1
|
Zheng C, Wu Q, Hu X, Ma J, Sun K, Sun Y, Xu B. Macro-manufacturing robust and stable metal-organic framework beads for antibiotics removal from wastewater. ENVIRONMENTAL RESEARCH 2024; 246:118564. [PMID: 38417658 DOI: 10.1016/j.envres.2024.118564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/05/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Metal-organic frameworks (MOFs) have shown great prospects in wastewater remediation. However, the easy aggregation, difficult separation and inferior reusability greatly limit their large-scale application. Herein, we proposed a facile, green and low-cost strategy to construct robust and stable MOF-based hydrogel beads (Fe-BTC-HBs) in a gram scale, and employed them to remove antibiotics from wastewater. As a result, the Fe-BTC-HBs demonstrated outstanding adsorption capacity for both ofloxacin (OFL) and tetracycline (TC) (281.17 mg/g for OFL and 223.60 mg/g for TC) under a near-neutral environment. The main adsorption mechanisms of OFL and TC were hydrogen bonding and π-π stacking interaction. Owing to its macroscopic granule and stable structure, Fe-BTC-HBs can be separated rapidly from wastewater after capturing antibiotics, and more than 85% adsorption capacity still remained after six cycles, while the powdered Fe-BTC only showed less than 6% recovery efficiency with massive weight loss (around 92%). In real industrial effluent, the adsorption performance of Fe-BTC-HBs toward two antibiotics exhibited negligible decreases (2.9% for OFL and 2.2% for TC) compared with that in corresponding solutions. Furthermore, Fe-BTC-HBs also had appealing economic and environmental benefit. Overall, the macro-manufactured MOF beads have the promising potential for the large-scale wastewater treatment.
Collapse
Affiliation(s)
- Chaofan Zheng
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China.
| | - Qu Wu
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| | - Xiaojing Hu
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| | - Jingxuan Ma
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| | - Kuiyuan Sun
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| | - Yongjun Sun
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| | - Bincheng Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
2
|
Kashyap A, Nishil B, Thatikonda S. Experimental and numerical elucidation of the fate and transport of antibiotics in aquatic environment: A review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:942. [PMID: 37436551 DOI: 10.1007/s10661-023-11482-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/08/2023] [Indexed: 07/13/2023]
Abstract
This review highlights various experimental and mathematical modeling strategies to investigate the fate and transport of antibiotics that elucidate antimicrobial selective pressure in aquatic environments. Globally, the residual antibiotic concentrations in effluents from bulk drug manufacturing industries were 30- and 1500-fold greater than values reported in municipal and hospital effluents, respectively. The antibiotic concentration from different effluents enters the waterbodies that usually get diluted as they go downstream and undergo various abiotic and biotic reactive processes. In aquatic systems, photolysis is the predominant process for antibiotic reduction in the water matrix, while hydrolysis and sorption are frequently reported in the sediment compartment. The rate of antibiotic reduction varies widely with influencing factors such as the chemical properties of the antibiotics and hydrodynamic conditions of river streams. Among all, tetracycline was found to more unstable (log Kow = - 0.62 to - 1.12) that can readily undergo photolysis and hydrolysis; whereas macrolides were more stable (log Kow = 3.06 to 4.02) that are prone to biodegradation. The processes like photolysis, hydrolysis, and biodegradation followed first-order reaction kinetics while the sorption followed a second-order kinetics for most antibiotic classes with reaction rates occurring in the decreasing order of Fluoroquinolones and Sulphonamides. The reports from various experiments on abiotic and biotic processes serve as input parameters for an integrated mathematical modeling to predict the fate of the antibiotics in the aquatic environment. Various mathematical models viz. Fugacity level IV, RSEMM, OTIS, GREAT-ER, SWAT, QWASI, and STREAM-EU are discussed for their potential capabilities. However, these models do not account for microscale interactions of the antibiotics and microbial community under real-field conditions. Also, the seasonal variations for contaminant concentrations that exert selective pressure for antimicrobial resistance has not been accounted. Addressing these aspects collectively is the key to exploring the emergence of antimicrobial resistance. Therefore, a comprehensive model involving antimicrobial resistance parameters like fitness cost, bacterial population dynamics, conjugation transfer efficiency, etc. is required to predict the fate of antibiotics.
Collapse
Affiliation(s)
- Arun Kashyap
- Environmental Engineering Division, Department of Civil Engineering, IIT Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Benita Nishil
- Environmental Engineering Division, Department of Civil Engineering, IIT Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Shashidhar Thatikonda
- Environmental Engineering Division, Department of Civil Engineering, IIT Hyderabad, Kandi, Sangareddy, Telangana, 502285, India.
| |
Collapse
|
3
|
El Messaoudi N, El Mouden A, Fernine Y, El Khomri M, Bouich A, Faska N, Ciğeroğlu Z, Américo-Pinheiro JHP, Jada A, Lacherai A. Green synthesis of Ag 2O nanoparticles using Punica granatum leaf extract for sulfamethoxazole antibiotic adsorption: characterization, experimental study, modeling, and DFT calculation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:81352-81369. [PMID: 35729389 DOI: 10.1007/s11356-022-21554-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Silver oxide (Ag2O) nanoparticles (NPs) were generated by synthesizing green leaf extract of Punica granatum, and afterwards they were used as adsorbent to remove the antibiotic additive sulfamethoxazole (SMX) from aqueous solutions. Prior of their use as adsorbent, the Ag2O NPs were characterized by various methods such as X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), scanning electron microscopy/energy-dispersive X-ray (SEM-EDX), and transmission electron microscopy (TEM). The Ag2O NPs were found to be spherically shaped and stabilized by the constituents of the extract. Further, at SMX antibiotic concentration of 100 mg L-1, the Ag2O NPs achieved almost complete removal of 98.93% within 90 min, and by using 0.8 g L-1 of adsorbent dose at pH=4 and temperature T=308 K. In addition, the experimental data were well fitted with the theoretical Langmuir model indicating homogeneous adsorbed layer of the SMX antibiotic on the Ag2O NPs surface. The maximum uptake capacity was 277.85 mg g-1. A good agreement was also found between the kinetic adsorption data and the theoretical pseudo-second-order model. Regarding the thermodynamic adsorption aspects, the data revealed an endothermic nature and confirmed the feasibility and the spontaneity of the adsorption reaction. Furthermore, the regeneration study has shown that the Ag2O NPs could be efficiently reused for up to five cycles. The geometric structures have been optimized and quantum chemical parameters were calculated for the SMX unprotonated (SMX+/-) and protonated (SMX+) using density functional theory (DFT) calculation. The DFT results indicated that the unprotonated SMX+/- reacts more favorably on the Ag2O surface, as compared to the protonated SMX+. The SMX binding mechanism was predominantly controlled by the electrostatic attraction, hydrogen bond, hydrophobic, and π-π interactions. The overall data suggest that the Ag2O NPs have promising potential for antibiotic removal from wastewater.
Collapse
Affiliation(s)
- Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of sciences, Ibn Zohr University, 80000, Agadir, Morocco.
| | - Abdelaziz El Mouden
- Laboratory of Applied Chemistry and Environment, Faculty of sciences, Ibn Zohr University, 80000, Agadir, Morocco
| | - Yasmine Fernine
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Sidi Mohamed Ben Abdellah University, 30000, Fez, Morocco
| | - Mohammed El Khomri
- Laboratory of Applied Chemistry and Environment, Faculty of sciences, Ibn Zohr University, 80000, Agadir, Morocco
| | - Amal Bouich
- Department of Applied Physics, Institute of Design and Manufacturing (IDF), Polytechnic University of Valencia, 46000, Valencia, Spain
| | - Nadia Faska
- Laboratory of Process Engineering, Faculty of sciences, Ibn Zohr University, 80000, Agadir, Morocco
- Faculty of applied sciences, Ibn Zohr University, 86153, Ait Melloul, Morocco
| | - Zeynep Ciğeroğlu
- Department of Chemical Engineering, Faculty of Engineering, Usak University, 64300, Usak, Turkey
| | | | - Amane Jada
- Institute of Materials Science of Mulhouse (IS2M), High Alsace University, 68100, Mulhouse, France
| | - Abdellah Lacherai
- Laboratory of Applied Chemistry and Environment, Faculty of sciences, Ibn Zohr University, 80000, Agadir, Morocco
| |
Collapse
|
4
|
Minaei S, Benis KZ, McPhedran KN, Soltan J. Evaluation of a ZnCl2-modified biochar derived from activated sludge biomass for adsorption of sulfamethoxazole. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Yan K, Planer-Friedrich B, Knobloch PVT, Guo Q, Wang L, Zhao Q. Effects of thiolation and methylation on arsenic sorption to geothermal sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154016. [PMID: 35271921 DOI: 10.1016/j.scitotenv.2022.154016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Arsenic (As) from deep crust is transported by geothermal waters to the earth surface and retained by sediment through adsorption, which depends significantly on the occurring As species. Adsorption of oxyarsenic species (i.e. arsenite [iAs(III)] and arsenate [iAs(V)]) on pure minerals was intensively investigated, yet studies with natural sediments and less known As species are scarce. To fill this gap, we investigated adsorption kinetics of nine different As species onto three typical geothermal sediments with different sedimentary organic matter (SOM) and iron (Fe) levels under anaerobic, sulfidic conditions (pH = 6). A multispecies pseudo-second-order (MPSO) model was applied to extract the adsorption rates of individual As species. Results showed that only the sediment with both high SOM and high Fe exhibited considerable As adsorption capacity. Air exposure or rise of either SOM or Fe levels in sediment favoured de-thiolation of aqueous thioarsenates, except for dimethylated thioarsenates. The overall adsorbed amount of the spiked As was affected by concurrent (de-)thiolation of the initial species, and the rates of their adsorption to the high SOM and high Fe sediment decreased in the order of tetrathioarsenate (TetraTA) > monothioarsenate (MTA) > iAs(V) > monomethyl arsenate (MMA) > dimethyl arsenate (DMA) > iAs(III) > monomethyl monothioarsenate (MMMTA) > dimethyl monothioarsenate (DMMTA) > dimethyl dithioarsenate (DMDTA). The fastest and slowest adsorption were suggested for inorganic thioarsenates and methylated thioarsenates, respectively. Therefore, under typical geothermal scenarios, thiolation of inorganic As would not necessarily increase its mobility, but the formation of methylated oxyarsenates and their further thiolation would endow geothermal As with strong migration ability.
Collapse
Affiliation(s)
- Ketao Yan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, Hubei, PR China; School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, PR China
| | - Britta Planer-Friedrich
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitätsstraße 30, Bayreuth 95447, Germany
| | - Philipp Victor Thorben Knobloch
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitätsstraße 30, Bayreuth 95447, Germany
| | - Qinghai Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, Hubei, PR China; School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, PR China.
| | - Luxia Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, Hubei, PR China; School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, PR China
| | - Qian Zhao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, Hubei, PR China; School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, PR China
| |
Collapse
|
6
|
Revisiting the influence of chemical oxidation on the adsorption properties of carbonaceous materials with different structures: Non-dispersible versus dispersible structure. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Hu M, Liu L, Hou N, Li X, Zeng D, Tan H. Insight into the adsorption mechanisms of ionizable imidazolinone herbicides in sediments: Kinetics, adsorption model, and influencing factors. CHEMOSPHERE 2021; 274:129655. [PMID: 33545587 DOI: 10.1016/j.chemosphere.2021.129655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/31/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
To reveal the adsorption mechanisms of imazamox, imazapic, and imazethapyr on sediment and batch experiments were carried out in this study. The adsorption kinetics of three imidazolinone herbicides on sediment were accurately described by the pseudo-second-order kinetic model(R2 > 0.9004). The values of adsorption capacity (Qe.cal) were ranged from 0.0183 to 0.0859 mg kg-1 for three herbicides. Adsorption equilibrium was reached within 24 h for three herbicides on sediment, and well fitted by the Freundlich model(R2 > 0.9561). The KF of values for adsorption obtained sediment samples were ranged from 0.2501 to 1.322 L1/n mg1-1/n kg-1for three herbicides. These results indicated that intraparticle diffusion and external mass transport were the main rate controlling steps of the adsorption of herbicides on sediment and that the chemical adsorption was dominant during the adsorption processes. The calculated hysteresis coefficient H were 0.9422,0.7877 and 0.744 for imazmox, imazapic and imazethapyr in raw sediment, respectively, indicating that there is a hysteresis in desorption. The influences of solution pH and sediment organic carbon content on the imidazolinone herbicide adsorption behaviors were also examined. Which shown that the adsorption process for herbicides was highly pH-dependent and adsorption efficiency was closely related to the organic matter content of the sediment, suggesting that electrostatic interactions played crucial roles in the adsorption behavior between sediment and imidazolinone herbicides, and the herbicides were mostly absorbed by the amorphous materials of sediment. These research findings are important for assessing the fate and transport of imidazolinone herbicides in water-sediment systems.
Collapse
Affiliation(s)
- Mingfeng Hu
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China.
| | - Li Liu
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China.
| | - Ning Hou
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China.
| | - Xuesheng Li
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China.
| | - Dongqiang Zeng
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China.
| | - Huihua Tan
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China.
| |
Collapse
|
8
|
Pan J, Fu X, Wang C, Song N, Lv X, Xu H. Adsorption and molecular weight fractionation of dissolved organic matters with different origins on colloidal surface. CHEMOSPHERE 2020; 261:127774. [PMID: 32731032 DOI: 10.1016/j.chemosphere.2020.127774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/08/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Dissolved organic matter (DOM) adsorption on colloid surface occurred ubiquitously in aquatic ecosystems, while variations in molecular weight (MW) distribution during adsorption remained poorly understood. In this study, the adsorption and MW fractionation of aquatic DOMs with different origins (e.g., macrophyte- and algae-derived, MDOM and ADOM, respectively) on colloid surface were examined using total organic carbon, absorption and fluorescence spectroscopy, and flow field flow fractionation (FlFFF) analysis. Both the total organic carbon and spectroscopic results showed the predominant adsorption of DOMs within the first 45 min, which behaved not synchronously with MW fractionation. Quantitative FlFFF analysis further indicated that the organic ligands with different MWs exhibited different adsorption affinities on colloid surface. It was found that 5-15 kDa and 50 kDã0.45 μm were preferential adsorption fraction for humic- and protein-like MDOM, respectively, while 0.3-2 kDa and 0.3-50 kDa were preferential adsorption fraction for humic- and protein-like ADOM, respectively. Therefore, the MW fractionation of DOMs upon adsorption was highly dependent on DOM origins as well as specific components. Results obtained herein can enlarge our insights into adsorption and the resultant behavior and fate of DOMs that were highly related with the MW fractionation in aquatic environments.
Collapse
Affiliation(s)
- Jizheng Pan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Xiaowei Fu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Na Song
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Xizhi Lv
- Yellow River Institute of Hydraulic Research, Key Laboratory of the Loess Plateau Soil Erosion and Water Loss Process and Control of Ministry of Water Resources, Zhengzhou, 450003, China
| | - Huacheng Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China.
| |
Collapse
|
9
|
Wang B, Li M, Zhang H, Zhu J, Chen S, Ren D. Effect of straw-derived dissolved organic matter on the adsorption of sulfamethoxazole to purple paddy soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:110990. [PMID: 32888601 DOI: 10.1016/j.ecoenv.2020.110990] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 05/27/2023]
Abstract
The presence of sulfamethoxazole (SMX) in croplands has become an international concern. The environmental behavior and fate of SMX in agricultural soils are not well understood, especially when the adsorption behavior is disturbed by the dissolved organic matter (DOM) released by crop straw. As canola straw is one of the biomasses widely returned to farmlands, we characterized DOM derived from pristine and decomposed canola straw, and explored the effects and mechanisms of the DOMs on regulating SMX adsorption to purple paddy soils. The spectral analysis showed that the molecular weight, aromaticity, and hydrophobicity of canola straw-derived DOM increased as decomposition proceeded. These physicochemical properties collectively determined the effects of the DOM on SMX adsorption. The DOM derived from pristine canola straw increased SMX maximum adsorption capacity of the soils by approximately 2.6 times, but this positive effect gradually decreased to a steady state by day 90 in the straw decomposition period. Nevertheless, the SMX adsorption behavior in the soils was invariably determined by the DOM extracts. These adsorption processes of SMX were well fitted by the double-chamber kinetics model and the Langmuir and Freundlich thermodynamic models. Thermodynamic parameters indicated that SMX adsorption onto the soils was spontaneous and endothermic, and this adsorption characteristics was not significantly (p > 0.05) changed by the DOM extracts. However, the adsorption kinetics were altered by those DOMs, i.e., the fast and slow adsorption processes were both diminished. Correspondingly, co-adsorption and cumulative adsorption were identified as the main mechanisms determining SMX adsorption to the purple paddy soils in the presence of the straw-derived DOMs. These results collectively indicated that the DOMs released by straw in croplands may decrease the ecological risks of organic pollutants by inhibiting their migration processes.
Collapse
Affiliation(s)
- Bin Wang
- School of Environment and Resource, Southwest University of Science and Technology, Sichuan, 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Sichuan, 621010, China
| | - Ming Li
- School of Environment and Resource, Southwest University of Science and Technology, Sichuan, 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Sichuan, 621010, China
| | - Haiyang Zhang
- College of Environmental Science and Engineering, China West Normal University, Sichuan, 637009, China
| | - Jingping Zhu
- School of Environment and Resource, Southwest University of Science and Technology, Sichuan, 621010, China
| | - Shu Chen
- School of Environment and Resource, Southwest University of Science and Technology, Sichuan, 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Sichuan, 621010, China
| | - Dong Ren
- College of Environmental Science and Engineering, China West Normal University, Sichuan, 637009, China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Sichuan, 621010, China.
| |
Collapse
|
10
|
Lv Y, Li Y, Liu X, Xu K. The tolerance mechanism and accumulation characteristics of Phragmites australis to sulfamethoxazole and ofloxacin. CHEMOSPHERE 2020; 253:126695. [PMID: 32278902 DOI: 10.1016/j.chemosphere.2020.126695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Antibiotic pollution has become a hot issue worldwide, which has toxic effects on plants and even threatens human health. As a common wetland plant, the tolerance mechanism of Phragmites australis to antibiotics is rarely reported. In this study, we investigated the enrichment characteristics and biological response of P. australis to sulfamethoxazole (SMZ) and ofloxacin (OFL) residues, which are common in the environment. We found that the simulated concentration of antibiotics far exceeded the current level of antibiotic residues in the water environment, but it did not significantly inhibit the growth of P. australis. At 1 mg L-1, OFL and SMZ significantly increased the biomass of P. australis, which was mainly related to the improvement of root activity and photosynthetic efficiency, but the duplex treatment (SMZ + OFL) did not significantly stimulate the growth of reeds. OFL could significantly reduce the accumulation of reactive oxygen species (ROS) in P. australis. When OFL was 1 mg L-1, compared with control, superoxide anion and H2O2 were reduced by 11.19% and 10.76%, respectively, which was mainly related to the improvement of membrane stability. SMZ and SMZ + OFL had no significant effect on ROS, but they significantly increased antioxidant enzyme activity. SMZ and OFL could increase soil invertase, urease, and protease activities, and the tested antibiotics had no significant effect on the Shannon-Wiener index of soil microorganisms. The accumulation of antibiotics within tissues could be ranked as root > leaf > stem, and the accumulation and transport of OFL were higher than those of SMZ.
Collapse
Affiliation(s)
- Yao Lv
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Taian, 271018, China; Key Laboratory of Biology of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Taian, 271018, China; State Key Laboratory of Crop Biology, Taian, 271018, China
| | - Yanyan Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Xiaohui Liu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Kun Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Taian, 271018, China; Key Laboratory of Biology of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Taian, 271018, China; State Key Laboratory of Crop Biology, Taian, 271018, China.
| |
Collapse
|
11
|
Mendes C, Andrzejewski RG, Pinto JMO, de Novais LMR, Barison A, Silva MAS, Parize AL. Impact of Drug-Polymer Interaction in Amorphous Solid Dispersion Aiming for the Supersaturation of Poorly Soluble Drug in Biorelevant Medium. AAPS PharmSciTech 2020; 21:189. [PMID: 32651739 DOI: 10.1208/s12249-020-01737-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/20/2020] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to investigate the influence of the production method and the polymeric carrier on the ability to generate and maintain the supersaturation of a poorly soluble drug in biorelevant medium. The amorphous solid dispersion of sulfamethoxazole, an antibacterial drug, was produced using two different polymers by spray-drying or hot melt extrusion methods. When Eudragit EPO was used, supersaturation was maintained up to 24 h for both techniques at all drug-polymer proportions. However, when Soluplus was employed in hot melt extrusion, a smaller amount of drug was dissolved when compared to the amorphous drug. The proportion of 3:7 drug-Eudragit EPO (w/w) produced by spray-drying presented a higher amount of drug dissolved in supersaturation studies and it was able to maintain the physical stability under different storage conditions throughout the 90-day evaluation. Supersaturation generation and system stability were found to be related to more effective chemical interaction between the polymer and the drug provided by the production method, as revealed by the 1D ROESY NMR experiment. Investigation of drug-polymer interaction is critical in supersaturating drug delivery systems to avoid crystallization of the drug and to predict the effectiveness of the system. Chemical compounds studied in this article: Sulfamethoxazole (PubChem CID: 4539) and Methacrylate copolymer - Eudragit EPO (PubChem CID: 65358).
Collapse
|
12
|
Lv Y, Xu J, Xu K, Liu X, Guo X, Lu S, Xi B. Accumulation characteristics and biological response of ginger to sulfamethoxazole and ofloxacin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114203. [PMID: 32179230 DOI: 10.1016/j.envpol.2020.114203] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/27/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
The potential risk to human health of antibiotics that pass through the food chain has become an important global issue, but there are few reports on the response of ginger (Zingiber officinale) to antibiotic pollution. In this study, we investigated the enrichment characteristics and biological response of ginger to sulfamethoxazole (SMZ) and ofloxacin (OFL) residues, which are common in the environment. Lower levels of SMZ, OFL and their combined duplex treatment (SMZ+OFL) promoted the growth of ginger, but the critical doses necessary to stimulate growth differed among treatments: 10 mg L-1 SMZ, 1 mg L-1 OFL and 1 mg L-1 (SMZ+OFL) had the strongest stimulating effects. At higher dosages, the root growth and light energy utilization efficiency of ginger were impaired, and (SMZ+OFL) had the strongest inhibitory effect. Treatments with lower levels of antibiotics had no significant effect on reactive oxygen species and antioxidant enzyme activities. However, when SMZ, OFL and SMZ+OFL concentrations exceeded 10 mg L-1, the contents of H2O2, O2- and MDA continued to increase, while the activities of SOD, POD, CAT first increased and then decreased, especially in SMZ+OFL. Ginger accumulated more SMZ and OFL in rhizomes and less in leaves, and accumulation increased significantly as antibiotic concentration increased. When SMZ concentration was 1 mg L-1, the SMZ concentrations in rhizomes, roots, and leaves were 0.23, 0.15, and 0.05 mg kg-1, respectively, and the residual SMZ in the rhizome was 2.3 times higher than the maximum residue limit. The abundance of the resistance genes sul1, sul2, qnrS, and intI1 increased with increasing antibiotic concentrations, and intI1 abundance was the highest. OFL induced higher levels of intI1 expression than did SMZ.
Collapse
Affiliation(s)
- Yao Lv
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Jiamin Xu
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria an Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kun Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| | - Xiaohui Liu
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria an Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaochun Guo
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria an Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shaoyong Lu
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria an Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria an Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
13
|
Li J, Cui M, Zhang H. Spatial and temporal variations of antibiotics in a tidal river. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:336. [PMID: 32382798 DOI: 10.1007/s10661-020-08313-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Estuary is an important route for the transport of terrestrial contaminants to the ocean. Its unique hydrodynamic properties may influence the fate and distribution of pollutants. Previous studies have shown that severe pollution because of antibiotics has occurred in many inland surface waterbodies; however, the behavior of antibiotic residuals remains poorly understood in estuarine environments. In this study, the occurrence and spatiotemporal distribution of seven selected antibiotics (i.e., sulfamethazine, sulfamethoxazole, trimethoprim, ofloxacin, ciprofloxacin, erythromycin, and roxithromycin) in a tidal river were investigated through one continuous and four synoptic sampling events. Results show that the concentrations of most antibiotics are in the nanogram per liter level, except for trimethoprim with the highest concentration up to 12,440 ng L-1 during the wet season. Except for sulfamethazine, the other six antibiotics showed high concentrations (i.e., > 100 ng L-1) in at least one sampling campaign. Different temporal distribution patterns of these antibiotics indicated that they were mainly controlled by source loading, flow condition, and discharge amounts. Spatial distribution indicated that the main pollution source of trimethoprim was located in lower reaches, while the other six antibiotics mainly came from the upstream sources. Based on the theoretical dilution line, erythromycin and roxithromycin degraded in the tidal river, whereas the other five types of antibiotics showed a conservative behavior. Tide has important effects on the spatial distribution of antibiotics, especially those with a wide concentration range, in estuarine environments. Furthermore, risk assessment based on the calculated risk quotients showed that five types of antibiotics pose high risks to aquatic organisms. These observations provided new insight into the distribution and transport of common antibiotics in estuarine environments.
Collapse
Affiliation(s)
- Jia Li
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China.
- Key Laboratory of Coastal Environmental Process and Ecology Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (YICCAS), Yantai, 264003, China.
| | - Min Cui
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Hua Zhang
- Key Laboratory of Coastal Environmental Process and Ecology Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (YICCAS), Yantai, 264003, China.
| |
Collapse
|
14
|
|
15
|
Li X, Bi E. The impacts of Cu(II) complexation on gatifloxacin adsorption onto goethite and hematite. JOURNAL OF ENVIRONMENTAL QUALITY 2020; 49:50-60. [PMID: 33016368 DOI: 10.1002/jeq2.20016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 12/02/2019] [Indexed: 06/11/2023]
Abstract
Gatifloxacin (GAT) is a new generation fluoroquinolone antibiotic and its adsorption onto iron minerals influenced by coexisting trace elements [e.g., Cu(II)] has not been well investigated. To evaluate the adsorption behavior of GAT and Cu(II) onto goethite and hematite, the complexation constants of GAT with Cu(II) were determined using potentiometric titration, and the effects of Cu(II) concentration and solution pH on GAT adsorption were investigated using batch experiments. It was observed that GAT adsorption was negatively correlated with molar concentration ratio of Cu(II) to GAT. In our experimental pH range (i.e., 3.0-10.8), the calculated main species involved in GAT adsorption were Cu(GAT± )2+ and Cu(GAT± )2 2+ under acidic to neutral conditions, and formation of Cu(GAT- )2 (s) facilitated the removal of GAT from solution under alkaline condition. The adsorption data were well fitted by the Freundlich model and showed high nonlinearity. In adsorption onto goethite, the primary interactions shifted from electrostatic repulsion to formation of goethite-Cu(II)-GAT ternary surface complexes with increase of GAT concentration. For hematite, electrostatic repulsion was the main inhibiting mechanism and became stronger with increase of Cu(II) concentration. Our findings suggest that it is necessary to consider the complexation between GAT and coexisting metal cations in evaluating its transport in soils rich in different iron minerals.
Collapse
Affiliation(s)
- Xiangzhi Li
- School of Water Resources and Environment, Beijing Key Lab. of Water Resources and Environmental Engineering, and MOE Key Lab. of Groundwater Circulation and Environmental Evolution, China Univ. of Geosciences (Beijing), Beijing, 100083, P.R. China
| | - Erping Bi
- School of Water Resources and Environment, Beijing Key Lab. of Water Resources and Environmental Engineering, and MOE Key Lab. of Groundwater Circulation and Environmental Evolution, China Univ. of Geosciences (Beijing), Beijing, 100083, P.R. China
| |
Collapse
|
16
|
Zuo X, Qian C, Ma S, Xiong J, He J, Chen Z. Removal of sulfonamide antibiotics from water by high-silica ZSM-5. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:507-516. [PMID: 31596262 DOI: 10.2166/wst.2019.294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Adsorption characteristics of high-silica zeolites (HSZSM-5) for two selected sulfonamide antibiotics (SAs) (sulfamethoxazole and sulfadiazine) were investigated. The SAs were almost completely (>90%) removed from the water by HSZSM-5. Adsorption followed second-order kinetics with liquid-film diffusion as the dominant mechanism. SA adsorption capacity on high-silica zeolites was examined in terms of pH, temperature, and the presence of natural organic matter (NOM). HSZSM-5 had better adsorption performance in acidic conditions, and the apparent distribution coefficient indicated that SA0 species were the major contribution to the overall adsorption at pH of 2-10. Adsorption of SAs on HSZSM-5 was a spontaneous and exothermic physisorption process. SA removal by HSZSM-5 was a mixed mechanism through ion-exchange and hydrophobic interaction. HSZSM-5 has potential application prospects in removing SAs from wastewater.
Collapse
Affiliation(s)
- Xingtao Zuo
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China E-mail:
| | - Cheng Qian
- Sainuo Environment Technology Company Limited, China Gezhouba Group, Rizhao 276800, China
| | - Senlin Ma
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China E-mail:
| | - Juan Xiong
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiajie He
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China E-mail:
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague 16500, Czech Republic
| |
Collapse
|
17
|
He S, Dong D, Sun C, Zhang X, Zhang L, Hua X, Guo Z. Contaminants of emerging concern in a freeze-thaw river during the spring flood. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:576-584. [PMID: 30909035 DOI: 10.1016/j.scitotenv.2019.03.256] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/08/2019] [Accepted: 03/17/2019] [Indexed: 06/09/2023]
Abstract
Pharmaceuticals, personal care products, and environment estrogens, as contaminants of emerging concern (CECs), have been widely detected in aquatic environments around the world. However, surveys of seasonal freeze-thaw rivers with special hydrological features are limited. To address this, in this study the occurrence, distribution, ecological risk, and mass flux of 22 CECs in the Jilin Songhua River in northeast China, a famously seasonal freeze-thaw river at mid- and high-latitude regions, were investigated during its spring flood period. The results indicate that estriol had a maximum concentration of 27.4 ng·L-1 in the mainstream river water. Doxycycline had a maximum concentration of 204.4 ng·L-1 in the tributary river water and 103.0 ng·L-1 in the riverine wastewater treatment plant (WWTP) effluents. The mean concentrations of the targeted CECs in the spring flood were 1.4 times higher than those found in our previous investigation during the summer flood. A risk assessment showed that estrone posed a high risk in the mainstream, doxycycline posed a high risk in the tributaries, and ofloxacin posed a high risk in the riverine WWTP effluents. In addition, erythromycin and lincomycin posed a medium to high risk in the river water and WWTP effluents. The major contribution of the CECs in the mainstream came from its tributaries, which contributed a total of >50% in the spring flood period. The results suggest that some appropriate measures should be taken to reduce the contribution of the CECs from the tributaries to the seasonal freeze-thaw river in its spring flood period.
Collapse
Affiliation(s)
- Sinan He
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Deming Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Chang Sun
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Xun Zhang
- Changchun Customs District P.R. China, the former Jilin Entry - Exit Inspection and Quarantine Bureau, Changchun 130062, China
| | - Liwen Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Xiuyi Hua
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Zhiyong Guo
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
18
|
Matić Bujagić I, Grujić S, Laušević M, Hofmann T, Micić V. Emerging contaminants in sediment core from the Iron Gate I Reservoir on the Danube River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:77-87. [PMID: 30690381 DOI: 10.1016/j.scitotenv.2019.01.205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/12/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
The Iron Gate I Reservoir is the largest impoundment on the Danube River. It retains >50% of the incoming total suspended solids load and the associated organic contaminants. In the sediment core of the Iron Gate I Reservoir we report the presence and fate of four classes of emerging contaminants (pharmaceuticals, pesticides, steroids and perfluorinated compounds), predominantly not covered by the EU monitoring programs, but considered as future candidates. Based on contaminant's partitioning behavior in the water/sediment system and the suspected ecotoxicological potential asserted from the literature data, the risk of recorded concentrations for sediment-dwelling organisms was discussed. The high anticipated risk was associated with antibiotics sulfamethoxazole and erythromycin, and pesticides linuron and carbendazim (banned in the EU, but still approved for use in the investigated area) and malathion. This indicated the need for better control of release of these compounds into the river, and implied their inclusion in future regular monitoring. Higher concentrations of pharmaceuticals and most pesticides and sterols were recorded in the fragment of allochthonous coarser sediment, assumed to have entered the reservoir during a high discharge event. Only one perfluorinated compound was recorded in the upper part of the sediment core. The vertical concentration profiles of pesticides propazine and malathion indicated their uniform source, most likely atmospheric transport and deposition of particles deriving from agricultural land.
Collapse
Affiliation(s)
- Ivana Matić Bujagić
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia.
| | - Svetlana Grujić
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Mila Laušević
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Thilo Hofmann
- University of Vienna, Department of Environmental Geosciences and Environmental Science Research Network, Althanstrasse 14, 1090 Vienna, Austria
| | - Vesna Micić
- University of Vienna, Department of Environmental Geosciences and Environmental Science Research Network, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
19
|
Tao Q, Li B, Li Q, Han X, Jiang Y, Jupa R, Wang C, Li T. Simultaneous remediation of sediments contaminated with sulfamethoxazole and cadmium using magnesium-modified biochar derived from Thalia dealbata. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:1448-1456. [PMID: 31096355 DOI: 10.1016/j.scitotenv.2018.12.361] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/23/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
In situ remediation and assessment of sediments contaminated with both antibiotics and heavy metals remains a technological challenge. In this study, MgCl2-modified biochar (BCM) was obtained at 500 °C through slow pyrolysis of Thalia dealbata and used for remediation of sediments contaminated by sulfamethoxazole (SMX) and Cd. The BCM showed greater surface area (110.6 m2 g-1) than pristine biochar (BC, 7.1 m2 g-1). The SMX sorption data were well described by Freundlich model while Langmuir model was better for the Cd2+ sorption data. The addition of 5.0% BCM significantly increased the sorption of SMX (by 50.8-58.6%) and Cd (by 24.2-25.6%) on sediments in both single and binary systems as compared with 5.0% BC. SMX sorption in sediments was significantly improved by addition of Cd2+, whereas SMX has no influence on Cd sorption on sediments. The addition of BCM distinctly decreased both SMX (by 51.4-87.2%) and Cd concentrations (by 56.2-91.3%) in overlying water, as well as in TCLP extracts (by 55.6-86.1% and 58.2-91.9% for SMX and Cd, respectively), as compared with sediments without biochar. Both germination rate and root length of pakchoi increased with increasing doses of BCM in contaminated sediments, 5.0% BCM showed greater promotion on pakchoi growth than 5.0% BC. Overall, BCM in the sediments does not only decrease the bioavailability of SMX and Cd, but it also diminishes the phytotoxicity, and thereby shows great application potential for in situ remediation of sediments polluted with antibiotics and heavy metals.
Collapse
Affiliation(s)
- Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310029, China
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiquan Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuan Han
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310029, China
| | - Yin Jiang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310029, China
| | - Radek Jupa
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| | - Tingqiang Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310029, China.
| |
Collapse
|
20
|
Tang J, Wang S, Fan J, Long S, Wang L, Tang C, Tam NF, Yang Y. Predicting distribution coefficients for antibiotics in a river water-sediment using quantitative models based on their spatiotemporal variations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:1301-1310. [PMID: 30577122 DOI: 10.1016/j.scitotenv.2018.11.163] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/07/2018] [Accepted: 11/10/2018] [Indexed: 06/09/2023]
Abstract
Antibiotics are widely used in humans and animals, but their presence in environmental matrices after use is of great concern. Distribution behavior of antibiotics in natural water-sediment systems is influenced by sediment properties, but how these properties, such as surface area, affect their distribution between water and sediment phases remains unclear. The concentrations of antibiotics also vary both spatially and temporally. In this study, a solid/liquid distribution coefficient Kd(pre) was proposed and evaluated in 12 quantitative predicting models based on aquatic field data compared with a bulk coefficient Kd. Results confirmed by the occurrence pattern, concentration levels and spatiotemporal distributions indicated that the characteristics of antibiotics pollution in rural northwestern Guangzhou were generally consistent with previous investigations, suggesting that this investigation was representative of the present aquatic pollution status of antibiotics. The median concentrations were <100 ng·L-1 and 220 ng·g-1 (d.w.) in the water and sediments, respectively. The most pronounced high concentrations of total antibiotic residue found were 778.0 ng·L-1 for sulfonamides (SAs) in water and 1596.9 ng·g-1 (d.w.) for fluoroquinolones (FQs) in sediments at site 13 in December of 2016, probably due to its dense population, high frequency of antibiotic use and low water flow. Moreover, 12 quantitative models were established with a high level of robustness and ability to spatiotemporally predict the Kd for each of the 12 antibiotics. The models revealed that pH, organic matter and specific surface area of sediments played significant roles in influencing the adsorption of SAs, FQs, tetracyclines (TCs) and (macrolides) MLs. Our findings provide insights into the effects of physicochemical properties on distribution of antibiotics, predicting their fate and transport, as well as assessments of exposure and risk of these emerging pollutants to aquatic ecosystems.
Collapse
Affiliation(s)
- Jinpeng Tang
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China
| | - Sai Wang
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China
| | - Jingjing Fan
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Shengxin Long
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Lin Wang
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Chen Tang
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Nora Fungyee Tam
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Yang Yang
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China.
| |
Collapse
|
21
|
Wang B, Zeng D, Chen Y, Belzile N, Bai Y, Zhu J, Shu J, Chen S. Adsorption behaviors of phenanthrene and bisphenol A in purple paddy soils amended with straw-derived DOM in the West Sichuan Plain of China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:737-746. [PMID: 30502524 DOI: 10.1016/j.ecoenv.2018.11.096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/18/2018] [Accepted: 11/20/2018] [Indexed: 05/27/2023]
Abstract
The objectives of this study were to investigate the adsorption and transfer behaviors of phenanthrene (PHE) and bisphenol A (BPA) in purple paddy soils amended with dissolved organic matter (DOM) derived from rice and canola straw in the West Sichuan Plain of China. In the pristine soil, PHE was preferentially adsorbed on both pristine clayey (L) and sandy (T) paddy soils than BPA, indicating that the retention/adsorption by soils is closely dependent on the chemical properties of organic pollutants (OPs). The noticeably higher adsorption of PHE and BPA on smaller size fraction of the soils (L2 and T2) were observed, possibly due to their higher surface areas and higher content in organic matters with higher aromaticity and hydrophobicity in this soil fraction. The DOMs derived from rice (RDOM) and canola (CDOM) straws possessed remarkable differences in E2/E3 and SUV254 measurements, which reflected that their chemical composition might be different. When CDOM was introduced in the studied soil T1, adsorption of BPA was doubled, but the augment in adsorption was much less impressive with RDOM, showing the nature of derived DOM played an important role. The study also demonstrated that in the fine fraction of clayey soil (L2), the retention of a same OP (PHE) was remarkably dropped when CDOM or RDOM was introduced, whereas in a sandy soil of the same size fraction (T2), the phenomenon was the opposite, suggesting a potential risk that, in certain types of soil, the introduction of straw derived DOMs may enhance the mobility of some OPs. The humification time of straw seems not to affect the adsorptions of OPs in most studied systems. Adsorption kinetics of PHE and BPA in the adsorption systems with derived DOMs were well fitted to the two-step first-order model with radj2 values of 0.994-0.998. Results of this study will provide further comprehensive fundamental data for risk assessment and control of organic pollutants (OPs) in farmland ecosystems.
Collapse
Affiliation(s)
- Bin Wang
- School of Environment and Resource, Southwest University of Science and Technology, Sichuan 621010, PR China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Sichuan 621010, PR China
| | - Dan Zeng
- School of Environment and Resource, Southwest University of Science and Technology, Sichuan 621010, PR China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Sichuan 621010, PR China
| | - Yuwei Chen
- School of Environment and Resource, Southwest University of Science and Technology, Sichuan 621010, PR China; Department of Chemistry and Biochemistry, Laurentian University, Ontario P3E 2C6, Canada
| | - Nelson Belzile
- School of Environment and Resource, Southwest University of Science and Technology, Sichuan 621010, PR China; Department of Chemistry and Biochemistry, Laurentian University, Ontario P3E 2C6, Canada
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jingping Zhu
- School of Environment and Resource, Southwest University of Science and Technology, Sichuan 621010, PR China
| | - Jiancheng Shu
- School of Environment and Resource, Southwest University of Science and Technology, Sichuan 621010, PR China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Sichuan 621010, PR China
| | - Shu Chen
- School of Environment and Resource, Southwest University of Science and Technology, Sichuan 621010, PR China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Sichuan 621010, PR China.
| |
Collapse
|
22
|
Razanajatovo RM, Ding J, Zhang S, Jiang H, Zou H. Sorption and desorption of selected pharmaceuticals by polyethylene microplastics. MARINE POLLUTION BULLETIN 2018; 136:516-523. [PMID: 30509837 DOI: 10.1016/j.marpolbul.2018.09.048] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 05/06/2023]
Abstract
The aim of the present study was to evaluate the sorption and desorption of sulfamethoxazole (SMX), propranolol (PRP) and sertraline (SER) by polyethylene (PE) microplastics in water. After the 96 h mixture, the sorption percentages of pharmaceuticals on PE microplastics decreased according to the following order: SER (28.61%) > PRP (21.61%) > SMX (15.31%). The sorption kinetics were fitted well with the pseudo-second-order model. Both linear and Freundlich models were able to describe the sorption isotherm. The results suggest that the sorption process of the pharmaceuticals may be adequately described by their hydrophobicity and electrostatic interactions. The desorption results showed that 8% and 4% of PRP and SER, respectively, were released from the microplastics within 48 h, but the sorption of SMX was irreversible. The results indicate the potential risks of PRP and SER for bioaccumulation in aquatic organisms via ingestion of the microplastics in aquatic environments.
Collapse
Affiliation(s)
| | - Jiannan Ding
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China
| | - Shanshan Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hang Jiang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China.
| |
Collapse
|
23
|
Kaeseberg T, Zhang J, Schubert S, Oertel R, Krebs P. Abiotic, biotic and photolytic degradation affinity of 14 antibiotics and one metabolite - batch experiments and a model framework. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:339-350. [PMID: 29843016 DOI: 10.1016/j.envpol.2018.05.074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 05/11/2018] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
In this study, degradation affinities of 14 antibiotics and one metabolite were determined in batch experiments. A modelling framework was applied to decrypt potential ranges of abiotic, biotic and photolytic degradation coefficients. In detail, we performed batch experiments with three different sewages in the dark at 7 °C and 22 °C. Additionally, we conducted further batch experiments with artificial irradiation and different dilutions of the sewage at 30 °C - de novo three different sewages were used. The batch experiments were initially spiked with a stock solution with 14 antibiotics and one metabolite to increase background concentrations by 1 μg L-1 for each compound. The final antibiotic concentrations were sub-inhibitory with regard to sewage bacteria. The here presented modelling framework based on the Activated Sludge Model No. 3 in combination with adsorption and desorption processes. The model was calibrated with monitored standard sewage compounds before antibiotic degradation rates were quantified. The model decrypted ranges of abiotic, biotic and photolytic degradation coefficients. In detail, six antibiotics were not abiotic degradable at 7 °C, five antibiotics not at 22 °C and only 2 antibiotics at 30 °C. Finally, nine antibiotics were not significantly biodegradable at 7 °C and 22 °C. The model determined the link between adsorption characteristics and biodegradation rates. In detail, the rate was significantly affected by the bio-solid partition coefficient and the duration until adsorption was balanced. All antibiotics and the metabolite were photolytic degradable. In general, photolytic degradation was the most efficient elimination pathway of presented antibiotics except for the given metabolite and penicillin antibiotics.
Collapse
Affiliation(s)
- Thomas Kaeseberg
- Institute of Urban Water Management, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Jin Zhang
- Institute of Groundwater and Earth Sciences, Jinan University, 510632 Guangzhou, China.
| | - Sara Schubert
- Institute of Hydrobiology, Technische Universität Dresden, 01062 Dresden, Germany; Institute of Clinical Pharmacology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01062 Dresden, Germany
| | - Reinhard Oertel
- Institute of Clinical Pharmacology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01062 Dresden, Germany
| | - Peter Krebs
- Institute of Urban Water Management, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
24
|
Kaeseberg T, Zhang J, Schubert S, Oertel R, Siedel H, Krebs P. Sewer sediment-bound antibiotics as a potential environmental risk: Adsorption and desorption affinity of 14 antibiotics and one metabolite. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 239:638-647. [PMID: 29709835 DOI: 10.1016/j.envpol.2018.04.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 06/08/2023]
Abstract
In this study, 14 antibiotics and one metabolite were determined in sewages and size-dependent sewer sediments at three sampling sites in the city of Dresden, Germany. Adsorption and desorption experiments were conducted with fractionated sediments. All antibiotics and the metabolite investigated were determined in the sewages; 9 of 14 antibiotics and the metabolite were adsorbed to sewer sediments. The adsorbed antibiotic loads in ng of antibiotic per g of sediment correlated with antibiotic concentrations in ng of antibiotic per litre of sewage. The size fractions <63 μm, 63-100 μm and 100-200 μm had significantly higher loads of adsorbed antibiotics than bigger size fractions. In general, the adsorbed load decreased with an increasing size fraction, but size fractions >200 μm had similar levels of adsorbed antibiotic loads. An antibiotic-specific adsorption coefficient, normalized to organic content, was calculated: four antibiotics exceeded 10.0 L g-1, three antibiotics fell below 1.0 L g-1 and all residual antibiotics and the metabolite were in the range of 1.0-10.0 L g-1. The adsorbed antibiotic load and the organic matter increased with time, generally. The mineral composition had a minor effect on the adsorption coefficients. Desorption dynamics of five antibiotics and the metabolite were quantified. Regardless of the size fraction, the predominant part of the equilibrium antibiotic concentration was desorbed after 10 min. The calculated desorption distribution coefficient indicated adsorption as irreversible at the pH investigated (7.5 ± 0.5).
Collapse
Affiliation(s)
- Thomas Kaeseberg
- Institute of Urban Water Management, Technische Universität Dresden, 01062, Dresden, Germany.
| | - Jin Zhang
- Institute of Groundwater and Earth Sciences, Jinan University, 510632, Guangzhou, China.
| | - Sara Schubert
- Institute of Hydrobiology, Technische Universität Dresden, 01062, Dresden, Germany; Institute of Clinical Pharmacology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01062, Dresden, Germany
| | - Reinhard Oertel
- Institute of Clinical Pharmacology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01062, Dresden, Germany
| | - Heiner Siedel
- Institute of Geotechnical Engineering, Technische Universität Dresden, 01062, Dresden, Germany
| | - Peter Krebs
- Institute of Urban Water Management, Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
25
|
Xu B, Liu F, Brookes PC, Xu J. The sorption kinetics and isotherms of sulfamethoxazole with polyethylene microplastics. MARINE POLLUTION BULLETIN 2018; 131:191-196. [PMID: 29886936 DOI: 10.1016/j.marpolbul.2018.04.027] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 05/22/2023]
Abstract
Microplastics and sulfamethoxazole coexist ubiquitously in the marine environment, and microplastics tend to sorb organic pollutants from the surrounding environment. Here, the sorption kinetics and isotherms of sulfamethoxazole on polyethylene (PE) microplastics closely fitted a pseudo-second-order model (R2 = 0.98) and linear model (R2 = 0.99), respectively, indicating that the sorption process was partition-dominant interaction. The main binding mechanism was possibly the van der Waals interaction for hydrophilic sulfamethoxazole onto hydrophobic PE microplastics. The effects of pH, dissolved organic matter and salinity on sorption behavior were also studied. The sorption behavior of sulfamethoxazole on PE microplastics was not significantly influenced by pH and salinity, probably because the electrostatic repulsion played a minor role. In addition, the negligible effect of dissolved organic matter was attributed to the greater affinity of sulfamethoxazole to PE microplastics than to dissolved organic matter. Our results demonstrated that PE microplastics may serve as a carrier for sulfamethoxazole in the aquatic environment.
Collapse
Affiliation(s)
- Baile Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environment and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Fei Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environment and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Philip C Brookes
- Institute of Soil and Water Resources and Environmental Science, College of Environment and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environment and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China.
| |
Collapse
|
26
|
Li S, Shi W, Liu W, Li H, Zhang W, Hu J, Ke Y, Sun W, Ni J. A duodecennial national synthesis of antibiotics in China's major rivers and seas (2005-2016). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:906-917. [PMID: 29017132 DOI: 10.1016/j.scitotenv.2017.09.328] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/27/2017] [Accepted: 09/30/2017] [Indexed: 06/07/2023]
Abstract
The occurrence of 94 antibiotics in water and sediments from seven major rivers and four seas in China during 2005-2016 was reviewed. Twelve antibiotics were most frequently detected in both water and sediment samples, including 3 sulfonamides (SAs), 2 tetracyclines (TCs), 4 fluoroquinolones (FQs), and 3 macrolides (MLs). Their median concentrations were below 100ng/L and 100ng/g in river water and sediments, respectively. The highest median concentrations were found in water (1.30-176ng/L) and sediments (0.15-110ng/g) in the Hai River, due to its larger population density, higher consumption of antibiotics, and lower water flow. The concentrations of TCs and FQs were higher in the Pearl River sediments, due to their extensive use in aquaculture. The Yangtze River showed lower median concentrations of antibiotics in both water (1.33-17.3ng/L) and sediments (0.31-14.8ng/g), resulting from its larger catchment size, and higher precipitation and water flow. The Yellow River exhibited lower median concentrations of antibiotics in sediments (0.04-9.04ng/g), probably due to low organic matter content in sediments and high suspended particle content in water. Organic carbon normalized distribution coefficients (Koc) of antibiotics were positively correlated with the octanol/water partition coefficients (Kow) of antibiotics, and the correlation for MLs with a macrocyclic lactone ring was different from that of SAs, FQs, and TCs, likely due to their much larger molecular size. Among China's major rivers, the Hai River had the highest ecotoxicological risk from antibiotics to algae, invertebrate, fish, and plant.
Collapse
Affiliation(s)
- Si Li
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Wanzi Shi
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Wei Liu
- College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China
| | - Huimin Li
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, Environmental Science, and Policy Program, Michigan State University, East Lansing, MI 48824, United States
| | - Jingrun Hu
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Yanchu Ke
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China.
| | - Jinren Ni
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| |
Collapse
|