1
|
Milanković V, Tasić T, Brković S, Potkonjak N, Unterweger C, Pašti I, Lazarević-Pašti T. The adsorption of chlorpyrifos and malathion under environmentally relevant conditions using biowaste carbon materials. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135940. [PMID: 39326149 DOI: 10.1016/j.jhazmat.2024.135940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/11/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Water bodies face persistent contamination from organophosphorus pesticides like chlorpyrifos and malathion, which pose substantial environmental and health hazards due to their toxicity and resilience in ecosystems. This study explores the potential of spent coffee grounds, a common agricultural byproduct, as an eco-friendly adsorbent for eliminating these pesticides from polluted water. Spent coffee grounds underwent carbonization at 400 °C and various activation treatments using KOH, H3PO4, CO2, and their combinations. The impact of these activation methods on the adsorption capacity of carbonized materials was assessed under environmentally relevant conditions (25 °C, pH=6, and typical pesticide concentrations in wastewater). Results revealed that the physical and chemical properties of biowaste-derived materials significantly influence their adsorption efficiency, with KOH-activated adsorbents exhibiting the highest capacities ((16.1 ± 0.8) mg g-1 for chlorpyrifos and (11.2 ± 0.2) mg g-1 for malathion). Spent coffee grounds carbonized at 400 °C without additional activation demonstrated similar adsorption performance to the best-performing material ((19.4 ± 0.4) mg g-1 for chlorpyrifos and (10.6 ± 0.4) mg g-1 for malathion), with notably lower economic and environmental costs. Given its straightforward preparation and significant adsorption capacity, this material stands out as a sustainable solution for treating agrochemical wastewater containing chlorpyrifos and malathion.
Collapse
Affiliation(s)
- Vedran Milanković
- VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, Belgrade 11000, Serbia
| | - Tamara Tasić
- VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, Belgrade 11000, Serbia
| | - Snežana Brković
- VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, Belgrade 11000, Serbia
| | - Nebojša Potkonjak
- VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, Belgrade 11000, Serbia
| | - Christoph Unterweger
- Wood K plus - Kompetenzzentrum Holz GmbH, Altenberger Strasse 69, Linz 4040, Austria
| | - Igor Pašti
- University of Belgrade - Faculty of Physical Chemistry, Studentski Trg 12-16, Belgrade 11158, Serbia
| | - Tamara Lazarević-Pašti
- VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, Belgrade 11000, Serbia.
| |
Collapse
|
2
|
Ghoshal D, Dixit M, Narayanan N, Saini P, Kumar A, Banerjee T, Singh N, Gupta S. Sorption and mobility assessment of tembotrione in soils of upper, trans and middle Gangetic plain zones of India. Biomed Chromatogr 2024; 38:e5939. [PMID: 38886169 DOI: 10.1002/bmc.5939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
The presence of undesired agrochemicals residues in soil and water poses risks to both human health and the environment. The behavior of pesticides in soil depends both on the physico-chemical properties of pesticides and soil type. This study examined the adsorption-desorption and leaching behavior of the maize herbicide tembotrione in soils of the upper (UGPZ), trans (TGPZ) and middle Gangetic plain zones of India. Soil samples were extracted using acetone followed by partitioning with dichloromethane, whereas liquid-liquid extraction using dichloromethane was used for aqueous samples. Residues of tembotrione and its metabolite TCMBA, {2-chloro-4-(methylsulfonyl)-3-[(2,2,2-trifluoroethoxy) methyl] benzoic acid}, were quantified using liquid chromatography-tandem mass spectrometry. The data revealed that tembotrione adsorption decreased with increasing pH and dissolved organic matter but increased with salinity. The maximum adsorption occurred at pH 4, 0.01 m sodium citrate and 4 g/L NaCl, with corresponding Freundlich constants of 1.83, 2.28 and 3.32, respectively. The hysteresis index <1 indicated faster adsorption than desorption. Leaching studies under different flow conditions revealed least mobility in UGPZ soil and high mobility in TGPZ soil, consistent with groundwater ubiquity scores of 4.27 and 4.81, respectively. Soil amendments decreased tembotrione mobility in the order: unamended > wheat straw ash > wheat straw > farm yard manure > compost. The transformation of tembotrione to TCMBA and its mobility in soil columns were also assessed.
Collapse
Affiliation(s)
- Debabrata Ghoshal
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Mahima Dixit
- Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India
| | - Neethu Narayanan
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Priya Saini
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Aman Kumar
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Tirthankar Banerjee
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Neera Singh
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Suman Gupta
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
3
|
Mgadi K, Ndaba B, Roopnarain A, Rama H, Adeleke R. Nanoparticle applications in agriculture: overview and response of plant-associated microorganisms. Front Microbiol 2024; 15:1354440. [PMID: 38511012 PMCID: PMC10951078 DOI: 10.3389/fmicb.2024.1354440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/30/2024] [Indexed: 03/22/2024] Open
Abstract
Globally, food security has become a critical concern due to the rise in human population and the current climate change crisis. Usage of conventional agrochemicals to maximize crop yields has resulted in the degradation of fertile soil, environmental pollution as well as human and agroecosystem health risks. Nanotechnology in agriculture is a fast-emerging and new area of research explored to improve crop productivity and nutrient-use efficiency using nano-sized agrochemicals at lower doses than conventional agrochemicals. Nanoparticles in agriculture are applied as nanofertilizers and/or nanopesticides. Positive results have been observed in terms of plant growth when using nano-based agricultural amendments. However, their continuous application may have adverse effects on plant-associated rhizospheric and endospheric microorganisms which often play a crucial role in plant growth, nutrient uptake, and disease prevention. While research shows that the application of nanoparticles has the potential to improve plant growth and yield, their effect on the diversity and function of plant-associated microorganisms remains under-explored. This review provides an overview of plant-associated microorganisms and their functions. Additionally, it highlights the response of plant-associated microorganisms to nanoparticle application and provides insight into areas of research required to promote sustainable and precision agricultural practices that incorporate nanofertilizers and nanopesticides.
Collapse
Affiliation(s)
- Katiso Mgadi
- Unit of Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council-Natural Resources and Engineering, Pretoria, South Africa
| | - Busiswa Ndaba
- Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council-Natural Resources and Engineering, Pretoria, South Africa
| | - Ashira Roopnarain
- Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council-Natural Resources and Engineering, Pretoria, South Africa
- Department of Environmental Sciences, University of South Africa–Florida Campus, Johannesburg, South Africa
| | - Haripriya Rama
- Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council-Natural Resources and Engineering, Pretoria, South Africa
- Department of Physics, University of South Africa–Florida Campus, Johannesburg, South Africa
| | - Rasheed Adeleke
- Unit of Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
4
|
Peng D, Li W, Liang X, Zheng L, Guo X. Enzymatic preparation of hydrophobic biomass with one-pot synthesis and the oil removal performance. J Environ Sci (China) 2023; 124:105-116. [PMID: 36182120 DOI: 10.1016/j.jes.2021.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 06/16/2023]
Abstract
Oil pollution is causing deleterious damage to aquatic ecosystems and human health. The utilization of agricultural waste such as corn stalk (CS) to produce biosorbents has been considered an ecofriendly and efficient approach for removing oil. However, most previous studies focused on the modification of the whole CS, which is inefficient due to the heterogeneity of CS. In this study, corn stalk pith (CP), which has excellent amphipathic characteristics, was selected to prepare a high-efficiency oil sorbent by grafting dodecyl gallate (DG, a long-chain alkyl) onto CP surface lignin via laccase mediation. The modified biomass (DGCP) shows high hydrophobicity (water contact angle = 140.2°) and superoleophilicity (oil contact angle = 0°) and exhibits a high oil sorption capacity (46.43 g/g). In addition, DGCP has good stability and reusability for adsorbing oil from the aqueous phase. Kinetic and isotherm models and two-dimensional correlation spectroscopy integrated with FTIR analyses revealed that the main sorption mechanism involves the H-bond effect, hydrophobic effect and van der Waals force. This work provides an ecofriendly method to prepare oil sorbents and new insights into the mechanisms underlying the removal of spilled oil from wastewater.
Collapse
Affiliation(s)
- Dan Peng
- Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Wenjie Li
- Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen 518172, China; School of Earth and Environment, Anhui University of Science & Technology, Huainan 232001, China
| | - Xujun Liang
- School of Resources and Environmental Science, Quanzhou Normal University, Quanzhou 362000, China; Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 481092125, USA.
| | - Liuchun Zheng
- School of Environment, South China Normal University, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
5
|
Piekarski J, Ignatowicz K, Dąbrowski T. Application of an Adsorption Process on Selected Materials, Including Waste, as a Barrier to the Pesticide Penetration into the Environment. MATERIALS 2022; 15:ma15134680. [PMID: 35806804 PMCID: PMC9267196 DOI: 10.3390/ma15134680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 11/16/2022]
Abstract
The article presents research on using the adsorption process of aldrin (a chloro-organic pesticide that most often occurs in the environment near expired pesticide burials). The research used three sorbents: two activated carbons and compost from sewage sludge as a low-cost sorbent. Obtained adsorption isotherms belong to the L group according to the Giles classification. The test results and their analysis confirm that the IZO application facilitates the analysis of the adsorption process. The study results also confirm that compost can be a cost-effective alternative to commercial activated carbons to build barriers protecting the environment against existing leaking expired pesticide burials.
Collapse
Affiliation(s)
- Jacek Piekarski
- Faculty of Civil Engineering, Environmental and Geodetic Sciences, Koszalin University of Technology, 75-453 Koszalin, Poland; (J.P.); (T.D.)
| | - Katarzyna Ignatowicz
- Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Bialystok, Poland
- Correspondence:
| | - Tomasz Dąbrowski
- Faculty of Civil Engineering, Environmental and Geodetic Sciences, Koszalin University of Technology, 75-453 Koszalin, Poland; (J.P.); (T.D.)
| |
Collapse
|
6
|
Bhat AH, Rangreez TA, Inamuddin, Chisti HTN. Wastewater Treatment and Biomedical Applications of Montmorillonite
Based Nanocomposites: A Review. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411016999200729123309] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background::
Rapid industrialisation, population growth and technological race worldwide have brought adverse
consequences on water resources and as a result affect human health. Toxic metal ions, non-biodegradable dyes, organic
pollutants, pesticides, pharmaceuticals are among the chief hazardous materials released into the water bodies from various
sources. These hazardous contaminants drastically affect the flora and fauna globally leading to health deterioration there
by giving rise to new biomedical challenges.
Hypothesis::
Montmorillonite based nanocomposites (MMTCs) have drawn an attention of the researchers to design
environmental friendly, advanced and hygienic nanocomposites for wastewater treatment and biomedical purposes.
Montmorillonite clay possesses peculiar physical and chemical properties that include enhanced surface reactivity, improved
rheological performance, exorbitant miscibility in water due to which it shows highly favourable interactions with polymers,
drugs, metals, mixed metals and metal oxides leading to the fabrication of different types of advanced montmorillonite
based nanocomposites that have remarkable applications
Methodology::
Here we review the structural characteristics of montmorillonite clay, advances in the synthetic techniques
involved in the fabrication of montmorillonite nanocomposites, their applications in waste water treatment and in bio
medical field. The recently developed montmorillonite nanocomposites for (1) waste water treatment as nano-adsorbents
for the elimination of toxic inorganic species such as metal ions and heterogeneous photo-catalysts for photo degradation
of dyes, pesticides and pharmaceuticals (2) biomedical utilization viz drug delivery, wound amelioration, bone cement,
tissue engineering etc. are presented
Conclusion::
The review exclusively focuses on recent research on montmorillonite based nanocomposites and their
application in wastewater treatment and in biomedical field
Collapse
Affiliation(s)
- Aabid Hussain Bhat
- Department of Chemistry, National Institute of Technology, Srinagar, J&K-190006,India,India
| | | | - Inamuddin
- Department of Chemistry, Faculty of Science, King Abdul Aziz University, Jeddah,Saudi Arabia
| | | |
Collapse
|
7
|
Rojas R, Repetto G, Morillo J, Usero J. Sorption/Desorption and Kinetics of Atrazine, Chlorfenvinphos, Endosulfan Sulfate and Trifluralin on Agro-Industrial and Composted Organic Wastes. TOXICS 2022; 10:toxics10020085. [PMID: 35202271 PMCID: PMC8877077 DOI: 10.3390/toxics10020085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 12/10/2022]
Abstract
The use of pesticides presents a risk to terrestrial and aquatic ecosystems. For this reason, the development of strategies to prevent and restore pollution is of the greatest interest, including the adsorption to organic matter. The aim of the present study was to investigate the sorption/desorption and kinetics of atrazine, chlorfenvinphos, endosulfan sulfate, and trifluralin onto several raw organic wastes by batch experiments. Three kinetic models were used to fit the obtained sorption kinetics data and two to fit the obtained adsorption isotherm data; both the Freundlich and pseudo-second-order kinetic models described the sorption isotherms well. The desorption study revealed hysteresis in all cases, showing strong, and not completely reversible, adsorption in most cases, with the exception of atrazine-sawdust and chlorfenvinphos-sawdust and chicken manure combinations, for which responses were weak and irreversible. The best kinetic, adsorption and desorption constants were achieved for the hydrophobic pesticides. With respect to sorption-desorption rates, orujillo was found to be the best adsorbent for atrazine, while composted urban solid waste was more suitable for trifluralin and endosulfan sulfate. Sorption constants and simple correlations indicated that, not only the organic matter content, but also the nature of the organic matter itself, and the pesticide and adsorbent properties, determine pesticide sorption-desorption. The use of wastes as efficient and cheap adsorbents for reducing the risk of pesticide pollution is proposed.
Collapse
Affiliation(s)
- Raquel Rojas
- Area of Toxicology, Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Ctra. de Utrera Km. 1, 41013 Seville, Spain;
- Department of Chemical and Environmental Engineering, University of Seville, Camino de los Descubrimientos s/n, 41092 Seville, Spain; (J.M.); (J.U.)
| | - Guillermo Repetto
- Area of Toxicology, Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Ctra. de Utrera Km. 1, 41013 Seville, Spain;
- Correspondence:
| | - José Morillo
- Department of Chemical and Environmental Engineering, University of Seville, Camino de los Descubrimientos s/n, 41092 Seville, Spain; (J.M.); (J.U.)
| | - José Usero
- Department of Chemical and Environmental Engineering, University of Seville, Camino de los Descubrimientos s/n, 41092 Seville, Spain; (J.M.); (J.U.)
| |
Collapse
|
8
|
Méndez-Novelo RI, San-Pedro L, May-Marrufo AA, Hernandez-Núñez E, Vales-Pinzón C, Escalante Soberanis MA. Optimization of the adsorption process in the treatment of sanitary landfill leachate by Fenton-adsorption. CHEM ENG COMMUN 2021. [DOI: 10.1080/00986445.2021.2018308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Liliana San-Pedro
- Faculty of Engineering, Autonomous University of Yucatán, Mérida, México
| | | | - Emanuel Hernandez-Núñez
- Sea Resources Department, Center of Research and Advanced Studies of the National Polytechnic Institute, Mérida, México
| | | | | |
Collapse
|
9
|
Basavegowda N, Baek KH. Advances in Functional Biopolymer-Based Nanocomposites for Active Food Packaging Applications. Polymers (Basel) 2021; 13:4198. [PMID: 34883701 PMCID: PMC8659840 DOI: 10.3390/polym13234198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 01/03/2023] Open
Abstract
Polymeric nanocomposites have received significant attention in both scientific and industrial research in recent years. The demand for new methods of food preservation to ensure high-quality, healthy foods with an extended shelf life has increased. Packaging, a crucial feature of the food industry, plays a vital role in satisfying this demand. Polymeric nanocomposites exhibit remarkably improved packaging properties, including barrier properties, oxygen impermeability, solvent resistance, moisture permeability, thermal stability, and antimicrobial characteristics. Bio-based polymers have drawn considerable interest to mitigate the influence and application of petroleum-derived polymeric materials and related environmental concerns. The integration of nanotechnology in food packaging systems has shown promise for enhancing the quality and shelf life of food. This article provides a general overview of bio-based polymeric nanocomposites comprising polymer matrices and inorganic nanoparticles, and describes their classification, fabrication, properties, and applications for active food packaging systems with future perspectives.
Collapse
Affiliation(s)
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea;
| |
Collapse
|
10
|
Rana AK, Mishra YK, Gupta VK, Thakur VK. Sustainable materials in the removal of pesticides from contaminated water: Perspective on macro to nanoscale cellulose. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149129. [PMID: 34303252 DOI: 10.1016/j.scitotenv.2021.149129] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Recently, over utilization of pesticides in agrarian and non- agrarian sectors has resulted in a significant increment in the deposition of their remnants in different segments of the environmental media. The presence of pesticides and transportation of their different metabolites in rivers, ponds, lakes, soils, air, groundwater sources and drinkable water sources has demonstrated a high threat to human wellbeing and the climate. Thus, the removal of pesticides and their metabolites from contaminated water is imperative to lessen the ill effects of pesticides on human beings. In the present article, we have appraised recent advances in pesticides removal utilizing low cost pristine and functionalized cellulose biomass-based derivatives. One of the key focus has been on better understand the destiny of pesticides in the environment as well as their behaviour in the water. In addition, the impact of magnetite cellulose nanocomposites, cellulose derived photo nano-catalyst, cellulose/clay nano composites, CdS/cellulose nanocomposites and activated carbons/biochar on percent removal of pesticides have also been a part of the current review. The impact of different parameters such as adsorbent dosage, pH, time of contact and initials pesticide concentration on adsorption capacity and adsorption kinetics followed during absorption by different cellulosic bio-adsorbents has also been given. The cellulosic biomass is highly efficient in the removal of pesticides and their efficiency further increases upon functionalization or their conversion into activated carbons forms. Nano particles loaded cellulosic materials have in general found to be less efficient than raw, functionalized cellulosic materials and activated carbons. Further, among different nano particles loaded with cellulose-based materials, cellulose/MnO2 photonanocatalyst were noticed to be more effective. So considerable efforts should be given to determine the finest practices that relate to the dissipation of different pesticides from the water.
Collapse
Affiliation(s)
- Ashvinder K Rana
- Department of Chemistry, Sri Sai University, Palampur 176061, India
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, Sønderborg DK-6400, Denmark
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Agriculture and Business Management Department, SRUC, Kings Buildings, West Mains Road, Edinburgh, UK
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Agriculture and Business Management Department, SRUC, Kings Buildings, West Mains Road, Edinburgh, UK; Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Greater Noida, Uttar Pradesh 201314, India.
| |
Collapse
|
11
|
Guidelines to Study the Adsorption of Pesticides onto Clay Minerals Aiming at a Straightforward Evaluation of Their Removal Performance. MINERALS 2021. [DOI: 10.3390/min11111282] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Natural and modified clay minerals have been extensively used for the adsorption/desorption of organic substances, especially pesticides, from waters and wastewater, aiming at pollution control and more efficient use of the herbicides through controlled release. While natural clay minerals efficiently remove organic cations such as paraquat and diquat, the adsorption of anionic or neutral species demands surface chemical modification with, for instance, quaternary ammonium salts containing long alkyl chains. Basic pesticides, on the other hand, are better absorbed in clay minerals modified with polycations. Kinetic studies and adsorption/desorption isotherms provide the parameters needed to evaluate the clay mineral’s adsorptive performance towards the pollutant target. However, the direct comparison of these parameters is complicated because the experimental conditions, the analytical techniques, the kinetic and isotherm models, and the numerical fitting method differ among the various studies. The free-energy-related Langmuir constant depends on the degree of site occupation; that is, it depends on the concentration window used to construct the adsorption isotherm and, consequently, on the analytical technique used to quantify the free concentrations. This paper reviews pesticides’ adsorption on natural and modified clay minerals and proposes guidelines for designing batch adsorption/desorption studies to obtain easily comparable and meaningful adsorption parameters. Articles should clearly describe the experimental conditions such as temperature, contact time, total concentration window, the solution to adsorbent ratio, the analytical technique, and its detection and quantification limits, besides the fitting models. Research should also evaluate the competitive effects of humic substances, colloidal inorganic particles, and ionic strength to emulate real-world adsorption experiments.
Collapse
|
12
|
Li Z, Yan X, Wu K, Jiao Y, Zhou C, Yang J. Surface Modification of Reduced Graphene Oxide Beads: Integrating Efficient Endotoxin Adsorption and Improved Blood Compatibility. ACS APPLIED BIO MATERIALS 2021; 4:4896-4906. [PMID: 35007038 DOI: 10.1021/acsabm.0c01666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As a pathogenic toxin, endotoxins are the culprit for endotoxemia and can be generally removed from the blood by hemoperfusion. Reduced graphene oxide (rGO) is a promising endotoxin sorbent for hemoperfusion owing to its excellent adsorption capacity, but it has the side effect of nonspecific adsorption and low blood compatibility. Polymyxin B (PMB) acts as an organic affinity ligand that can specifically bind endotoxins. As a natural anticoagulant, heparin (Hep) can reduce the risk of coagulation and improve the blood compatibility of materials. Herein, an rGO bead adsorbent was prepared by coupling with PMB and Hep and used for endotoxin adsorption; in this, polydopamine (pDA) served as an active coating for immobilization of PMB and further coupling with Hep. The physicochemical characteristics indicated that PMB and Hep were successfully immobilized on rGO beads with a hierarchical pore structure. PMB endowed rGO beads with higher adsorption capacity (143.84 ± 3.28 EU/mg) and good adsorption selectivity for endotoxins. Hep significantly improved the blood compatibility of rGO beads. These modified rGO beads also achieved good adsorption capacity and adsorption selectivity for endotoxins in plasma, serum, or blood. Therefore, rGO/pDA/PMB/Hep beads are potential adsorbents for endotoxins in hemoperfusion.
Collapse
Affiliation(s)
- Zhentao Li
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Xin Yan
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Keke Wu
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Yanpeng Jiao
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Changren Zhou
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jingxin Yang
- College of Robotics, Beijing Union University, Beijing 100027, China
| |
Collapse
|
13
|
Chitosan nanocomposites for water treatment by fixed-bed continuous flow column adsorption: A review. Carbohydr Polym 2021; 255:117398. [PMID: 33436226 DOI: 10.1016/j.carbpol.2020.117398] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/30/2020] [Accepted: 11/07/2020] [Indexed: 12/11/2022]
Abstract
Nowadays, access to clean water sources worldwide and particularly in Southern Africa is inadequate because of its pollution by organic, inorganic, and microorganism contaminants. A range of conventional water treatment techniques has been used to resolve the problem. However, these methods are currently facing the confronts posed by new emerging contaminants. Therefore, there is a need to develop simple and lower cost-effective water purification methods that use recyclable bio-based natural polymers such as chitosan modified with nanomaterials. These novel functional chitosan-based nanomaterials have been proven to effectively eliminate the different environmental pollutants from wastewater to acceptable levels. This paper aims to present a review of the recent development of functional chitosan modified with carbon nanostructured and inorganic nanoparticles. Their application as biosorbents in fixed-bed continuous flow column adsorption for water purification is also discussed.
Collapse
|
14
|
Elwakeel KZ, Elgarahy AM, Elshoubaky GA, Mohammad SH. Microwave assist sorption of crystal violet and Congo red dyes onto amphoteric sorbent based on upcycled Sepia shells. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:35-50. [PMID: 32399219 PMCID: PMC7203356 DOI: 10.1007/s40201-019-00435-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 12/30/2019] [Indexed: 05/04/2023]
Abstract
A new sorbent based on Sepia shells (cuttlefish bones) has been synthesized (SSBC) and tested for the sorption of cationic dye (crystal violet, CV) and an anionic dye (congo red, CR). SSBC was produced by reaction of sepia shells powder with urea in the presence of formaldehyde. In the first part of the work, the sorbent was characterized using scanning electron microscopy, energy dispersive X-ray analysis, Fourier-transform infra-red spectrometry and titration (for determining pHPZC). In a second step, sorption properties were tested on the two dyes through the study of pH effect, sorbent dosage, temperature and ionic strength; the sorption isotherms and uptake kinetics were analyzed at the optimum pH: Langmuir equation fits isotherm profiles while the kinetic profile can be described by the pseudo-second order rate equation. Maximum sorption capacities reach up to 0.536 mmol g-1 for CV and 0.359 mmol g-1 for CR, at pH 10.6 and 2.4, respectively. The comparison of sorption properties at different temperatures shows that the sorption is endothermic. Processing to the sorption under microwave irradiation (microwaved enforced sorption, MES) increases mass transfer and a contact time as low as 1 min is sufficient under optimized conditions (exposure time and power) reaching the equilibrium, while 2-3 h were necessary for "simple" sorption. Dye desorption was successfully tested using 0.5 M solutions of NaOH and HCl for the removal of CR and CV, respectively. The sorbent can be re-used for a minimum of four cycles of sorption/desorption. Finally, the sorbent was successfully tested on spiked tap water and real industrial wastewater.
Collapse
Affiliation(s)
- K. Z. Elwakeel
- Environmental Science Department, Faculty of Science, Port-Said University, Port-Said, Egypt
- University of Jeddah, College of Science, Department of Chemistry, Jeddah, Saudi Arabia
| | - A. M. Elgarahy
- Zoology Department, Faculty of Science, Port-Said University, Port-Said, Egypt
| | - G. A. Elshoubaky
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - S. H. Mohammad
- Zoology Department, Faculty of Science, Port-Said University, Port-Said, Egypt
| |
Collapse
|
15
|
Khandelwal A, Narayanan N, Varghese E, Gupta S. Linear and Nonlinear Isotherm Models and Error Analysis for the Sorption of Kresoxim-Methyl in Agricultural Soils of India. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:503-510. [PMID: 32064538 DOI: 10.1007/s00128-020-02803-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Kresoxim methyl sorption in soils of five agro-climatic zones of India varied from 41.6% to 84.7%. Highest sorption was recorded in organic carbon rich Almora soil. Isotherm parameters for linear and non-linear Freundlich and Temkin models were almost same, whereas Langmuir parameter Q0, for linear (1.60 to 9.434 μg g-1) and non-linear (8.48 to 17.129 μg g-1) models were quite different. For isotherms optimization different error functions such as sum of squares error (SSE), root mean square error (RMSE), Chi square error, hybrid fractional error (HYBRID) and average relative error (ARE) were calculated. Lowest error function values were obtained for Freundlich isotherm in all the soils except inceptisol (Kolkata) for which Langmuir isotherm gave the best fit. Statistical analysis using SAS 9.3 software and Tukey's HSD test revealed the significant effect (p < 0.001) of soil type on sorption. Sorption correlated positively with the organic carbon and clay contents of the soil.
Collapse
Affiliation(s)
- Ashish Khandelwal
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
- Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Neethu Narayanan
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Eldho Varghese
- Central Marine Fisheries Research Institute, Kochi, 682 018, India
| | - Suman Gupta
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India.
| |
Collapse
|
16
|
Milagres JL, Bellato CR, Ferreira SO, de Moura Guimarães L. Preparation and evaluation of hydrocalumite-iron oxide magnetic intercalated with dodecyl sulfate for removal of agrichemicals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 255:109845. [PMID: 31778866 DOI: 10.1016/j.jenvman.2019.109845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/04/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
The magnetic adsorbent prepared with hydrocalumite-iron oxide (HC/Fe) modified with dodecyl sulfate (DS) was examined for the removal of the agrichemicals atrazine (ATZ) and chlorpyrifos (CPF) from aqueous solution. The adsorbent HC-DS/Fe was characterized by infrared spectroscopy (IR), Raman spectroscopy, X-ray diffractometry (XRD) and atomic absorption spectrometry. The effects of adsorbent dosage, contact time, pH and initial concentration of ATZ and CPF were evaluated. HC-DS/Fe presented a maximum adsorption capacity for ATZ of 4.5 mg g-1 (30 min) and for CPF of 72.9 mg g-1 (210 min) at 25 °C. HC-DS/Fe can be readily removed from the aqueous solution by magnetization because of its magnetic properties. The free energy variation for HC-DS/Fe during the adsorption of the ATZ was -48.78 to -53.91 kJ mol-1 and for the CPF of -55.79 to -59.28 kJ mol-1, suggesting the spontaneity of the adsorption process. The positive value of △H suggests an endothermic process for the interaction of ATZ and CPF by HC-DS/Fe. This adsorbent showed satisfactory results when used in the treatment of a sample of river water, fortified with the agrichemicals chlorpyrifos, atrazine, thiamethoxam and acetamiprid.
Collapse
Affiliation(s)
- Jaderson Lopes Milagres
- Department of Chemistry, Universidade Federal de Viçosa, Av. PH Holfs, s/n, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Carlos Roberto Bellato
- Department of Chemistry, Universidade Federal de Viçosa, Av. PH Holfs, s/n, 36570-900, Viçosa, Minas Gerais, Brazil.
| | - Sukarno Olavo Ferreira
- Department of Physics, Universidade Federal de Viçosa, Av. PH Holfs, s/n, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Luciano de Moura Guimarães
- Department of Physics, Universidade Federal de Viçosa, Av. PH Holfs, s/n, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
17
|
|
18
|
Bedor PBA, Caetano RMJ, Souza Júnior FGD, Leite SGF. Advances and perspectives in the use of polymers in the environmental area: a specific case of PBS in bioremediation. POLIMEROS 2020. [DOI: 10.1590/0104-1428.02220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
|
20
|
Mohamad-Aziz SN, Zularisam A, Sakinah AM. Partitioning isotherm and kinetic of erythromycin into mixed reverse micelle during forward transfer. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Hylocereus polyrhizus peel's high-methoxyl pectin: A potential source of hypolipidemic agent. Int J Biol Macromol 2019; 134:361-367. [DOI: 10.1016/j.ijbiomac.2019.03.143] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/25/2019] [Accepted: 03/21/2019] [Indexed: 12/19/2022]
|
22
|
Zheng L, Yang Y, Meng P, Peng D. Absorption of cadmium (II) via sulfur-chelating based cellulose: Characterization, isotherm models and their error analysis. Carbohydr Polym 2019; 209:38-50. [DOI: 10.1016/j.carbpol.2019.01.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/11/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023]
|
23
|
|
24
|
Kumari A, Mandal A, Singh N. Kinetics and isotherm modeling of azoxystrobin and imidacloprid retention in biomixtures. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2018; 54:118-128. [PMID: 30285549 DOI: 10.1080/03601234.2018.1507230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
The paper reports the kinetics and adsorption isotherm modeling for imidacloprid (IMIDA) and azoxystrobin (AZOXY) in rice straw (RS)/corn cob (CC) and peat (P)/compost (C) based biomixtures. The pseudo-first-order (PFO), pseudo-second-order (PSO), Elovich and intraparticle diffusion models were used to describe the kinetics. The adsorption data were subjected to the Langmuir and the Freundlich isotherms. Results (r2Adj values) suggested that the modified Elovich model was the best suited to explain the kinetics of IMIDA sorption while different models explained AZOXY sorption kinetics in different biomixtures (PFO in RS + C and RS + P; PSO in CC + P and Elovich in CC + C). Biomixtures varied in their capacity to adsorb both pesticides and the adsorption coefficient (Kd) values were 116.8-369.24 (AZOXY) and 24.2-293.4 (IMIDA). The Freundlich isotherm better explained the sorption of both pesticides. Comparison analysis of linear and nonlinear method for estimating the Freundlich adsorption constants was made. In general, r2Adj values were higher for the nonlinear fit (AZOXY = 0.938-0.982; IMIDA = 0.91-0.970) than the linear fit (AZOXY = 0.886-0.993; IMIDA = 0.870-0.974) suggesting that the nonlinear Freundlich equation better explained the sorption. The rice straw-based biomixtures performed better in adsorbing both the pesticides and can be used in bio-purification systems.
Collapse
Affiliation(s)
- Anu Kumari
- a Division of Agricultural Chemicals , ICAR-Indian Agricultural Research Institute , New Delhi , India
| | - Abhishek Mandal
- a Division of Agricultural Chemicals , ICAR-Indian Agricultural Research Institute , New Delhi , India
| | - Neera Singh
- a Division of Agricultural Chemicals , ICAR-Indian Agricultural Research Institute , New Delhi , India
| |
Collapse
|
25
|
Futalan CM, Huang YS, Chen JH, Wan MW. Arsenate removal from aqueous solution using chitosan-coated bentonite, chitosan-coated kaolinite and chitosan-coated sand: parametric, isotherm and thermodynamic studies. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 78:676-689. [PMID: 30208008 DOI: 10.2166/wst.2018.339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the present work, the removal efficiency of As(V) from aqueous solution using chitosan-coated bentonite (CCB), chitosan-coated kaolinite (CCK) and chitosan-coated sand (CCS) was evaluated. The chitosan-based adsorbents were characterized using scanning electron microscopy, Fourier-transform infrared spectroscopy, the Brunauer-Emmett-Teller method and thermogravimetric analysis. Kinetic studies revealed that As(V) uptake using CCB, CCK and CCS fitted well with the pseudo-second order equation (R2 ≥ 0.9847; RMSE ≤ 9.1833). Equilibrium data show good correlation with the Langmuir model (R2 ≥ 0.9753; RMSE ≤ 8.5123; SSE ≤ 16.2651) for all adsorbents, which implies monolayer coverage onto homogenous energy sites. The Langmuir adsorption capacity for As(V) at pH 7.0 was determined to be 67.11, 64.85, and 16.78 mg/g for CCB, CCK and CCS, respectively. Thermodynamic studies show that As(V) uptake is exothermic in nature using CCK and endothermic using CCB and CCS. Moreover, adsorption of As(V) was feasible and spontaneous for CCB and CCS at 298 to 328 K. Results show that CCB is the most effective adsorbent in the removal of As(V) from water due to its high surface area and large pore diameter.
Collapse
Affiliation(s)
- Cybelle M Futalan
- National Research Center for Disaster-Free and Safe Ocean City, Busan 49315, Republic of Korea
| | - Yu-Shen Huang
- Department of Environmental Engineering and Science, Chia-Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Jheng-Hong Chen
- Department of Resources Engineering, National Cheng Kung University, Tainan 71710, Taiwan
| | - Meng-Wei Wan
- Department of Environmental Resources Management, Chia-Nan University of Pharmacy and Science, Tainan 71710, Taiwan E-mail:
| |
Collapse
|
26
|
Briones RM, Sarmah AK. Detailed sorption characteristics of the anti-diabetic drug metformin and its transformation product guanylurea in agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:1258-1268. [PMID: 29554747 DOI: 10.1016/j.scitotenv.2018.02.306] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
Detection of metformin, an antidiabetic drug and its transformation product guanylurea in various environmental matrices such as surface water and groundwater, coupled with their effects on aquatic organisms warrant an understanding of the compounds fate and behaviour in the environment. Batch studies were conducted with the aim of evaluating the sorption of these two emerging contaminants in six New Zealand agricultural soils of contrasting physico-chemical properties. Kinetic studies revealed that metformin and guanylurea sorption in Te Kowhai soil was very rapid initially achieving 90% sorption within the first 4 and 13h, respectively. Fit of several isotherm models to the measured batch sorption data showed that the hybrid models Langmuir-Freundlich and Redlich-Peterson best described the isotherms. Freundlich isotherm showed higher linearity for guanylurea (nF=0.58-0.93) in all soils compared to metformin (nF=0.25-0.71). A linear isotherm was fitted at environmentally relevant low concentrations (< 3mg/L) of target compounds and calculated values of sorption distribution coefficient (Kd) were in the range of 8.97 to 53.49L/kg for metformin and between 10.6 and 37.51L/kg for guanylurea. Sorption of both metformin and guanylurea was dependent on the soil characteristics, however, no generalisation could be made as to which had higher affinity to soils studied. Pearson's correlation and multiple regression analyses indicate that Si/Al (p=0.042) and clay (p=0.015) significantly influenced metformin Kd values, whereas the soil's cation exchange capacity (p=0.024) is the single most significant factor determining guanylurea sorption in soils. It is likely that the type of minerals present in soils and its ion-exchange capacity could play an important role in metformin and guanylurea sorption, respectively.
Collapse
Affiliation(s)
- Rowena M Briones
- Department of Civil & Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ajit K Sarmah
- Department of Civil & Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
27
|
Ahmed MJ, Hameed BH. Removal of emerging pharmaceutical contaminants by adsorption in a fixed-bed column: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 149:257-266. [PMID: 29248838 DOI: 10.1016/j.ecoenv.2017.12.012] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 05/22/2023]
Abstract
Pharmaceutical pollutants substantially affect the environment; thus, their treatments have been the focus of many studies. In this article, the fixed-bed adsorption of pharmaceuticals on various adsorbents was reviewed. The experimental breakthrough curves of these pollutants under various flow rates, inlet concentrations, and bed heights were examined. Fixed-bed data in terms of saturation uptakes, breakthrough time, and the length of the mass transfer zone were included. The three most popular breakthrough models, namely, Adams-Bohart, Thomas, and Yoon-Nelson, were also reviewed for the correlation of breakthrough curve data along with the evaluation of model parameters. Compared with the Adams-Bohart model, the Thomas and Yoon-Nelson more effectively predicted the breakthrough data for the studied pollutants.
Collapse
Affiliation(s)
- M J Ahmed
- Department of Chemical Engineering, Engineering College, University of Baghdad, P.O. Box 47024, Aljadria, Baghdad, Iraq.
| | - B H Hameed
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| |
Collapse
|
28
|
RETRACTED ARTICLE: Synthesis of Magnetic Composites Based on Waste Low Density Polyethylene Wax and Iron Oxide Nanoparticles for Methyl Green Adsorption. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|