1
|
Wang H, Feng S, Pan E, Ji X, Zhou M, Zhang S, Xu B, Feng H, Yin J, Dong Z. Ferulic acid alleviates long-term avermectin-induced damage to the spleen of carp and restores its inflammatory response and oxidative balance. J Environ Sci (China) 2025; 151:616-626. [PMID: 39481967 DOI: 10.1016/j.jes.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 11/03/2024]
Abstract
Extensive use of avermectin (AVM) in agriculture can seriously contaminate fish in aquaculture. Ferulic acid (FA) is a strong antioxidant sourced from plants and is widely applied in food and medicine, but its protective function on the immunological damage caused by AVM is still lacking. In this study, carp were chronically exposed to (1/10 96 hr LC50) AVM for 30 day(s), with a dietary supplement of FA (400 mg/kg) to assess its effects on carp spleen. The experimental groups (n = 10) included: control, AVM-exposed (2.404 µg/L), FA + AVM co-treated, and FA alone. Long-term AVM exposure altered spleen tissue, reducing serum complement C3 (p < 0.01) and immunoglobulin M levels (p < 0.001), and increasing pro-inflammatory tnf-α (p < 0.001), il-6 (p < 0.001), il-1β (p < 0.001), and inos mRNA levels, whilst down-regulating the anti-inflammatory tgf-β (p < 0.05). Additionally, it disrupted the balance of oxidative stress indicators such as MDA (p < 0.001), T-AOC, GSH, and CAT, leading to spleen tissue apoptosis (42.4%). However, the addition of FA reversed these conditions, elevated the anti-inflammatory factor, and improved spleen immune function following chronic exposure to AVM in carp. Moreover, the ability to restore oxidative homeostasis in carp by adjusting the Nrf2/NQO-1 axis protected the health of spleen tissues. This discovery also supports the development of fish feed for aquaculture.
Collapse
Affiliation(s)
- Hanyu Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shenye Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Enzhuang Pan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaomeng Ji
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mengyuan Zhou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shuai Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Baoshi Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Huimiao Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jilei Yin
- Department of Traditional Chinese Medicine, Jiangsu Union Technical Institute Lianyungang Branch institute of Traditional Chinese Medicine, Lianyungang 222006, China.
| | - Zibo Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
2
|
Wang Q, Zhang S, Ding J, Zhang Z, Li X, Chen Y, Zhu Y, Zeng D, Dong J, Liu Y. Ferulic acid alleviates cardiac injury by inhibiting avermectin-induced oxidative stress, inflammation and apoptosis. Comp Biochem Physiol C Toxicol Pharmacol 2024; 287:110058. [PMID: 39442783 DOI: 10.1016/j.cbpc.2024.110058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/21/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Avermectin (AVM) is a broad-spectrum antibiotic from the macrolide class, extensively employed in fisheries and aquaculture. Nevertheless, its indiscriminate utilisation has resulted in a substantial accumulation of remnants in the aquatic ecosystem, potentially inflicting significant harm to the cardiovascular system of aquatic species. Ferulic acid (FA) is a naturally occurring compound in wheat grain husks. It possesses potent anti-inflammatory and antioxidant properties, which can help reduce cardiovascular damage. Additionally, its affordability makes it an excellent option for aquaculture usage as a feed additive. This article explored the potential of FA as a feed additive to protect against AVM-induced heart damage in carp. We subjected carp to AVM for 30 days and provided them with a diet of 400 mg/kg of FA. FA substantially reduced the pathogenic damage to heart tissue caused by AVM, as shown through hematoxylin-eosin staining. The biochemical analysis revealed that FA markedly enhanced the activity of antioxidant enzymes catalase (CAT), glutathione (GSH), and total antioxidant capacity (T-AOC) while reducing the malondialdehyde (MDA) content. Furthermore, qPCR analysis demonstrated a substantial increase in the mRNA levels of transforming growth factor-β1 (tgf-β1) and interleukin-10 (il-10) simultaneously, significantly reducing the expression levels of interleukin-10 (il-6), interleukin-1β (il-1β), tumor necrosis factor-α (tnf-α) and inductible nitric oxide synthase (inos). Through the mitochondrial apoptotic route, FA reduced AVM-induced cell death in carp heart cells by upregulating bcl-2 while downregulating the mRNA expression levels of bax, fas, caspase8 and caspase9. In summary, FA alleviated cardiac injury by inhibiting AVM-induced oxidative stress, inflammatory response, and apoptosis in carp heart tissue.
Collapse
Affiliation(s)
- Qiao Wang
- Department of Pathology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222000, China
| | - Shasha Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiahao Ding
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhiqiang Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xinxuan Li
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yuxin Chen
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yangye Zhu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Danping Zeng
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Yi Liu
- Department of Pathology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222000, China.
| |
Collapse
|
3
|
Cruz-González G, Pinos-Rodríguez JM, Alonso-Díaz MÁ, Romero-Salas D, Vicente-Martínez JG, Fernández-Salas A, Jarillo-Rodríguez J, Castillo-Gallegos E. Efficacy of Rotational Grazing on the Control of Rhipicephalus microplus Infesting Calves in Humid Tropical Conditions. J Parasitol Res 2024; 2024:7558428. [PMID: 39444677 PMCID: PMC11496573 DOI: 10.1155/2024/7558428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/04/2024] [Accepted: 09/21/2024] [Indexed: 10/25/2024] Open
Abstract
Grazing management through pasture rotation has been mentioned as a viable alternative for the control of Rhipicephalus microplus; however, there is limited information on rotational grazing at field level. The objectives of this research were (1) to evaluate the effect of rotational grazing with 30 and 45 days of pasture rest and continuous grazing (without rest) on R. microplus tick loads in Brahman heifers and its most common crosses with Holstein; (2) to know the parasite dynamics of R. microplus under the three grazing systems in the humid tropics of Mexico; and (3) to determine the effect of the treatments on the characteristics of the pastures (availability of forage biomass, plant height, and soil cover). The experiment was carried out for 1 year from April 2022 to March 2023, with three grazing treatments: Treatments 1 and 2 considered rotational grazing with 30 (RT30) and 45 days of rest (RT45), respectively, and Treatment 3 as continuous grazing (CT00). Thirty calves from 8 to 12 months of initial age were distributed in each treatment (n = 10). Every 14 days, the number of engorged and semiengorged female ticks in cattle was determined. Concomitantly, the region's temperature, relative humidity, and rainfall were recorded, as well as the agronomic characteristics of the pasture. Rotational grazing animals with 30 days of rest had the highest number of ticks, while grazing animals with 45 days of rest had the least. Tick load dynamics among groups did not correlate with climatic variables (p > 0.05). The height and grass cover presented significant changes due to grazing (p < 0.05), which could influence the tick cycle by the exposure of the soil, modifying the microclimatic conditions and consequently harming the survival and development of R. microplus in the evaluated systems. The negative effect of rotational grazing on the nonparasitic phase of R. microplus deserves further studies.
Collapse
Affiliation(s)
- Gabriel Cruz-González
- Faculty of Veterinary Medicine and Zootechnics, University of Veracruz, Veracruz 91710, Mexico
| | | | - Miguel Ángel Alonso-Díaz
- Center for Teaching, Research, and Extension in Tropical Livestock, Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, Mexico City 93600, Mexico
| | - Dora Romero-Salas
- Faculty of Veterinary Medicine and Zootechnics, University of Veracruz, Veracruz 91710, Mexico
| | | | - Agustín Fernández-Salas
- Center for Teaching, Research, and Extension in Tropical Livestock, Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, Mexico City 93600, Mexico
| | - Jesús Jarillo-Rodríguez
- Center for Teaching, Research, and Extension in Tropical Livestock, Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, Mexico City 93600, Mexico
| | - Epigmenio Castillo-Gallegos
- Center for Teaching, Research, and Extension in Tropical Livestock, Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, Mexico City 93600, Mexico
| |
Collapse
|
4
|
Hassan ZR, El-Sayed S, Zekry KM, Ahmed SG, Hassan Abd Elhamid A, Salama DEA, Taha AK, Mahmoud NA, Mohammed SF, Amin MM, Mohamed RE, Eraque AMS, Mohamed SA, Abdelgalil RM, Atta SA, Fahmy NT, Badr MS. Evaluation of muscular apoptotic changes and myogenin gene expression in experimental trichinosis after stem cells and atorvastatin added to ivermectin treatment. Exp Parasitol 2024; 265:108823. [PMID: 39187057 DOI: 10.1016/j.exppara.2024.108823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/20/2024] [Accepted: 08/08/2024] [Indexed: 08/28/2024]
Abstract
Trichinosis is a common parasitic disease that affects the striated skeletal muscles, causing apoptotic and degenerative changes associated with myogenin expression in the affected myocytes. Hence, this study aimed to assess the ameliorative effects of stem cells and atorvastatin added to ivermectin on the infected myocytes during the muscular phase of murine trichinosis. 120 laboratory Swiss albino male mice were divided into 10 groups, and each group was subdivided into intestinal and muscular phases (each n = 6); uninfected control; untreated infected control; infected received ivermectin monotherapy; infected received atorvastatin monotherapy; infected received stem cells monotherapy; infected received ivermectin and atorvastatin dual therapy; infected received ivermectin and stem cells dual therapy; infected received atorvastatin and stem cells dual therapy; infected received ivermectin 0.2, atorvastatin 40, and stem cells triple therapy; and infected received ivermectin 0.1, atorvastatin 20, and stem cells triple therapy. Intestinal phase mice were sacrificed on the 5th day post-infection, while those of the muscular phase were sacrificed on the 35th day post-infection. Parasitological, histopathological, ultrastructural, histochemical, biochemical, and myogenin gene expression assessments were performed. The results revealed that mice that received ivermectin, atorvastatin, and stem cell triple therapies showed the maximum reduction in the adult worm and larvae burden, marked improvement in the underlying muscular degenerative changes (as was noticed by histopathological, ultrastructural, and histochemical Feulgen stain assessment), lower biochemical levels of serum NK-κB and tissue NO, and lower myogenin expression. Accordingly, the combination of stem cells, atorvastatin, and ivermectin affords a potential synergistic activity against trichinosis with considerable healing of the underlying degenerative sequel.
Collapse
Affiliation(s)
- Zeinab R Hassan
- Departments of Parasitology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt; Departments of Parasitology, Benha National University (BNU), Qalyubia, Egypt.
| | - Samar El-Sayed
- Departments of Parasitology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Kareman M Zekry
- Departments of Parasitology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Samah G Ahmed
- Histology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | | | - Doaa E A Salama
- Pathology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt; Departments of Pathology, School of Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Azza Kamal Taha
- Pathology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Nihal A Mahmoud
- Physiology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | | | - Mona M Amin
- Pharmacology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | | | - Ayat M S Eraque
- Biochemestry, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Shimaa A Mohamed
- Biochemestry, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Ranya M Abdelgalil
- Anatomy, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | | | - Nermeen Talaat Fahmy
- Molecular Biology and Genomics, Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Mohamed S Badr
- Molecular Biology and Genetic-Bioinformatics Nano-Robot Diagnostics, Medical Research Centre, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
5
|
Wang WG, Jiang XF, Zhang C, Zhan XP, Cheng JG, Tao LM, Xu WP, Li Z, Zhang Y. Avermectin induced vascular damage in zebrafish larvae: association with mitochondria-mediated apoptosis and VEGF/Notch signaling pathway. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135376. [PMID: 39111175 DOI: 10.1016/j.jhazmat.2024.135376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/21/2024] [Accepted: 07/28/2024] [Indexed: 08/17/2024]
Abstract
Avermectin is a highly effective insecticide that has been widely used in agriculture since the 1990s. In recent years, the safety of avermectin for non-target organisms has received much attention. The vasculature is important organs in the body and participate in the composition of other organs. However, studies on the vascular safety of avermectin are lacking. The vasculature of zebrafish larvae is characterized by ease of observation and it is a commonly used model for vascular studies. Therefore, zebrafish larvae were used to explore the potential risk of avermectin on the vasculature. The results showed that avermectin induced vascular damage throughout the body of zebrafish larvae, including the head, eyes, intestine, somite, tail and other vasculature. The main forms of damage are reduction in vascular diameter, vascular area and vascular abundance. Meanwhile, avermectin induced a decrease in the number of endothelial cells and apoptosis within the vasculature. In addition, vascular damage may be related to impairment of mitochondrial function and mitochondria-mediated apoptosis. Finally, exploration of the molecular mechanisms revealed abnormal alterations in the expression of genes related to the VEGF/Notch signaling pathway. Therefore, the VEGF/Notch signaling pathway may be an important mechanism for avermectin-induced vascular damage in zebrafish larvae. This study demonstrates the vascular toxicity of avermectin in zebrafish larvae and reveals the possible molecular mechanism, which would hopefully draw more attention to the safety of avermectin in non-target organisms.
Collapse
Affiliation(s)
- Wei-Guo Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xu-Feng Jiang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Zhang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, United States
| | - Xiu-Ping Zhan
- Shanghai Agricultural Technology Extension Center, Shanghai 201103, China
| | - Jia-Gao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Li-Ming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wen-Ping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
6
|
Gonçalves do Amaral C, Pinto André E, Maffud Cilli E, Gomes da Costa V, Ricardo S Sanches P. Viral diseases and the environment relationship. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124845. [PMID: 39265774 DOI: 10.1016/j.envpol.2024.124845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/14/2024]
Abstract
Viral diseases have been present throughout human history, with early examples including influenza (1500 B.C.), smallpox (1000 B.C.), and measles (200 B.C.). The term "virus" was first used in the late 1800s to describe microorganisms smaller than bacteria, and significant milestones include the discovery of the polio virus and the development of its vaccine in the mid-1900s, and the identification of HIV/AIDS in the latter part of the 20th century. The 21st century has seen the emergence of new viral diseases such as West Nile Virus, Zika, SARS, MERS, and COVID-19. Human activities, including crowding, travel, poor sanitation, and environmental changes like deforestation and climate change, significantly influence the spread of these diseases. Conversely, viral diseases can impact the environment by polluting water resources, contributing to deforestation, and reducing biodiversity. These environmental impacts are exacerbated by disruptions in global supply chains and increased demands for resources. This review highlights the intricate relationship between viral diseases and environmental factors, emphasizing how human activities and viral disease progression influence each other. The findings underscore the need for integrated approaches to address the environmental determinants of viral diseases and mitigate their impacts on both health and ecosystems.
Collapse
Affiliation(s)
- Caio Gonçalves do Amaral
- School of Pharmaceutical Sciences, Laboratory of Molecular Virology, Department of Biological Science, São Paulo State University, UNESP, Brazil
| | - Eduardo Pinto André
- School of Pharmaceutical Sciences, Laboratory of Molecular Virology, Department of Biological Science, São Paulo State University, UNESP, Brazil
| | - Eduardo Maffud Cilli
- Institute of Chemistry, Laboratory of Synthesis and Studies of Biomolecules, Department of Biochemistry and Organic Chemistry, São Paulo State University, UNESP, Brazil
| | - Vivaldo Gomes da Costa
- Institute of Biosciences, Letters, and Exact Sciences, São Paulo State University, UNESP, Brazil
| | - Paulo Ricardo S Sanches
- School of Pharmaceutical Sciences, Laboratory of Molecular Virology, Department of Biological Science, São Paulo State University, UNESP, Brazil.
| |
Collapse
|
7
|
Zheng X, Li Q, Ullah F, Lu Z, Mo W, Guo J, Liu X, Xu H, Lu Y. Abamectin exposure causes chronic toxicity and trypsin/chymotrypsin damages in Chironomus kiiensis Tokunaga (Diptera: Chironomidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:105999. [PMID: 39084773 DOI: 10.1016/j.pestbp.2024.105999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 08/02/2024]
Abstract
Abamectin has been extensively used in paddy fields to control insect pests. However, little information is available regarding its effects on non-target insects. In this study, we performed acute (3rd instar larvae) and chronic toxicity (newly hatched larvae <24 h) to determine the toxicity effects of abamectin on Chironomus kiiensis. The median lethal concentration (LC50) values of 24 h and 10 d were 0.57 mg/L and 68.12 μg/L, respectively. The chronic exposure significantly prolonged the larvae growth duration and inhibited pupation and emergence. The transcriptome and biochemical parameters were measured using 3rd instar larvae exposed to acute LC10 and LC25 for 24 h. Transcriptome data indicated that five trypsin and four chymotrypsin genes were downregulated, and RT-qPCR verified a significant expression decrease in trypsin3 and chymotrypsin1 genes. Meanwhile, abamectin could significantly inhibit the activities of the serine proteases trypsin and chymotrypsin. RNA interference showed that silencing trypsin3 and chymotrypsin1 genes led to higher mortality of C. kiiensis to abamectin. In conclusion, these findings indicated that trypsin and chymotrypsin are involved in the abamectin toxicity against C. kiiensis, which provides new insights into the mechanism of abamectin-induced ecotoxicity to chironomids.
Collapse
Affiliation(s)
- Xusong Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Qiang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Farman Ullah
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Zhongxian Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Wujia Mo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Jiawen Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Xiaowei Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yanhui Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
8
|
Gan J, Ji X, Jin X, Zhou M, Yang C, Chen Z, Yin C, Dong Z. Silybin protected from avermectin-induced carp (Cyprinus carpio) nephrotoxicity by regulating PPAR-γ-involved inflammation, oxidative stress, ferroptosis and autophagy. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107011. [PMID: 38917644 DOI: 10.1016/j.aquatox.2024.107011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
Avermectin, a widely used deworming drug, poses a significant threat to fisheries. Silybin is recognized for its antioxidant and anti-inflammatory properties. The kidney, being crucial for fish survival, plays a vital role in maintaining ion balance, nitrogen metabolism, and hormone regulation. While residual avermectin in water could pose a risk to carp (Cyprinus carpio), it remains unclear whether silybin can alleviate the renal tissue toxicity induced by avermectin in this species. In current study, we developed a model of long-term exposure of carp to avermectin to investigate the potential protective effect of silybin against avermectin-induced nephrotoxicity. The results indicated that avermectin induced renal inflammation, oxidative stress, ferroptosis, and autophagy in carp. Silybin suppressed the mRNA transcript levels of pro-inflammatory factors, increased catalase (CAT) activity, reduced glutathione (GSH) activity, diminished reactive oxygen species (ROS) accumulation in renal tissues, and promoted the activation of the Nrf2-Keap1 signaling pathway. Furthermore, the transcript levels of ferroptosis-associated proteins, including gpx4 and slc7a11, were significantly reduced, while those of cox2, ftl, and ncoa4 were elevated. The transcript levels of autophagy-related genes, including p62 and atg5, were also regulated. Network pharmacological analysis revealed that silybin inhibited ROS accumulation and mitigated avermectin-induced renal inflammation, oxidative stress, ferroptosis, and autophagy in carp through the involvement of PPAR-γ. Silybin exerted its anti-inflammatory effect through the NF-κB pathway and antioxidant effect through the Nrf2-Keap1 pathway, induced renal cell iron efflux through the SLC7A11/GSH/GPX4, and suppressed autophagy initiation via the PI3K/AKT pathway. This study provides evidence of the protective effect of silybin against avermectin-induced nephrotoxicity in carp, highlighting its potential as a therapeutic agent to alleviate the adverse effects of avermectin exposure in fish.
Collapse
Affiliation(s)
- Jiajie Gan
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaomeng Ji
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaohui Jin
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mengyuan Zhou
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Chenbeibei Yang
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Ziyun Chen
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Chaoyang Yin
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zibo Dong
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
9
|
Ping K, Xia Y, Jin X, Xiang Y, Yang H, Pan E, Ji G, Dong J. Silybin attenuates avermectin-induced oxidative damage in carp respiration by modulating the cGAS-STING pathway and endoplasmic reticulum stress. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1759-1775. [PMID: 38907741 DOI: 10.1007/s10695-024-01368-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
Avermectin is a commonly used insect repellent for aquaculture and crops, but it is easy to remain in the aquatic environment, causing organism disorders, inflammation, and even death. This resulted in significant economic losses to the carp aquaculture industry. Silybin has antioxidant, anti-inflammatory, and anti-apoptotic properties. However, it is unclear whether Silybin counteracts gill damage caused by avermectin exposure. Therefore, we modeled avermectin exposure and Silybin intervention by adding 2.404 μg/L avermectin to water and 400 mg/kg of Silybin to feed. Gill tissue was collected and analyzed in depth during a 30-day experimental period. The results showed that avermectin exposure induced structural disorganization of gill filaments and led to increased reactive oxygen species, inhibition of antioxidant functions, induction of inflammatory responses, and endoplasmic reticulum stress in addition to the endogenous apoptotic pathway. In contrast, Silybin effectively alleviated pathological changes and reduced reactive oxygen species levels, thereby attenuating oxidative stress and endogenous apoptosis and inhibiting endoplasmic reticulum stress pathways. In addition, Silybin reduced avermectin-induced gill tissue inflammation in carp, and it is considered that it might modulate the cGAS-STING pathway. In summary, Silybin alleviates avermectin-induced oxidative damage within the carp's respiratory system by modulating the cGAS-STING pathway and endoplasmic reticulum stress. The main goal is to understand how Silybin reduces oxidative damage caused by avermectin in carp gills, offering management strategies. Concurrently, the current study proposes that Silybin can serve as a dietary supplement to reduce the risks brought on by repellent buildup in freshwater aquaculture.
Collapse
Affiliation(s)
- Kaixin Ping
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yan Xia
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xiaohui Jin
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yannan Xiang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Haitao Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Enzhuang Pan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Guangquan Ji
- Department of Technology, the First People's Hospital of Lianyungang, Lianyungang, 222002, China.
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
10
|
Chen X, Wang F, Guo H, Liu X, Wu S, Lv L, Tang T. Uncovering hidden dangers: The combined toxicity of abamectin and lambda-cyhalothrin on honey bees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173126. [PMID: 38734105 DOI: 10.1016/j.scitotenv.2024.173126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Studying the toxic effects of pesticides on bees has consistently been a prominent area of interest for researchers. Nonetheless, existing research has predominantly concentrated on individual toxicity assessments, leaving a gap in our understanding of mixed toxicity. This study delves into the individual and combined toxic effects of abamectin (ABA) and lambda-cyhalothrin (LCY) on honey bees (Apis mellifera) in laboratory settings. We discovered that ABA (96 h-LC50 value of 0.079 mg/L) exhibited greater acute toxicity to honey bees compared to LCY (96 h-LC50 value of 9.177 mg/L). Moreover, the mixture of ABA and LCY presented an acute antagonistic effect on honey bees. Additionally, our results indicated that exposure to LCY, at medium concentration, led to a reduction in the abundance of gut core bacterium Snodgrassella. However, an increase in the abundance of Bifidobacterium was noted when exposed to a medium concentration of LCY and its mixture with ABA. Transcriptomic analysis revealed significant regulation of certain genes in the medium concentration of all three treatments compared to the control group, primarily enriching in metabolism and immune-related pathways. Following chronic exposure to field-relevant concentrations of ABA, LCY, and their mixture, there were significant alterations in the activities of immunity-related enzyme polyphenol oxidase (PPO) and detoxification enzymes glutathione S-transferase (GST) and carboxylesterase (CarE). Additionally, the expression of four genes (abaecin, cyp9e2, cyp302a1, and GstD1) associated with immune and detoxification metabolism was significantly altered. These findings suggest a potential health risk posed by the insecticides ABA and LCY to honey bees. Despite exhibiting acute antagonistic effect, mixed exposure still induced damage to bees at all levels. This study advances our knowledge of the potential adverse effects of individual or combined exposure to these two pesticides on non-target pollinators and offers crucial guidance for the use of insecticides in agricultural production.
Collapse
Affiliation(s)
- Xiaozhen Chen
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Feidi Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Haikun Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xinju Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shenggan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Tao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
11
|
Huang Y, Sun Y, Huang Q, Wu S, Huang Z, Hong Y. Abamectin-induced behavioral alterations link to energy metabolism disorder and ferroptosis via oxidative stress in Chinese mitten crab, Eriocheir sinensis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174558. [PMID: 38972409 DOI: 10.1016/j.scitotenv.2024.174558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
The increasing application of abamectin (ABM) in agriculture has raised concerns regarding its environmental safety and potential adverse effects on aquatic environment safety. In the present study, the toxic effects of ABM exposure on the adult Chinese mitten crab, Eriocheir sinensis were investigated, with a focus on locomotion impairment, behavioral changes, oxidative stress, energy metabolism disruption, and ferroptosis. Crabs were exposed to sublethal concentrations of ABM at 2, 20 and 200 μg/L. After 21 d chronic exposure to 200 μg/L, residual ABM in hepatopancreas and muscles were detected as 12.24 ± 6.67 and 8.75 ± 5.42 μg/Kg, respectively. By using acute exposure experiments (96 h), we observed significant locomotion and behavioral alterations, alongside biochemical evidences of oxidative stress and energy metabolism impairment. The presence of ferroptosis, a form of cell death driven by iron-dependent lipid peroxidation, was notably identified in the hepatopancreas. Functional tests with N-acetylcysteine (NAC) supplementation showed restored behavioral responses and decrease of ferroptosis levels. It suggests that mitigating oxidative stress could counteract ABM-induced toxicity. Our findings highlight the critical roles of oxidative stress and ferroptosis in mediating the toxic effects of ABM on E. sinensis, underscoring the need for strategies to mitigate environmental exposure to pesticides.
Collapse
Affiliation(s)
- Yi Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Yan Sun
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Qiang Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Shu Wu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Road, Chengdu 611137, China
| | - Zhiqiu Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China; Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang 415000, China
| | - Yuhang Hong
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China; Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang 415000, China.
| |
Collapse
|
12
|
Lozano IE, Lo Nostro FL, Llamazares Vegh S, Lagraña A, Marino DJG, Czuchlej C, de la Torre FR. Impact of antiparasitic used in livestock: effects of ivermectin spiked sediment in Prochilodus lineatus, an inland fishery species of South America. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45425-45440. [PMID: 38965109 DOI: 10.1007/s11356-024-34057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
Ivermectin (IVM) is a widely used antiparasitic. Concerns have been raised about its environmental effects in the wetlands of Río de la Plata basin where cattle have been treated with IVM for years. This study investigated the sublethal effects of environmentally relevant IVM concentrations in sediments on the Neotropical fish Prochilodus lineatus. Juvenile P. lineatus were exposed to IVM-spiked sediments (2 and 20 µg/Kg) for 14 days, alongside a control sediment treatment without IVM. Biochemical and oxidative stress responses were assessed in brain, gills, and liver tissues, including lipid damage, glutathione levels, enzyme activities, and antioxidant competence. Muscle and brain acetylcholinesterase activity (AChE) and stable isotopes of 13C and 15N in muscle were also measured. The lowest IVM treatment resulted in an increase in brain lipid peroxidation, as measured by thiobarbituric acid reactive substances (TBARs), decreased levels of reduced glutathione (GSH) in gills and liver, increased catalase activity (CAT) in the liver, and decreased antioxidant capacity against peroxyl radicals (ACAP) in gills and liver. The highest IVM treatment significantly reduced GSH in the liver. Muscle (AChE) was decreased in both treatments. Multivariate analysis showed significant overall effects in the liver tissue, followed by gills and brain. These findings demonstrate the sublethal effects of IVM in P. lineatus, emphasizing the importance of considering sediment contamination and trophic habits in realistic exposure scenarios.
Collapse
Affiliation(s)
- Ismael E Lozano
- Lab. Ecotoxicología Acuática, DBBE, FCEN, Universidad de Buenos & IBBEA, UBA-CONICET, CABA, Buenos Aires, Argentina
| | - Fabiana L Lo Nostro
- Lab. Ecotoxicología Acuática, DBBE, FCEN, Universidad de Buenos & IBBEA, UBA-CONICET, CABA, Buenos Aires, Argentina
| | - Sabina Llamazares Vegh
- Instituto de Investigaciones en Producción Animal, INPA, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Aldana Lagraña
- GECAP, Instituto de Ecología y Desarrollo Sustentable, Ciencias Básicas, Universidad Nacional de Luján-CONICET, Luján, Argentina
| | - Damián J G Marino
- CIM, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - Cristina Czuchlej
- Lab. Ecotoxicología Acuática, DBBE, FCEN, Universidad de Buenos & IBBEA, UBA-CONICET, CABA, Buenos Aires, Argentina
| | - Fernando R de la Torre
- GECAP, Instituto de Ecología y Desarrollo Sustentable, Ciencias Básicas, Universidad Nacional de Luján-CONICET, Luján, Argentina.
| |
Collapse
|
13
|
Li Q, Ping K, Xiang Y, Sun Y, Hu Z, Liu S, Guan X, Fu M. Ferulic acid alleviates avermectin induced renal injury in carp by inhibiting inflammation, oxidative stress and apoptosis. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109575. [PMID: 38663463 DOI: 10.1016/j.fsi.2024.109575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Avamectin (AVM), a macrolide antibiotic, is widely used in fisheries, agriculture, and animal husbandry, however, its irrational use poses a great danger to aquatic organisms. Ferulic acid (FA) is a natural chemical found in the cell walls of plants. It absorbs free radicals from the surrounding environment and acts as an antioxidant. However, the protective effect of FA against kidney injury caused by AVM has not been demonstrated. In this study, 60 carp were divided into the control group, AVM group (2.404 μg/L), FA+AVM group and FA group (400 mg/kg). Pathological examination, quantitative real-time PCR (qPCR), reactive oxygen species (ROS) and western blot were used to evaluate the preventive effect of FA on renal tissue injury after AVM exposure. Histological findings indicated that FA significantly reduced the swelling and infiltration of inflammatory cells in the kidney tissues of carp triggered by AVM. Dihydroethidium (DHE) fluorescent probe assay showed that FA inhibited the accumulation of kidney ROS. Biochemical results showed that FA significantly increased glutathione (GSH) content, total antioxidant capacity (T-AOC) and catalase (CAT) activity, and decreased intracellular malondialdehyde (MDA) content. In addition, western blot results revealed that the protein expression levels of Nrf2 and p-NF-κBp65 in the carp kidney were inhibited by AVM, but reversed by the FA. The qPCR results exhibited that FA significantly increased the mRNA levels of tgf-β1 and il-10, while significantly down-regulated the gene expression levels of tnf-α, il-6 and il-1β. These data suggest that FA can reduce oxidative stress and renal tissue inflammation induced by AVM. At the same time, FA inhibited the apoptosis of renal cells induced by AVM by decreasing the transcription level and protein expression level of Bax, and increasing the transcription level and protein expression level of Bcl2, PI3K and AKT. This study provides preliminary evidence for the theory that FA reduces the level of oxidative stress, inflammation response and kidney tissue damage caused by apoptosis in carp, providing a theoretical basis for the prevention and treatment of the AVM.
Collapse
Affiliation(s)
- Qiulu Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Kaixin Ping
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yannan Xiang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ying Sun
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Zunhan Hu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Shujuan Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xinying Guan
- Science and Technology Department, The First People's Hospital of Lianyungang, Lianyungang, 222000, China.
| | - Mian Fu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Institute of Marine Resources Development, Lianyungang, 222005, China.
| |
Collapse
|
14
|
Ali MM, Farhad Z, Wasim M, Raza S, Almutairi MH, Zahra K, Saleem MU, Mehmood K. Evaluation of genotoxic effect via expression of DNA damage responsive gene induced by ivermectin on MDBK cell line. PLoS One 2024; 19:e0296255. [PMID: 38701093 PMCID: PMC11068189 DOI: 10.1371/journal.pone.0296255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/04/2023] [Indexed: 05/05/2024] Open
Abstract
Ivermectin (IVM) is an anti-parasitic drug which is used for treating parasitic infestations. It has been used in humans for treating intestinal strongyloidiasis and onchocerciasis however, currently researchers are investigating its potential for treating coronavirus SARS-CoV-2. Due to its broad-spectrum activities, IVM is being used excessively in animals which has generated an interest for researchers to investigate its toxic effects. Cytotoxic and genotoxic effects have been reported in animals due to excessive usage of IVM. Therefore, this study aims to evaluate the cytotoxic and genotoxic effects of IVM on the Madin-Darby-Bovine-Kidney (MDBK) cell line by examining the expression of a DNA damage-responsive gene (OGG1). Cytotoxicity of IVM was tested using an assay (MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), whereas the genotoxicity was evaluated using comet assay along with micronucleus assay. Moreover, the gene expression of DNA damage response gene (OGG1) was measured by qRT-PCR, after extraction of RNA from the MDBK cell line using the TRIzol method and its conversion to cDNA by reverse-transcriptase PCR. During the experiment, cell viability percentage was measured at different doses of IVM i.e., 25%, 50%, 75%, along with LC50/2, LC50 and LC50*2. It was observed that the gene expression of OGG1 increased as the concentration of IVM increased. It was concluded that IVM has both cytotoxic and genotoxic effects on the MDBK cell line. Furthermore, it is recommended that studies related to the toxic effects of IVM at molecular level and on other model organisms should be conducted to combat its hazardous effects.
Collapse
Affiliation(s)
- Muhammad Muddassir Ali
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Zainab Farhad
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Wasim
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Sohail Raza
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mikhlid H. Almutairi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Kainat Zahra
- Henry C. Lee Institute of Forensic Science, University of New Haven, West Haven, CT, United States of America
| | - Muhammad Usman Saleem
- Faculty of Veterinary Sciences, Department of Biosciences, Bahauddin Zakariya University, Bosan Road, Multan
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, Department of Clinical Medicine and Surgery, The Islamia University of Bahawalpur, Pakistan
| |
Collapse
|
15
|
Gunawan AP, Utama DN. Decision support model to assess pesticide safeness toward environment. Environ Anal Health Toxicol 2024; 39:e2024003-0. [PMID: 38631395 PMCID: PMC11079404 DOI: 10.5620/eaht.2024003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 12/25/2023] [Indexed: 04/19/2024] Open
Abstract
For farmers around the world to protect crops from disturbing pests, it is common to use pesticides to ward off the growth of pests or even eliminate them. Even though pesticides are seen as a good thing for protecting crops, there is one thing that mustn't be forgotten the origin of the pesticide itself is a toxin compound that is dangerous if used irresponsibly. The main concern of this study is excessive use of pesticides may cause serious consequences to the ecosystem and environment through the accumulation of pesticide residue by irresponsible farmers. To minimize the effects of pesticide residues, the selection of the type of pesticide needs to be considered which type may not be harmful to the environment's health even though accumulation happens. Therefore, in this study, a fuzzy-based computational model assessor was built to measure the safety level of pesticides toward the environment. The fuzzy model was created with consideration of several parameters related to pesticide behaviors, its effects on beneficial organisms, and its persistence in the environment. The method used for this study includes literature reviewing, fuzzification, statistical approach, expert knowledge sharing, and quantitative analysis. The model created in this study can assist in a more accurate and realistic method of selecting better pesticide options that will be used by farmers. To ensure the validity of the model, verifying and validating the formula and pesticide result assessment were done with related literature articles. In this study, from 10 types of pesticides used as a sample, dodine, and iprodione pesticides are the best option for protecting crops with a safety level of 7.36, and abamectin, dimethoate, chorpyrifos, and methidathion are not safe options for farming use because of its potential of harming the environment.
Collapse
Affiliation(s)
- Ariel Peaceo Gunawan
- Computer Science Department, Bina Nusantara University, Jakarta Barat, Indonesia
| | | |
Collapse
|
16
|
Guan T, Wang L, Hu M, Zhu Q, Cai L, Wang Y, Xie P, Feng J, Wang H, Li J. Effects of chronic abamectin stress on growth performance, digestive capacity, and defense systems in red swamp crayfish (Procambarus clarkii). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106861. [PMID: 38340542 DOI: 10.1016/j.aquatox.2024.106861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/14/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Abamectin is a globally used pesticide, which is one of 16-member macrocyclic lactones compound. As an environmental contaminant, pesticide residues pose a great threat to the health and survival of aquatic animals. Procambarus clarkii is one of the most important economic aquatic animals in China. It is necessary to explore the toxic mechanism of abamectin to P. clarkii. In this study, the toxic mechanism of abamectin to P. clarkii was investigated by 0, 3 and 6 μg/L abamectin stress for 28 days. The digestive-, antioxidant- and immune- related enzymes activities, genes expression levels, and histological observations were analytical indicators of growth performance, digestive capacity, and defense systems. The results in this study showed that with abamectin concentration increasing, the growth of P. clarkii was stunted significantly, and the mortality rate increased significantly. With exposure time and abamectin concentration increasing, the expression levels of related genes, the activities of digestive-, antioxidant-, and immune- related enzymes decreased ultimately. Moreover, through histological observation, it was found that with abamectin concentration increasing, the hepatopancreas, muscle, and intestine were damaged. As elucidated by the results, once abamectin exists in the environment for a long time, even low doses will threaten to healthy growth and survival of P. clarkii. This study explored the potential toxicity and the toxic mechanism of abamectin to P. clarkii, and provides a theoretical basis for further study on the toxicity of pesticides to aquatic animals.
Collapse
Affiliation(s)
- Tianyu Guan
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Long Wang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Meng Hu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China
| | - Qianqian Zhu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China
| | - Lin Cai
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China
| | - Yurui Wang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China
| | - Peng Xie
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China
| | - Jianbin Feng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Hui Wang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
17
|
Obregon D, Guerrero O, Sossa D, Stashenko E, Prada F, Ramirez B, Duplais C, Poveda K. Route of exposure to veterinary products in bees: Unraveling pasture's impact on avermectin exposure and tolerance in stingless bees. PNAS NEXUS 2024; 3:pgae068. [PMID: 38444603 PMCID: PMC10914370 DOI: 10.1093/pnasnexus/pgae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024]
Abstract
Deforestation rapidly increases in tropical regions, primarily driven by converting natural habitats into pastures for extensive cattle ranching. This landscape transformation, coupled with pesticide use, are key drivers of bee population decline. Here, we investigate the impact of pasture-dominated landscapes on colony performance, pesticide exposure, and insecticide sensitivity of the stingless bee Tetragonisca angustula. We monitored 16 colonies located in landscapes with varying proportions of pasture. We collected bee bread for pesticide and palynological analysis. We found a positive correlation between pollen diversity and colony growth, with no effect of the proportion of pasture in the landscape. In contrast, we detected prevalent and hazardous concentrations of the insecticide abamectin (9.6-1,856 µg/kg) in bee bread, which significantly increased with a higher proportion of pasture. Despite the abamectin exposure, the bee colonies displayed no adverse effects on their growth, indicating a potential tolerance response. Further investigations revealed that bees from sites with higher proportions of pasture showed significantly reduced mortality when exposed to a lethal concentration of abamectin (0.021 µg/µL) after 48 h. Since abamectin is scarcely used in the study area, we designed an experiment to track ivermectin, a closely related antiparasitic drug used in cattle. Our findings uncovered a new exposure route of bees to pesticides, wherein ivermectin excreted by cattle is absorbed and biotransformed into abamectin within flowering plants in the pastures. These results highlight that unexplained exposure routes of bees to pesticides remain to be described while also revealing that bees adapt to changing landscapes.
Collapse
Affiliation(s)
- Diana Obregon
- Department of Entomology, Cornell University, Ithaca, NY 14850, USA
- New York State Integrated Pest Management Program, Cornell University, Geneva, NY 14456, USA
| | - Olger Guerrero
- Department of Agronomic Engineering, La Salle University, Yopal, Casanare 850008, Colombia
| | - David Sossa
- Department of Entomology, Cornell University, Ithaca, NY 14850, USA
| | - Elena Stashenko
- CROM-MASS Laboratory, Industrial University of Santander, Bucaramanga 680002, Colombia
| | - Fausto Prada
- CROM-MASS Laboratory, Industrial University of Santander, Bucaramanga 680002, Colombia
| | - Beatriz Ramirez
- Department of Conservation and Environmental Sovereignty, ABC Colombia, Yopal, Casanare 850008, Colombia
| | - Christophe Duplais
- Department of Entomology, Cornell AgriTech, Cornell University, Geneva, NY 14456, USA
| | - Katja Poveda
- Department of Entomology, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
18
|
Hassan ZR, El-Sayed S, Zekry KM, Ahmed SG, Abd-Elhamid AH, Salama DEA, Taha AK, Mahmoud NA, Mohammed SF, Amin MM, Mohamed RE, Eraque AMS, Mohamed SA, Abdelgalil RM, Atta SA, Fahmy NT, Badr MS. Impact of atorvastatin and mesenchymal stem cells combined with ivermectin on murine trichinellosis. Parasitol Res 2023; 123:57. [PMID: 38105357 PMCID: PMC10725854 DOI: 10.1007/s00436-023-08077-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
Trichinellosis is one of the global food-borne parasitic diseases that can cause severe tissue damage. The traditionally used drugs for the treatment of trichinellosis have limited efficacy against the encysted larvae in the muscular phase of the disease. Therefore, this study aimed to evaluate the role of atorvastatin and mesenchymal stem cells combined with ivermectin against different phases of Trichinella in experimentally infected mice. A total of 120 male Swiss albino mice were divided into two major groups (n = 60 of each), intestinal and muscular phases. Then, each group was subdivided into 10 subgroups (n = 6); non-infected control, infected non-treated control, infected ivermectin treated, infected atorvastatin treated, infected mesenchymal stem cells treated, infected combined ivermectin and atorvastatin treated, infected combined mesenchymal stem cells and ivermectin treated, infected combined mesenchymal stem cells and atorvastatin treated, infected combined mesenchymal stem cells and a full dose of (ivermectin and atorvastatin) treated, and infected combined mesenchymal stem cells and half dose of (ivermectin and atorvastatin) treated. Mice were sacrificed at days 5 and 35 post-infection for the intestinal and muscular phases, respectively. The assessment was performed through many parameters, including counting the adult intestinal worms and muscular encysted larvae, besides histopathological examination of the underlying tissues. Moreover, a biochemical assay for the inflammatory and oxidative stress marker levels was conducted. In addition, levels of immunohistochemical CD31 and VEGF gene expression as markers of angiogenesis during the muscular phase were investigated. The combined mesenchymal stem cells and atorvastatin added to ivermectin showed the highest significant reduction in adult worms and encysted larvae counts, the most noticeable improvement of the histopathological changes, the most potent anti-inflammatory (lowest level of IL-17) and anti-angiogenic (lowest expression of CD31 and VEGF) activities, and also revealed the highly effective one to relieve the oxidative stress (lowest level of SOD, GSH, and lipid peroxidase enzymes). These observed outcomes indicate that adding mesenchymal stem cells and atorvastatin to ivermectin synergistically potentiates its therapeutic efficacy and provides a promising candidate against trichinellosis.
Collapse
Affiliation(s)
- Zeinab R Hassan
- Department of Parasitology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt.
| | - Samar El-Sayed
- Department of Parasitology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Kareman M Zekry
- Department of Parasitology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Samah Gouda Ahmed
- Department of Histology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Asmaa Hassan Abd-Elhamid
- Department of Histology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Doaa E A Salama
- Department of Pathology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
- Department of Pathology, School of Medicine, Badr University in Cairo (BUC), Entertainment Area, Badr City, Cairo, 11829, Egypt
| | - Azza Kamal Taha
- Department of Pathology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Nihal A Mahmoud
- Department of Physiology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Shaymaa Fathy Mohammed
- Department of Physiology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Mona M Amin
- Department of Pharmacology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Rasha Elsayed Mohamed
- Department of Biochemistry, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Ayat M S Eraque
- Department of Biochemistry, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Shimaa A Mohamed
- Department of Biochemistry, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Ranya M Abdelgalil
- Department of Anatomy and Embryology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Shimaa Attia Atta
- Department of Immunology, Theodor Bilharz Research Institute, 36VF+MJ2, Warraq Al Arab, El Warraq, Giza Governorate, 3863130, Egypt
| | - Nermeen Talaat Fahmy
- Genomics, Egypt Center for Research and Regenerative Medicine (ECRRM), 3 Emtedad Ramses, Al Abbaseyah Al Gharbeyah, El Weili, Cairo Governorate, 4435102, Egypt
| | - Mohamed S Badr
- Molecular Biology and Genetic-Bioinformatics Nano-Robot Diagnostics, Medical Research Centre, Faculty of Medicine, Ain Shams University, El-Khalyfa El-Mamoun Street Abbasya, Cairo, Egypt
| |
Collapse
|
19
|
Kumaran SP, Sarma GRK, Kankara SR, Dsilva CS, Sharma VC, Deepalam SR, Govindappa SKG. MRI brain findings of Abamectin toxic encephalopathy: a case report with review of literature. Emerg Radiol 2023; 30:817-821. [PMID: 37947960 DOI: 10.1007/s10140-023-02180-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Abamectin is an insecticidal/miticidal compound derived from the soil bacterium "Streptomyces avermitilis". Abamectin toxicity in humans is very rare. We present a case of acute neurotoxicity induced by Abamectin, showcasing distinctive MRI brain findings in a 33-year-old female who exhibited a favourable recovery with the aid of supportive care. In a patient with known exposure to toxins, even with a lack of knowledge of the specific type or class of toxin, recognition of anatomical distribution of lesions on brain MRI and their characteristic appearance can help exclude other causes of neurologic impairment and aid in timely management.
Collapse
Affiliation(s)
| | | | - Shreyas Reddy Kankara
- Department of Radiology, St. Johns Medical college Hospital, Bangalore, 560066, India
| | - Carol Shayne Dsilva
- Department of Emergency medicine, St. Johns Medical college Hospital, Bangalore, 560066, India
| | - Vishal Chandra Sharma
- Department of Neurology, St. Johns Medical college Hospital, Bangalore, 560066, India
| | | | | |
Collapse
|
20
|
Wang G, Guo J, Ma Y, Xin Y, Ji X, Sun Y, Zhang J, Dong J. Ferulic acid alleviates carp brain damage and growth inhibition caused by avermectin by modulating the Nrf2/Keap1 and NF-κB signaling pathways. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105590. [PMID: 37945241 DOI: 10.1016/j.pestbp.2023.105590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/12/2023] [Accepted: 08/25/2023] [Indexed: 11/12/2023]
Abstract
The increasing concern over environmental pollution caused by the pesticide avermectin used in aquaculture has attracted significant attention. The use of avermectin, a neurotoxic pesticide, in aquatic environments leads to toxic effects on non-target organisms, particularly causing harm to fish. The phenolic compound ferulic acid possesses excellent anti-inflammatory and antioxidant capabilities. This study was conducted by establishing a chronic exposure experiment to avermectin, proposes the use of ferulic acid as a dietary additive to protect the carp brain from damage caused by exposure to avermectin. Furthermore, it investigates the anti-inflammatory and antioxidant effects of ferulic acid in the carp brain under chronic exposure to avermectin. The experimental results demonstrate that ferulic acid can alleviate brain tissue inflammation and oxidative stress by modulating the Nrf2/Keap1 and NF-κB signaling pathways. It protects the carp brain from chronic avermectin-induced damage, preserves the integrity of the carp blood-brain barrier, enhances the levels of feeding factors, and thereby alleviates carp growth inhibition. These findings provide new therapeutic strategies and a theoretical foundation for the sustainable development of carp aquaculture.
Collapse
Affiliation(s)
- Guanglu Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiajia Guo
- Lianyungang Higher Vocational College of Traditional Chinese Medicine, Lianyungang 222000, China
| | - Yeyun Ma
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yue Xin
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaomeng Ji
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Ying Sun
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jian Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
21
|
Wu X, Xin Y, Ma Y, Ping K, Li Q, Sun Y, Hu Z, Dong J. Abamectin induced brain and liver toxicity in carp: The healing potential of silybin and potential molecular mechanisms. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109152. [PMID: 37821005 DOI: 10.1016/j.fsi.2023.109152] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
Abamectin (ABM) abuse contaminated aquatic environment and posed a potential threat to fish health as well as public safety. Silybin (SIL), a flavonoid, has been widely used as a novel feed additive to promote fish health. This research was to explore the potential antagonistic mechanism between ABM and SIL on brain and liver toxicity was investigated in common carp. Sixty carp were divided into four groups at random: the Control group, the SIL group, the ABM group, and ABM + SIL group. This experiment lasted for 30 d. According to behavioral observation, the detection of levels of acetylcholinesterase (AchE), iron, and mRNA expression levels of blood-brain barrier (BBB) related tight junction proteins (ZO-1, Claudin7, Occludin, MMP2, MMP9, and MMP13) in brain tissues, it was found that SIL relieved neurobehavioral disorders caused by ABM-induced BBB destruction in carp. H&E staining showed SIL mitigated nerve injury and liver injury caused by ABM. Oil Red O staining and liver-related parameters showed that SIL alleviated hepatotoxicity and lipid metabolism disorder caused by ABM exposure. Furthermore, this work also explored the specific molecular mechanism of SIL in liver protection and neuroprotection. It was shown that SIL lowered ROS levels in liver and brain tissues via the GSK-3β/TSC2/TOR pathway. Simultaneously, SIL inhibited NF-κB signaling pathway and played an anti-inflammatory role. In conclusion, we believed that SIL supplementation has a protective effect on the brain and liver by regulating oxidative stress and inflammation.
Collapse
Affiliation(s)
- Xinyu Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yue Xin
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yeyun Ma
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Kaixin Ping
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Qiulu Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ying Sun
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Zunhan Hu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
22
|
Guan T, Feng J, Zhu Q, Wang L, Xie P, Wang H, Li J. Effects of abamectin on nonspecific immunity, antioxidation, and apoptosis in red swamp crayfish (Procambarus clarkii). FISH & SHELLFISH IMMUNOLOGY 2023; 142:109137. [PMID: 37827246 DOI: 10.1016/j.fsi.2023.109137] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Abamectin, a pesticide of 16-member macrocyclic lactones, is widely applied in agriculture. As an important environmental factor, pesticides pose a great threat to defense system in aquatic animals. Procambarus clarkii is one of the most important economic aquatic animals in China. It is necessary to explore the defense mechanism of P. clarkii to abamectin. In this study, P. clarkii were exposed to 0, 0.2, 0.4, 0.6 mg/L abamectin, immune- and antioxidant-related enzymes activities, genes expression levels, and histological observations were used to analyze the defense capacity of P. clarkii to abamectin. With increasing abamectin concentration, reactive oxygen species (ROS) level and malondiadehyde (MDA) content increased significantly. Meanwhiile, acid phosphate (ACP), alkaline phosphatase (AKP) activities, total haemocyte counts (THC), and Crustin expression level decreased significantly, superoxide dismutase (SOD), catalase (CAT) activities, total antioxidant capacity (T-AOC), and GPX expression level also decreased significantly. Hematoxylin & eosin (H&E) observation showed that with increasing abamectin concentration, hepatopancreas were damaged, especially membrane structure. Through TUNEL observation and apoptosis-related genes (PcCTSL, Bcl-2, Bax, BI-1, PcCytc, caspase-3) expression levels, with increasing abamectin concentration, apoptosis rate increased significantly. Results of this study indicated that abamectin caused oxidative damage to P. clarkii, resulting in damage to defense system, suppression of nonspecific immunity and antioxidation, and promotion of apoptosis. It provided theoretical basis for healthy P. clarkii culture, and for further study on defense mechanism of aquatic animals to pesticides.
Collapse
Affiliation(s)
- Tianyu Guan
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Jianbin Feng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Qianqian Zhu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China
| | - Long Wang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Peng Xie
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China
| | - Hui Wang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
23
|
Li LJ, Zhao R, Wang YM, Pan SH, Yu M, Sun Z, Ma YJ, Guo XY, Xu Y, Wang HM, Wu XM. ROS-responsive modified chitosan oligosaccharide nanocapsules for improving pesticide efficiency and intelligent release. PEST MANAGEMENT SCIENCE 2023; 79:3808-3818. [PMID: 37209281 DOI: 10.1002/ps.7565] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Some traditional pesticide formulations are inefficient, leading to excessive use and abuse of pesticides, which in turn effects environment. Intelligent release pesticide formulations are ideal for improving pesticide utilization and persistence while reducing environmental pollution. RESULTS We designed a benzil-modified chitosan oligosaccharide (CO-BZ) to encapsulate avermectin (Ave). Ave@CO-BZ nanocapsules are prepared based on a simple interfacial method via cross-linking of CO-BZ with diphenylmethane diisocyanate (MDI). The Ave@CO-BZ nanocapsules have an average particle size of 100 nm and exhibited a responsive release performance for ROS. The cumulative release rate of nanocapsules at 24 h with ROS increased by about 11.4% compared to that without ROS. The Ave@CO-BZ nanocapsules displayed good photostability. Ave@CO-BZ nanocapsules can penetrate root-knot nematodes more easily and exhibited better nematicidal activity against root-knot nematodes. The pot experiment showed that the control effect of Ave CS at low concentration was 53.31% at the initial stage of application (15 d), while Ave@CO-BZ nanocapsules was 63.54%. Under the same conditions, the control effect of Ave@CO-BZ nanocapsules on root-knot nematodes was 60.00% after 45 days of application, while Ave EC was only 13.33%. The acute toxicity experiments of earthworms showed that the toxicity of nanocapsules was significantly lower than that of EC. CONCLUSION The ROS-responsive nanocapsules can improve the utilization of pesticides and non-target biosafety. This modified chitosan oligosaccharide has great potential as a bio stimuli-responsive material, and this simple and convenient method for preparing Ave@CO-BZ nanocapsules provides a direction for the effective utilization of pesticides. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lin-Jie Li
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Rui Zhao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Yin-Min Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Shou-He Pan
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Meng Yu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Zhe Sun
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Ying-Jian Ma
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Xin-Yu Guo
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Yong Xu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Hong-Mei Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Xue-Min Wu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
24
|
Lagos S, Tsetsekos G, Mastrogianopoulos S, Tyligada M, Diamanti L, Vasileiadis S, Sotiraki S, Karpouzas DG. Interactions of anthelmintic veterinary drugs with the soil microbiota: Toxicity or enhanced biodegradation? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122135. [PMID: 37406753 DOI: 10.1016/j.envpol.2023.122135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/26/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Anthelmintic (AH) compounds are used to control gastrointestinal nematodes (GINs) in livestock production. They are only partially metabolized in animals ending in animal excreta whose use as manures leads to AH dispersal in agricultural soils. Once in soil, AHs interact with soil microorganisms, with the outcome being either detrimental, or beneficial. We aimed to disentangle the mechanisms of these complex interactions. Two soils previously identified as « fast » or « slow», regarding the degradation of albendazole (ABZ), ivermectin (IVM), and eprinomectin (EPM), were subjected to repeated applications at two dose rates (1, 2 mg kg-1and 10, 20 mg kg-1). We hypothesized that this application scheme will lead to enhanced biodegradation in «fast » soils and accumulation and toxicity in «slow » soils. Repeated application of ABZ resulted in different transformation pathways in the two soils and a clear acceleration of its degradation in the «fast » soil only. In contrast residues of IVM and EPM accumulated in both soils. ABZ was the sole AH that induced a consistent reduction in the abundance of total fungi and crenarchaea. In addition, inhibition of nitrification and reduction in the abundance of ammonia-oxidizing bacteria (AOB) and archaea (AOA) by all AHs was observed, while commamox bacteria were less responsive. Amplicon sequencing analysis showed dose-depended shifts in the diversity of bacteria, fungi, and protists in response to AHs application. ABZ presented the most consistent effect on the abundance and diversity of most microbial groups. Our findings provide first evidence for the unexpected toxicity of AHs on key soil microbial groups that might have to be considered in a regulatory context.
Collapse
Affiliation(s)
- Stathis Lagos
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Viopolis, 41500, Larissa, Greece
| | - Georgios Tsetsekos
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Viopolis, 41500, Larissa, Greece
| | - Spyridon Mastrogianopoulos
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Viopolis, 41500, Larissa, Greece
| | - Maria Tyligada
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Viopolis, 41500, Larissa, Greece
| | - Lamprini Diamanti
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Viopolis, 41500, Larissa, Greece
| | - Sotirios Vasileiadis
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Viopolis, 41500, Larissa, Greece
| | - Smaragda Sotiraki
- Laboratory of Parasitology, Hellenic Agricultural Organization-Demeter, Veterinary Research Institute, 57001, Thermi, Greece
| | - Dimitrios G Karpouzas
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Viopolis, 41500, Larissa, Greece.
| |
Collapse
|
25
|
Zhang M, Xue J, Li Y, Yin J, Liu Y, Wang K, Li Z. Non-destructive detection and recognition of pesticide residue levels on cauliflowers using visible/near-infrared spectroscopy combined with chemometrics. J Food Sci 2023; 88:4327-4342. [PMID: 37589297 DOI: 10.1111/1750-3841.16728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/20/2023] [Accepted: 07/14/2023] [Indexed: 08/18/2023]
Abstract
In this study, two prediction models were developed using visible/near-infrared (Vis/NIR) spectroscopy combined with partial least squares discriminant analysis (PLS-DA) and least squares support vector machine (LS-SVM) for the detection of pesticide residues of avermectin, dichlorvos, and chlorothalonil at different concentration levels on the surface of cauliflowers. Five samples of each of the three different types of pesticide were prepared at different concentrations and sprayed in groups on the surface of the corresponding cauliflower samples. Utilizing the spectral data collected in the Vis/NIR as input values, comparison and analysis of preprocessed spectral data, and regression coefficient (RC), successive projections algorithm (SPA), and competitive adaptive reweighted sampling (CARS) were used in turn to downscale the data to select the main feature wavelengths, and PLS-DA and LS-SVM models were built for comparison. The results showed that the RC-LS-SVM was the best discriminant model for detecting avermectin residues concentration on the surface of cauliflowers, with a prediction set discriminant accuracy of 98.33%. For detecting different concentrations of dichlorvos, the SPA-LS-SVM had the best predictive accuracy of 95%. The accuracy of the model based on CARS-PLS-DA to identify chlorothalonil at different concentration levels on cauliflower surfaces reached 93.33%. The results demonstrated that the Vis/NIR spectroscopy combined with chemometrics could quickly and effectively identify pesticide residues on cauliflower surfaces, affording a certain reference for the rapid recognition of different pesticide residue concentrations on cauliflower surfaces. PRACTICAL APPLICATION: Vis/NIR spectroscopy can detect the concentration levels of pesticide residues on the surface of cauliflowers and help food regulators quickly and non-destructively detect traces of pesticides in food, providing a guarantee for food safety. The technique also provides a basis for determining pesticide residue concentrations on the surface of other vegetables.
Collapse
Affiliation(s)
- Mingyue Zhang
- College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong, China
| | - Jianxin Xue
- College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong, China
| | - Yaodi Li
- College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong, China
| | - Junyi Yin
- College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong, China
| | - Yang Liu
- College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong, China
| | - Kai Wang
- College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong, China
| | - Zezhen Li
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
26
|
Liu H, Wang K, Han D, Sun W, Xu S. Co-exposure of avermectin and imidacloprid induces DNA damage, pyroptosis, and immune dysfunction in epithelioma papulosum cyprini cells via ROS-mediated Keap1/Nrf2/TXNIP axis. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108985. [PMID: 37536468 DOI: 10.1016/j.fsi.2023.108985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
Pesticide mixtures can reduce pest resistance, however, their overuse severely threatens aquatic animal survival and public health. Avermectin (AVM) and imidacloprid (IMI) are potent insecticides often employed in agriculture. By inducing oxidative stress, these chemicals can induce cell death. Here, we evaluated the combined toxicity of AVM and IMI on EPC cells based on the concept of toxicity units (TU). We established EPC cell models exposed to AVM and IMI alone and in combination. The results showed that AVM and IMI had additive effects on the toxicity of EPC cells. Meanwhile, the co-exposure of AVM and IMI exacerbated oxidative stress and induced excessive production of reactive oxygen species (ROS), triggered Keap1/Nrf2/TXNIP axis, caused DNA damage and increased the expression of genes related to pyroptosis. In addition, co-exposure to AVM and IMI caused immunosuppression of EPC cells. The ROS inhibitor N-Acetyl-l-cysteine (NAC) can dramatically reverse these alterations brought on by AVM and IMI co-exposure. The findings above conclude that co-exposure to AVM and IMI causes DNA damage, pyroptosis, and immunosuppression in EPC cells through the ROS-mediated Keap1/Nrf2/TXNIP pathway. This study revealed the joint toxicity of AVM and IMI on EPC cells, and reminded people to consider its impact on aquatic animals when using pesticide mixtures.
Collapse
Affiliation(s)
- Huanyi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Kun Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Dongxu Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wenying Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
27
|
Liu Y, Liu Y, Yang L, Zhang T, Jin Y, Liu L, Du J, Zhang D, Li B, Gao C, Liu F. The effect of abamectin application in combination with agronomic measures on the control efficacy of cucumber root-knot nematodes and the cucumber yield. PEST MANAGEMENT SCIENCE 2023; 79:3190-3199. [PMID: 37030009 DOI: 10.1002/ps.7497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/20/2023] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND As a registered non-fumigant nematicide, abamectin has been widely used as a soil treatment against many cash crop nematode diseases. In a previous study, we found that soil adsorption hindered the stable performance of abamectin against root-knot nematodes in the field. RESULTS In this study, an efficient and labor-saving application method of soil blending abamectin combined with rotary tillage, a common agronomic measure, was developed to improve the efficacy of abamectin against root-knot nematode disease. We revealed the role of four parameters in this application method. At an abamectin dose of 750 g a.i. ha-1 , spray water volume of 675 L ha-1 and rotation depth of 20 cm, abamectin was well distributed in the 0-20 cm soil layer at a concentration of 0.41-0.46 mg kg-1 , the efficacy against root-knot nematode disease was 72.12%, and the cucumber yield was 51.93 t ha-1 . At the same dosage, root irrigation and flood irrigation measures resulted in only 29.28% and 33.43% control, with cucumber yields of 42.96 and 44.73 t ha-1 , respectively. CONCLUSION To control root-knot nematode disease with abamectin, a soil blending application combined with rotary tilling is superior to leaching application combined with the agronomic measure of irrigation. The former application method can improve the dispersion of abamectin in the soil, enhance the efficacy of abamectin against root-knot nematodes and maintain a stable cucumber yield. In addition, the increased labor required for application combined with agronomic measures is negligible and has excellent application prospects. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yukun Liu
- Shandong Provincial Key Laboratory for the Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Yujuan Liu
- Shandong Provincial Key Laboratory for the Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Liyuan Yang
- Shandong Provincial Key Laboratory for the Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Tao Zhang
- Shandong Provincial Key Laboratory for the Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Yan Jin
- Shandong Province Institute for the Control of Agrochemicals, Shandong, People's Republic of China
| | - Lihong Liu
- Pesticide Supervision and Management Department of Shijiazhuang, Shijiazhuang, China
| | - Jiang Du
- Shandong Provincial Key Laboratory for the Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Daxia Zhang
- Shandong Provincial Key Laboratory for the Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Beixing Li
- Shandong Provincial Key Laboratory for the Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Chuanjie Gao
- Shandong Province Institute for the Control of Agrochemicals, Shandong, People's Republic of China
| | - Feng Liu
- Shandong Provincial Key Laboratory for the Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, People's Republic of China
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, People's Republic of China
| |
Collapse
|
28
|
Netto MS, Pinto D, Franco DSP, Georgin J, Mallmann ES, de Oliveira AHP, Silva LFO, Dotto GL. Ivermectin adsorption by commercial charcoal in batch and fixed-bed operations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95326-95337. [PMID: 37542690 DOI: 10.1007/s11356-023-29042-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023]
Abstract
Emerging contaminants were used during the COVID-19 pandemic, including ivermectin. Studies that limit the optimal adsorption parameters of ivermectin are scarce in the literature. In this study, we analyzed the adsorption of ivermectin with a high surface area and porosity charcoal. Isotherms were better fitted to the Koble-Corrigan model. The maximum capacity was 203 μg g-1 at 328 K. Thermodynamics indicated a spontaneous and endothermic behavior. The equilibrium was quickly reached within the first few minutes regardless of the ivermectin concentration. The linear driving force (LDF) model fitted the kinetic data (qexp = 164.8 μg g-1; qpred = 148.1 μg g-1) at 100 μg L-1 of ivermectin. The model coefficient (KLDF) and diffusivity (Ds) increased with increasing drug concentration. Two sloped curves were obtained in the column experiments, with a breakthrough time of 415 min and 970 min. The capacity of the column (qeq) was 76 μg g-1. The length of the mass transfer zone was 9.04 and 14.13 cm. Therefore, it can be concluded that the adsorption of ivermectin is highly sensitive to changes in pH, being favored in conditions close to neutrality. Commercial activated charcoal was highly efficient in removing the studied compound showing high affinity with very fast kinetics and a good performance in continuous operation mode.
Collapse
Affiliation(s)
- Matias S Netto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Diana Pinto
- Universidad De La Costa, Calle 58 # 55-66, 080002, Barranquilla, Atlántico, Colombia
| | - Dison S P Franco
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Jordana Georgin
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Evandro S Mallmann
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Anelise H P de Oliveira
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Luis F O Silva
- Universidad De La Costa, Calle 58 # 55-66, 080002, Barranquilla, Atlántico, Colombia
| | - Guilherme L Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
29
|
Reisenauer KN, Aroujo J, Tao Y, Ranganathan S, Romo D, Taube JH. Therapeutic vulnerabilities of cancer stem cells and effects of natural products. Nat Prod Rep 2023; 40:1432-1456. [PMID: 37103550 PMCID: PMC10524555 DOI: 10.1039/d3np00002h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Covering: 1995 to 2022Tumors possess both genetic and phenotypic heterogeneity leading to the survival of subpopulations post-treatment. The term cancer stem cells (CSCs) describes a subpopulation that is resistant to many types of chemotherapy and which also possess enhanced migratory and anchorage-independent growth capabilities. These cells are enriched in residual tumor material post-treatment and can serve as the seed for future tumor re-growth, at both primary and metastatic sites. Elimination of CSCs is a key goal in enhancing cancer treatment and may be aided by application of natural products in conjunction with conventional treatments. In this review, we highlight molecular features of CSCs and discuss synthesis, structure-activity relationships, derivatization, and effects of six natural products with anti-CSC activity.
Collapse
Affiliation(s)
| | - Jaquelin Aroujo
- Department of Chemistry and Biochemistry, Baylor Univesrity, Waco, TX, USA
| | - Yongfeng Tao
- Department of Chemistry and Biochemistry, Baylor Univesrity, Waco, TX, USA
| | | | - Daniel Romo
- Department of Chemistry and Biochemistry, Baylor Univesrity, Waco, TX, USA
| | - Joseph H Taube
- Department of Biology, Baylor University, Waco, TX, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
30
|
Wu X, Ma Y, Li X, He N, Zhang T, Liu F, Feng H, Dong J. Molecular mechanism of kidney damage caused by abamectin in carp: Oxidative stress, inflammation, mitochondrial damage, and apoptosis. Toxicology 2023; 494:153599. [PMID: 37499778 DOI: 10.1016/j.tox.2023.153599] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Indiscriminate use of pesticides not only leads to environmental pollution problems, but also causes poisoning of non-target organisms. Abamectin (ABM), a widely used insecticide worldwide, is of wide concern due to its persistence in the environment and its high toxicity to fish. The kidney, as a key organ for detoxification, is more susceptible to the effects of ABM. Unfortunately, few studies investigated the mechanisms behind this connection. In this study, carp was used as an indicator organism for toxicological studies to investigate renal damage caused by ABM residues in carp. In this work, carp were exposed to ABM (0, 3.005, and 12.02 μg/L) for 4 d and the nephrotoxicity was assessed. Histopathological findings revealed that ABM exposure induced kidney damage in carp, as well as an increase Creatinine and BUN levels. Meanwhile, ABM as a reactive oxygen species (ROS) stimulator, boosted ROS bursts and lowered antioxidant enzyme activity while activating the body's antioxidant system, the Nrf2-Keap1 signaling pathway. The accumulation of ROS can also lead to the imbalance of the body's oxidation system, leading to oxidative stress. At the same time, NF-κB signaling pathway associated with inflammation was activated, which regulated expression levels of inflammatory cytokines (TNF-α, IL-6, IL-1β, and iNOS increased, while IL-10 and TGF-β1 decreased). In addition, ABM exposure caused structural damage to kidney mitochondria of carp, resulting in decreased mitochondrial membrane potential and ATP production capacity, and mediated apoptosis through endogenous pathways Bax/Bcl-2/Caspase-9/Caspase-3. In conclusion, ABM caused kidney damage in carp by inducing oxidative stress, inflammation, and apoptosis through mitochondrial pathway. These findings will be useful for future research into molecular mechanisms of ABM-induced nephrotoxicity in aquatic organisms.
Collapse
Affiliation(s)
- Xinyu Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yeyun Ma
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xueqing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Nana He
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Tianmeng Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Feixue Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Huimiao Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
31
|
Massoud MA, Saad AFSA, Khalil MS, Zakaria M, Selim S. Comparative biological activity of abamectin formulations on root-knot nematodes (Meloidogyne spp.) infecting cucumber plants: in vivo and in vitro. Sci Rep 2023; 13:12418. [PMID: 37524732 PMCID: PMC10390523 DOI: 10.1038/s41598-023-39324-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023] Open
Abstract
The root-knot nematodes (Meloidogyne spp.) are considered one of the most destructive diseases in the world. In Egypt, farmers primarily rely on chemical nematicides, which have become costly to control. Currently, abamectin is a bio-based pesticide used as an alternative tool against Meloidogyne spp. on cucumber plants (Cucumis sativus L.). During the current research, four tested abamectin formulations were DIVA (1.8% EW), RIOMECTIN (5% ME), AGRIMEC GOLD (8.4% SC) and ZORO (3.6% EC) compared with two reference nematicides namely, CROP NEMA (5% CS) and TERVIGO (2% SC). The main results showed that, in vitro study elucidated that the most effective formulations of abamectin as a larvicidal were EW with LC50 value of 21.66 µg ml-1. However, in the egg hatching test, the formulations of abamectin SC (2%) and EW were the most effective in reducing egg hatching, with LC50 values of 12.83 and 13.57 µg ml-1. The calculated relative potency values showed diversity depending on the two referenced nematicides. On the other hand, in vivo study, the results indicated that, all tested formulations of abamectin recorded general mean reductions in root galls (23.05-75.23%), egg masses (14.46-65.63%). Moreover, the total population density declined by 39.24-87.08%. Furthermore, the influence of abamectin formulations, in the presence of root-knot nematodes, on the growth of cucumber plants parameters, such as root dry weight, root length, root radius, root surface area, shoot dry weight and shoot height, as well as the content of macro-elements (N, P and K) exhibited varying levels of response.
Collapse
Affiliation(s)
- Magdy A Massoud
- Plant Protection Department, Faculty of Agriculture (Saba-Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Abdel Fattah S A Saad
- Plant Protection Department, Faculty of Agriculture (Saba-Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Mohamed S Khalil
- Fungicides, Bactericides and Nematicides Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, El-Sabheya, Alexandria, Egypt.
| | - Mosher Zakaria
- Plant Protection Department, Faculty of Agriculture (Saba-Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Shady Selim
- Faculty of Desert and Environmental Agriculture, Department of Pesticide Chemistry and Technology, Matrouh University, Matrouh, Egypt
| |
Collapse
|
32
|
Hoti Q, Rustem DG, Dalmizrak O. Avermectin B1a Shows Potential Anti-Proliferative and Anticancer Effects in HCT-116 Cells via Enhancing the Stability of Microtubules. Curr Issues Mol Biol 2023; 45:6272-6282. [PMID: 37623214 PMCID: PMC10452980 DOI: 10.3390/cimb45080395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Avermectins are a group of macrocyclic lactones that are commonly used as pesticides to treat pests and parasitic worms. Some members of the avermectin family, such as ivermectin, have been found to exhibit anti-proliferative activity toward cancer cells. This study aimed to investigate the potential anti-cancer activities of avermectin B1a using the HCT-116 colon cancer cell line. The MTT assay was used to calculate the IC50 by incubating cells with increasing doses of avermectin B1a for 24, 48, and 72 h. Flow cytometry was used to evaluate apoptosis following the 24 h incubation of cells. The migration capacity of the HCT-116 cells in the absence or presence of avermectin B1a was also investigated. Finally, tubulin polymerization in the presence of avermectin B1a was evaluated. Avermectin B1a presented anti-proliferative activity with an IC50 value of 30 μM. Avermectin B1a was found to promote tubulin polymerization at 30 μM. In addition, avermectin B1a induced apoptosis in HCT-116 cells and substantially diminished their ability to migrate. Avermectin B1a exhibits significant anti-cancer activity and enhances tubulin polymerization, suggesting that it can be used as a promising microtubule-targeting agent for the development of future anticancer drugs.
Collapse
Affiliation(s)
| | | | - Ozlem Dalmizrak
- Department of Medical Biochemistry, Faculty of Medicine, Near East University, Nicosia, TRNC, 99138, Mersin 10, Turkey; (Q.H.); (D.G.R.)
| |
Collapse
|
33
|
Hong Y, Huang Y, Dong Y, Xu D, Huang Q, Huang Z. Cytotoxicity induced by abamectin in hepatopancreas cells of Chinese mitten crab, Eriocheir sinensis: An in vitro assay. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115198. [PMID: 37390728 DOI: 10.1016/j.ecoenv.2023.115198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Toxic effects of abamectin on non-target aquatic organisms have been well documented due to its extensive use in both agricultural and aquacultural areas. However, knowledge of the abamectin induced cytotoxicity in crustacean hepatopancreas is still incomplete. In this study, we investigated the cytotoxic effects of abamectin on hepatopancreas cells of Chinese mitten crab, Eriocheir sinensis by an in vitro assay. The results showed that abamectin inhibited cell viability with elevated reactive oxygen species (ROS) and malondialdehyde (MDA) levels in a dose-dependent manner. Increased olive tail moment (OTM) values and 8-hydroxy-2'-deoxyguanosine (8-OHdG) contents indicate the DNA damage under abamectin exposure. The up-regulation of the typical apoptosis-related protein BCL2-associated X protein (Bax) and the down-regulation of B cell leukemia/lymphoma 2 (Bcl-2) demonstrate apoptosis in hepatopancreas cells. Meanwhile, the activities of both caspase-3 and caspase-9 were increased, indicating caspase-mediated apoptosis. In addition, qRT-PCR results showed the up-regulation of antioxidant genes superoxide dismutase (SOD) and catalase (CAT). The mRNA expression of Cap 'n' Collar isoform-C (CncC) and c-Jun NH2-terminal kinases (JNK) was also significantly increased, implying the involvement of the Nrf2/MAPK pathway in the antioxidative response. The alteration of innate immune-associated genes Toll-like receptor (TLR) and myeloid differentiation primary response gene 88 (Myd88) also indicates the influence of abamectin on immune status. In summary, the present study reveals the cytotoxicity of abamectin on hepatopancreas cells of E. sinensis and this in vitro cell culture model could be used for further assessment of pesticide toxicity.
Collapse
Affiliation(s)
- Yuhang Hong
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan, China; Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang 415000, China
| | - Yi Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan, China
| | - Yanzhen Dong
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan, China
| | - Dayong Xu
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan, China
| | - Qiang Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan, China
| | - Zhiqiu Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan, China; Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang 415000, China.
| |
Collapse
|
34
|
Pan E, Chen H, Wu X, He N, Gan J, Feng H, Sun Y, Dong J. Protective effect of quercetin on avermectin induced splenic toxicity in carp: Resistance to inflammatory response and oxidative damage. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105445. [PMID: 37248014 DOI: 10.1016/j.pestbp.2023.105445] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
Avermectin pollution is an important problem that cannot be ignored in aquatic system in recent years. It has brought great trouble to freshwater aquaculture, especially fishery aquaculture. Plant-derived quercetin has anti-inflammatory and antioxidant properties and is widely used as a dietary additive, but its protective effect on immune damage induced by avermectin in freshwater carp remains unclear. This study evaluated the role of dietary additive quercetin supplementation in chronic avermectin exposure of carp spleen. Sixty carp were divided into 4 groups (n = 15/ group), including control group, avermectin treatment group, quercetin treatment group, quercetin and avermectin co-treatment group. Carp were exposed to a 1/10 96 h LC50 dose of avermectin for 30 d and fed a carp diet containing 400 mg/kg quercetin twice a day (3% body weigh/ carp). The results showed that chronic avermectin exposure caused the loose parenchymal structure of carp spleen tissue and the increase of inflammatory cells, accompanied by increased transcription levels of pro-inflammatory il-1β, il-6, tnf-α and decreased levels of anti-inflammatory factors il-10 and tgf-β1, ROS accumulation in spleen tissue. MDA content increased and T-AOC, CAT and GSH levels decreased. Quercetin down-regulates the NF-κB pathway by inhibiting the expression of iNOS and activating p38 MAPK, blocking the transcription of inflammatory factors, and alleviating the inflammation of carp spleen caused by chronic avermectin exposure. In addition, quercetin inhibits the over-activation of Nrf2/Keap-1 signaling axis, blocks ROS accumulation, and restores the spleen REDOX homeostasis. In conclusion, quercetin, as a dietary additive for carp feed, can effectively improve the immune damage caused by avermectin pollution in aquatic environment, resist spleen inflammation and oxidative stress, and provide a theoretical basis for clinical development of freshwater carp feed.
Collapse
Affiliation(s)
- Enzhuang Pan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Huizhen Chen
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang 222005, China
| | - Xinyu Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Nana He
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiajie Gan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Huimiao Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yong Sun
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang 222005, China.
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
35
|
Feng H, Zhou P, Liu F, Zhang W, Yang H, Li X, Dong J. Abamectin causes toxicity to the carp respiratory system by triggering oxidative stress, inflammation, and apoptosis and inhibiting autophagy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55200-55213. [PMID: 36884173 DOI: 10.1007/s11356-023-26166-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Abamectin is a commonly used pesticide in agriculture and fisheries and poses a risk to aquatic species. However, the mechanism of its toxic effects on fish remains to be discovered. In this study, we explored the effects of abamectin exposure at different concentrations on the respiratory system of carp. Carp were divided into three groups, namely the control group, low-dose abamectin treatment group, and high-dose abamectin treatment group. Gill tissue was collected after abamectin exposure for histopathological, biochemical, tunnel, mRNA, and protein expression analysis. Histopathological analysis indicated that abamectin damaged the gill structure. Biochemical analysis showed that abamectin triggered oxidative stress with lowered antioxidant enzyme activities and increased MDA content. Moreover, abamectin led to enhanced INOS levels and pro-inflammatory transcription, activating inflammation. Tunnel results demonstrated that exposure to abamectin induced gill cell apoptosis through an exogenous pathway. In addition, exposure to abamectin activated the PI3K/AKT/mTOR pathway, leading to inhibition of autophagy. Overall, abamectin caused respiratory system toxicity in carp via triggering oxidative stress, inflammation, and apoptosis and inhibiting autophagy. The study suggests that abamectin has a profound toxicity mechanism in the respiratory system of carp, contributing to a better understanding of pesticide risk assessment in aquatic systems.
Collapse
Affiliation(s)
- Huimiao Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ping Zhou
- Department of Endocrine, The Second People's Hospital of Lianyungang City, Lianyungang, 222000, China
| | - Feixue Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Haitao Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xueqing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
36
|
Li L, Cen J, Huang L, Luo L, Jiang G. Fabrication of a dual pH-responsive and photothermal microcapsule pesticide delivery system for controlled release of pesticides. PEST MANAGEMENT SCIENCE 2023; 79:969-979. [PMID: 36309964 DOI: 10.1002/ps.7265] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/15/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The development of stimulus-responsive and photothermally controlled-release microcapsule pesticide delivery systems is a promising solution to enhance the effective utilization and minimize the excessive use of pesticides in agriculture. RESULTS In this study, an AVM@CS@TA-Fe microcapsule pesticide delivery system was developed using avermectin as the model drug, chitosan and tannic acid as the wall materials, and tannic acid-Fe complex layer as the photothermal agent. The optical microscope, scanning electron microscope, transmission electron microscope, and Fourier-transform infrared spectroscope were used to characterize the prepared microcapsule. The slow-release, UV-shielding, photothermal performance, and nematicidal activity of the microcapsule were systematically investigated. The results showed that the system exhibited excellent pH-responsive and photothermal-sensitive performances. In addition, the UV-shielding performance of the delivery system was improved. The photothermal conversion efficiency (η) of the system under the irradiation of near-infrared (NIR) light was determined to be 14.18%. Moreover, the nematicidal activities of the system against pine wood nematode and Aphelenchoides besseyi were greatly increased under the irradiation of light-emitting diode (LED) simulated sunlight. CONCLUSION The release of the pesticide-active substances in such a pesticide delivery system could be effectively regulated with the irradiation of NIR light or LED-simulated sunlight. Thus, the developed pesticide delivery system may have broad application prospects in modern agriculture fields. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Linhuai Li
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, P. R. China
| | - Jun Cen
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, P. R. China
| | - Lingling Huang
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, P. R. China
| | - Ling Luo
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Guangqi Jiang
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, P. R. China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| |
Collapse
|
37
|
Zhao P, Wang Y, Yang Q, Yu G, Ma F, Dong J. Abamectin causes cardiac dysfunction in carp via inhibiting redox equilibrium and resulting in immune inflammatory response and programmed cell death. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:29494-29509. [PMID: 36418824 DOI: 10.1007/s11356-022-24004-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
This study aims to investigate the effects of environmentally relevant concentrations of abamectin on the cardiac function of carp and the potential mechanisms. Here, male carp were exposed to abamectin, and cardiac function-related enzymatic markers were examined. Cardiac histopathology, redox equilibrium, inflammation, and cell death were evaluated. Abamectin exposure caused cardiac dysfunction by upregulating lactate dehydrogenase (LDH), aspartate aminotransferase (AST), creatine kinase (CK), creatine Kinase MB isoenzyme (CK-MB) and white blood cells (WBCs), and decreasing red blood cells (RBCs) and hemoglobin (Hb). DHE staining and biochemical assays revealed that abamectin caused ROS release and oxidative stress by inhibiting Nrf2-ARE pathway. Histopathological and real-time fluorescence quantitative PCR (RT-qPCR) assays revealed that abamectin caused myocardial fiber swelling and inflammatory cell infiltration, enhanced pro-inflammatory cytokines tumor necrosis factor-α (Tnf-α), interleukin-1 beta (Il-1β), and Il-6 levels and attenuated anti-inflammatory cytokines Il-10 and transforming growth factor beta 1 (Tgf-β1) through activating NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome and nuclear factor kappa-B (NF-κB) pathway. Tunel staining showed that abamectin triggered cardiac apoptosis via activating p53-mediated mitochondrial apoptosis with elevated bcl2-associated X (Bax), reduced B-cell lymphoma-2 (Bcl-2), and activated Caspase-9 and Caspase-3. Immunoblot analysis revealed that abamectin activated autophagic flow by inhibiting mammalian target of rapamycin (mTOR), resulting in the conversion of LC3B from LC3-I to LC3-II, elevation of autophagy protein 5 (Atg5), and reduction of p62. Overall, abamectin caused cardiac dysfunction in carp via inhibiting redox equilibrium and resulting in immune inflammatory response and programmed cell death.
Collapse
Affiliation(s)
- Panpan Zhao
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Yan Wang
- Department of Medicine Laboratory, The Second People's Hospital of Lianyungang City, The Second People's Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - Qiankun Yang
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, 222000, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Guili Yu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Fenfen Ma
- Department of Medicine Laboratory, The Second People's Hospital of Lianyungang City, The Second People's Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
38
|
Anjum F, Wright DJ. Foliar Residual Toxicity of Insecticides to Brassica Pests and Their Natural Enemies. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:153-159. [PMID: 36762676 DOI: 10.1093/jee/toac188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Indexed: 06/18/2023]
Abstract
Overuse of pesticides can result in the development of resistance, secondary pest outbreaks, and pest resurgence due to a reduction in natural enemies. The present study compares the residual toxicity of lambda-cyhalothrin, a relatively nonselective insecticide, with abamectin, indoxacarb, and spinosad, compounds which have been reported to be less harmful to arthropod natural enemies. Two key cosmopolitan pests of crucifer crops, (Plutella xylostella) and (Myzus persicae), and two of their respective hymenopteran parasitoids, (Cotesia vestalis) and (Aphidius colemani) were used as representative pests and natural enemies. The pyrethroid lambda-cyhalothrin was found to be the most persistent toxicant against both pest and both parasitoid species tested, while the lactones abamectin and spinosad were the least persistent toxicants. A leaf wax stripping technique was used to compare the contact toxicity of insecticide residues against adult C. vestalis and A. colemani in the epicuticular wax layer. For each compound, removal of epicuticular wax reduced the 24 h residual toxicity (LC50) of fresh deposits (day 0) by about an order of magnitude against C. vestalis. A second residual toxicity experiment showed that removal of epicuticular wax significantly reduced the residual toxicity of each compound against A. colemani at 0, 7, and 14 d after application, with little or no detectable residual activity for the oxadiazine indoxacarb or abamectin/spinosad respectively after 14 d. The present data supports the view that in addition to the intrinsic toxicity of insecticides to natural enemies, differences in their persistence as foliar residues should also be considered in IPM systems.
Collapse
Affiliation(s)
- Farida Anjum
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Denis J Wright
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| |
Collapse
|
39
|
Zhu Y, Xie Q, Ye J, Wang R, Yin X, Xie W, Li D. Metabolic Mechanism of Bacillus sp. LM24 under Abamectin Stress. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3068. [PMID: 36833759 PMCID: PMC9965259 DOI: 10.3390/ijerph20043068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Abamectin (ABM) has been recently widely used in aquaculture. However, few studies have examined its metabolic mechanism and ecotoxicity in microorganisms. This study investigated the molecular metabolic mechanism and ecotoxicity of Bacillus sp. LM24 (B. sp LM24) under ABM stress using intracellular metabolomics. The differential metabolites most affected by the bacteria were lipids and lipid metabolites. The main significant metabolic pathways of B. sp LM24 in response to ABM stress were glycerolipid; glycine, serine, and threonine; and glycerophospholipid, and sphingolipid. The bacteria improved cell membrane fluidity and maintained cellular activity by enhancing the interconversion pathway of certain phospholipids and sn-3-phosphoglycerol. It obtained more extracellular oxygen and nutrients to adjust the lipid metabolism pathway, mitigate the impact of sugar metabolism, produce acetyl coenzyme A to enter the tricarboxylic acid (TCA) cycle, maintain sufficient anabolic energy, and use some amino acid precursors produced during the TCA cycle to express ABM efflux protein and degradative enzymes. It produced antioxidants, including hydroxyanigorufone, D-erythroascorbic acid 1'-a-D-xylopyranoside, and 3-methylcyclopentadecanone, to alleviate ABM-induced cellular and oxidative damage. However, prolonged stress can cause metabolic disturbances in the metabolic pathways of glycine, serine, threonine, and sphingolipid; reduce acetylcholine production; and increase quinolinic acid synthesis.
Collapse
Affiliation(s)
- Yueping Zhu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Qilai Xie
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agricultural and Pural Pullution Abatement and Environmental Safety, Guangzhou 510642, China
| | - Jinshao Ye
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Ruzhen Wang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xudong Yin
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Wenyu Xie
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Dehao Li
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| |
Collapse
|
40
|
Bai J, Guo D, Li J, Wang H, Wang C, Liu Z, Guo X, Wang Y, Xu B. The role of AccCDK20 and AccCDKN1 from Apis cerana cerana in development and response to pesticide and heavy metal toxicity. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 190:105333. [PMID: 36740341 DOI: 10.1016/j.pestbp.2022.105333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
Apis cerana cerana is a native bee species in China and plays a key role in agricultural production and ecological balance. However, the growth and development of Apis cerana cerana has not been smooth, and pesticide and heavy metal stress are key factors that have forced a dramatic decline in population size. This study was performed with the objective of investigating the role of AccCDK20 and AccCDKN1 in honey bee resistance to pesticide and heavy metal stress. RT-qPCR analysis revealed that AccCDK20 transcript levels were highest in brown-eyed pupae and AccCDKN1 transcript levels were highest in 1-day-old worker bees. In different tissues and body parts of adult bees, AccCDK20 transcript levels were highest in the head, and AccCDKN1 transcript levels were highest in the thorax. It was further observed that environmental stress can affect the transcript levels of the AccCDK20 and AccCDKN1 genes. Silencing of the AccCDK20 and AccCDKN1 genes resulted in altered activities of antioxidant-related genes and antioxidant-related enzymes. AccCDK20 and AccCDKN1 transcript levels were upregulated under glyphosate stress, and silencing of the genes resulted in reduced resistance to glyphosate and greatly increased mortality in Apis cerana cerana. In addition, gene function was verified by in vitro repression assays. Overexpression of the AccCDK20 and AccCDKN1 proteins in E. coli cells increased the resistance to ROS damage induced by CHP. In conclusion, AccCDK20 and AccCDKN1 play an indispensable role in honey bee resistance to pesticide and heavy metal stress.
Collapse
Affiliation(s)
- Jinhao Bai
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Dezheng Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Jing Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
41
|
Gou Z, Li J, He F, Bamao Z, Li Z, Xu T. Screening of a high-yield strain of avermectin B 1a by colony analysis in situ. INTERNATIONAL MICROBIOLOGY : THE OFFICIAL JOURNAL OF THE SPANISH SOCIETY FOR MICROBIOLOGY 2023; 26:123-133. [PMID: 36178644 DOI: 10.1007/s10123-022-00279-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 08/21/2022] [Accepted: 09/19/2022] [Indexed: 01/06/2023]
Abstract
Avermectin, an agricultural antibiotic, is widely used as an agricultural insecticide and an important lead compound of antibiotics. It is manufactured by Streptomyces avermitilis through fermentation. Manufacturers pay special attention to screening for strains with high fermentation capacity based on morphological properties of the colony and by the result of shake flask fermentation. These traditional screening methods are time-consuming and labor-intensive and require specialized equipment. Moreover, evaluation of colony appearance is highly subjective. To improve and accelerate the screening process, we developed a rapid in situ screening method. Forty-four strains isolated naturally from the spores of industrial high-yielding strains were studied. The data show that the colony fermentation titer is highly correlated with the yield from the shake flask fermentation of avermectin, and the Pearson's R is 0.990. The total titer of avermectins by shake flask fermentation is also highly correlated with the B1a titer (Pearson's R is 0.994). This result also shows that strains can be quickly screened by analyzing the colony titer. Pigment rings of the colonies that appeared after growing and maturing on the new medium plate were analyzed. The chosen colonies were directly marked and punched and then extracted with methanol. The fermentation ability can be evaluated by measuring the absorbance at 245 nm. This methodology can be applied in both natural breeding and mutation breeding conditions. By continuously breeding from 2008 to 2020, the flask titer of avermectin B1a increased from 4582 ± 483 to 9197 ± 1134 μg/mL.
Collapse
Affiliation(s)
- Zhongxuan Gou
- Jiangsu Food & Pharmaceutical Science College, Huaian, 223003, Jiangsu, China. .,Hebei Veyong Biochemical Co., LTD, Shijiazhuang City, Hebei, 050011, China.
| | - Junhua Li
- Hebei Veyong Biochemical Co., LTD, Shijiazhuang City, Hebei, 050011, China
| | - Feng He
- Jiangsu Food & Pharmaceutical Science College, Huaian, 223003, Jiangsu, China
| | - Zhaxi Bamao
- Jiangsu Food & Pharmaceutical Science College, Huaian, 223003, Jiangsu, China
| | - Zixuan Li
- Jiangsu Food & Pharmaceutical Science College, Huaian, 223003, Jiangsu, China
| | - Tingyu Xu
- Jiangsu Food & Pharmaceutical Science College, Huaian, 223003, Jiangsu, China.,Hebei Veyong Biochemical Co., LTD, Shijiazhuang City, Hebei, 050011, China
| |
Collapse
|
42
|
Zhu H, Guan X, Pu L, Shen L, Hua H. Acute toxicity, biochemical and transcriptomic analysis of Procambarus clarkii exposed to avermectin. PEST MANAGEMENT SCIENCE 2023; 79:206-215. [PMID: 36129128 DOI: 10.1002/ps.7189] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/29/2022] [Accepted: 09/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Pesticides are extensively applied globally. Pesticide residues induce calamitous effects on the environment and untargeted organisms. Public concerns for the safety of freshwater organisms and the challenges posed by aquatic contaminants remain high. In the present study, the acute toxicity of avermectins (AVMs) to the crayfish, Procambarus clarkii was evaluated. We also evaluated the potential effects of AVM on the biochemical and transcriptomic status of the hepatopancreas and gastrointestinal tract in P. clarkii. RESULTS The 24, 48, 72, 96 h median lethal concentrations (LC50 ) of AVM on crayfish were 2.626, 1.162, 0.723, 0.566 mg L-1 , respectively. The crayfish were then exposed to 0.65 mg L-1 of AVM for 96 h. AVM significantly altered biochemical parameters including AChE and CAT activities in the hepatopancreas, and AChE, SOD and Na + -K + -ATPase activities in the gastrointestinal tract at several time points. Furthermore, transcriptomic analysis identified 953 and 1851 differentially-expressed genes (DEGs) in the hepatopancreas and gastrointestinal tract, respectively. KEGG enrichment showed that the gene expression profiles of the hepatopancreas and gastrointestinal tract were distinct from each other. The DEGs in the hepatopancreas were mostly enriched with stress-response pathways, while the majority of the DEGs in the gastrointestinal tract belonged to metabolism-related pathways. CONCLUSION We demonstrated that the AVM induced acute toxicity, oxidative stress, osmoregulation disturbance, neurotoxicity and transcriptome imbalance in crayfish. These findings unraveled the detrimental effects of AVMs exposure on crayfish. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hongyuan Zhu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xianjun Guan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lei Pu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liyang Shen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongxia Hua
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
43
|
Santos KPED, Ferreira Silva I, Mano-Sousa BJ, Duarte-Almeida JM, Castro WVD, Azambuja Ribeiro RIMD, Santos HB, Thomé RG. Abamectin promotes behavior changes and liver injury in zebrafish. CHEMOSPHERE 2023; 311:136941. [PMID: 36272627 DOI: 10.1016/j.chemosphere.2022.136941] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The indiscriminate use of pesticides is a worldwide concern due to the environment contamination since it can cause deleterious effects to non-target organisms including the fishes. The effects of abamectin, a pesticide from the avermectin family, were evaluated in adult zebrafish (Danio rerio) after exposure to a commercial formula commonly used in Brazil. The animals were submitted to acute (96 h) and to a short-term chronic exposure (15 days) of distinct concentrations of abamectin. LC50 was determined and a histological study followed by an immunohistochemistry analysis for P-gp and HSP70 identification were performed on livers of the animals submitted to the acute and chronic treatment, respectively. Moreover, behavior patterns were observed daily in both trials. A LC50 value of 105.68 μg/L was determined. The histological analysis revealed a morphological alteration of the hepatocytes, glycogen accumulation, degeneration, and disorganization of the cytoplasm, and a pyknotic, irregular, and laterally located nuclei. The immunohistochemistry for HSP70 and P-gp showed strong staining in the hepatocytes of the control groups and progressive decrease as the concentration of abamectin increased. Changes were observed in body posture, movement around the aquarium, opercular activity, body color and search for food in the groups treated with abamectin. The results presented suggest that abamectin can affect the behavioral pattern of the animals, promote morphological changes, and decrease the expression of HSP70 and P-gp in zebrafish liver.
Collapse
Affiliation(s)
- Keiza Priscila Enes Dos Santos
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório de Processamento de Tecidos, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Isabella Ferreira Silva
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório de Processamento de Tecidos, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Brayan Jonas Mano-Sousa
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório de Farmacognosia, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Joaquim Maurício Duarte-Almeida
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório de Farmacognosia, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Whocely Victor de Castro
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório Central Analítica, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Rosy Iara Maciel de Azambuja Ribeiro
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório de Patologia Experimental, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Hélio Batista Santos
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório de Processamento de Tecidos, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Ralph Gruppi Thomé
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório de Processamento de Tecidos, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil.
| |
Collapse
|
44
|
dos Santos CG, Sousa MF, Vieira JIG, de Morais LR, Fernandes AAS, de Oliveira Littiere T, Itajara Otto P, Machado MA, Silva MVGB, Bonafé CM, Braga Magalhães AF, Verardo LL. Candidate genes for tick resistance in cattle: a systematic review combining post-GWAS analyses with sequencing data. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2022.2096035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Cassiane Gomes dos Santos
- Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Mariele Freitas Sousa
- Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - João Inácio Gomes Vieira
- Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Luana Rafaela de Morais
- Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | | | | | - Pamela Itajara Otto
- Department of Animal Science, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | | | - Cristina Moreira Bonafé
- Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | | | - Lucas Lima Verardo
- Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| |
Collapse
|
45
|
Li G, Zhang C, Wang H, Xia W, Zhang X, Liu Z, Wang Y, Zhao H, Xu B. Characterisation of the heat shock protein Tid and its involvement in stress response regulation in Apis cerana. Front Physiol 2022; 13:1068873. [PMID: 36620206 PMCID: PMC9813389 DOI: 10.3389/fphys.2022.1068873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Objective: The impact of various environmental stresses on native Apis cerana cerana fitness has attracted intense attention in China. However, the defence responses of A. cerana cerana to different stressors are poorly understood. Here, we aimed to elucidate the regulatory mechanism mediated by the tumorous imaginal discs (Tid) protein of A. cerana cerana (AccTid) in response to stressors. Methods: We used some bioinformatics softwares to analyse the characterisation of Tid. Then, qRT-PCR, RNA interference and heat resistance detection assays were used to explore the function of Tid in stress response in A. cerana cerana. Results: AccTid is a homologous gene of human Tid1 and Drosophila Tid56, contains a conserved J domain and belongs to the heat shock protein DnaJA subfamily. The level of AccTid induced expression was increased under temperature increases from 40°C to 43°C and 46°C, and AccTid knockdown decreased the heat resistance of A. cerana cerana, indicating that the upregulation of AccTid plays an important role when A. cerana cerana is exposed to heat stress. Interestingly, contrary to the results of heat stress treatment, the transcriptional level of AccTid was inhibited by cold, H2O2 and some agrochemical stresses and showed no significant change under ultraviolet ray and sodium arsenite stress. These results suggested that the requirement of A. cerana cerana for Tid differs markedly under different stress conditions. In addition, knockdown of AccTid increased the mRNA levels of some Hsps and antioxidant genes. The upregulation of these Hsps and antioxidant genes may be a functional complement of AccTid knockdown. Conclusion: AccTid plays a crucial role in A. cerana cerana stress responses and may mediate oxidative damage caused by various stresses. Our findings will offer fundamental knowledge for further investigations of the defence mechanism of A. cerana cerana against environmental stresses.
Collapse
Affiliation(s)
- Guilin Li
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Chenghao Zhang
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Wenli Xia
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Xinyi Zhang
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Hang Zhao
- College of Life Sciences, Qufu Normal University, Qufu, China,*Correspondence: Hang Zhao, ; Baohua Xu,
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China,*Correspondence: Hang Zhao, ; Baohua Xu,
| |
Collapse
|
46
|
Abdelaziz MA, Saleh AM, Mansour FR, Danielson ND. A Gadolinium-Based Magnetic Ionic Liquid for Dispersive Liquid–Liquid Microextraction of Ivermectin from Environmental Water. J Chromatogr Sci 2022:6931730. [DOI: 10.1093/chromsci/bmac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 12/23/2022]
Abstract
Abstract
The recently introduced gadolinium-based magnetic ionic liquid (Gd-MIL) has been exploited as an extractant in dispersive liquid–liquid microextraction (DLLME) for preconcentration of ivermectin (IVR) from water samples followed by analysis using reversed-phase HPLC with UV detection at 245 nm. The utilized Gd-MIL extractant is hydrophobic with markedly high magnetic susceptibility. These features result in an efficient extraction of the lipophilic analyte and facilitate the phase separation under the influence of a strong magnetic field, thus promoting the method sensitivity and increasing the potential for automation. To maximize the IVR enrichment by DLLME, the procedure was optimized for extractant mass, dispersive solvent type/volume, salt addition and diluent pH. At optimized conditions, an enrichment factor approaching 70 was obtained with 4.0-mL sample sizes. The method was validated in terms of accuracy, precision, specificity and limit of quantitation. The method was successfully applied to the determination of IVR in river water samples with a mean relative recovery of 97.3% at a spiked concentration of 400 ng/mL. Compared with other reported methods, this approach used a simpler procedure with improved precision, lower amounts of safer solvents and a short analysis time.
Collapse
Affiliation(s)
- Mohamed A Abdelaziz
- Department of Chemistry and Biochemistry, Miami University , Oxford, OH 45056 , USA
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Kafrelsheikh University , Kafrelsheikh 33511 , Egypt
| | - Ahmed M Saleh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University , Jadidah 34518 , Egypt
| | - Fotouh R Mansour
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University , 31111 Tanta , Egypt
- Pharmaceutical Services Center, Faculty of Pharmacy, Tanta University , 31111 Tanta , Egypt
| | - Neil D Danielson
- Department of Chemistry and Biochemistry, Miami University , Oxford, OH 45056 , USA
| |
Collapse
|
47
|
Mansour AT, Mahboub HH, Amen RM, El-Beltagy MA, Ramah A, Abdelfattah AM, El-Beltagi HS, Shalaby TA, Ghazzawy HS, Ramadan KMA, Alhajji AHM, Hamed HS. Ameliorative Effect of Quercetin against Abamectin-Induced Hemato-Biochemical Alterations and Hepatorenal Oxidative Damage in Nile Tilapia, Oreochromis niloticus. Animals (Basel) 2022; 12:3429. [PMID: 36496949 PMCID: PMC9736238 DOI: 10.3390/ani12233429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Abamectin (ABM) is a common agricultural pesticide and veterinary anthelmintic drug. It can discharge from the sites of application to aquatic systems via surface run-off or spray drift, causing harmful effects to aquatic organisms. The present study investigated the protective effect of dietary quercetin supplementation on hemato-biochemical parameters and hepato-renal oxidative stress biomarkers in Nile tilapia (Oreochromis niloticus) exposed to a sublethal dose of ABM. Fish were allocated into six equal groups. The first group was kept as a control group. The second and third groups (Q400, and Q800) were fed diets supplemented with two quercetin levels (400 and 800 mg/kg diet), respectively. The fourth group (ABM) was intoxicated with 20.73 µg/L of ABM. The fifth and sixth groups (ABM + Q400, and ABM + Q800) were fed diet supplemented with two quercetin levels (400 and 800 mg/kg diet) and simultaneously intoxicated with ABM for 60 days. The results showed that ABM significantly decreased RBCs, hemoglobin content, hematocrit, total protein, albumin levels, and acetylcholinesterase activity activities compared to the control. Meanwhile, ABM significantly increased white blood cells, glucose, total lipids, cholesterol, and alanine and aspartate aminotransferase activities. Liver and kidney levels of lipid peroxidation was significantly increased, while hepato-renal antioxidant biomarkers (reduced glutathione, super oxide dismutase, catalase, and total antioxidant capacity) were significantly decreased upon ABM exposure. On the other hand, quercetin dietary supplementation improved the hemato-biochemical alterations and alleviated oxidative stress induced by ABM exposure. Fish supplemented with quercetin at a level of 800 mg/kg diet showed better alleviating effects against ABM compared to 400 mg/kg diet. Based on these study findings, we suggest that quercetin dietary supplementation (800 mg/kg) offered direct protection against ABM-induced physiological disturbance and oxidative stress in Nile tilapia.
Collapse
Affiliation(s)
- Abdallah Tageldein Mansour
- Fish and Animal Production and Aquaculture Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Heba H. Mahboub
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Rehab M. Amen
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Marwa A. El-Beltagy
- Biochemistry Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Amany Ramah
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192, Japan
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Qalyubia 13518, Egypt
| | - Abdelfattah M. Abdelfattah
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Tarek A. Shalaby
- Department of Arid Land Agriculture, College of Agricultural and Food Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Hesham S. Ghazzawy
- Date Palm Research Center of Excellence, King Faisal University, Hofuf 31982, Saudi Arabia
| | - Khaled M. A. Ramadan
- Central Laboratories, Department of Chemistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Adnan H. M. Alhajji
- Fish and Animal Production and Aquaculture Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Heba S. Hamed
- Department of Zoology, Faculty of Women for Arts, Science & Education, Ain Shams University, Cairo 11757, Egypt
| |
Collapse
|
48
|
Qiu D, Xu N, Zhang Q, Zhou W, Wang Y, Zhang Z, Yu Y, Lu T, Sun L, Zhou NY, Peijnenburg WJGM, Qian H. Negative effects of abamectin on soil microbial communities in the short term. Front Microbiol 2022; 13:1053153. [PMID: 36545194 PMCID: PMC9760678 DOI: 10.3389/fmicb.2022.1053153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/15/2022] [Indexed: 12/08/2022] Open
Abstract
With the widespread use of abamectin in agriculture, there is increasing urgency to assess the effects of abamectin on soil microorganisms. Here, we treated plant-soil microcosms with abamectin at concentrations of 0.1 and 1.0 mg/kg and quantified the impacts of abamectin on bulk and rhizosphere soil microbial communities by shotgun metagenomics after 7 and 21 days of exposure. Although abamectin was reported to be easily degradable, it altered the composition of the soil microbial communities, disrupted microbial interactions, and decreased community complexity and stability after 7 days of exposure. After treatment with abamectin at a concentration of 1.0 mg/kg, some opportunistic human diseases, and soil-borne pathogens like Ralstonia were enriched in the soil. However, most ecological functions in soil, particularly the metabolic capacities of microorganisms, recovered within 21 days after abamectin treatment. The horizontal and vertical gene transfer under abamectin treatments increased the levels of antibiotic resistance genes dissemination. Overall, our findings demonstrated the negative effects of abamectin on soil ecosystems in the short-term and highlight a possible long-term risk to public and soil ecosystem health associated with antibiotic resistance genes dissemination.
Collapse
Affiliation(s)
- Danyan Qiu
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Nuohan Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Wenya Zhou
- College of Environment and Ecology, Xiamen University, Xiamen, China
| | - Yan Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yitian Yu
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - W. J. G. M. Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Leiden, Netherlands,National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, Netherlands
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, China,*Correspondence: Haifeng Qian,
| |
Collapse
|
49
|
Kavallieratos NG, Boukouvala MC, Skourti A, Nika EP, Papadoulis GT. Trunk Injection with Insecticides Manages Xylotrechus chinensis (Chevrolat) (Coleoptera: Cerambycidae). INSECTS 2022; 13:1106. [PMID: 36555016 PMCID: PMC9784661 DOI: 10.3390/insects13121106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Xylotrechus chinensis (Chevrolat) (Coleoptera: Cerambycidae) is a serious wood-boring insect of mulberry trees (Morus spp.). Larvae of this species enter the trunk of the tree and feed on woody tissues. Xylotrechus chinensis is endemic in several Asian countries, while, in the last decade, it invaded Europe. In the present work, we evaluated trunk injection against this pest. The systemic insecticides fipronil, imidacloprid, and spirotetramat were used in the trials. Abamectin was used as a positive control since it has been found to be effective for the management of X. chinensis. Imidacloprid and fipronil proved to be highly effective against this species in both years (9.5 and 12.1 exit holes/tree in 2021, 5.0 and 8.8 exit holes/tree in 2022, respectively), while spirotetramat was the least effective. The lowest mean number of exit holes was recorded when abamectin was applied in both years (4.7 exit holes/tree in 2021 and 3.3 exit holes/tree in 2022). The percentage of exit holes was reduced by 76.1, 71.8, and 85.6% in trees treated with imidacloprid, fipronil, and abamectin, respectively, after two years of application, while spirotetramat caused a 37.4% reduction. Trunk injection with imidacloprid, fipronil, and abamectin could be used against X. chinensis for long-term control of mulberry trees.
Collapse
|
50
|
de Souza RB, de Souza CP, Guimarães JR. Environmentally realistic concentrations of eprinomectin induce phytotoxic and genotoxic effects in Allium cepa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80983-80993. [PMID: 35727508 PMCID: PMC9209316 DOI: 10.1007/s11356-022-21403-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Eprinomectin, a veterinary drug within the family of avermectins, is widely used in the agricultural sector to combat a variety of parasites, mainly nematodes. However, only 10% of the drug is metabolized in the organism, so large quantities of the drug are released into the environment through urine and/or feces. Soil is the first and main environmental compartment to be contaminated by it, and nontargeted organisms can be affected. Thus, the present study aims to evaluate the phytotoxicity (through the evaluation of germination, root development, and germination speed) and genotoxicity (through an assessment of the induction of micronuclei and chromosomal aberrations) of eprinomectin. For the analyses, Allium cepa seeds were germinated in soil contaminated with a range of concentrations of eprinomectin: from 0.5 to 62.5 μg/g for the genotoxicity test and from 0.5 to 128.0 μg/g for the phytotoxicity test. The results showed that seed germination was not affected, but root development was affected at concentrations of 0.5 μg/g, 1.0 μg/g, 4.0 μg/g, 8.0 μg/g, 64.0 μg/g, and 128.0 μg/g, and germination speed was significantly changed at concentrations of 1.0 μg/g, 4.0 μg/g, 16.0 μg/g, 32.0 μg/g, and 64.0 μg/g. Significant differences in the mitotic index and genotoxicity index were observed only at concentrations of 2.5 μg/g and 12.5 μg/g, respectively. Only the 0.5 μg/g concentration did not show significant induction of micronuclei in the meristematic cells, but the damage observed at other concentrations did not persist in F1 cells. According to the results, eprinomectin is both phytotoxic and genotoxic, so the release of eprinomectin into the environment should be minimized.
Collapse
Affiliation(s)
- Raphael B de Souza
- School of Civil Engineering, Architecture and Urban Design, University of Campinas, Campinas, Brazil.
| | | | - José Roberto Guimarães
- School of Civil Engineering, Architecture and Urban Design, University of Campinas, Campinas, Brazil
| |
Collapse
|