1
|
Zuo X, Lu W, Ling W, Czech B, Oleszczuk P, Chen X, Gao Y. Biodegradation of PAEs in contaminated soil by immobilized bacterial agent and the response of indigenous bacterial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124925. [PMID: 39255922 DOI: 10.1016/j.envpol.2024.124925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
Phthalic acid esters (PAEs) are common hazardous organic contaminants in agricultural soil. Microbial remediation is an effective and eco-friendly method for eliminating PAEs. Nevertheless, the operational mode and potential application of immobilized microorganisms in PAEs-contaminated soil are poorly understood. In this study, we prepared an immobilized bacterial agent (IBA) using a cedar biochar carrier to investigate the removal efficiency of PAEs by IBA in the soil. We found that IBA degraded 88.35% of six optimal-control PAEs, with 99.62% biodegradation of low-molecular-weight PAEs (DMP, DEP, and DBP). The findings demonstrated that the IBA achieved high efficiency and a broad-spectrum in degrading PAEs. High-throughput sequencing revealed that IBA application altered the composition of the soil bacterial community, leading to an increase in the relative abundance of PAEs-degrading bacteria (Rhodococcus). Furthermore, co-occurrence network analysis indicated that IBA promoted microbial interactions within the soil community. This study introduces an efficient method for the sustainable remediation of PAEs-contaminated soil.
Collapse
Affiliation(s)
- Xiangzhi Zuo
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenyi Lu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bozena Czech
- Department of Radiochemistry and Environmental Chemistry, Maria Curie-Skłodowska University, 20-031, Lublin, Poland
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Maria Curie-Skłodowska University, 20-031, Lublin, Poland
| | - Xuwen Chen
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Singh A, Manikandan SK, Nair V. Mechanistic studies on bioremediation of dye using Aeromonas veronii immobilized peanut shell biochar. ENVIRONMENTAL RESEARCH 2024; 262:119908. [PMID: 39233033 DOI: 10.1016/j.envres.2024.119908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Recalcitrant chemicals in the environment not only present obstacles to living organisms but also contribute to the degradation of natural resources. One contribution to environmental pollution is the discharge of synthetic dyes from the textile sector. This study investigates the combined effect of microbial cells and biochar on eliminating methyl orange (MO) dye. The immobilization of Aeromonas veronii on peanut shell biochar (APSB) was conducted to investigate its efficacy in removing MO dye from water. PSB synthesized by pyrolysis at 300 °C for 120 min showed maximum bacterial immobilization potential. The highest degradation rate of 96.19 % was achieved in APSB within 96 h using MO dye concentration of 100 mg L-1, incubation temperature of 37 °C, pH 7, and biocatalyst dosage of 1g L-1. In comparison, free cells achieved degradation rates of 72.53 % and 61.56 % for PSB. Moreover, the adsorption process was primarily controlled by PSB, with subsequent dye mineralization by A. veronii, as supported by FTIR and LC-MS studies. Moreover, this innovative approach exhibited the reusability of the biocatalyst, giving 76.23 % removal after fifth cycle, suggesting sustainable alternative in dye remediation and potential option for real-time applications.
Collapse
Affiliation(s)
- Aparna Singh
- Department of Chemical Engineering, National Institute of Technology Karnataka (NITK), Surathkal, Srinivasanagar P.O, Mangalore, 575025, India.
| | - Soumya Koippully Manikandan
- Department of Chemical Engineering, National Institute of Technology Karnataka (NITK), Surathkal, Srinivasanagar P.O, Mangalore, 575025, India.
| | - Vaishakh Nair
- Department of Chemical Engineering, National Institute of Technology Karnataka (NITK), Surathkal, Srinivasanagar P.O, Mangalore, 575025, India.
| |
Collapse
|
3
|
Vadakkan K, Sathishkumar K, Raphael R, Mapranathukaran VO, Mathew J, Jose B. Review on biochar as a sustainable green resource for the rehabilitation of petroleum hydrocarbon-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173679. [PMID: 38844221 DOI: 10.1016/j.scitotenv.2024.173679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
Petroleum pollution is one of the primary threats to the environment and public health. Therefore, it is essential to create new strategies and enhance current ones. The process of biological reclamation, which utilizes a biological agent to eliminate harmful substances from polluted soil, has drawn much interest. Biochars are inexpensive, environmentally beneficial carbon compounds extensively employed to remove petroleum hydrocarbons from the environment. Biochar has demonstrated an excellent capability to remediate soil pollutants because of its abundant supply of the required raw materials, sustainability, affordability, high efficacy, substantial specific surface area, and desired physical-chemical surface characteristics. This paper reviews biochar's methods, effectiveness, and possible toxic effects on the natural environment, amended biochar, and their integration with other remediating materials towards sustainable remediation of petroleum-polluted soil environments. Efforts are being undertaken to enhance the effectiveness of biochar in the hydrocarbon-based rehabilitation approach by altering its characteristics. Additionally, the adsorption, biodegradability, chemical breakdown, and regenerative facets of biochar amendment and combined usage culminated in augmenting the remedial effectiveness. Lastly, several shortcomings of the prevailing methods and prospective directions were provided to overcome the constraints in tailored biochar studies for long-term performance stability and ecological sustainability towards restoring petroleum hydrocarbon adultered soil environments.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biotechnology, St. Mary's College (Autonomous), Thrissur, Kerala 680020, India.
| | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India.
| | - Rini Raphael
- Department of Zoology, Carmel College (Autonomous), Mala, Kerala 680732, India
| | | | - Jennees Mathew
- Department of Chemistry, Morning Star Home Science College, Angamaly, Kerala 683589, India
| | - Beena Jose
- Department of Chemistry, Vimala College (Autonomous), Thrissur 680009, Kerala, India
| |
Collapse
|
4
|
Mohamed A, El-Shatoury S, Aboulfotoh A, Abd El-Rahem KA, El Shahawy A. Synergistic effects (adsorption and biodegradation) of Streptomyces hydrogenans immobilization on nano-reed biochar for further application in upflow anaerobic sludge blanket. RSC Adv 2024; 14:22828-22846. [PMID: 39035718 PMCID: PMC11258616 DOI: 10.1039/d4ra02864c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/27/2024] [Indexed: 07/23/2024] Open
Abstract
Water pollution due to wastewater is a serious issue that needs to be studied as many organic compounds are released from wastewater, affecting the ecosystem. Therefore, appropriate treatment methods should be used to prevent these effects. Phragmites australis biochar immobilized with bacteria was prepared in this study for use as an adsorbent in a pilot-scale up-flow anaerobic sludge blanket (UASB) to remove organic matter from wastewater in a buffalo farm. Combining reed biochar and immobilized Streptomyces hydrogenans introduces a synergistic effect: reed biochar serves as a substrate for microbial colonization and provides a conducive environment for microbial growth while Streptomyces hydrogenans, immobilized on the biochar, enhances the degradation of organic matter through its metabolic activities. Suitable techniques were employed, including infrared spectroscopy (FTIR) to determine the functional groups before and after adsorption, scanning electron microscopy (SEM) to determine the morphology of the composite before and after adsorption, X-ray diffraction (XRD) to examine the mineralogical changes through reflectometry, high-resolution diffraction and Brunauer-Emmett-Teller (BET) analyses to determine the surface area that always carried out by nitrogen adsorption/desorption technique based on the BET isotherm. Two-level factorial design experiments optimized using biochar, immobilized with bacteria, were employed to enhance the UASB performance. Chemical oxygen demand (COD) removal and biogas production were studied as a function of four experimental parameters: biochar dose, buffalo sludge dose, pH, and bacteria type. The buffalo sludge (manure) dose negatively affected the model's performance. The results showed better COD removal with Streptomyces hydrogenans S11 inoculation. The optimum biochar dose, buffalo sludge dose, and pH were 20 g L-1, 0%, and 7.5, respectively. The COD removal efficiency under these experimental conditions reached 92.70% with a biogas production of 5.0 mL. The experimental results of a validated point from the model were 90.80% for COD removal ratio and 4.80 mL for biogas production at 2 g L-1 biochar dose, 0% buffalo sludge dose, and pH 7.5 using Streptomyces hydrogenans S11 bacteria. A buffalo wastewater (BWW) anaerobic digestion experimental model was best fitted to the data under optimal conditions. This study aligns with the United Nations Sustainable Development Goals (SDGs), specifically SDG 6 (clean water and sanitation) and SDG 12 (responsible consumption and production). The implications of our work extend to large-scale applications, promising a greener and more sustainable future for wastewater treatment.
Collapse
Affiliation(s)
- Aya Mohamed
- Department of Civil Engineering, Faculty of Engineering, Suez Canal University P.O. Box 41522 Ismailia Egypt
| | - Sahar El-Shatoury
- Botany and Microbiology Dept, Faculty of Science, Suez Canal University Box 41522 Ismailia Egypt
| | - Ahmed Aboulfotoh
- Environmental Engineering Department, Faculty of Engineering, Zagazig University Box Number 44519 Egypt
| | - Khaled A Abd El-Rahem
- Chemistry Department, Faculty of Science, Al-Azhar University Assiut Branch P.O. Box 71524 Egypt
| | - Abeer El Shahawy
- Department of Civil Engineering, Faculty of Engineering, Suez Canal University P.O. Box 41522 Ismailia Egypt
| |
Collapse
|
5
|
Liu Z, Ying J, Liu C. Changes in Rhizosphere Soil Microorganisms and Metabolites during the Cultivation of Fritillaria cirrhosa. BIOLOGY 2024; 13:334. [PMID: 38785816 PMCID: PMC11117757 DOI: 10.3390/biology13050334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Fritillaria cirrhosa is an important cash crop, and its industrial development is being hampered by continuous cropping obstacles, but the composition and changes of rhizosphere soil microorganisms and metabolites in the cultivation process of Fritillaria cirrhosa have not been revealed. We used metagenomics sequencing to analyze the changes of the microbiome in rhizosphere soil during a three-year cultivation process, and combined it with LC-MS/MS to detect the changes of metabolites. Results indicate that during the cultivation of Fritillaria cirrhosa, the composition and structure of the rhizosphere soil microbial community changed significantly, especially regarding the relative abundance of some beneficial bacteria. The abundance of Bradyrhizobium decreased from 7.04% in the first year to about 5% in the second and third years; the relative abundance of Pseudomonas also decreased from 6.20% in the first year to 2.22% in the third year; and the relative abundance of Lysobacter decreased significantly from more than 4% in the first two years of cultivation to 1.01% in the third year of cultivation. However, the relative abundance of some harmful fungi has significantly increased, such as Botrytis, which increased significantly from less than 3% in the first two years to 7.93% in the third year, and Talaromyces fungi, which were almost non-existent in the first two years of cultivation, significantly increased to 3.43% in the third year of cultivation. The composition and structure of Fritillaria cirrhosa rhizosphere metabolites also changed significantly, the most important of which were carbohydrates represented by sucrose (48.00-9.36-10.07%) and some amino acid compounds related to continuous cropping obstacles. Co-occurrence analysis showed that there was a significant correlation between differential microorganisms and differential metabolites, but Procrustes analysis showed that the relationship between bacteria and metabolites was closer than that between fungi and metabolites. In general, in the process of Fritillaria cirrhosa cultivation, the beneficial bacteria in the rhizosphere decreased, the harmful bacteria increased, and the relative abundance of carbohydrate and amino acid compounds related to continuous cropping obstacles changed significantly. There is a significant correlation between microorganisms and metabolites, and the shaping of the Fritillaria cirrhosa rhizosphere's microecology by bacteria is more relevant.
Collapse
Affiliation(s)
- Zhixiang Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jizhe Ying
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China;
| | - Chengcheng Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
6
|
Peng F, Liu J, Ping J, Dong Y, Xie L, Zhou Y, Liao L, Song H. An effective strategy for biodegradation of high concentration phenol in soil via biochar-immobilized Rhodococcus pyridinivorans B403. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33752-33762. [PMID: 38687450 DOI: 10.1007/s11356-024-33386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
High concentration of phenol residues in soil are harmful to human health and ecological safety. However, limited information is available on the in-situ bioremediation of phenol-contaminated soil using biochar as a carrier for bacteria. In this study, bamboo -derived biochar was screened as a carrier to assemble microorganism-immobilized composite with Rhodococcus pyridinivorans B403. Then, SEM used to observe the micromorphology of composite and its bioactivity was detected in solution and soil. Finally, we investigated the effects of free B403 and biochar-immobilized B403 (BCJ) on phenol biodegradation in two types of soils and different initial phenol concentrations. Findings showed that bacterial cells were intensively distributed in/onto the carriers, showing high survival. Immobilisation increased the phenol degradation rate of strain B403 by 1.45 times (37.7 mg/(L·h)). The phenol removed by BCJ in soil was 81% higher than free B403 on the first day. Moreover, the removal of BCJ remained above 51% even at phenol concentration of 1,500 mg/kg, while it was only 15% for free B403. Compared with the other treatment groups, BCJ showed the best phenol removal effect in both tested soils. Our results indicate that the biochar-B403 composite has great potential in the remediation of high phenol-contaminated soil.
Collapse
Affiliation(s)
- Fang Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, 432000, China
| | - Jiashu Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Jiapeng Ping
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Yuji Dong
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Liuan Xie
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Yishan Zhou
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Lipei Liao
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Huiting Song
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China.
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
7
|
Dike CC, Rani Batra A, Khudur LS, Nahar K, Ball AS. Effect of the Application of Ochrobactrum sp.-Immobilised Biochar on the Remediation of Diesel-Contaminated Soil. TOXICS 2024; 12:234. [PMID: 38668457 PMCID: PMC11053889 DOI: 10.3390/toxics12040234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/29/2024]
Abstract
The immobilisation of bacteria on biochar has shown potential for enhanced remediation of petroleum hydrocarbon-contaminated soil. However, there is a lack of knowledge regarding the effect of bacterial immobilisation on biosolids-derived biochar for the remediation of diesel-contaminated soil. This current study aimed to assess the impact of the immobilisation of an autochthonous hydrocarbonoclastic bacteria, Ochrobacterium sp. (BIB) on biosolids-derived biochar for the remediation of diesel-contaminated soil. Additionally, the effect of fertiliser application on the efficacy of the BIB treatment was investigated. Biochar (BC) application alone led to significantly higher hydrocarbon removal than the control treatment at all sampling times (4887-11,589 mg/kg higher). When Ochrobacterium sp. was immobilised on biochar (BIB), the hydrocarbon removal was greater than BC by 5533 mg/kg and 1607 mg/kg at weeks 10 and 22, respectively. However, when BIB was co-applied with fertiliser (BIBF), hydrocarbon removal was lower than BIB alone by 6987-11,767 mg/kg. Quantitative PCR (q-PCR) analysis revealed that the gene related to Ochrobacterium sp. was higher in BIB than in the BC treatment, which likely contributed to higher hydrocarbon removal in the BIB treatment. The results of the q-PCR analysis for the presence of alkB genes and FTIR analysis suggest that the degradation of alkane contributed to hydrocarbon removal. The findings of this study demonstrate that bacterial immobilisation on biosolids-derived biochar is a promising technique for the remediation of diesel-contaminated soil. Future studies should focus on optimising the immobilisation process for enhanced hydrocarbon removal.
Collapse
Affiliation(s)
- Charles Chinyere Dike
- ARC Training Centre for Transformation of Australia’s Biosolids Centre, RMIT University, Bundoora, Melbourne, VIC 3083, Australia
- School of Science, RMIT University, Bundoora, Melbourne, VIC 3083, Australia
| | - Alka Rani Batra
- ARC Training Centre for Transformation of Australia’s Biosolids Centre, RMIT University, Bundoora, Melbourne, VIC 3083, Australia
- School of Science, RMIT University, Bundoora, Melbourne, VIC 3083, Australia
- Environment Protection Authority Victoria, Centre for Applied Sciences, Ernest Jones Drive, Macleod, VIC 3085, Australia
| | - Leadin S. Khudur
- ARC Training Centre for Transformation of Australia’s Biosolids Centre, RMIT University, Bundoora, Melbourne, VIC 3083, Australia
- School of Science, RMIT University, Bundoora, Melbourne, VIC 3083, Australia
| | - Kamrun Nahar
- ARC Training Centre for Transformation of Australia’s Biosolids Centre, RMIT University, Bundoora, Melbourne, VIC 3083, Australia
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Andrew S. Ball
- ARC Training Centre for Transformation of Australia’s Biosolids Centre, RMIT University, Bundoora, Melbourne, VIC 3083, Australia
- School of Science, RMIT University, Bundoora, Melbourne, VIC 3083, Australia
| |
Collapse
|
8
|
Rajput P, Kumar P, Priya AK, Kumari S, Shiade SRG, Rajput VD, Fathi A, Pradhan A, Sarfraz R, Sushkova S, Mandzhieva S, Minkina T, Soldatov A, Wong MH, Rensing C. Nanomaterials and biochar mediated remediation of emerging contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170064. [PMID: 38242481 DOI: 10.1016/j.scitotenv.2024.170064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
The unrestricted release of various toxic substances into the environment is a critical global issue, gaining increased attention in modern society. Many of these substances are pristine to various environmental compartments known as contaminants/emerging contaminants (ECs). Nanoparticles and emerging sorbents enhanced remediation is a compelling methodology exhibiting great potential in addressing EC-related issues and facilitating their elimination from the environment, particularly those compounds that demonstrate eco-toxicity and pose considerable challenges in terms of removal. It provides a novel technique enabling the secure and sustainable removal of various ECs, including persistent organic compounds, microplastics, phthalate, etc. This extensive review presents a critical perspective on the current advancements and potential outcomes of nano-enhanced remediation techniques such as photocatalysis, nano-sensing, nano-enhanced sorbents, bio/phyto-remediation, which are applied to clean-up the natural environment. In addition, when dealing with residual contaminants, special attention is paid to both health and environmental implications; therefore, an evaluation of the long-term sustainability of nano-enhanced remediation methods has been considered. The integrated mechanical approaches were thoroughly discussed and presented in graphical forms. Thus, the critical evaluation of the integrated use of most emerging remediation technologies will open a new dimension in environmental safety and clean-up program.
Collapse
Affiliation(s)
| | - Pradeep Kumar
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India
| | - A K Priya
- Department of Chemical Engineering, KPR Institute of Engineering and Technology, Tamil Nadu, India
| | | | | | | | - Amin Fathi
- Department of Agronomy, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Arunava Pradhan
- Centre of Molecular and Environmental Biology (CBMA), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; IB-S - Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Rubab Sarfraz
- Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | | | | | | | | - Ming Hung Wong
- Southern Federal University, Rostov-on-Don 344006, Russia; Consortium on Health, Environment, Education, and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
9
|
Lu J, Liu Y, Zhang R, Hu Z, Xue K, Dong B. Biochar inoculated with Pseudomonas putida alleviates its inhibitory effect on biodegradation pathways in phenanthrene-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132550. [PMID: 37729712 DOI: 10.1016/j.jhazmat.2023.132550] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/23/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Controversial results are reported whereby biodegradation of polycyclic aromatic hydrocarbons (PAHs) can be promoted or inhibited by biochar amendment of soil. Metabolomics was applied to analyze the metabolic profiles of amendment with biochar (BB) and biochar inoculated with functional bacteria (Pseudomonas putida) (BP) involved in phenanthrene (PHE) degradation. Additionally, metagenomic analysis was utilized to assess the impact of different treatments on PHE degradation by soil microorganisms. Results indicated that BB treatment decreased the PHE biodegradation of the soil indigenous bacterial consortium, but BP treatment alleviated this inhibitory effect. Metabolomics revealed the differential metabolite 9-phenanthrol was absent in the BB treatment, but was found in the control group (CK), and in the treatment inoculated with the Pseudomonas putida (Ps) and the BP treatment. Metagenomic analysis showed that biochar decreased the abundance of the cytochrome P450 monooxygenase (CYP116), which was detected in the Pseudomonas putida, thus alleviating the inhibitory effect of biochar on PHE degradation. Moreover, a noticeable delayed increase of functional gene abundance and enzymes abundance in the BB treatment was observed in the PHE degradation pathway. Our findings elucidate the mechanism of inhibition with biochar amendment and the alleviating effect of biochar inoculated with degrading bacteria.
Collapse
Affiliation(s)
- Jinfeng Lu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuexian Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ruili Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhengyi Hu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Kai Xue
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Biya Dong
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Liu M, Zhang L, Yang R, Cui H, Li Y, Li X, Huang H. Integrating metal-organic framework ZIF-8 with green modifier empowered bacteria with improved bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132475. [PMID: 37714005 DOI: 10.1016/j.jhazmat.2023.132475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/02/2023] [Accepted: 09/02/2023] [Indexed: 09/17/2023]
Abstract
Suspended microorganisms often experience diminished efficacy in the bioremediation of polycyclic aromatic hydrocarbons (PAHs). In this study, the potential of zeolite imidazolate framework-8 (ZIF-8) and the eco-friendly modifier citric acid (CA) was harnessed to generate a biomimetic mineralized protective shell on the surface of Bacillus subtilis ZL09-26, resulting in an enhanced capability for PAH degradation. This investigation encompassed the integrated responses of B. subtilis ZL09-26 to ZIF-8 and ZIF-8-CA at both cellular and proteomic levels. The amalgamation of ZIF-8 and CA not only stimulated the growth and bolstered the cell viability of B. subtilis ZL09-26, but also counteracted the toxic effects of phenanthrene (PHE) stress. Remarkably, the bioremediation prowess of B. subtilis ZL09-26@ZIF-8-CA surpassed that of ZL09-26@ZIF-8 and ZL09-26, achieving a PHE removal rate of 94.14 % within 6 days. After undergoing five cycles, ZL09-26@ZIF-8-CA demonstrated an enduring PHE removal rate exceeding 83.31 %. A complex interplay of various metabolic pathways orchestrated cellular responses, enhancing PHE transport and degradation. These pathways encompassed direct PHE biodegradation, central carbon metabolism, oxidative phosphorylation, purine metabolism, and aminoacyl-tRNA biosynthesis. This study not only extends the potential applications of biomineralized organisms but also offers alternative strategies for effective contaminant management.
Collapse
Affiliation(s)
- Mina Liu
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Rongrong Yang
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, China
| | - Haiyang Cui
- RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
| | - Yanan Li
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, China
| | - Xiujuan Li
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, China.
| | - He Huang
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, China
| |
Collapse
|
11
|
Schommer VA, Nazari MT, Melara F, Braun JCA, Rempel A, Dos Santos LF, Ferrari V, Colla LM, Dettmer A, Piccin JS. Techniques and mechanisms of bacteria immobilization on biochar for further environmental and agricultural applications. Microbiol Res 2024; 278:127534. [PMID: 37944206 DOI: 10.1016/j.micres.2023.127534] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/02/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
Bacteria immobilization on biochar is a promising approach to achieve high concentration and stability of microbial cells for several applications. The present review addressed the techniques utilized for bacteria immobilization on biochar, discussing the mechanisms involved in this process, as well as the further utilization in bioremediation and agriculture. This article presents three immobilization techniques, which vary according to their procedures and conditions, including cell growth, adsorption, and adaptation. The mechanisms for cell immobilization are primarily adsorption and biofilm formation on biochar. The favorable characteristics of biochar immobilization depend on the pyrolysis methods, raw materials, and properties of biochar, such as surface area, pore size, pH, zeta potential, hydrophobicity, functional groups, and nutrients. Scanning electron microscope (SEM) and colony forming unit (CFU) are the analyses commonly carried out to verify the efficiency of bacteria immobilization. The benefits of applying biochar-immobilized bacteria include soil decontamination and quality improvement, which can improve plant growth and crop yield. Therefore, this emerging technology represents a promising solution for environmental and agricultural purposes. However, it is important to evaluate the potential adverse impacts on native microbiota by introducing exogenous microorganisms.
Collapse
Affiliation(s)
- Vera Analise Schommer
- Graduate Program in Civil and Environmental Engineering (PPGEng), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil.
| | - Mateus Torres Nazari
- Graduate Program in Civil and Environmental Engineering (PPGEng), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil.
| | - Flávia Melara
- Graduate Program in Civil and Environmental Engineering (PPGEng), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Julia Catiane Arenhart Braun
- Graduate Program in Civil and Environmental Engineering (PPGEng), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Alan Rempel
- Graduate Program in Civil and Environmental Engineering (PPGEng), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Lara Franco Dos Santos
- Graduate Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Valdecir Ferrari
- Graduate Program in Bioexperimentation, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Luciane Maria Colla
- Graduate Program in Civil and Environmental Engineering (PPGEng), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil.
| | - Aline Dettmer
- Graduate Program in Food Science and Technology (PPGCTA), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Jeferson Steffanello Piccin
- Graduate Program in Civil and Environmental Engineering (PPGEng), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| |
Collapse
|
12
|
Li H, Zhen Z, Zhang D, Huang Y, Yang G, Yang C, Wu W, Lin Z, Liang YQ. Improved sea rice yield and accelerated di-2-ethylhexyl phthalate (DEHP) degradation by straw carbonization returning in coastal saline soils. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132850. [PMID: 39491994 DOI: 10.1016/j.jhazmat.2023.132850] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/21/2023] [Accepted: 10/22/2023] [Indexed: 11/05/2024]
Abstract
Di-2-ethylhexyl phthalate, a persistent organic contaminant, is widely distributed in the environment and poses substantial threats to human health; however, there have been few investigations regarding the risks and remediation of DEHP in coastal saline soils. In this work, we studied the influences of straw carbonization returning on sea rice yield and DEHP degradation. Straw carbonization returning significantly increased soil nutrients and reduced salt stress to improve sea rice yield. DEHP degradation efficiency was enhanced to a maximum of 78.27% in straw carbonized return with 60% sea rice, mainly attributed to the high pH value, high soil organic matter and enriched potential DEHP degraders of Nocardioides, Mycobacterium and Bradyrhizobium. Some key genes related to metabolism (esterase and cytochrome P450) and DEHP-degradation (pht4, pht5, pcaG, dmpB, catA and fadA) were elevated and explained the accelerated DEHP degradation, shifting from the benzoic acid pathway to the protocatechuate pathway in straw carbonization returning. The results obtained in this study provide a deep and comprehensive understanding of sea rice yield improvement and DEHP degradation mechanisms in coastal paddy soil by a straw carbonization returning strategy.
Collapse
Affiliation(s)
- Huijun Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhen Zhen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Yongxiang Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guiqiong Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Changhong Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Weilong Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, China.
| | - Yan-Qiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
13
|
Wen S, Liu H, Yang R, Wang L, Zhu L, Wang J, Kim YM, Wang J. Immobilization of Bacillus Thuringiensis and applicability in removal of sulfamethazine from soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122080. [PMID: 37390917 DOI: 10.1016/j.envpol.2023.122080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 07/02/2023]
Abstract
Microbial degradation is considered an essential and promising treatment for sulfadimidine contamination of soil. To address the low colonization rates and inefficiencies of typical antibiotic-degrading bacteria, sulfamethazine (SM2)-degrading strain H38 is converted into immobilized bacteria in this study. Results show that the removal rate of SM2 by immobilized strain H38 reaches 98% at 36 h, whereas the removal rate of SM2 by free bacteria reaches 75.2% at 60 h. In addition, the immobilized bacteria H38 exhibits tolerance to a wide range of pH (5-9) and temperature (20 °C-40 °C). As the amount of inoculation increases and the initial concentration of SM2 decreases, the removal rate of SM2 by the immobilized strain H38 increases gradually. Laboratory soil remediation tests show that the immobilized strain H38 can remove 90.0% of SM2 from the soil on the 12th day, which exceeds the removal by free bacteria by 23.9% in the same period. Additionally, the results show that the immobilized strain H38 enhances the overall activity of microorganisms in SM2-contaminated soil. Compared with the SM2 only (control group containing no bacteria) and free bacterial treatment groups, the gene expression levels of ammonia-oxidizing archaea, ammonia-oxidizing bacteria, cbbLG, and cbbM increased significantly in the treatment group with immobilized strain H38. This study shows that immobilized strain H38 can reduce the effect of SM2 on soil ecology to a greater extent than free bacteria, while providing safe and effective remediation.
Collapse
Affiliation(s)
- Shengfang Wen
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Hunan Liu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Rui Yang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Lanjun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Lusheng Zhu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Jun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea.
| | - Jinhua Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| |
Collapse
|
14
|
Qi Y, Yang F, Gao Y, Zhu Q, Tang X, Wang C, Sun H. Role of biochar-derived DOM compositions in enhanced biodegradation of sulfamethoxazole and chloramphenicol. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131979. [PMID: 37423136 DOI: 10.1016/j.jhazmat.2023.131979] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/08/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
In the study, we investigated the different compositions of biochar-derived dissolved organic matter (BDOM) that play a key role in the biodegradation of sulfamethoxazole (SMX) and chloramphenicol (CAP) by P. stutzeri and S. putrefaciens, and found that aliphatic compounds in Group 4, fulvic acid like in Region III, and solid microbial byproduct like in region IV are key common factors. The growth and antibiotic degradation efficiency of P. stutzeri and S. putrefaciens are positively correlated with the content of Group 4 and Region III, and negatively correlated with Region IV. This is consistent with the optimal biodegradation results of BDOM700 with the highest content of Group 4 and Region III. Additionally, the degradation efficiency of SMX by Pseudomonas stutzeri is negatively correlated with the percentage of polycyclic aromatics in Group 1, but not with CAP. Similarly, the percentage of fatty acids in S. putrefaciens was positively correlated with Group 1, whereas P. stutzeri did not. This indicates that some components of BDOM have varying effects on different bacteria or types of antibiotics. This study provides new insights into enhancing antibiotic biodegradation by controlling the composition of BDOM.
Collapse
Affiliation(s)
- Yuwen Qi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Fang Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yue Gao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qing Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xuejiao Tang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300071, PR China.
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300071, PR China
| |
Collapse
|
15
|
Cui C, Shen J, Zhu Y, Chen X, Liu S, Yang J. Bioremediation of phenanthrene in saline-alkali soil by biochar- immobilized moderately halophilic bacteria combined with Suaeda salsa L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163279. [PMID: 37019226 DOI: 10.1016/j.scitotenv.2023.163279] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 05/27/2023]
Abstract
Polycyclic aromatic hydrocarbon (PAH) contaminated saline-alkali soil is commonly salinized and hardened, which leads to low self-purification efficiency, making it difficult to reuse and remediate. In this study, pot experiments were conducted to investigate remediation of PAH contaminated saline-alkali soil using biochar-immobilized Martelella sp. AD-3, and Suaeda salsa L (S. salsa). Reduction in phenanthrene concentration, PAH degradation functional genes, and the microbial community in the soil were analyzed. The soil properties and plant growth parameters were also analyzed. After a 40-day remediation, the removal rate of phenanthrene by biochar-immobilized bacteria combined with S. salsa (MBP group) was 91.67 %. Additionally, soil pH and electrical conductivity (EC) reduced by 0.15 and 1.78 ds/m, respectively. The fresh weight and leaf pigment contents increased by 1.30 and 1.35 times, respectively, which effectively alleviated the growth pressure on S. salsa in PAH-contaminated saline-alkali soil. Furthermore, this remediation resulted in abundance of PAH degradation functional genes in the soil, with a value of 2.01 × 103 copies/g. The abundance of other PAH degraders such as Halomonas, Marinobacter, and Methylophaga in soil also increased. Furthermore, the highest abundance of Martelella genus was observed after the MBP treatment, indicating that strain AD-3 has a higher survival ability in the rhizosphere of S. salsa under the protection of biochar. This study provides a green, low-cost technique for remediation of PAH-contaminated saline-alkali soils.
Collapse
Affiliation(s)
- Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jiamin Shen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Zhu
- Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban Sites, Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China; Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary, Shanghai Institute of Eco-Chongming, Fudan University, Shanghai 200438, China
| | - Xin Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Siyuan Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jie Yang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; State Environment Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| |
Collapse
|
16
|
Feng X, Guo S, Wen F, Zhu W, Yang X, Gu M, Shi N, Li Z, Lou B, Liu D. New insight into desorption behavior and mechanism of oil from aged oil-contaminated soil in microemulsion. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131108. [PMID: 36913749 DOI: 10.1016/j.jhazmat.2023.131108] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
The intractable nature of oil-contaminated soil (OS) constitutes the chief limiting factor for its remediation. Herein, the aging effect (i.e., oil-soil interactions and pore-scale effect) was investigated by analyzing the properties of aged OS and further demonstrated by investigating the desorption behavior of the oil from the OS. XPS was performed to detect the chemical environment of N, O, and Al, indicating the coordination adsorption of carbonyl groups (oil) on the soil surface. Alterations in the functional groups of the OS were detected using FT-IR, indicating that the oil-soil interactions were enhanced via wind-thermal aging. SEM and BET were used to analyze the structural morphology and pore-scale of the OS. The analysis revealed that aging promoted the development of the pore-scale effect in the OS. Moreover, the desorption behavior of oil molecules from the aged OS was investigated via desorption thermodynamics and kinetics. The desorption mechanism of the OS was elucidated via intraparticle diffusion kinetics. The desorption process of oil molecules underwent three stages: film diffusion, intraparticle diffusion, and surface desorption. Owing to the aging effect, the latter two stages constituted the major steps for controlling oil desorption. This mechanism provided theoretical guidance to apply microemulsion elution for remedying industrial OS.
Collapse
Affiliation(s)
- Xiaoning Feng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266555, China
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110011, China
| | - Fushan Wen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266555, China
| | - Wei Zhu
- Sinopec Petroleum Engineering Co., Ltd., Dongying 257026, China
| | - Xiujie Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266555, China.
| | - Meixia Gu
- Sinopec Petroleum Engineering Co., Ltd., Dongying 257026, China
| | - Nan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266555, China.
| | - Zhiheng Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266555, China
| | - Bin Lou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266555, China
| | - Dong Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266555, China.
| |
Collapse
|
17
|
Huang J, Tan X, Ali I, Duan Z, Naz I, Cao J, Ruan Y, Wang Y. More effective application of biochar-based immobilization technology in the environment: Understanding the role of biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162021. [PMID: 36775150 DOI: 10.1016/j.scitotenv.2023.162021] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
In recent years, biochar-based immobilization technology (BIT) has been widely used to treat different environmental issues because of its cost-effectiveness and high removal performance. However, the complexity of the real environment is always ignored, which hinders the transfer of the BIT from lab-scale to commercial applications. Therefore, in this review, the analysis is performed separately on the internal side of the BIT (microbial fixation and growth) and on the external side of the BIT (function) to achieve effective BIT performance. Importantly, the internal two stages of BIT have been discussed concisely. Further, the usage of BIT in different areas is summarized precisely. Notably, the key impacts were systemically analyzed during BIT applications including environmental conditions and biochar types. Finally, the suggestions and perspectives are elucidated to solve current issues regarding BIT.
Collapse
Affiliation(s)
- Jiang Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xiao Tan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Imran Ali
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhipeng Duan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Iffat Naz
- Department of Biology, Deanship of Educational Services, Qassim University, Buraidah 51452, Kingdom of Saudi Arabia
| | - Jun Cao
- National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China
| | - Yinlan Ruan
- Institute for Photonics and Advanced Sensing, The University of Adelaide, SA 5005, Australia
| | - Yimin Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
18
|
Yang Y, Zhang W, Zhang Z, Yang T, Xu Z, Zhang C, Guo B, Lu W. Efficient Bioremediation of Petroleum-Contaminated Soil by Immobilized Bacterial Agent of Gordonia alkanivorans W33. Bioengineering (Basel) 2023; 10:bioengineering10050561. [PMID: 37237630 DOI: 10.3390/bioengineering10050561] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
In this article, we report a method for preparing an immobilized bacterial agent of petroleum-degrading bacteria Gordonia alkanivorans W33 by combining high-density fermentation and bacterial immobilization technology and testing its bioremediation effect on petroleum-contaminated soil. After determining the optimal combination of MgCl2, CaCl2 concentration, and culture time in the fermentation conditions by conducting a response surface analysis, the cell concentration reached 7.48 × 109 CFU/mL by 5 L fed-batch fermentation. The W33-vermiculite-powder-immobilized bacterial agent mixed with sophorolipids and rhamnolipids in a weight ratio of 9:10 was used for the bioremediation of petroleum-contaminated soil. After 45 days of microbial degradation, 56.3% of the petroleum in the soil with 20,000 mg/kg petroleum content was degraded, and the average degradation rate reached 250.2 mg/kg/d.
Collapse
Affiliation(s)
- Yong Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- CNOOC EnerTech-Safety & Environmental Protection Co., Tianjin 300457, China
| | - Wanze Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhanwei Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ting Yang
- China Offshore Environmental Service Ltd., Tianjin 300457, China
| | - Zhuo Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chuanbo Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Bing Guo
- China Offshore Environmental Service Ltd., Tianjin 300457, China
| | - Wenyu Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
19
|
Schommer VA, Vanin AP, Nazari MT, Ferrari V, Dettmer A, Colla LM, Piccin JS. Biochar-immobilized Bacillus spp. for heavy metals bioremediation: A review on immobilization techniques, bioremediation mechanisms and effects on soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163385. [PMID: 37054796 DOI: 10.1016/j.scitotenv.2023.163385] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
Heavy metals contamination present risks to ecosystems and human health. Bioremediation is a technology that has been applied to minimize the levels of heavy metals contamination. However, the efficiency of this process varies according to several biotic and abiotic aspects, especially in environments with high concentrations of heavy metals. Therefore, microorganisms immobilization in different materials, such as biochar, emerges as an alternative to alleviate the stress that heavy metals have on microorganisms and thus improve the bioremediation efficiency. In this context, this review aimed to compile recent advances in the use of biochar as a carrier of bacteria, specifically Bacillus spp., with subsequent application for the bioremediation of soil contaminated with heavy metals. We present three different techniques to immobilize Bacillus spp. on biochar. Bacillus strains are capable of reducing the toxicity and bioavailability of metals, while biochar is a material that serves as a shelter for microorganisms and also contributes to bioremediation through the adsorption of contaminants. Thus, there is a synergistic effect between Bacillus spp. and biochar for the heavy metals bioremediation. Biomineralization, biosorption, bioreduction, bioaccumulation and adsorption are the mechanisms involved in this process. The application of biochar-immobilized Bacillus strains results in beneficial effects on the contaminated soil, such as the reduction of toxicity and accumulation of metals in plants, favoring their growth, in addition to increasing microbial and enzymatic activity in soil. However, competition and reduction of microbial diversity and the toxic characteristics of biochar are reported as negative impacts of this strategy. More studies using this emerging technology are essential to improve its efficiency, to elucidate the mechanisms and to balance positive and negative impacts, especially at the field scale.
Collapse
Affiliation(s)
- Vera Analise Schommer
- Graduate Program in Civil and Environmental Engineering (PPGEng), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Ana Paula Vanin
- Graduate Program in Civil and Environmental Engineering (PPGEng), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Mateus Torres Nazari
- Graduate Program in Civil and Environmental Engineering (PPGEng), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Valdecir Ferrari
- Graduate Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Aline Dettmer
- Graduate Program in Food Science and Technology (PPGCTA), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Luciane Maria Colla
- Graduate Program in Civil and Environmental Engineering (PPGEng), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil.
| | - Jeferson Steffanello Piccin
- Graduate Program in Civil and Environmental Engineering (PPGEng), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| |
Collapse
|
20
|
Jiang G, Liu Y, Liu X, Shen Y, Zhang A, Li Z. Enhanced efficiency and mechanism of low-temperature biochar on simultaneous removal of nitrogen and phosphorus by combined heterotrophic nitrification-aerobic denitrification bacteria. BIORESOURCE TECHNOLOGY 2023; 373:128720. [PMID: 36774989 DOI: 10.1016/j.biortech.2023.128720] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
In this study, three strains of heterotrophic nitrification-aerobic denitrification (HN-AD) capable of simultaneously removing phosphorus were isolated from activated sludge, and low-temperature coconut shell biochar was prepared. The metabolic effects of combined HN-AD bacteria on the total nitrogen (TN) and total phosphorus (TP) were investigated, and the enhanced efficiency and mechanism of low-temperature biochar on the combined bacteria were also explored. The results indicated that the combined bacteria could adapt to environmental impacts and multiple nitrogen sources. The low-temperature biochar containing more aliphatic carbon and oxygen-containing functional groups enhanced the metabolic activity of combined HN-AD bacteria and accelerated the electron transfer process during nitrogen and phosphorus degradation. The removal efficiencies of TN and TP increased by 68% and 88%, respectively, in the treatment of actual sewage by biochar attached with combined bacteria. The findings form a basis for the engineering utilization of HN-AD and are of great practical significance.
Collapse
Affiliation(s)
- Ge Jiang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Yongjun Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China.
| | - Xingshe Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Yuan Shen
- Yishuiyuan Biotechnology (Xi'an) Co., Ltd., Xi'an 710018, China
| | - Aining Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Zhihua Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| |
Collapse
|
21
|
Teng T, Liang J, Wu Z, Jin P, Zhang D. Different phenanthrene degraders between free-cell mediated and biochar-immobilization assisted soil bioaugmentation as identified by RNA-based stable isotope probing (RNA-SIP). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161139. [PMID: 36572297 DOI: 10.1016/j.scitotenv.2022.161139] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Bioaugmentation (BA) is an effective approach to remove polycyclic aromatic hydrocarbons (PAHs) from contaminated soils, and biochar is frequently used to enhance PAH degradation performance. In this study, phenanthrene (PHE) degradation behavior and active degraders in a petroleum-contaminated soil were investigated and compared between free-cell mediated and biochar-immobilization assisted bioaugmentation. Biochar-immobilization assisted bioaugmentation (BA-IPB) introduced PHE degraders immobilized on biochar and effectively promoted PHE degradation, achieving higher PHE removal efficiencies within 24 h (~58 %) than free-cell mediated bioaugmentation (BA-FPB, ~39 %). Soil microbial community structure significantly changed in both BA-FPB and BA-IPB treatments. Through RNA-stable isotope probing (SIP), 14 and 11 bacterial lineages responsible for in situ PHE degradation were identified in BA-FPB and BA-IPB treatments, respectively. ASV_17 in BA-FPB treatment was Rhodococcus in the exogenous bacterial mixture; in contrast, none of exogenous bacteria were involved in PHE degradation in BA-IPB treatment. Methylobacterium (ASV_186), Xanthomonas (ASV_41), Kroppenstedtia (ASV_205), Scopulibacillus (ASV_243), Bautia (ASV_356), and Lactobacillus (ASV_376) were identified as PHE degraders for the first time. Our findings expanded the knowledge of the active PHE degraders and underlying mechanisms in bioaugmentation process, and suggested biochar-immobilization assisted bioaugmentation as a promising strategy for the bioremediation of PAH contaminated soils.
Collapse
Affiliation(s)
- Tingting Teng
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd and Xi'an Jiaotong University, Xi'an 710000, PR China; College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China
| | - Jidong Liang
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd and Xi'an Jiaotong University, Xi'an 710000, PR China.
| | - Zijun Wu
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd and Xi'an Jiaotong University, Xi'an 710000, PR China
| | - Pengkang Jin
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd and Xi'an Jiaotong University, Xi'an 710000, PR China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China
| |
Collapse
|
22
|
Zheng Z, Liu W, Zhou Q, Li J, Zeb A, Wang Q, Lian Y, Shi R, Wang J. Effects of co-modified biochar immobilized laccase on remediation and bacterial community of PAHs-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130372. [PMID: 36444066 DOI: 10.1016/j.jhazmat.2022.130372] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Considering the stability and economy of immobilized enzymes, this study prepared co-modified biochar immobilized laccase product named Fe3O4@NaBC@GA@LC via orthogonal experimental design and explored its possibility of remediating polycyclic aromatic hydrocarbons (PAHs) contaminated soil in steel plants. Compared with the free laccase treatment, the relative activity of Fe3O4@NaBC@GA@LC remained 60 % after 50 days of incubation at room temperature. The relative activity of Fe3O4@NaBC@GA@LC could still retain nearly 80 % after five reuses. In the process of simulating the PAHs-contaminated site treatment experiment in Hangzhou Iron and steel plant, immobilized laccase exhibited efficient adsorption and degradation performances and even the removal rate of 5-ring PAHs reached more than 90 % in 40 days, resulting in improving urease activity and dehydrogenase in the soil and promoted the growth of a PAH degrading bacteria (Massilia). Our results further explained the efficient degradation effects of Fe3O4@NaBC@GA@LC on PAHs, which make it a promising candidate for PAHs-contaminated soil remediation.
Collapse
Affiliation(s)
- Zeqi Zheng
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weitao Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiantao Li
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Aurang Zeb
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qi Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuhang Lian
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruiying Shi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jianlin Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
23
|
Zhou H, Gao X, Wang S, Zhang Y, Coulon F, Cai C. Enhanced Bioremediation of Aged Polycyclic Aromatic Hydrocarbons in Soil Using Immobilized Microbial Consortia Combined with Strengthening Remediation Strategies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20031766. [PMID: 36767132 PMCID: PMC9914441 DOI: 10.3390/ijerph20031766] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 05/06/2023]
Abstract
Microbial biodegradation is considered as one of the most effective strategies for the remediation of soil contaminated with polycyclic aromatic hydrocarbons (PAHs). To improve the degradation efficiency of PAHs, PAH-degrading consortia combined with strengthening remediation strategies was used in this study. The PAH biodegrading performance of seven bacterial consortia constructed by different ratios of Mycobacterium gilvum MI, Mycobacterium sp. ZL7 and Rhodococcus rhodochrous Q3 was evaluated in an aqueous system containing phenanthrene, pyrene, benzo[a]pyrene and benzo[b]fluoranthene. Bacterial consortium H6 (Q3:ZL7:MI = 1:2:2) performed a high degrading efficiency of 59% in 8 days. The H6 was subsequently screened to explore its potential ability and performance to degrade aged PAHs in soils from a coking plant and the effects of strengthening strategies on the aged PAH degradation, including the addition of glucose or sodium dodecyl benzene sulfonate (SDBS) individually or as a mixture along immobilization of the inoculant on biochar. The highest degradation efficiencies, which were 15% and 60% for low-molecular-weight (LMW) PAHs and high-molecular-weight (HMW) PAHs, respectively, were observed in the treatment using immobilized microbial consortium H6 combined with the addition of glucose and SDBS after 24 days incubation. This study provides new insights and guidance for future remediation of aged PAH contaminated soils.
Collapse
Affiliation(s)
- Haixuan Zhou
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiurong Gao
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suhang Wang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youchi Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Chao Cai
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
24
|
Control Efficiency of Biochar Loaded with Bacillus subtilis Tpb55 against Tobacco Black Shank. Processes (Basel) 2022. [DOI: 10.3390/pr10122663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Black shank caused by Phytophthora nicotianae has become a destructive soil-borne disease to different flue-cured tobacco cultivars in Southwest China. The use of biochar amendments for microorganism synergy is a promising effective strategy for P. nicotianae development control. In this study, biochar samples were prepared from tamarisk with different pyrolization temperatures (300–500 °C). The effect of pyrolytic temperatures on the bacteria immobilization efficiency of biochar was investigated. B. subtilis Tpb55 was successfully loaded on different biochars as biocontrol composites. The survival investigation of the inoculum suggested that biochar pyrolized at 300 °C (BC300), with a large pore opening diameter; a greater pore volume exhibited a better Tpb55 immobilization. A pot experiment indicated that Tpb55-loaded BC300 had a more pronounced decrease in the disease severity index of black shank disease and an increase in the soil pH, alkali-hydrolyzable nitrogen, soil-available phosphorus, and available potassium. BC300 inoculated with Tpb55 showed the highest control effect (79.60%) against tobacco black shank in the pot experiments, with the lowest copy number of P. nicotianae DNA. In conclusion, biochar-immobilized Tpb55 may provide a new strategy for preventing and controlling tobacco black shank.
Collapse
|
25
|
Dike CC, Hakeem IG, Rani A, Surapaneni A, Khudur L, Shah K, Ball AS. The co-application of biochar with bioremediation for the removal of petroleum hydrocarbons from contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157753. [PMID: 35931161 DOI: 10.1016/j.scitotenv.2022.157753] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Soil pollution from petroleum hydrocarbon is a global environmental problem that could contribute to the non-actualisation of the United Nations Sustainable Development Goals. Several techniques have been used to remediate petroleum hydrocarbon-contaminated soils; however, there are technical and economical limitations to existing methods. As such, the development of new approaches and the improvement of existing techniques are imperative. Biochar, a low-cost carbonaceous product of the thermal decomposition of waste biomass has gained relevance in soil remediation. Biochar has been applied to remediate hydrocarbon-contaminated soils, with positive and negative results reported. Consequently, attempts have been made to improve the performance of biochar in the hydrocarbon-based remediation process through the co-application of biochar with other bioremediation techniques as well as modifying biochar properties before use. Despite the progress made in this domain, there is a lack of a detailed single review consolidating the critical findings, new developments, and challenges in biochar-based remediation of petroleum hydrocarbon-contaminated soil. This review assessed the potential of biochar co-application with other well-known bioremediation techniques such as bioaugmentation, phytoremediation, and biostimulation. Additionally, the benefits of modification in enhancing biochar suitability for bioremediation were examined. It was concluded that biochar co-application generally resulted in higher hydrocarbon removal than sole biochar treatment, with up to a 4-fold higher removal observed in some cases. However, most of the biochar co-applied treatments did not result in hydrocarbon removal that was greater than the additive effects of individual treatment. Overall, compared to their complementary treatments, biochar co-application with bioaugmentation was more beneficial in hydrocarbon removal than biochar co-application with either phytoremediation or biostimulation. Future studies should integrate the ecotoxicological and cost implications of biochar co-application for a viable remediation process. Lastly, improving the synergistic interactions of co-treatment on hydrocarbon removal is critical to capturing the full potential of biochar-based remediation.
Collapse
Affiliation(s)
- Charles Chinyere Dike
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, Victoria 3083, Australia.
| | - Ibrahim Gbolahan Hakeem
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, Victoria 3083, Australia
| | - Alka Rani
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, Victoria 3083, Australia
| | - Aravind Surapaneni
- South East Water, 101 Wells Street, Frankston, Victoria 3199, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, Victoria 3083, Australia
| | - Leadin Khudur
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, Victoria 3083, Australia
| | - Kalpit Shah
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, Victoria 3083, Australia
| | - Andrew S Ball
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
26
|
Song L, Niu X, Zhou B, Xiao Y, Zou H. Application of biochar-immobilized Bacillus sp. KSB7 to enhance the phytoremediation of PAHs and heavy metals in a coking plant. CHEMOSPHERE 2022; 307:136084. [PMID: 35988767 DOI: 10.1016/j.chemosphere.2022.136084] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/15/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
The co-existence of heavy metals and polycyclic aromatic hydrocarbons (PAHs) challenges the remediation of polluted soil. This study aimed to investigate whether a combined amendment of biochar-immobilized bacterium (BM) could enhance the phytoremediation of heavy metals and PAHs in co-contaminated soil. The Bacillus sp. KSB7 with the capabilities of plant-growth promotion, metal tolerance, and PAH degradation was immobilized on the peanut shell biochar prepared at 400 °C and 600 °C (PBM4 and PBM6, respectively). After 90 days, PBM4 treatment increased the removal of PAHs by 94.17% and decreased the amounts of diethylenetriamine pentaacetic acid-extractable Zn, Pb, Cr, and Cu by 58.46%, 53.42%, 84.94%, and 83.15%, respectively, compared with Kochia scoparia-alone treatment. Meanwhile, PBM4 was more effective in promoting K. scoparia growth and reducing the uptake of co-contaminants. The abundance of Gram-negative PAH-degrader and 1-aminocyclopropane-1-carboxylic deaminase-producing bacteria within rhizosphere soil was significantly improved after PBM4 treatment. Moreover, the relative abundance of the Bacillus genus increased by 0.66 and 2.05 times under PBM4 treatment compared with biochar alone and KSB7, indicating that KSB7 could colonize in the rhizosphere soil of K. scoparia. However, the removal of PAHs and heavy metals after PBM6 and 600 °C biochar-alone treatments caused no obvious difference. This study suggested that low-temperature BM-amended plant cultivation would be an effective approach to remove PAHs and heavy metals in co-contaminated soil.
Collapse
Affiliation(s)
- Lichao Song
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, PR China; Key Laboratory of Northeast Arable Land Conservation of Ministry of Agriculture, Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Xuguang Niu
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, PR China; Key Laboratory of Northeast Arable Land Conservation of Ministry of Agriculture, Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Bin Zhou
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, PR China; Key Laboratory of Northeast Arable Land Conservation of Ministry of Agriculture, Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Yinong Xiao
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, PR China; Key Laboratory of Northeast Arable Land Conservation of Ministry of Agriculture, Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Hongtao Zou
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, PR China; Key Laboratory of Northeast Arable Land Conservation of Ministry of Agriculture, Shenyang Agricultural University, Shenyang, 110866, PR China.
| |
Collapse
|
27
|
Gou Z, Liu G, Wang Y, Li X, Wang H, Chen S, Su Y, Sun Y, Ma NL, Chen G. Enhancing N uptake and reducing N pollution via green, sustainable N fixation-release model. ENVIRONMENTAL RESEARCH 2022; 214:113934. [PMID: 36027962 DOI: 10.1016/j.envres.2022.113934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
The overuse of N fertilizers has caused serious environmental problems (e.g., soil acidification, excessive N2O in the air, and groundwater contamination) and poses a serious threat to human health. Improving N fertilizer utilization efficiency and plant uptake is an alternative for N fertilizers overuses. Enterobacter cloacae is an opportunistic pathogen, also used as plant growth-promoting rhizobacteria (PGPR), has been widely presented in the fields of bioremediation and bioprotection. Here we developed a new N fixation-release model by combining biochar with E. cloacae. The efficiency of the model was evaluated using a greenhouse pot experiment with maize (Zea mays L.) as the test crop. The results showed that biochar combined with E. cloacae significantly increased the N content. The application of biochar combined with E. cloacae increased total N in soil by 33% compared with that of N fertilizers application. The N-uptake and utilization efficiency (NUE) in plant was increased 17.03% and 14.18%, respectively. The activities of urease, dehydrogenase and fluorescein diacetate hydrolase (FDA) was improved, the catalase (CAT) activity decreased. Analysis of the microbial community diversity revealed the abundance of Proteobacteria, Actinobacteria, Firmicutes, and Gemmatimonadetes were significantly improved. The mechanism under the model is that E. cloacae acted as N-fixation by capturing N2 from air. Biochar served as carrier, supporting better living environment for E. cloacae, also as adsorbent adsorbing N from fertilizer and from fixed N by E. cloacae, the adsorption in turn slower the N release. Altogether, the model promotes N utilization by plants, improves the soil environment, and reduces N pollution.
Collapse
Affiliation(s)
- Zechang Gou
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Guoqing Liu
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Yisheng Wang
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Xiufeng Li
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Huiqiong Wang
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Siji Chen
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Yingjie Su
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Yang Sun
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China.
| | - Nyuk Ling Ma
- Faculty of Science and Marine Environment, University Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Guang Chen
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
28
|
Valizadeh S, Lee SS, Choi YJ, Baek K, Jeon BH, Andrew Lin KY, Park YK. Biochar application strategies for polycyclic aromatic hydrocarbons removal from soils. ENVIRONMENTAL RESEARCH 2022; 213:113599. [PMID: 35679906 DOI: 10.1016/j.envres.2022.113599] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/21/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are known as a hazardous group of pollutants in the soil which causes many challenges to the environment. In this study, the potential of biochar (BC), as a carbonaceous material, is evaluated for the immobilization of PAHs in soils. For this purpose, various bonding mechanisms of BC and PAHs, and the strength of bonds are firstly described. Also, the effect of impressive criteria including BC physicochemical properties (such as surface area, porosity, particle size, polarity, aromaticity, functional group, etc., which are mostly the function of pyrolysis temperature), number of rings in PAHs, incubation time, and soil properties, on the extent and rate of PAHs immobilization by BC are explained. Then, the utilization of BC in collaboration with biological tools which simplifies further dissipation of PAHs in the soil is described considering detailed interactions among BC, microbes, and plants in the soil matrix. The co-effect of BC and biological remediation has been authenticated by previous studies. Moreover, recent technologies and challenges related to the application of BC in soil remediation are explained. The implementation of a combined BC-biological remediation method would provide excellent prospects for PAHs-contaminated soils.
Collapse
Affiliation(s)
- Soheil Valizadeh
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Sang Soo Lee
- Department of Environmental & Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Yong Jun Choi
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Kitae Baek
- Department of Environment & Energy (BK21 FOUR) and Soil Environment Research Center, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
29
|
Zheng X, Xu W, Dong J, Yang T, Shangguan Z, Qu J, Li X, Tan X. The effects of biochar and its applications in the microbial remediation of contaminated soil: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129557. [PMID: 35999729 DOI: 10.1016/j.jhazmat.2022.129557] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
The amendment of biochar for soil bioremediation can improve soil conditions, influence soil microbial community, and achieve co-application of biochar-microbe to promote the removal of pollutants. This paper summarizes the positive effects of biochar on microorganisms, including acting as a shelter, providing nutrients, and improving soil conditions (soil aggregation, pH, cation exchange capacity (CEC), and enzymatic activity). These effects will cause variations in microbial abundance, activity, and community structure. Biochar can act as an electron mediator to promote electron transfer in the process of microbial degradation. And the application of biochar in soil bioremediation is also introduced. Nevertheless, toxic substances carried by biochar that may threaten microbial community shouldn't be overlooked. With this review, we can better understand biochar's involvement in soil bioremediation, which will help us choose and modify biochar in a targeted manner for the desired purpose in practical applications.
Collapse
Affiliation(s)
- Xuemei Zheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Weihua Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Jie Dong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Ting Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zichen Shangguan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jing Qu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| |
Collapse
|
30
|
Mukherjee S, Sarkar B, Aralappanavar VK, Mukhopadhyay R, Basak BB, Srivastava P, Marchut-Mikołajczyk O, Bhatnagar A, Semple KT, Bolan N. Biochar-microorganism interactions for organic pollutant remediation: Challenges and perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119609. [PMID: 35700879 DOI: 10.1016/j.envpol.2022.119609] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/23/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Numerous harmful chemicals are introduced every year in the environment through anthropogenic and geological activities raising global concerns of their ecotoxicological effects and decontamination strategies. Biochar technology has been recognized as an important pillar for recycling of biomass, contributing to the carbon capture and bioenergy industries, and remediation of contaminated soil, sediments and water. This paper aims to critically review the application potential of biochar with a special focus on the synergistic and antagonistic effects on contaminant-degrading microorganisms in single and mixed-contaminated systems. Owing to the high specific surface area, porous structure, and compatible surface chemistry, biochar can support the proliferation and activity of contaminant-degrading microorganisms. A combination of biochar and microorganisms to remove a variety of contaminants has gained popularity in recent years alongside traditional chemical and physical remediation technologies. The microbial compatibility of biochar can be improved by optimizing the surface parameters so that toxic pollutant release is minimized, biofilm formation is encouraged, and microbial populations are enhanced. Biocompatible biochar thus shows potential in the bioremediation of organic contaminants by harboring microbial populations, releasing contaminant-degrading enzymes, and protecting beneficial microorganisms from immediate toxicity of surrounding contaminants. This review recommends that biochar-microorganism co-deployment holds a great potential for the removal of contaminants thereby reducing the risk of organic contaminants to human and environmental health.
Collapse
Affiliation(s)
- Santanu Mukherjee
- School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom.
| | | | - Raj Mukhopadhyay
- Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal 132001, India
| | - B B Basak
- ICAR-Directorate of Medicinal and Aromatic Plants Research, Anand 387310, India
| | | | - Olga Marchut-Mikołajczyk
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Ul. Stefanowskiego 2/22, 90-537, Łódź, Poland
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, Mikkeli, FI-50130, Finland
| | - Kirk T Semple
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
31
|
Li R, Wang B, Niu A, Cheng N, Chen M, Zhang X, Yu Z, Wang S. Application of biochar immobilized microorganisms for pollutants removal from wastewater: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155563. [PMID: 35504384 DOI: 10.1016/j.scitotenv.2022.155563] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/23/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
Microbial immobilization technology (MIT) has been rapidly developed and used to remove pollutants from water/wastewater in recent years, owing to its high stability, rapid reaction rate, and high activity. Microbial immobilization carrier with low cost and high removal efficiency is the key of MIT. Biochar is considered to be an efficient carrier for microbial immobilization because of its high porosity and good adsorption effect, which can provide a habitat for microorganisms. The use of biochar immobilized microorganisms to treat different pollutants in wastewater is a promising treatment method. Compared with the other biological treatment technology, biochar immobilized microorganisms can improve microbial abundance, repeated utilization ratio, microbial metabolic capacity, etc. However, current research on this method is still in its infancy. Little attention has been paid to the interaction mechanisms between biochar and microorganisms, and many studies are only carried out in the laboratory. There are still problems such as difficult recovery after use and secondary pollution caused by residual pollutants after biochar adsorption, which need further clarification. To have comprehensive digestion and an in-depth understanding of biochar immobilized microorganisms technology in wastewater treatment, the wastewater treatment methods based on biochar are firstly summarized in this review. Then the mechanisms of immobilized microorganisms were explored, and the applications of biochar immobilized microorganisms in wastewater were systematically reviewed. Finally, suggestions and perspectives for future research and practical application are put forward.
Collapse
Affiliation(s)
- Rui Li
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Bing Wang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou 550025, China.
| | - Aping Niu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Ning Cheng
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Miao Chen
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou 550025, China
| | - Xueyang Zhang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu 221018, China
| | - Zebin Yu
- MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment & Materials, Guangxi University, Nanning, Guangxi 530004, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| |
Collapse
|
32
|
Zhang S, Wang J. Biodegradation of chlortetracycline by Bacillus cereus LZ01: Performance, degradative pathway and possible genes involved. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128941. [PMID: 35462123 DOI: 10.1016/j.jhazmat.2022.128941] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Microbial degradation of chlortetracycline (CTC) is an effective bioremediation method. In the present study, an enrichment technique was used to isolate a Bacillus cereus LZ01 strain capable of effectively degrading CTC from cattle manure. Response surface methodology was used to identify optimized conditions under which strain LZ01 was able to achieve maximal CTC removal (83.58%): temperature of 35.77 °C, solution pH of 7.59, CTC concentration of 57.72 mg/L and microbial inoculum of 0.98%. The antibacterial effect of CTC degradation products on Escherichia coli was investigated by the disk diffusion test, revealing that the products by LZ01 degradation of CTC exhibited lower toxicity than parent compound. Shake flask batch experiments showed that the biodegradation of CTC was a synergistic effect of intracellular and extracellular enzymes, and intracellular enzyme had a better degradation effect on CTC (77.56%). Whole genome sequencing revealed that genes associated with ring-opening hydrolysis, demethylation, deamination and dehydrogenation in strain LZ01 may be involved in the biodegradation of CTC. Subsequent seven possible biodegradation products were identified by LC-MS analyses, and the biodegradation pathways were proposed. Overall, this study provides a theoretical foundation for the characterization and mechanism of CTC degradation in the environment by Bacillus cereus LZ01.
Collapse
Affiliation(s)
- Sinan Zhang
- Key Laboratory of Straw Biology and Utilization, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Jihong Wang
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
33
|
Preparation of Micron-Scale Activated Carbon-Immobilized Bacteria for the Adsorption–Biodegradation of Diesel Oil. WATER 2022. [DOI: 10.3390/w14132061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This paper investigated the micron-scale activated carbon (MAC) immobilized diesel-oil-degrading bacteria (bio-MAC) used as remediation materials for the removal of diesel-oil-contaminated water. The high-efficiency indigenous diesel-oil-degrading bacteria were firstly screened and enriched, then the MAC was used as a diesel oil sorbent and biocarrier for the immobilization of degrading bacteria to prepare the bio-MAC material. The removal performance of the bio-MAC was evaluated via a comparison with the freely degrading bacteria and MAC. The SEM results demonstrated that the diesel-oil-degrading bacteria were effectively immobilized and grew well on the surfaces of MAC particles. The concentration of MAC significantly influenced the growth and activity (DHA and LPS) of immobilized bacteria, and the MAC addition of 3.0 g/L was proven to be an optimum amount for the preparation of bio-MAC. The high-throughput sequencing analysis further indicated that the bacteria immobilized on MAC showed higher abundance levels and diversities index values compared to freely suspended bacteria, such as Pseudomonas, Rhodococcus, Bacillus and Microbacterium. The FTIR spectroscopy results showed that the bio-MAC could effectively degrade the aliphatic hydrocarbons, alkenes and aromatic compounds of diesel oil to carboxylic acids, esters, alcohols and other metabolites. When the concentration of diesel oil was 1 g/L, the removal efficiency for the diesel oil of bio-MAC reached 86.35% after 15 days, while only 23.82% and 70.97% of the diesel oil was removed using the same amount of free bacteria and MAC, respectively. The prepared bio-MAC showed a synergic effect of adsorption and biodegradation and efficiently removed diesel oil from wastewater.
Collapse
|
34
|
Lin Q, Tan X, Almatrafi E, Yang Y, Wang W, Luo H, Qin F, Zhou C, Zeng G, Zhang C. Effects of biochar-based materials on the bioavailability of soil organic pollutants and their biological impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:153956. [PMID: 35189211 DOI: 10.1016/j.scitotenv.2022.153956] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/13/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Motivated by the unique structure and superior properties, biochar-based materials, including pristine biochar and composites of biochar with other functional materials, are considered as new generation materials for diverse multi-functional applications, which may be intentionally or unintentionally released to soil. The influencing mechanism of biochar-based material on soil organisms is a key aspect for quantifying and predicting its benefits and trade-offs. This work focuses on the effects of biochar-based materials on soil organisms within the past ten years. 206 sources are reviewed and available knowledge on biochar-based materials' impacts on soil organisms is summarized from a diverse perspective, including the pollutant bioavailability changes in soil, and potential effects of biochar-based materials on soil organisms. Herein, effects of biochar-based materials on the bioavailability of soil organic pollutants are detailed, from the perspective of plant, microorganism, and soil fauna. Potential biological effects of pristine biochar (PBC), metal/metal compounds-biochar composites (MBC), clay minerals-biochar composites (CMBC), and carbonaceous materials-biochar composites (CBC) on soil organisms are highlighted for the first time. And possible mechanisms are presented based on the different characters of biochar-based materials as well as various environmental interactions. Finally, the bottleneck and challenges of risk assessment of biochar-based materials as well as future prospects are proposed. This work not only promotes the development of risk assessment system of biochar-based materials, but broadens the strategy for the design and optimization of environmental-friendly biochar materials.
Collapse
Affiliation(s)
- Qing Lin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Eydhah Almatrafi
- Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yang Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wenjun Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Hanzhuo Luo
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Fanzhi Qin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
35
|
Neogi S, Sharma V, Khan N, Chaurasia D, Ahmad A, Chauhan S, Singh A, You S, Pandey A, Bhargava PC. Sustainable biochar: A facile strategy for soil and environmental restoration, energy generation, mitigation of global climate change and circular bioeconomy. CHEMOSPHERE 2022; 293:133474. [PMID: 34979200 DOI: 10.1016/j.chemosphere.2021.133474] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/15/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The increasing agro-demands with the burgeoning population lead to the accumulation of lignocellulosic residues. The practice of burning agri-residues has consequences viz. Release of soot and smoke, nutrient depletion, loss of soil microbial diversity, air pollution and hazardous effects on human health. The utilization of agricultural waste as biomass to synthesize biochar and biofuels, is the pertinent approach for attaining sustainable development goals. Biochar contributes in the improvement of soil properties, carbon sequestration, reducing greenhouse gases (GHG) emission, removal of organic and heavy metal pollutants, production of biofuels, synthesis of useful chemicals and building cementitious materials. The biochar characteristics including surface area, porosity and functional groups vary with the type of biomass consumed in pyrolysis and the control of parameters during the process. The major adsorption mechanisms of biochar involve physical-adsorption, ion-exchange interactions, electrostatic attraction, surface complexation and precipitation. The recent trend of engineered biochar can enhance its surface properties, pH buffering capacity and presence of desired functional groups. This review focuses on the contribution of biochar in attaining sustainable development goals. Hence, it provides a thorough understanding of biochar's importance in enhancing soil productivity, bioremediation of environmental pollutants, carbon negative concretes, mitigation of climate change and generation of bioenergy that amplifies circular bioeconomy, and concomitantly facilitates the fulfilment of the United Nation Sustainable Development Goals. The application of biochar as seen is primarily targeting four important SDGs including clean water and sanitation (SGD6), affordable and clean energy (SDG7), responsible consumption and production (SDG12) and climate action (SDG13).
Collapse
Affiliation(s)
- Suvadip Neogi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Vikas Sharma
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Nawaz Khan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Deepshi Chaurasia
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Anees Ahmad
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Shraddha Chauhan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Anuradha Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Siming You
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ashok Pandey
- Centre for Innovation and Transnational Research, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Preeti Chaturvedi Bhargava
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India.
| |
Collapse
|
36
|
Sorption of Cd2+ on Bone Chars with or without Hydrogen Peroxide Treatment under Various Pyrolysis Temperatures: Comparison of Mechanisms and Performance. Processes (Basel) 2022. [DOI: 10.3390/pr10040618] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In this study, bone char pretreated with hydrogen peroxide and traditional pyrolysis was applied to remove Cd2+ from aqueous solutions. After hydrogen peroxide pretreatment, the organic matter content of the bone char significantly decreased, while the surface area, the negative charge and the number of oxygen-containing functional groups on the bone char surface increased. After being pyrolyzed, the specific surface area and the negative charge of the material were further improved. The adsorption kinetics and isotherms of Cd2+ adsorption were studied, and the influence of solution pH and the presence of ionic species were investigated. The experimental results showed that the samples with lower crystallinity exhibited less organic matter content and more surface oxygen-containing functional groups, resulting in stronger adsorption capacity. After being treated with hydrogen peroxide and pyrolyzed at 300 °C, the maximum adsorption capacity of bone char was 228.73 mg/g. The bone char sample with the lowest adsorption capacity(47.71 mg/g) was pyrolyzed at 900 °C without hydrogen peroxide pretreatment. Ion exchange, surface complexation, and electrostatic interactions were responsible for the elimination of Cd2+ by the bone char samples. Overall, this work indicates that hydrogen peroxide-treated pyrolytic bone char is a promising material for the immobilization of Cd2+.
Collapse
|
37
|
Li X, Wang Y, Luo T, Ma Y, Wang B, Huang Q. Remediation potential of immobilized bacterial strain with biochar as carrier in petroleum hydrocarbon and Ni co-contaminated soil. ENVIRONMENTAL TECHNOLOGY 2022; 43:1068-1081. [PMID: 32844719 DOI: 10.1080/09593330.2020.1815858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 08/18/2020] [Indexed: 05/22/2023]
Abstract
The remediation of organic pollutant-heavy metal co-contaminated soil is a great challenge. Immobilized microorganism technology (IMT) is a potential approach to remediate co-contaminated soil. In this study, we evaluated the feasibility of IMT for the remediation of petroleum hydrocarbon-heavy metal nickel (Ni) co-contaminated soil. The Ni resistant and hydrocarbon-degrading bacteria strain Citrobacter sp. was added to co-contaminated soil by immobilizing on corncob biochar. The potential performance in biodegradation of petroleum hydrocarbon and changing the mobility and speciation of nickel (Ni) in soil were determined, with consideration of the influences of the soil properties and dehydrogenase activity. The results demonstrated that the degradation rate of petroleum hydrocarbons by immobilized microorganisms group (IM) was 45.52%, significantly higher than that of the free bacteria (30.15%), biochar (25.92%) and blank group (18.47%) (P<0.05). At the same time, IM was more effective in immobilizing Ni in the soil by transforming available Ni to a stable fraction with a maximum residual concentration increasing by 101.50 mg·kg-1, and the carcinogenic nickel sulfide was not detected after remediation in IM. IM exhibited a higher level of soil dehydrogenase activity (0.3956 μg·mL-1·h-1·g-1) than that of free bacteria (0.2878 μg·mL-1·h-1·g-1). A linear correlation was found between the petroleum pollutants degradation rate and dehydrogenase activity (P<0.05). This study indicates the effectiveness and potential of IMT application in degrading petroleum hydrocarbon and immobilizing heavy metals in co-contaminated soil.
Collapse
Affiliation(s)
- Xi Li
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, People's Republic of China
| | - Yaxuan Wang
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
| | - Ting Luo
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
| | - Yongsong Ma
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
| | - Bing Wang
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
| | - Qiuyu Huang
- Sichuan Bureau of Geology and Mineral Resources Chengdu Analytical & Testing Center for Mineral and Rocks, Chengdu, People's Republic of China
| |
Collapse
|
38
|
Cao X, Huo S, Zhang H, Ma C, Zheng J, Wu F, Song S. Seasonal variability in multimedia transport and fate of benzo[a]pyrene (BaP) affected by climatic factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118404. [PMID: 34699921 DOI: 10.1016/j.envpol.2021.118404] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/09/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
The impact of meteorological factors on the transport behavior and distribution of volatile and semi-volatile organic pollutants has become an area of increasing concern. Here, we analyzed seasonal variation in climatic variables including wind, temperature, and precipitation to quantitatively assess the impact of these factors on the multimedia transport and fate of BaP in the continental region of China using a Berkeley-Trent (BETR) model. The advective rates of air exhibited an increasing trend of autumn (1.830 mol/h) < summer (1.975 mol/h) < winter (2.053 mol/h) < spring (2.405 mol/h) in association with increasing wind speed, indicating that lower atmospheric BaP concentrations are present in regions with high wind speeds and advective rates. The air-soil transport rates (0.08-45.55 mol/h) in winter were higher than in summer (0.07-32.41 mol/h), while low winter temperatures accelerate BaP accumulation in terrestrial ecosystems due to cold deposition. Cold deposition effects were more evident in northern regions than in southern regions. Further, increasing precipitation enhanced air-soil and soil-freshwater transport rates with the correlation coefficients of r = 0.445 and r = 0.598 respectively, while decreasing the air-vegetation transport rates (r = 0.475), thereby contributing to the accumulation of BaP in soils and freshwaters. In the light of the potential dispersion of BaP pollution at regional and global scales affected by these key climatic factors, this indirectly indicated the impact of future climate change on the BaP transport. Thus, flexible policy interventions should be enacted to slow future climate change.
Collapse
Affiliation(s)
- Xianghui Cao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Shouliang Huo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China.
| | - Hanxiao Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; Beijing Normal University, Beijing, 100874, China
| | - Chunzi Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Jiaqi Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Shuai Song
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
39
|
Mahto KU, Kumari S, Das S. Unraveling the complex regulatory networks in biofilm formation in bacteria and relevance of biofilms in environmental remediation. Crit Rev Biochem Mol Biol 2021; 57:305-332. [PMID: 34937434 DOI: 10.1080/10409238.2021.2015747] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biofilms are assemblages of bacteria embedded within a matrix of extracellular polymeric substances (EPS) attached to a substratum. The process of biofilm formation is a complex phenomenon regulated by the intracellular and intercellular signaling systems. Various secondary messenger molecules such as cyclic dimeric guanosine 3',5'-monophosphate (c-di-GMP), cyclic adenosine 3',5'-monophosphate (cAMP), and cyclic dimeric adenosine 3',5'-monophosphate (c-di-AMP) are involved in complex signaling networks to regulate biofilm development in several bacteria. Moreover, the cell to cell communication system known as Quorum Sensing (QS) also regulates biofilm formation via diverse mechanisms in various bacterial species. Bacteria often switch to the biofilm lifestyle in the presence of toxic pollutants to improve their survivability. Bacteria within a biofilm possess several advantages with regard to the degradation of harmful pollutants, such as increased protection within the biofilm to resist the toxic pollutants, synthesis of extracellular polymeric substances (EPS) that helps in the sequestration of pollutants, elevated catabolic gene expression within the biofilm microenvironment, higher cell density possessing a large pool of genetic resources, adhesion ability to a wide range of substrata, and metabolic heterogeneity. Therefore, a comprehensive account of the various factors regulating biofilm development would provide valuable insights to modulate biofilm formation for improved bioremediation practices. This review summarizes the complex regulatory networks that influence biofilm development in bacteria, with a major focus on the applications of bacterial biofilms for environmental restoration.
Collapse
Affiliation(s)
- Kumari Uma Mahto
- Department of Life Science, Laboratory of Environmental Microbiology and Ecology (LEnME), National Institute of Technology, Odisha, India
| | - Swetambari Kumari
- Department of Life Science, Laboratory of Environmental Microbiology and Ecology (LEnME), National Institute of Technology, Odisha, India
| | - Surajit Das
- Department of Life Science, Laboratory of Environmental Microbiology and Ecology (LEnME), National Institute of Technology, Odisha, India
| |
Collapse
|
40
|
Partovinia A, Soorki AA, Koosha M. Synergistic adsorption and biodegradation of heavy crude oil by a novel hybrid matrix containing immobilized Bacillus licheniformis: Aqueous phase and soil bioremediation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112505. [PMID: 34273849 DOI: 10.1016/j.ecoenv.2021.112505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/27/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Recently, slurry phase bioremediation as a simple and economical method is shown to be a successful technique for remediation of clayey soils. Besides, the use of microbial cell immobilization as a promising technique has drawn the attention of some researchers. The primary objective of this survey is to examine the synergistic adsorption and biodegradation performance of heavy crude oil by an isolated Bacillus licheniformis immobilized in a novel hybrid matrix (PUF/alginate/microbial cell) in aqueous phase. Isotherm studies and adsorption kinetics of crude oil on PUF matrix were carried out and their results revealed a good correlation between experimental data and Langmuir's isotherm and maximum monolayer coverage was found out to be 1.25 g/g PUF. The other objective of this research is examination of hybrid matrix in slurry phase bioremediation of heavy crude oil polluted clayey soil as a reluctant model soil. In order to model, optimize, and investigate the factors affecting the total organic carbon (TOC) reduction, response surface methodology (RSM) was applied. For this purpose, the effect of three variables including crude oil concentration (5000-25,000 mg/kg dry soil), soil salinity (0-10%), and water to soil ratio (WSR: 2-10) have been studied. In this study, TOC reduction was achieved in ranging from 39% to 80% in crude oil polluted soil after 21 days. Additionally, experiments by polyurethane foam (PUF)-immobilized cell, alginate-immobilized cell, and freely cell suspended systems were conducted to compare the performance of hybrid-immobilized cell with other systems. Our results showed the superiority of immobilized cells in hybrid matrix of PUF/alginate compared to other immobilized cell (IC) and free cell (FC) systems. Overall, the results indicated that the hybrid matrix with simultaneous adsorption-biodegradation capacity is potentially suitable for further development for oil spill treatment and it can be used as an efficient cleaning method in TOC removal from actual polluted soils.
Collapse
Affiliation(s)
- Ali Partovinia
- Bioprocess Engineering Laboratory, Faculty of New Technologies Engineering, Zirab Campus, Shahid Beheshti University, Tehran, Iran.
| | - Ali Abolhasani Soorki
- Research Institute of Applied Sciences, ACECR, Shahid Beheshti University, Tehran, Iran
| | - Mojtaba Koosha
- Nano-structured Fibers Division, Faculty of New Technologies Engineering, Zirab Campus, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
41
|
Song L, Niu X, Zhang N, Li T. Effect of biochar-immobilized Sphingomonas sp. PJ2 on bioremediation of PAHs and bacterial community composition in saline soil. CHEMOSPHERE 2021; 279:130427. [PMID: 33862356 DOI: 10.1016/j.chemosphere.2021.130427] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/22/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to investigate the bioremediation efficiency and bacterial regulation mechanism of biochar-immobilized bacterium (BM) in polycyclic aromatic hydrocarbon (PAH)-contaminated saline soil by conducting pot experiments. In BM treatment, PAH-degrading strain Sphingomonas sp. PJ2 was inoculated into biochar produced at 400 °C and 600 °C using the pine needles (BM400 and BM600). The removal rates of PAHs, soil physicochemical properties, abundance of PAH-ring hydroxylating dioxygenase (PAH-RHD), and bacterial community composition were determined. After 60 days of bioremediation, BM treatment significantly (P < 0.05) increased the removal rate of PAHs compared with biochar and PJ2 alone (15.94% and 37.3%, respectively). BM treatment clearly improved the physicochemical properties of saline soil. Moreover, the amount of Gram-positive PAH degraders increased in BM-treated soils compared with other treatments, and their gene abundance had a strong positive correlation with the removal rates of PAHs in soils (r = 0.896; P < 0.01). Furthermore, BM treatment increased the abundance of Sphingomonas genus, indicating that the strain PJ2 could survive and colonize in PAH-contaminated saline soil under the protection of biochar. This study provided an effective and green approach for the remediation and improvement of the PAH-contaminated saline soil.
Collapse
Affiliation(s)
- Lichao Song
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, PR China; Key Laboratory of Northeast Arable Land Conservation of Ministry of Agriculture, Shenyang Agricultural University, Shenyang, 110866, PR China.
| | - Xuguang Niu
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, PR China; Key Laboratory of Northeast Arable Land Conservation of Ministry of Agriculture, Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Naiwen Zhang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, PR China; Key Laboratory of Northeast Arable Land Conservation of Ministry of Agriculture, Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Tianjiao Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, PR China; Key Laboratory of Northeast Arable Land Conservation of Ministry of Agriculture, Shenyang Agricultural University, Shenyang, 110866, PR China
| |
Collapse
|
42
|
Wong JWC, Ogbonnaya UO. Biochar porosity: a nature-based dependent parameter to deliver microorganisms to soils for land restoration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:46894-46909. [PMID: 34263396 DOI: 10.1007/s11356-021-14803-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/14/2020] [Indexed: 06/13/2023]
Abstract
Literature shows that biochar can potentially retain nutrients in agricultural soils, avoiding significant nutrient losses. Furthermore, biochar porosity and functional groups have been shown to enhance physico-chemical properties of soil when amended, which in turn has the ability to encourage inhabitation of specific microorganisms as biofertilizers or to enhance soil remediation. It supports scale-dependent parameters and provides both ecosystem services and soil-vegetation solutions relevant to nature-based solutions. However, detailed researches on the mechanisms of soil microbial interactions with biochar porous properties are required, along with the microbial attachment factors, sustenance, and detachment when applied to soils. Recent valuable works have impregnated plant growth-promoting bacteria unto biochar and have observed inconsistent results. Firstly, biochar intrinsic properties alter the fate of impregnation by inhibiting quorum sensing signals, and the macropore requirements for adsorption and/or biofilm formation have not been well considered. Additionally, the nutrient and supplement requirements for each microorganism as well as the adsorption capacity have not been well understood for biochar surfaces. Substantial information is required to understand the mechanisms of microbe adsorption and factors that influence the process, as well as sustenance of the matrix even when deployed in soils. Research directions should focus on determining molecular and chemical mechanisms responsible for the biochar-microbe interaction process and fate of microbe on biochar while expressing plant growth-promoting properties, which needs to be done in laboratory and field trials. Graphical abstract.
Collapse
Affiliation(s)
- Jonathan W C Wong
- Institute of Bioresource and Agriculture and the Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Uchenna O Ogbonnaya
- Institute of Bioresource and Agriculture and the Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| |
Collapse
|
43
|
Liu Y, Liu S, Yang Z, Xiao L. Synergetic effects of biochars and denitrifier on nitrate removal. BIORESOURCE TECHNOLOGY 2021; 335:125245. [PMID: 33991877 DOI: 10.1016/j.biortech.2021.125245] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Nitrate is one of the most common water contaminants and has caused severe environmental problems. This work aimed to investigate the effects of integration of denitrifier with biochars on nitrate removal and understand the underlying mechanisms. The results showed that physiochemical properties of biochars varied according to different feedstocks, which influenced bacteria attachment and nitrate removal through adsorption. However, bacteria could colonize on biochars no matter biochars surface were favorable for bacteria attachment or not. Immobilization of denitrifier on biochars significantly improved nitrate removal efficiencies and reduced lag time. Underlying mechanisms investigation showed that the integration of denitrifier with biochars had synergetic effects on promoting nitrate removal, which improved not only the expression and activity of nitrate reductase, but also the electron transport system activity.
Collapse
Affiliation(s)
- Yuqi Liu
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China
| | - Shulei Liu
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China
| | - Zongcai Yang
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China
| | - Lin Xiao
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China.
| |
Collapse
|
44
|
Zhang X, Liao X, Gong Z, Li X, Jia C. Formation of fatty acid methyl ester based microemulsion and removal mechanism of PAHs from contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125460. [PMID: 33930972 DOI: 10.1016/j.jhazmat.2021.125460] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Microemulsion (ME) is considered as a stable solution for adsorbing organic matters. Aiming to remediate PAH contaminated soils from industrial sites in Shijiazhuang (Soil CPS) and Beijing (Soil CSG) in China, novel MEs were designed with different ratios of mixed surfactants (Surf, TX-100+Tween 80), n-butanol and fatty acid methyl esters (FAMEs). Particle size, transmittance, surface intension, Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy of the MEs were analyzed. PAH removals by solubilization experiments were studied and regeneration of waste ME was evaluated. Results showed the novel MEs were obtained with particle sizes in a range of 18.53-122.77 nm. The lowest surface intension of MEs was 26.53 mN/m, which was prone to PAHs transferring to MEs. ‒OH (3350 cm-1), ‒C˭C (1740 cm-1) and ‒C‒O (1072 cm-1) functioned in forming MEs. Additionally, ‒OH, C‒H, ‒C˭C, ‒C‒O were considered as active binding sites when remediating PAH soils. PAH removals in soils CPS and CSG were up to 90.1% and 89.7% with surfactants and co-surfactant (Surf:Co-s), (Surf:Co-s) and FAME, soil and MEs (w:v) at ratios of 1:1, 8:2 and 1:4, respectively. About 85.6% of FAME and 41.9% of TX-100 in waste ME were recovered for recycle purpose.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Xiaoyong Liao
- Land Contamination Assessment and Remediation Laboratory, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China.
| | - Zongqiang Gong
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China.
| | - Xiaojun Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China.
| | - Chunyun Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China.
| |
Collapse
|
45
|
Anae J, Ahmad N, Kumar V, Thakur VK, Gutierrez T, Yang XJ, Cai C, Yang Z, Coulon F. Recent advances in biochar engineering for soil contaminated with complex chemical mixtures: Remediation strategies and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144351. [PMID: 33453509 DOI: 10.1016/j.scitotenv.2020.144351] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Heavy metal/metalloids (HMs) and polycyclic aromatic hydrocarbons (PAHs) in soil have caused serious environmental problems, compromised agriculture quality, and have detrimental effects on all forms of life including humans. There is a need to develop appropriate and effective remediation methods to resolve combined contaminated problems. Although conventional technologies exist to tackle contaminated soils, application of biochar as an effective renewable adsorbent for enhanced bioremediation is considered by many scientific researchers as a promising strategy to mitigate HM/PAH co-contaminated soils. This review aims to: (i) provide an overview of biochar preparation and its application, and (ii) critically discuss and examine the prospects of (bio)engineered biochar for enhancing HMs/PAHs co-remediation efficacy by reducing their mobility and bioavailability. The adsorption effectiveness of a biochar largely depends on the type of biomass material, carbonisation method and pyrolysis conditions. Biochar induced soil immobilise and remove metal ions via various mechanisms including electrostatic attractions, ion exchange, complexation and precipitation. PAHs remediation mechanisms are achieved via pore filling, hydrophobic effect, electrostatic attraction, hydrogen bond and partitioning. During last decade, biochar engineering (modification) via biological and chemical approaches to enhance contaminant removal efficiency has garnered greater interests. Hence, the development and application of (bio)engineered biochars in risk management, contaminant management associated with HM/PAH co-contaminated soil. In terms of (bio)engineered biochar, we review the prospects of amalgamating biochar with hydrogel, digestate and bioaugmentation to produce biochar composites.
Collapse
Affiliation(s)
- Jerry Anae
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Nafees Ahmad
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK; Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Scotland's Rural College, Edinburgh, EH9 3JG, UK
| | - Tony Gutierrez
- Institute of Mechanical, Process and Energy Engineering (IMPEE), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Xiao Jin Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Cai
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK.
| |
Collapse
|
46
|
Assil Z, Esegbue O, Mašek O, Gutierrez T, Free A. Specific enrichment of hydrocarbonclastic bacteria from diesel-amended soil on biochar particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143084. [PMID: 33131874 DOI: 10.1016/j.scitotenv.2020.143084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Biochar has been proposed as a suitable biostimulant for the remediation of hydrocarbon contamination, and also has the potential to act as a carrier for hydrocarbonoclastic microorganisms which could bioaugment endogenous microbial communities. However, the evidence regarding the biostimulatory effects of biochars on hydrocarbon bioremediation is somewhat equivocal, possibly due to variability of the physicochemical properties of biochar and soil across studies. Here, we use standard biochars with defined properties produced from softwood pellets (SWP) and rice husk (RH) at pyrolysis temperatures of 550 °C or 700 °C to test the effects of biochar amendment on microbial community composition and hydrocarbon degradation in soil microcosms contaminated with diesel oil. Combining this approach for the first time with specific analysis of microbial community composition using amplicon sequence variants (ASVs), we find that oil contamination causes extreme short-term loss of soil microbial diversity, and highly-specific selection of a limited set of genera defined by 13 ASVs. Biochar ameliorates the short-term loss of diversity, and in the longer term (9 weeks), changes community composition in a type-specific manner. The majority of the 13 selected ASVs are further enriched on biochar particles, although SWP biochars perform better than RH biochar in enrichment of putative hydrocarbonoclastic Aquabacterium spp. However, complete degradation of normal (n) alkanes from the aliphatic hydrocarbon fraction is prevented in the presence of biochar amendment, possibly due to their adsorption onto the char surface. Furthermore, we show that putative hydrocarbon degraders released from diesel-amended soil can subsequently be enriched to high levels on SWP biochar particles in growth medium supplemented with diesel oil as the sole carbon source; these include selected ASVs representing the genera Rhodococcus, Aquabacterium, and Cavicella. This work suggests that use of biochar pre-enriched with endogenous, conditionally-rare hydrocarbon degrading bacteria is a promising strategy for bioaugmentation of diesel-contaminated soils.
Collapse
Affiliation(s)
- Zhansaya Assil
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK
| | | | - Ondřej Mašek
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Tony Gutierrez
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Andrew Free
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK.
| |
Collapse
|
47
|
Ma L, Hu T, Liu Y, Liu J, Wang Y, Wang P, Zhou J, Chen M, Yang B, Li L. Combination of biochar and immobilized bacteria accelerates polyacrylamide biodegradation in soil by both bio-augmentation and bio-stimulation strategies. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124086. [PMID: 33153796 DOI: 10.1016/j.jhazmat.2020.124086] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 05/22/2023]
Abstract
Polyacrylamide (PAM) has been used extensively due to its well-known stable chemical properties, but limited information is available on the biodegradation of soil-containing PAM. In this work, sufficient degradation of PAM was achieved via the addition of the Klebsiella sp. PCX-biochar composite to PAM-containing soil, due to the synergic effect of bio-augmentation and bio-stimulation. The optimal degradation rate of 69.1% over 30-day period was observed under the following conditions: the addition of immobilized bacteria at 0.07 g/g, pH 6.6, and temperature at 38.0 °C. In this study, we showed that PAM was successfully hydrolyzed by amidase, and ammonia in the hydrolysis product was then oxidized by the nitrifying bacteria. The decrease of water-extractable organic carbon (WEOC) also demonstrated the chain cleavage in PAM. PAM was utilized as a carbon source not only by Klebsiella sp. PCX but also by some taxa from indigenous bacteria. Last but not least, it was shown in this study that biochar, even though immobilized with exogenous microorganisms, actually enhanced bacterial diversity and stimulated the growth of some indigenous PAM-degrading taxa. Based on the above observations, we concluded that PAM biodegradation via the addition of bacteria-immobilized biochar was a synergy of both bio-augmentation and bio-stimulation strategies.
Collapse
Affiliation(s)
- Lili Ma
- Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; National Postdoctoral Research Station, Haitian Water Group Co., Ltd, Chengdu 610041, China.
| | - Ting Hu
- Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Yucheng Liu
- Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Jie Liu
- Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Puzhou Wang
- Synthego Corporation, Redwood City, CA 94063, United States
| | - Jiyue Zhou
- Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Mingyan Chen
- Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Bing Yang
- Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Lingli Li
- Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| |
Collapse
|
48
|
Fang L, Xu Y, Xu L, Shi T, Ma X, Wu X, Li QX, Hua R. Enhanced biodegradation of organophosphorus insecticides in industrial wastewater via immobilized Cupriavidus nantongensis X1 T. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142505. [PMID: 33038839 DOI: 10.1016/j.scitotenv.2020.142505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 05/17/2023]
Abstract
Chlorpyrifos is an important organophosphorus insecticide. It is highly toxic to mammals and can pollute the environment. Cupriavidus nantongensis X1T can efficiently degrade chlorpyrifos. Immobilization technology can also improve the viability, stability and catalytic ability of bacteria. In this study, strain X1T was, therefore, captured on various composite immobilized carriers, sodium alginate (SA), diatomite (KLG), chitosan (CTS) and polyvinyl alcohol (PVA). The four types of immobilized beads (SA, SA + KLG, SA + CTS and SA + PVA) could form a slice and honeycomb structure to capture strain X1T. The results showed that SA + CTS (SC) was an optimal material combination for the immobilization of strain X1T to degrade chlorpyrifos. Compared with SA-X1T, after adding CTS, the specific surface area and adsorption capacity for chlorpyrifos were increased 3.4 and 1.7 fold, respectively. SC-X1T could degrade 96.6% of chlorpyrifos at 20 mg/L within 24 h and the degradation rate constant was 4.8 fold greater than immobilized strain LLBD2, a well-studied chlorpyrifos-degrading strain. The immobilized beads SC-X1T also showed a more stable and greater degradation ability than X1T free cells for chlorpyrifos in industrial wastewater. The synergy of adsorption and degradation of immobilized strain X1T is suitable for in-situ remediation of chlorpyrifos contaminated environment.
Collapse
Affiliation(s)
- Liancheng Fang
- Key Laboratory for Agri-Food Safety, School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yimin Xu
- Key Laboratory for Agri-Food Safety, School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Luyuan Xu
- Key Laboratory for Agri-Food Safety, School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Taozhong Shi
- Key Laboratory for Agri-Food Safety, School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xin Ma
- Key Laboratory for Agri-Food Safety, School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiangwei Wu
- Key Laboratory for Agri-Food Safety, School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, United States
| | - Rimao Hua
- Key Laboratory for Agri-Food Safety, School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
49
|
Ding Z, Huang J, Chi J. Contribution of phenanthrene in different binding sites to its biodegradation in biochar-amended soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116481. [PMID: 33465655 DOI: 10.1016/j.envpol.2021.116481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/16/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Biochars can strongly sorb hydrophobic organic contaminants in soils. However, contribution of contaminants in different binding sites to their biodegradation in biochar-amended soils is not clear. In this work, wheat straw biochars were prepared at pyrolysis temperatures of 400 °C (BC400) and 700 °C (BC700). During a 42-day experiment, degradation rate constant of phenanthrene in soils was in the order of treatment without biochar (1.64 × 10-2 d-1) > treatment with BC700 (0.96 × 10-2 d-1) > treatment with BC400 (0.30 × 10-2 d-1). At the beginning, amendment of BC400 and BC700 reduced the rapidly desorbing fraction of phenanthrene in soils by 44.8% and 92.5%, respectively. At the end, both phenanthrene and microbial biomass highly concentrated on the biochar separated from soils. The results of a coupled model of desorption and biodegradation revealed that only phenanthrene in rapidly desorbing sites was degraded in BC400-amended soils, whereas degradation of phenanthrene in both rapidly and slowly desorbing sites occurred in BC700-amended soils, contributing 24.4% and 75.6% of the degradation, respectively. High fraction (>95%) of biodegradable phenanthrene in slowly desorbing sites was the key reason for higher biodegradation rate of phenanthrene in soils with BC700 than in soils with BC400.
Collapse
Affiliation(s)
- Zheng Ding
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Jianjun Huang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Jie Chi
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
50
|
Zhang W, Shen J, Zhang H, Zheng C, Wei R, Gao Y, Yang L. Efficient nitrate removal by Pseudomonas mendocina GL6 immobilized on biochar. BIORESOURCE TECHNOLOGY 2021; 320:124324. [PMID: 33147528 DOI: 10.1016/j.biortech.2020.124324] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/17/2020] [Accepted: 10/23/2020] [Indexed: 05/22/2023]
Abstract
The performance of nitrate removal by Pseudomonas mendocina GL6 cells immobilized on bamboo biochar was investigated. The results showed that immobilized bacterial cells performed better nitrate removal than the free bacterial cells, and the nitrate removal rate increased from 6.51 mg/(L·h) of free cells to 8.34 mg/(L·h) of immobilized cells. The nitrate removal of immobilized bacterial cells fitted well to the zero-order kinetics model. Moreover, bath experiments showed that immobilized bacterial cells displayed more nitrate removal capacity under different conditions than free bacterial cells due to the protection of biochar carrier. The subsequent mechanistic study suggested that biochar promoted the expression level of denitrification functional genes (napA and nirK) and electron transfer genes involved in denitrification (napB and napC), which resulted in the increase of nitrate removal efficiency. Thus, biochar-immobilized P. mendocina GL6 has much potential to remove nitrate from wastewater via aerobic denitrification.
Collapse
Affiliation(s)
- Wen Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Jianing Shen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Huifen Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Chaoqun Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Ruping Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yan Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|