been achieved in wastewater treatment processes for biodegradation of 7 PhACs; namely the non-steroidal anti-inflammatory drug (NSAID) diclofenac (DCF); the macrolide antibiotics azithromycin (AZM), erythromycin (ERY) and clarithromycin (CLR); the two natural estrogens estrone (E1) and 17β-estradiol (E2), and the synthetic estrogen 17α-ethinylesradiol (EE2). These represent the micropollutants of the EU Watch list in Decision 2015/495/EU that are most relevant to WWTPs due to their frequent detection. The metabolic pathways, transformation products and impact of relevant factors to biological WWTP processes is addressed in this review. The biokinetics of PhAC biodegradation in different engineered bioprocesses is also discussed. Promising technologies and operational strategies that are likely to have a high impact on controlling PhAC releases are highlighted and future research needs are also proposed.
Collapse
Affiliation(s)
- P Y Nguyen
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Gilda Carvalho
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Maria A M Reis
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Adrian Oehmen
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
23
|
Carneiro RB, Gonzalez-Gil L, Londoño YA, Zaiat M, Carballa M, Lema JM. Acidogenesis is a key step in the anaerobic biotransformation of organic micropollutants. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121888. [PMID: 31879099 DOI: 10.1016/j.jhazmat.2019.121888] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/25/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Understanding the role of the different anaerobic digestion stages on the removal of organic micropollutants (OMPs) is essential to mitigate their release from wastewater treatment plants. This study assessed the fate of 21 OMPs during hydrolysis and acidogenesis to elucidate the contribution of these stages to the overall anaerobic removal. Moreover, the removal mechanisms and factors influencing them were investigated. To this purpose, a fermentation reactor was operated and fed with two different substrates: starch (to jointly evaluate hydrolysis and acidogenesis) and glucose (to isolate acidogenesis). Results indicate that sulfamethoxazole was highly biotransformed (>80 %), while galaxolide, celestolide, tonalide, erythromycin, roxithromycin, trimethoprim, octylphenol and nonylphenol achieved a 50-80 % biotransformation. Since no significant differences in the biotransformation efficiencies were found between starch and glucose fermentation, it is stated that the enzymatic activities involved in starch hydrolysis do not significantly contribute to the cometabolic biotransformation of OMPs, while acidogenesis appears as the major player. Moreover, a higher biotransformation (≥15 percentage points and p ≤ 0.05) was found for galaxolide, celestolide, tonalide, erythromycin and roxithromycin during acidogenesis in comparison with the efficiencies reported for the acetogenic/methanogenic step. The biotransformation of some OMPs was explained considering their chemical structure and the enzymatic activities.
Collapse
Affiliation(s)
- Rodrigo B Carneiro
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa, E-15782 Santiago de Compostela, Spain; Biological Processes Laboratory (LPB), Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, 1100, João Dagnone Ave., Santa Angelina, 13563-120, São Carlos, São Paulo, Brazil.
| | - Lorena Gonzalez-Gil
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa, E-15782 Santiago de Compostela, Spain.
| | - Yudy Andrea Londoño
- GDCON Research Group, Faculty of Engineering, University Research Headquarters (SIU), University of Antioquia, Street 70 # 52-21, Medellín, Colombia.
| | - Marcelo Zaiat
- Biological Processes Laboratory (LPB), Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, 1100, João Dagnone Ave., Santa Angelina, 13563-120, São Carlos, São Paulo, Brazil.
| | - Marta Carballa
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa, E-15782 Santiago de Compostela, Spain.
| | - Juan M Lema
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
24
|
Removal of Organic Micro-Pollutants by Conventional Membrane Bioreactors and High-Retention Membrane Bioreactors. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10082969] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ubiquitous presence of organic micropollutants (OMPs) in the environment as a result of continuous discharge from wastewater treatment plants (WWTPs) into water matrices—even at trace concentrations (ng/L)—is of great concern, both in the public and environmental health domains. This fact essentially warrants developing and implementing energy-efficient, economical, sustainable and easy to handle technologies to meet stringent legislative requirements. Membrane-based processes—both stand-alone or integration of membrane processes—are an attractive option for the removal of OMPs because of their high reliability compared with conventional process, least chemical consumption and smaller footprint. This review summarizes recent research (mainly 2015–present) on the application of conventional aerobic and anaerobic membrane bioreactors used for the removal of organic micropollutants (OMP) from wastewater. Integration and hybridization of membrane processes with other physicochemical processes are becoming promising options for OMP removal. Recent studies on high retention membrane bioreactors (HRMBRs) such as osmotic membrane bioreactor (OMBRs) and membrane distillation bioreactors (MDBRs) are discussed. Future prospects of membrane bioreactors (MBRs) and HRMBRs for improving OMP removal from wastewater are also proposed.
Collapse
|
25
|
Gani KM, Kazmi AA. Ecotoxicological risk evaluation and regulatory compliance of endocrine disruptor phthalates in a sustainable wastewater treatment scheme. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7785-7794. [PMID: 31889277 DOI: 10.1007/s11356-019-07418-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Due to their pervasive applications, phthalic acid esters or phthalates have ample presence in all environmental compartments. A principal source of their existence in freshwater is phthalate-laden wastewater treatment plant effluents. For its sustainable operation and biogas production, wastewater treatment scheme of up flow anaerobic sludge blanket (UASB) and polishing pond is more prevalent in developing countries. This yearlong study focused on evaluating the occurrence, fate and risk of four priority phthalates, diethyl phthalate (DEP), dibutyl phthalate (DBP), benzylbutyl phthalate (BBP), and diethylhexyl phthalate (DEHP) in a UASB+ polishing pond-based wastewater treatment plant. Concentration of the phthalates in raw wastewater ranged from nd to 17.36 μg/L (DEP), 0.92 to 18.26 μg/L (DBP), nd to 6.54 μg/L (BBP), and nd to 53.21 μg/L (DEHP). DEHP concentrations in UASB sludge were below 100 mg/kg, the recommended limit by the European Union for safe disposal of dewatered sludge. All four compounds were removed approximately 80% in the wastewater treatment plant, with larger removal in polishing pond than UASB. Sorption contributes a significant portion of BBP and DEHP removal (15-24%) in UASB than DEP and DBP (0-3%). Seasonally, larger removals of phthalates were observed during the summer season. Risk assessment showed that the treated effluents had low risk of DEP, DBP, and BBP. However, the hazard quotient (HQ) of DEHP was greater than 1. To comply with regulations, dilution requirement of effluents was investigated which showed that a dilution factor of 4.4 in summer and 2.1 in winter is required for effluents of UASB + Pond-based treatment plant.
Collapse
Affiliation(s)
- Khalid Muzamil Gani
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, Durban, 4001, South Africa.
- Environmental Engineering Group, Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| | - Absar Ahmad Kazmi
- Environmental Engineering Group, Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
26
|
Jia Y, Yin L, Khanal SK, Zhang H, Oberoi AS, Lu H. Biotransformation of ibuprofen in biological sludge systems: Investigation of performance and mechanisms. WATER RESEARCH 2020; 170:115303. [PMID: 31751892 DOI: 10.1016/j.watres.2019.115303] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Ibuprofen (IBU), a common non-steroidal anti-inflammatory drug (NSAID), is widely used by humans for controlling fever and pain, and is frequently detected in the influent of wastewater treatment plants and different aquatic environments. In this study, the biotransformation of IBU in activated sludge (AS), anaerobic methanogenic sludge (AnMS) and sulfate-reducing bacteria (SRB)-enriched sludge systems was investigated at three different concentrations of 100, 500 and 1000 μg/L via a series of batch and continuous studies. IBU at concentration of 100 μg/L was effectively biodegraded by AS whereas AnMS and SRB-enriched sludge were less effective in IBU biodegradation at all concentrations tested. However, at higher IBU concentrations of 500 and 1000 μg/L, AS showed poor IBU biodegradation and chemical oxygen demand (COD) removal due to inhibition of aerobic heterotrophic bacteria (i.e., Candidatus Competibacter) by IBU and/or IBU biotransformation products. The microbial analyses showed that IBU addition shifted the microbial community structure in AS, AnMS and SRB-enriched sludge systems, however, the removals of COD, nitrogen and sulfur in both anaerobic sludge systems were not affected significantly (p > 0.05). The findings of this study provided a new insight into biotransformation of IBU in three important biological sludge systems.
Collapse
Affiliation(s)
- Yanyan Jia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Shenzhen Research Institute of Sun Yat-sen University, Shenzhen, PR China
| | - Linwan Yin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Shenzhen Research Institute of Sun Yat-sen University, Shenzhen, PR China
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, USA
| | - Huiqun Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Shenzhen Research Institute of Sun Yat-sen University, Shenzhen, PR China
| | - Akashdeep Singh Oberoi
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Shenzhen Research Institute of Sun Yat-sen University, Shenzhen, PR China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Shenzhen Research Institute of Sun Yat-sen University, Shenzhen, PR China.
| |
Collapse
|
27
|
Khan NA, Khan SU, Ahmed S, Farooqi IH, Yousefi M, Mohammadi AA, Changani F. Recent trends in disposal and treatment technologies of emerging-pollutants- A critical review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115744] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Bhowmick GD, Das S, Ghangrekar MM, Mitra A, Banerjee R. Improved Wastewater Treatment by Combined System of Microbial Fuel Cell with Activated Carbon/TiO2 Cathode Catalyst and Membrane Bioreactor. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s40030-019-00406-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
29
|
Jia Y, Zhang H, Khanal SK, Yin L, Lu H. Insights into pharmaceuticals removal in an anaerobic sulfate-reducing bacteria sludge system. WATER RESEARCH 2019; 161:191-201. [PMID: 31195335 DOI: 10.1016/j.watres.2019.06.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
In this study, we examined eight typical and widely detected pharmaceuticals (PhAs) removal in an anaerobic sulfate-reducing bacteria (SRB) sludge system (five antibiotics: sulfadiazine (SD), sulfamethoxazole (SMX), trimethoprim (TMP), ciprofloxacin (CIP) and enoxacin (ENO), and three nonsteroidal anti-inflammatory drugs (NSAIDs): ibuprofen (IBU), ketoprofen (KET) and diclofenac (DIC)). The results showed that the SRB sludge had the higher removal efficacy (20 to 90%) for antibiotics (SD, SMX, TMP, CIP and ENO) than NSAIDs (<20%) via adsorption and biodegradation under different operating conditions. Based on a series of batch studies, fluoroquinolone antibiotics (CIP and ENO) were instantly (<15 min) removed (∼98%) via adsorption on SRB sludge with adsorption coefficient (Kd) as high as 25.3 ± 1.8 L/g-suspended solids (SS). And thermodynamics results indicated that the adsorption of CIP and ENO on SRB sludge was spontaneous (Gibbs free energy change (ΔG°) <0 kJ/mol), exothermic (enthalpy change (ΔH°) <0 kJ/mol), and the adsorption process involved both physisorption and chemisorption (absolute value of ΔH° = 20 to 80 kJ/mol). Three widely prescribed antibiotics (SMX, TMP and CIP) were further investigated for their possible biodegradation pathways along with functional enzymes involved through a series of batch experiments. The biotransformation intermediates indicated that biotransformations of SMX and CIP in SRB sludge system could be initiated from the cleavage of isoxazole and piperazinyl rings catalyzed by sulfite reductase (SR) and cytochrome P450 (CYP450) enzymes, respectively. TMP was likely biotransformed via O-demethylation and N-acetylation coupled with hydroxylation reactions with CYP450 enzymes as the main functional enzymes. This study provided new insight into PhAs removal in SRB sludge system, and has significant potential of implementing sulfur-mediated biological process for the treatment of PhAs containing wastewater.
Collapse
Affiliation(s)
- Yanyan Jia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong
| | - Huiqun Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, USA
| | - Linwan Yin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China.
| |
Collapse
|
30
|
Oberoi AS, Jia Y, Zhang H, Khanal SK, Lu H. Insights into the Fate and Removal of Antibiotics in Engineered Biological Treatment Systems: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7234-7264. [PMID: 31244081 DOI: 10.1021/acs.est.9b01131] [Citation(s) in RCA: 392] [Impact Index Per Article: 78.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Antibiotics, the most frequently prescribed drugs of modern medicine, are extensively used for both human and veterinary applications. Antibiotics from different wastewater sources (e.g., municipal, hospitals, animal production, and pharmaceutical industries) ultimately are discharged into wastewater treatment plants. Sorption and biodegradation are the two major removal pathways of antibiotics during biological wastewater treatment processes. This review provides the fundamental insights into sorption mechanisms and biodegradation pathways of different classes of antibiotics with diverse physical-chemical attributes. Important factors affecting sorption and biodegradation behavior of antibiotics are also highlighted. Furthermore, this review also sheds light on the critical role of extracellular polymeric substances on antibiotics adsorption and their removal in engineered biological wastewater treatment systems. Despite major advancements, engineered biological wastewater treatment systems are only moderately effective (48-77%) in the removal of antibiotics. In this review, we systematically summarize the behavior and removal of different antibiotics in various biological treatment systems with discussion on their removal efficiency, removal mechanisms, critical bioreactor operating conditions affecting antibiotics removal, and recent innovative advancements. Besides, relevant background information including antibiotics classification, physical-chemical properties, and their occurrence in the environment from different sources is also briefly covered. This review aims to advance our understanding of the fate of various classes of antibiotics in engineered biological wastewater treatment systems and outlines future research directions.
Collapse
Affiliation(s)
| | - Yanyan Jia
- Department of Civil and Environmental Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Hong Kong
| | | | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering , University of Hawaii at Ma̅noa , 1955 East-West Road , Honolulu , Hawaii 96822 , United States
| | | |
Collapse
|
31
|
Alvarino T, Allegue T, Fernandez-Gonzalez N, Suarez S, Lema JM, Garrido JM, Omil F. Minimization of dissolved methane, nitrogen and organic micropollutants emissions of effluents from a methanogenic reactor by using a preanoxic MBR post-treatment system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:165-174. [PMID: 30928746 DOI: 10.1016/j.scitotenv.2019.03.169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/27/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
The use of a hybrid membrane bioreactor (MBR) post-treatment system is proposed as a cost-efficient technology in order to minimize the environmental impact of anaerobic effluents, treating low-strength sewage at room temperature, such as their high nitrogen content and the presence of dissolved methane. In this research, nitrite was externally added at different concentrations into the anoxic compartment, providing an extra electron acceptor besides the existing nitrate, to evaluate its effect on denitrification, methane oxidation and OMPs removal processes. The nitrite addition significantly improved the denitrification potential of the system, achieving nitrogen removals up to 35 mg TN L-1. Moreover, higher nitrite concentrations clearly promoted an increase in the removal of some organic micropollutants (OMPs) such as diclofenac (DCF), ethinylestradiol (EE2), triclosan (TCS) and ibuprofen (IBP). Nevertheless, methane removal efficiencies or rates were not affected by this fact. Finally, COD and ammonium removals higher than 99 and 91% were observed during the entire operation, respectively. Based on the results, a future strategy in which ammonium is partially oxidized to nitrite could result in better nitrogen and OMPs removals for the proposed technology.
Collapse
Affiliation(s)
- T Alvarino
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - T Allegue
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - N Fernandez-Gonzalez
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - S Suarez
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - J M Lema
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - J M Garrido
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - F Omil
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| |
Collapse
|
32
|
Harb M, Lou E, Smith AL, Stadler LB. Perspectives on the fate of micropollutants in mainstream anaerobic wastewater treatment. Curr Opin Biotechnol 2019; 57:94-100. [DOI: 10.1016/j.copbio.2019.02.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 02/14/2019] [Accepted: 02/24/2019] [Indexed: 11/30/2022]
|
33
|
Nsenga Kumwimba M, Meng F. Roles of ammonia-oxidizing bacteria in improving metabolism and cometabolism of trace organic chemicals in biological wastewater treatment processes: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:419-441. [PMID: 31096373 DOI: 10.1016/j.scitotenv.2018.12.236] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/20/2018] [Accepted: 12/15/2018] [Indexed: 05/27/2023]
Abstract
While there has been a significant recent improvement in the removal of pollutants in natural and engineered systems, trace organic chemicals (TrOCs) are posing a major threat to aquatic environments and human health. There is a critical need for developing potential strategies that aim at enhancing metabolism and/or cometabolism of these compounds. Recently, knowledge regarding biodegradation of TrOCs by ammonia-oxidizing bacteria (AOB) has been widely developed. This review aims to delineate an up-to-date version of the ecophysiology of AOB and outline current knowledge related to biodegradation efficiencies of the frequently reported TrOCs by AOB. The paper also provides an insight into biodegradation pathways by AOB and transformation products of these compounds and makes recommendations for future research of AOB. In brief, nitrifying WWTFs (wastewater treatment facilities) were superior in degrading most TrOCs than non-nitrifying WWTFs due to cometabolic biodegradation by the AOB. To fully understand and/or enhance the cometabolic biodegradation of TrOCs by AOB, recent molecular research has focused on numerous crucial factors including availability of the compounds to AOB, presence of growth substrate (NH4-N), redox potentials, microorganism diversity (AOB and heterotrophs), physicochemical properties and operational parameters of the WWTFs, molecular structure of target TrOCs and membrane-based technologies, may all significantly impact the cometabolic biodegradation of TrOCs. Still, further exploration is required to elucidate the mechanisms involved in biodegradation of TrOCs by AOB and the toxicity levels of formed products.
Collapse
Affiliation(s)
- Mathieu Nsenga Kumwimba
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; Faculty of Agronomy, Department of Natural Resources and Environmental Management, University of Lubumbashi, Democratic Republic of the Congo
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
34
|
Ma J, Dai R, Chen M, Khan SJ, Wang Z. Applications of membrane bioreactors for water reclamation: Micropollutant removal, mechanisms and perspectives. BIORESOURCE TECHNOLOGY 2018; 269:532-543. [PMID: 30195697 DOI: 10.1016/j.biortech.2018.08.121] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Membrane bioreactors (MBRs) have attracted attention in water reclamation as a result of the recent technical advances and cost reduction in membranes. However, the increasing occurrence of micropollutants in wastewaters has posed new challenges. Therefore, we reviewed the current state of research to identify the outstanding needs in this field. In general, the fate of micropollutants in MBRs relates to sorption, biodegradation and membrane separation processes. Hydrophobic, nonionized micropollutants are favorable in sorption, and the biological degradation shows higher efficiency at relatively long SRTs (30-40 days) and HRTs (20-30 h), as a result of co-metabolism, metabolism and/or ion trapping. Although the membrane rejection rates for micropollutants are generally minor, final water quality can be improved via combination with other technologies. This review highlights the challenges and perspectives that should be addressed to facilitate the extended use of MBRs for the removal of micropollutants in water reclamation.
Collapse
Affiliation(s)
- Jinxing Ma
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Safety, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Safety, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Mei Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Safety, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Stuart J Khan
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Safety, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
35
|
Gu Y, Huang J, Zeng G, Shi L, Shi Y, Yi K. Fate of pharmaceuticals during membrane bioreactor treatment: Status and perspectives. BIORESOURCE TECHNOLOGY 2018; 268:733-748. [PMID: 30149910 DOI: 10.1016/j.biortech.2018.08.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 06/08/2023]
Abstract
Pharmaceuticals in surface waters and wastewater treatment plants (WWTPs) as emerging pollutants have become a major concern. In comparison with other wastewater treatments, removal of pharmaceuticals in MBR has received much attention. This review presents the source and occurrence of pharmaceuticals in WWTPs influents. Experimental studies related to the removal of pharmaceuticals during MBR treatment, key affecting factors (including the different stages of MBR process configuration and the process parameters), and the underlying mechanisms proposed to explain the biodegradation and adsorption behaviors, have been comprehensively discussed. Several transformation products of pharmaceuticals are also reviewed in this paper. Furthermore, further research is needed to gain more information about the multiple influence factors of the pharmaceuticals elimination, appropriate methods for promoting pharmaceuticals elimination, more essential removal pathways, effect of pharmaceuticals on membrane fouling, and the detection and analysis of transformation products.
Collapse
Affiliation(s)
- Yanling Gu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China
| | - Jinhui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China
| | - Lixiu Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China
| | - Yahui Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China
| | - Kaixin Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
36
|
Wu CY, Bai L, Gu F, Wei W, Guo LX, Wen DM. Elimination of typical polycyclic musks in a full-scale membrane bioreactor combined with anaerobic-anoxic-oxic process in municipal wastewater treatment plant. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 78:1459-1465. [PMID: 30427785 DOI: 10.2166/wst.2018.423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The objective of this study was to investigate the removal of 11 synthetic polycyclic musks in a municipal wastewater treatment plant located in Jilin, China, by using a membrane bioreactor combined with anaerobic-anoxic-oxic process. The analysis of synthetic polycyclic musks was conducted with gas chromatography/mass spectrometry after solid-phase extraction. The removal efficiency of 11 synthetic polycyclic musks ranged from 65.9% (3-methylcyclopentadecanone) to 84.6% (Galoxolide) in the influent. Along the treatment process, it was observed that the anaerobic tank could remove the synthetic polycyclic musks effectively whereas the role of the membrane was to the musks, which could be ascribed to the relatively strong hydrophobic property of the musks. The sludge-water distribution coefficients (Kd values) as indicator of adsorption propensity for the sludge from anaerobic, anoxic, oxic and membrane tanks were measured. The high value of Kd, above 5.0 litres per gram of suspended solids, showed most of the musks could be removed by sludge through the adsorption process; thus the removal rate from the water phase caused by adsorption in the wastewater treatment plant can be predicted.
Collapse
Affiliation(s)
- Chun-Ying Wu
- School of Resources and Environmental Engineering, Jilin Institute of Chemical Technology, Jilin, China E-mail:
| | - Lu Bai
- School of Resources and Environmental Engineering, Jilin Institute of Chemical Technology, Jilin, China E-mail:
| | - Feng Gu
- School of Resources and Environmental Engineering, Jilin Institute of Chemical Technology, Jilin, China E-mail:
| | - Wei Wei
- School of Resources and Environmental Engineering, Jilin Institute of Chemical Technology, Jilin, China E-mail:
| | - Li-Xiu Guo
- Oil Refinery Factory, China Petroleum Jilin Petrochemical Company, Jilin, China
| | - Dong-Mei Wen
- Research Institute, China Petroleum Jilin Petrochemical Company, Jilin, China
| |
Collapse
|
37
|
Arias A, Alvarino T, Allegue T, Suárez S, Garrido JM, Omil F. An innovative wastewater treatment technology based on UASB and IFAS for cost-efficient macro and micropollutant removal. JOURNAL OF HAZARDOUS MATERIALS 2018; 359:113-120. [PMID: 30014906 DOI: 10.1016/j.jhazmat.2018.07.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/27/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
An innovative process based on the combination of a UASB reactor and an IFAS system is proposed in order to combine different redox conditions and biomass conformations to promote a high microbial diversity. The objective of this configuration is to enhance the biological removal of organic micropollutants (OMPs) as well as to achieve the abatement of nitrogen by using the dissolved methane as an inexpensive electron donor. Results showed high removals of COD (93%) and dissolved methane present in the UASB effluent (up to 85%) was biodegraded by a consortium of aerobic methanotrophs and heterotrophic denitrifiers. Total nitrogen removal decreased slightly along the operation (from 44 to 33%), depending on the availability of electron donor, biomass concentration, and configuration (floccules and biofilm). A high removal was achieved in the hybrid system (>80%) for 6 of the studied OMPs. Sulfamethoxazole, trimethoprim, naproxen, and estradiol were readily biotransformed under anaerobic conditions, whereas ibuprofen or bisphenol A were removed in the anoxic-aerobic compartment. Evidence of the cometabolic biotransformation of OMPs has been found, such as the influence of nitrification activity on the removal of bisphenol A, and of the denitrification activity on ethinylestradiol removal.
Collapse
Affiliation(s)
- A Arias
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Spain.
| | - T Alvarino
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Spain.
| | - T Allegue
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Spain.
| | - S Suárez
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Spain.
| | - J M Garrido
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Spain.
| | - F Omil
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Spain.
| |
Collapse
|
38
|
Tran NH, Reinhard M, Gin KYH. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. WATER RESEARCH 2018; 133:182-207. [PMID: 29407700 DOI: 10.1016/j.watres.2017.12.029] [Citation(s) in RCA: 706] [Impact Index Per Article: 117.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/30/2017] [Accepted: 12/13/2017] [Indexed: 05/22/2023]
Abstract
Emerging contaminants, such as antibiotics, pharmaceuticals, personal care products, hormones, and artificial sweeteners, are recognized as new classes of water contaminants due to their proven or potential adverse effects on aquatic ecosystems and human health. This review provides comprehensive data on the occurrence of 60 emerging contaminants (ECs) in influent, treated effluent, sludge, and biosolids in wastewater treatment plants (WWTPs). In particular, data on the occurrence of ECs in the influents and effluents of WWTPs are systematically summarized and categorized according to geographical regions (Asia, Europe, and North America). The occurrence patterns of ECs in raw influent and treated effluents of WWTPs between geographical regions were compared and evaluated. Concentrations of most ECs in raw influent in Asian region tend to be higher than those in European and North American countries. Many antibiotics were detected in the influents and effluents of WWTPs at concentrations close to or exceeding the predicted no-effect concentrations (PNECs) for resistance selection. The efficacy of EC removal by sorption and biodegradation during wastewater treatment processes are discussed in light of kinetics and parameters, such as sorption coefficients (Kd) and biodegradation constants (kbiol), and physicochemical properties (i.e. log Kow and pKa). Commonly used sampling and monitoring strategies are critically reviewed. Analytical research needs are identified, and novel investigative approaches for future monitoring studies are proposed.
Collapse
Affiliation(s)
- Ngoc Han Tran
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, T-Lab Building, Singapore 117411, Singapore.
| | - Martin Reinhard
- Department of Civil and Environmental Engineering, Stanford University, CA 94305, USA
| | - Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore.
| |
Collapse
|
39
|
Alvarino T, Suarez S, Lema J, Omil F. Understanding the sorption and biotransformation of organic micropollutants in innovative biological wastewater treatment technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:297-306. [PMID: 28982079 DOI: 10.1016/j.scitotenv.2017.09.278] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
New technologies for wastewater treatment have been developed in the last years based on the combination of biological reactors operating under different redox conditions. Their efficiency in the removal of organic micropollutants (OMPs) has not been clearly assessed yet. This review paper is focussed on understanding the sorption and biotransformation of a selected group of 17 OMPs, including pharmaceuticals, hormones and personal care products, during biological wastewater treatment processes. Apart from considering the role of "classical" operational parameters, new factors such as biomass conformation and particle size, upward velocity applied or the addition of adsorbents have been considered. It has been found that the OMP removal by sorption not only depends on their physico-chemical characteristics and other parameters, such as the biomass conformation and particle size, or some operational conditions also relevant. Membrane biological reactors (MBR), have shown to enhance sorption and biotransformation of some OMPs. The same applies to technologies bases on direct addition of activated carbon in bioreactors. The OMP biotransformation degree and pathway is mainly driven by the redox potential and the primary substrate activity. The combination of different redox potentials in hybrid reactor systems can significantly enhance the overall OMP removal efficiency. Sorption and biotransformation can be synergistically promoted in biological reactors by the addition of activated carbon. The deeper knowledge of the main parameters influencing OMP removal provided by this review will allow optimizing the biological processes in the future.
Collapse
Affiliation(s)
- T Alvarino
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain.
| | - S Suarez
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - J Lema
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - F Omil
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| |
Collapse
|
40
|
Jia Y, Khanal SK, Zhang H, Chen GH, Lu H. Sulfamethoxazole degradation in anaerobic sulfate-reducing bacteria sludge system. WATER RESEARCH 2017; 119:12-20. [PMID: 28433879 DOI: 10.1016/j.watres.2017.04.040] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/23/2017] [Accepted: 04/15/2017] [Indexed: 06/07/2023]
Abstract
Sulfamethoxazole (SMX) is one of the most commonly used antibiotics. SMX degradation in sulfate-reducing bacteria (SRB) sludge systems has not been reported so far. This research investigated the SMX degradation using SRB sludge in a sulfate-reducing up-flow sludge bed reactor. Moreover, the mechanisms and kinetics of SMX removal were also investigated using SRB sludge via a series of batch experiments. The results showed that SMX removal was characterized by a rapid sorption onto SRB sludge, and desorption from SRB sludge to aqueous phase until achieving equilibrium, and then followed by slow biodegradation. Biodegradation was the dominant route for SMX removal. The sorption process conformed well to a pseudo-second-order kinetic model, meaning that the sorption occurred primarily via a chemical sorption process. The removal of SMX followed the pseudo-zero-order kinetic model with a specific removal rate of 13.2 ± 0.1 μg/L/d at initial SMX concentration 100 μg/L in batch tests. Based on the analysis of metabolites, most of the SMX biotransformation products' structures altered in the isoxazole ring, which were significantly different from that produced by aerobic and anaerobic sludge systems. Thus, SRB sludge system could play an important role in SMX biodegradation, especially in Sulfate-reduction Autotrophic denitrification and Nitrification Integrated (SANI) process for sewage treatment.
Collapse
Affiliation(s)
- Yanyan Jia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, USA
| | - Huiqun Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China.
| |
Collapse
|
41
|
Grandclément C, Seyssiecq I, Piram A, Wong-Wah-Chung P, Vanot G, Tiliacos N, Roche N, Doumenq P. From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: A review. WATER RESEARCH 2017; 111:297-317. [PMID: 28104517 DOI: 10.1016/j.watres.2017.01.005] [Citation(s) in RCA: 291] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 12/15/2016] [Accepted: 01/02/2017] [Indexed: 05/02/2023]
Abstract
Because of the recalcitrance of some micropollutants to conventional wastewater treatment systems, the occurrence of organic micropollutants in water has become a worldwide issue, and an increasing environmental concern. Their biodegradation during wastewater treatments could be an interesting and low cost alternative to conventional physical and chemical processes. This paper provides a review of the organic micropollutants removal efficiency from wastewaters. It analyses different biological processes, from conventional ones, to new hybrid ones. Micropollutant removals appear to be compound- and process- dependent, for all investigated processes. The influence of the main physico-chemical parameters is discussed, as well as the removal efficiency of different microorganisms such as bacteria or white rot fungi, and the role of their specific enzymes. Even though some hybrid processes show promising micropollutant removals, further studies are needed to optimize these water treatment processes, in particular in terms of technical and economical competitiveness.
Collapse
Affiliation(s)
- Camille Grandclément
- Aix-Marseille Univ, CNRS, LCE, Marseille, France; Aix-Marseille Univ, CNRS, Centrale Marseille, M2P2, Marseille, France; Société Seakalia SAS, Groupe Ovalee, Technopôle de Château-Gombert, Héliopolis, 13013, Marseille, France
| | | | - Anne Piram
- Aix-Marseille Univ, CNRS, LCE, Marseille, France
| | | | - Guillaume Vanot
- Société Seakalia SAS, Groupe Ovalee, Technopôle de Château-Gombert, Héliopolis, 13013, Marseille, France
| | - Nicolas Tiliacos
- Société Seakalia SAS, Groupe Ovalee, Technopôle de Château-Gombert, Héliopolis, 13013, Marseille, France
| | - Nicolas Roche
- Aix-Marseille Univ, CNRS, Centrale Marseille, M2P2, Marseille, France.
| | | |
Collapse
|
42
|
Gani KM, Kazmi AA. Comparative assessment of phthalate removal and risk in biological wastewater treatment systems of developing countries and small communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:661-671. [PMID: 27380392 DOI: 10.1016/j.scitotenv.2016.06.182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
Phthalates are widely used in plastic and personnel care products. Being non-steroid endocrine disrupting compounds, their exposure have toxic effects on aquatic life and human health. The aim of this study was a comparative assessment of their fate and risk in full scale wastewater treatment along with influence of seasonal variations. Four priority phthalates, Diethylphthalate (DEP), Dibutylphthalate (DBP), Benzylbutyl phthalate (BBP) and Diethylhexyl phthalate (DEHP) were chosen for this study and wastewater treatment plants investigated were designed as nutrient removal based sequencing batch reactor (SBR), conventional activated sludge process (ASP) and up flow anaerobic sludge blanket (UASB) with polishing pond. Results showed that the main removal mechanism of phthalates was biotransformation with removal contribution of 74% in SBR, 65% in conventional ASP and 37% in UASB. Overall removal of phthalates was maximum in the treatment combination of UASB and pond (83%) followed by SBR (80%) and conventional ASP (74%). Seasonal influences on occurrence, removal and risk of these phthalates were also studied. The concentration of DEP, DBP and DEHP in untreated wastewater increased by 2, 7 and 2μg/L, respectively in summer. However in sludge, only large molecular weight phthalates BBP and DEHP increased in winter by 3mg/kg and 12mg/kg, respectively. Seasonal variations in removal of phthalates were discrepant in each process with better removal during summer. Risk assessment of phthalates to aquatic life showed that there is no potential risk of DEP, DBP and BBP from effluents of treatment plants however risk quotient of DEHP was in the range of 27-73 in both seasons which indicate probable risk to aquatic organisms. Phthalate risk to human beings estimated by daily intake of phthalates was in the range of 0.3±0.1 to 20±0.7ng/kg/d and far below their respective reference dosages, demonstrating the potential of these treatment plants to reduce the risk of phthalates.
Collapse
Affiliation(s)
- Khalid Muzamil Gani
- Environmental Engineering Group, Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttrakhand, 247667, India.
| | - Absar Ahmad Kazmi
- Environmental Engineering Group, Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttrakhand, 247667, India.
| |
Collapse
|