1
|
Yang H, Geng Y, Lin S, Wang L, Peng Y, Xu Y, Jing W, Wei J, He Z, Liu X. Online SFE-SFC-MS/MS analysis of pyraclostrobin and chiral mefentrifluconazole residues in mango and mango juice. Food Chem 2024; 464:141731. [PMID: 39481306 DOI: 10.1016/j.foodchem.2024.141731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/03/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024]
Abstract
This study established an on-line SFE-SFC-MS/MS method for the determination of mefentrifluconazole (MFZ) enantiomers and pyraclostrobin (PY) in mango and mango juice. Key parameters of SFC separation and SFE extraction have been optimized for high efficiency, sensitivity, and environmental friendliness. Enthalpy controlled enantioseparations of MFZ were recognized by thermodynamic analysis. Molecular docking estimated the enantiomeric recognition of MFZ enantiomers binding to the chiral stationary phase. The mean recoveries (RSDs) were in the range of 94.5-106.8 % (4.2-15.4 %), 91.1-103 % (3.6-10.3 %), 94.7-102.7 % (3.8-9.8 %), and 93.2-106.9 % (4.1-12.1 %) for R-MFZ, S-MFZ, racemic MFZ, and PY under 3 spiked levels of interday assays (n = 15). The LOQs of R-MFZ, S-MFZ, and PY were 0.5, 0.5, and 1 μg kg-1. The method was further applied to real samples in Guangxi Province, China with low acute and chronic dietary risk for MFZ and PY in mango and mango juice.
Collapse
Affiliation(s)
- Hao Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China; Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, China; National Reference Laboratory for Agricultural Testing, Tianjin, China
| | - Yue Geng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China; Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, China; National Reference Laboratory for Agricultural Testing, Tianjin, China.
| | - Shu Lin
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China; Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, China; National Reference Laboratory for Agricultural Testing, Tianjin, China
| | - Lu Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China; Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, China; National Reference Laboratory for Agricultural Testing, Tianjin, China
| | - Yi Peng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China; Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, China; National Reference Laboratory for Agricultural Testing, Tianjin, China
| | - Yaping Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China; Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, China; National Reference Laboratory for Agricultural Testing, Tianjin, China
| | - Wei Jing
- Shimadzu (China) Co., LTD. Beijing Branch, Beijing, China
| | - Jing Wei
- Institute of Food Testing, Hainan Academy of Inspection and Testing, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety, State Administration for Market Regulation, Haikou, China.
| | - Zeying He
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China; Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, China; National Reference Laboratory for Agricultural Testing, Tianjin, China
| | - Xiaowei Liu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China; Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, China; National Reference Laboratory for Agricultural Testing, Tianjin, China
| |
Collapse
|
2
|
Wu Y, Wang Y, Tong Z, Xie W, Wang A, Song C, Yao W, Wang J. Pyraclostrobin induces developmental toxicity and cardiotoxicity through oxidative stress and inflammation in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124490. [PMID: 38960114 DOI: 10.1016/j.envpol.2024.124490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Pyraclostrobin, a typical representative of strobilurin fungicides, is extensively used in agriculture to control fungi and is often detected in water bodies and food. However, the comprehensive toxicological molecular mechanism of pyraclostrobin requires further study. To assess the toxic effects and underlying mechanisms of pyraclostrobin on aquatic organisms, zebrafish embryos were exposed to pyraclostrobin (20, 40, and 60 μg/L) until 96 h post fertilization (hpf). These results indicated that exposure to pyraclostrobin induces morphological alterations, including spinal curvature, shortened body length, and smaller eyes. Furthermore, heart developmental malformations, such as pericardial edema and bradycardia, were observed. This indicated severe cardiotoxicity induced by pyraclostrobin in zebrafish embryos, which was confirmed by the dysregulation of genes related to heart development. Besides, our findings also demonstrated that pyraclostrobin enhanced the contents of reactive oxygen species (ROS) and malondialdehyde (MDA), up-regulated catalase (CAT) activity, but inhibited superoxide dismutase (SOD) activity. Subsequently, the NF-κb signaling pathway was further studied, and the results indicated that the up-regulation of tnf-α, tlr-4, and myd88 activated the NF-κb signaling pathway and up-regulated the relative expression level of pro-inflammatory cytokines, such as cc-chemokine, ifn-γ, and cxcl-clc. Collectively, this study revealed that pyraclostrobin exposure induces developmental toxicity and cardiotoxicity, which may result from a combination of oxidative stress and inflammatory responses. These findings provide a basis for continued evaluation of the effects and ecological risks of pyraclostrobin on the early development of aquatic organisms.
Collapse
Affiliation(s)
- Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Yijing Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Zan Tong
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Weihong Xie
- Hangzhou Criminal Science and Technology Institute, Hangzhou, 310051, Zhejiang, China
| | - Anli Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Chian Song
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China.
| |
Collapse
|
3
|
Wang Y, Li Z, Ji C, Wang Y, Chu Z, Zhang T, Chen C. Synergistic toxic effects and mechanistic insights of beta-cypermethrin and pyraclostrobin exposure on hook snout carp (Opsariichthys bidens): A biochemical, transcriptional, and molecular approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124535. [PMID: 39002748 DOI: 10.1016/j.envpol.2024.124535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
The extensive utilization of pesticides results in their frequent detection in aquatic environments, often as complex mixtures, posing risks to aquatic organisms. The hook snout carp (Opsariichthys bidens) serves as a valuable bioindicator for evaluating the impacts of environmental pollutants in aquatic ecosystems. However, few studies examined the toxic effects of pesticides on O.bidens, let alone the characterization of the combined effects resulting from their mixtures. This study aims to elucidate the toxic effects of beta-cypermethrin and pyraclostrobin on O.bidens, individually and in combination, focusing on biochemical, transcriptional, and molecular responses. By organizing and analyzing the toxicogenomic databases, both pesticides were identified as a contributor to processes such as apoptosis, oxidative stress, and inflammatory responses. The acute toxicity test revealed comparable acute toxicity of beta-cypermethrin and pyraclostrobin on O.bidens, with LC50 being 0.019 and 0.027 mg/L, respectively, whereas the LC50 decreased to 0.0057 and 0.0079 mg/L under the combined exposure, indicating potential synergistic effects. The activities of enzymes involved in oxidative stress and detoxification were significantly altered after exposure, with superoxide dismutase (SOD) and catalase (CAT) increasing, while malondialdehyde (MDA) levels decreased. The activity of CYP450s was significantly changed. Likewise, the expression levels of genes (mn-sod, p53, esr, il-8) associated with oxidative stress, apoptosis, endocrine and immune systems were significantly increased. Combined exposure to the pesticides significantly exacerbated the aforementioned biological processes in O.bidens. Furthermore, both pesticides can modify protein activity by binding to the surface of SOD molecules and altering protein conformation, contributing to the elevated enzyme activity. Through the investigation of the synergistic toxic effects of pesticides and molecular mechanisms in O.bidens, our findings highlight the importance of assessing the combined effects of pesticide mixtures in aquatic environments.
Collapse
Affiliation(s)
- Yihan Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Zhaoyu Li
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Chun Ji
- TongZhou District Comprehensive Inspection and Testing Center, Nantong, 226300, China
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zunhua Chu
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Tianliang Zhang
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Chen Chen
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
4
|
Wang B, Shi L, Ren P, Qin S, Li J, Cao J. Dissipation and Dietary Risk Assessment of the Fungicide Pyraclostrobin in Apples Using Ultra-High Performance Liquid Chromatography-Mass Spectrometry. Molecules 2024; 29:4434. [PMID: 39339428 PMCID: PMC11434584 DOI: 10.3390/molecules29184434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/04/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The fungicide pyraclostrobin is the main measure used to control apple alternaria blotch in production. To evaluate the potential dietary risks for consumers, the dissipation and terminal residues of pyraclostrobin were investigated using ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS/MS). Pyraclostrobin in apples was extracted by acetonitrile with 2% ammonia and then purified using primary secondary amine (PSA) and graphitized carbon black (GCB). The method showed good linearity within the concentration range of 0.005-0.1 mg L-1, with a coefficient of determination (R2) ≥ 0.9958. The recoveries ranged from 96.0% to 103.8%, with relative standard deviations (RSDs) between 0.8% and 2.3%. The limit of quantification (LOQ) was 0.01 mg kg-1. Pyraclostrobin dispersible oil suspension was applied in 12 apple fields across China according to good agricultural practices (GAPs). In Beijing and Shandong, the dissipation of pyraclostrobin followed first-order kinetic equations, with a half-life of 11 days. The terminal residues ranged from <0.01 to 0.09 mg kg-1. The national estimated daily intake (NEDI) of pyraclostrobin was compared with the acceptable daily intake (ADI), resulting in risk quotient (RQc) of 80.8%. These results suggest that pyraclostrobin poses a low health risk to consumers under GAP conditions and according to recommended dosages.
Collapse
Affiliation(s)
- Bin Wang
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| | - Lei Shi
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan 030031, China
| | - Pengcheng Ren
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| | - Shu Qin
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| | - Jindong Li
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| | - Junli Cao
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| |
Collapse
|
5
|
Serim I, Demirel HH, Zemheri-Navruz F, Ince S. Taurine exhibits antioxidant, anti-inflammatory, and antiapoptotic effects against pyraclostrobin exposure in rats. Toxicol Res (Camb) 2024; 13:tfae120. [PMID: 39100859 PMCID: PMC11295209 DOI: 10.1093/toxres/tfae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024] Open
Abstract
Pyraclostrobin, a strobilurin-derived fungicide, causes oxidative stress and DNA damage in the organism. Taurine plays an important role in metabolic processes such as osmoregulatory, cytoprotective, and antioxidant effects. The study aimed to investigate the protective effect of taurine in Sprague Dawley male rats exposed to pyraclostrobin. The rats were separated into 6 groups and were found 8 animals in each group. Rats were given 30 mg/kg pyraclostrobin and pyraclostrobin together with three different taurine concentrations (50, 100, and 200 mg/kg) via oral gavage for 28 days. While pyraclostrobin increased biochemical parameters, lipid peroxidation, and DNA damage, it decreased glutathione levels and enzyme activities of catalase and superoxide dismutase. Pyraclostrobin increased apoptotic, proinflammatory, and CYP2E1 mRNA expression levels, whereas antiapoptotic gene Bcl-2 mRNA expression levels decreased in liver tissue. Additionally, pyraclostrobin caused histopathological alterations in tissues. Taurine in a dose-dependent manner reversed the changes caused by pyraclostrobin. As a result, taurine exhibited a cytoprotective effect by showing antioxidant, anti-inflammatory, and antiapoptotic activities against oxidative damage caused by pyraclostrobin.
Collapse
Affiliation(s)
- Ibrahim Serim
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | | | - Fahriye Zemheri-Navruz
- Faculty of Science, Department of Molecular Biology and Genetics, Bartın University, 74100, Bartın, Turkey
| | - Sinan Ince
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| |
Collapse
|
6
|
Pamanji R, Ragothaman P, Koigoora S, Sivan G, Selvin J. Network analysis of toxic endpoints of fungicides in zebrafish. Toxicol Res (Camb) 2024; 13:tfae087. [PMID: 38845614 PMCID: PMC11150978 DOI: 10.1093/toxres/tfae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Zebrafish being the best animal model to study, every attempt has been made to decipher the toxic mechanism of every fungicide of usage and interest. It is important to understand the multiple targets of a toxicant to estimate the toxic potential in its totality. A total of 22 fungicides of different classes like amisulbrom, azoxystrobin, carbendazim, carboxin, chlorothalonil, difenoconazole, etridiazole, flusilazole, fluxapyroxad, hexaconazole, kresoxim methyl, mancozeb, myclobutanil, prochloraz, propiconazole, propineb, pyraclostrobin, tebuconazole, thiophanate-methyl, thiram, trifloxystrobin and ziram were reviewed and analyzed for their multiple explored targets in zebrafish. Toxic end points in zebrafish are highly informative when it comes to network analysis. They provide a window into the molecular and cellular pathways that are affected by a certain toxin. This can then be used to gain insights into the underlying mechanisms of toxicity and to draw conclusions on the potential of a particular compound to induce toxicity. This knowledge can then be used to inform decisions about drug development, environmental regulation, and other areas of research. In addition, the use of zebrafish toxic end points can also be used to better understand the effects of environmental pollutants on ecosystems. By understanding the pathways affected by a given toxin, researchers can determine how pollutants may interact with the environment and how this could lead to health or environmental impacts.
Collapse
Affiliation(s)
- Rajesh Pamanji
- Department of Microbiology, Pondicherry University, R.V. Nagar, Kalapet, Puducherry 605014, India
| | - Prathiviraj Ragothaman
- Department of Microbiology, Pondicherry University, R.V. Nagar, Kalapet, Puducherry 605014, India
| | - Srikanth Koigoora
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Guntur -Tenali Rd, Vadlamudi 522213, AP, India
| | - Gisha Sivan
- Division of Medical Research, SRM SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Potheri, SRM Nagar, Kattankulathur, Chennai 603203, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, R.V. Nagar, Kalapet, Puducherry 605014, India
| |
Collapse
|
7
|
Hou L, Fu Y, Zhao C, Fan L, Hu H, Yin S. The research progress on the impact of antibiotics on the male reproductive system. ENVIRONMENT INTERNATIONAL 2024; 187:108670. [PMID: 38669720 DOI: 10.1016/j.envint.2024.108670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Antibiotics are extensively utilized in the livestock and poultry industry and can accumulate in animals and the environment, leading to potential health risks for humans via food and water consumption. Research on antibiotic toxicity, particularly their impact as endocrine disruptors on the male reproductive system, is still in its nascent stages. This review highlights the toxic effect of antibiotics on the male reproductive system, detailing the common routes of exposure and the detrimental impact and mechanisms of various antibiotic classes. Additionally, it discusses the protective role of food-derived active substances against the reproductive toxicity induced by antibiotics. This review aims to raise awareness about the reproductive toxicity of antibiotics in males and to outline the challenges that must be addressed in future research.
Collapse
Affiliation(s)
- Lirui Hou
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yuhan Fu
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Chong Zhao
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, Yunamingyuan West Road, Haidian District, Beijing 100193, China
| | - Hongbo Hu
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Shutao Yin
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
8
|
Zhang M, Li H, Guo M, Zhao F, Xie Y, Zhang Z, Lv J, Qiu L. Vitamin E alleviates pyraclostrobin-induced toxicity in zebrafish (Danio rerio) and its potential mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171219. [PMID: 38408665 DOI: 10.1016/j.scitotenv.2024.171219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Strobilurin fungicides (SFs) are commonly used in agriculture worldwide and frequently detected in aquatic environments. High toxicity of SFs to aquatic organisms has caused great concerns. To explore whether vitamin E (VE) can relieve the toxicity caused by pyraclostrobin (PY), zebrafish were exposed to PY with or without VE supplementation. When co-exposure with VE (20 μM), the 96 h-LC50 values of PY to zebrafish embryos, adult, and the 24 h-LC50 value of PY to larvae increased from 43.94, 58.36 and 38.16 μg/L to 64.72, 108.62 and 72.78 μg/L, respectively, indicating that VE significantly decreased the toxicity of PY to zebrafish at different life stages. In addition, VE alleviated the deformity symptoms (pericardial edema and brain damage), reduced speed and movement distance, and decreased heart rate caused by 40 μg/L PY in zebrafish larvae. Co-exposure of PY with VE significantly reduced PY-caused larval oxidative stress and immunotoxicity via increasing the activities of superoxide dismutase, catalase and level of glutathione, as well as reducing the malondialdehyde production and the expression levels of Nrf2, Ucp2, IL-8, IFN and CXCL-C1C. Meanwhile, the expression levels of gria4a and cacng4b genes, which were inhibited by PY, were significantly up-regulated after co-exposure of PY with VE. Moreover, co-exposure with VE significantly reversed the increased mitochondrial DNA copies and reduced ATP content caused by PY in larvae, but had no effect on the expression of cox4i1l and activity of complex III that reduced by PY, suggesting VE can partially improve PY-induced mitochondrial dysfunction. In conclusion, the potential mechanisms of VE alleviating PY-induced toxicity may be ascribed to decreasing the oxidative stress level, restoring the functions of heart and nervous system, and improving the immunity and mitochondrial function in zebrafish.
Collapse
Affiliation(s)
- Mengna Zhang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Hui Li
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
| | - Mengyu Guo
- College of Science, China Agricultural University, Beijing 100193, China
| | - Feng Zhao
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yao Xie
- College of Science, China Agricultural University, Beijing 100193, China
| | - Zhongyu Zhang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Jingshu Lv
- College of Science, China Agricultural University, Beijing 100193, China
| | - Lihong Qiu
- College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
9
|
Hopkins AP, Hoverman JT. Strobilurin fungicide increases the susceptibility of amphibian larvae to trematode infections. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 269:106864. [PMID: 38422928 DOI: 10.1016/j.aquatox.2024.106864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
The global rise in fungal pathogens has driven the increased usage of fungicides, yet our understanding of their ecotoxicity remains largely limited to acute toxicity. While such data is critical for projecting the risk of fungicide exposure to individual species, the contamination of natural systems with fungicides also has the potential to alter species interactions within communities including host-parasite relationships. We examined the effects of the fungicide pyraclostrobin on the susceptibility of larval American bullfrogs (Rana catesbeiana) to trematode (echinostome) infections using a controlled laboratory experiment. Following a 2-wk exposure to 0, 1.0, 5.2, or 8.4 µg/L of pyraclostrobin, tadpoles were then exposed to parasites either in the 1) presence (continued/simultaneous exposure) or 2) absence (fungicide-free water) of pyraclostrobin. We found that when exposed to pyraclostrobin during parasite exposure, meta cercariae counts increased 4 to 8 times compared to control tadpoles. Additionally, parasite loads were approximately 2 times higher in tadpoles with continued fungicide exposures compared to tadpoles that were moved to fresh water following fungicide exposure. This research demonstrates that fungicides at environmentally relevant concentrations can indirectly alter host-parasite interactions, which could elevate disease risk. It also underscores the need for studies that expand beyond traditional toxicity experiments to assess the potential community and ecosystem-level implications of environmental contaminants.
Collapse
Affiliation(s)
- Andrew P Hopkins
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, United States.
| | - Jason T Hoverman
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
10
|
Kim Y, Bereketoglu C, Sercinoglu O, Pradhan A. In Vitro, In Vivo, and In Silico Analysis of Pyraclostrobin and Cyprodinil and Their Mixture Reveal New Targets and Signaling Mechanisms. Chem Res Toxicol 2024; 37:497-512. [PMID: 38419406 DOI: 10.1021/acs.chemrestox.3c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Pyraclostrobin and cyprodinil are broad-spectrum fungicides that are used in crops to control diseases. However, they are excessively used and, as a result, end up in the environment and threaten human health and ecosystems. Hence, knowledge of their mechanisms of action is critical to revealing their environmental fate and negative effects and regulating their use. In the present study, we conducted a comprehensive study to show the adverse effects of pyraclostrobin, cyprodinil, and their mixture using zebrafish larvae and different cell lines. Several end points were investigated, including mortality, development, gene expression, reporter assays, and molecular docking simulations. We found that both compounds and their mixture caused developmental delays and mortality in zebrafish, with a higher effect displayed by pyraclostrobin. Both compounds altered the expression of genes involved in several signaling pathways, including oxidative stress and mitochondrial function, lipid and drug metabolisms, the cell cycle, DNA damage, apoptosis, and inflammation. A noteworthy result of this study is that cyprodinil and the mixture group acted as NFκB activators, while pyraclostrobin demonstrated antagonist activity. The AHR activity was also upregulated by cyprodinil and the mixture group; however, pyraclostrobin did not show any effect. For the first time, we also demonstrated that pyraclostrobin had androgen receptor antagonist activity.
Collapse
Affiliation(s)
- Yeju Kim
- Biology, the Life Science Center, School of Science and Technology, Örebro University, Örebro SE-70182, Sweden
| | - Ceyhun Bereketoglu
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul 34722, Turkey
| | - Onur Sercinoglu
- Department of Bioengineering, Faculty of Engineering, Gebze Technical University, Kocaeli 41400, Turkey
| | - Ajay Pradhan
- Biology, the Life Science Center, School of Science and Technology, Örebro University, Örebro SE-70182, Sweden
| |
Collapse
|
11
|
Zhang B, Hao B, Han M, Wang X. Impacts of pyraclostrobin on intestinal health and the intestinal microbiota in common carp (Cyprinus carpio L.). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105762. [PMID: 38458673 DOI: 10.1016/j.pestbp.2023.105762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 03/10/2024]
Abstract
Pyraclostrobin (PYR) is a strobilurin fungicide that is commonly used in agriculture, and its use in agriculture may lead to an increase in its residue in the aquatic environment and may have a deleterious influence on the intestinal health of aquatic creatures. Here, common carp were chronically exposed to PYR (0, 0.5, or 5.0 μg/L) for 30 d to determine its effect on the physical and immunological barrier and intestinal microbiota in the intestine. PYR exposure caused significant histological changes; altered the mRNA expression levels of occludin, claudin-2, and zonula occludens-1 (ZO-1); induced oxidative stress in the common carp intestine; and increased the serum D-lactate and diamine oxidase (DAO) levels. Moreover, PYR significantly increased the protein expression levels of tumour necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), and IL-6 while decreasing the level of transforming growth factor beta (TGF-β). Further studies revealed that PYR significantly reduced lysozyme (LZM) and acid phosphatase (ACP) activities as well as complement 3 (C3) and immunoglobulin M (IgM) levels. Furthermore, PYR decreased gut microbial diversity while increasing the abundance of pathogenic bacteria such as Aeromonas and Shewanella, causing an intestinal microbial disturbances in common carp. These results imply that PYR has a negative impact on fish intestinal health and may pose serious health risks to fish by disrupting the intestinal microbiota, physical barrier, and immunological barrier in common carp.
Collapse
Affiliation(s)
- Bangjun Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China; Henan International Joint Laboratory of Aquatic Ecotoxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Baozhen Hao
- School of Biological Engineering, Xinxiang University, Xinxiang, Henan 453003, China
| | - Maolin Han
- School of Biological Engineering, Xinxiang University, Xinxiang, Henan 453003, China
| | - Xiaojie Wang
- School of Biological Engineering, Xinxiang University, Xinxiang, Henan 453003, China
| |
Collapse
|
12
|
Zhang C, Tang C, Wang Q, Su Y, Zhang Q. Synergistic Effects of Oligochitosan and Pyraclostrobin in Controlling Leaf Spot Disease in Pseudostellaria heterophylla. Antibiotics (Basel) 2024; 13:128. [PMID: 38391514 PMCID: PMC10886130 DOI: 10.3390/antibiotics13020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Pseudostellaria heterophylla (or Taizishen in Chinese), a medicinal, edible, and ornamental Chinese herb, is seriously affected by leaf spot disease (LSD). Oligochitosan is a natural agricultural antibiotic that is produced via the degradation of chitosan, which is deacetylated from chitin; pyraclostrobin is a broad-spectrum and efficient strobilurin fungicide. In this work, the ability of pyraclostrobin, oligochitosan, and their formula to manage P. heterophylla leaf spot disease and their role in its resistance, leaf photosynthesis, agronomic plant traits, root growth, and root quality were studied. The results show that the joint application of oligochitosan and low-dosage pyraclostrobin could control LSD more efficiently, with control effects of 85.75-87.49% compared to high-dosage pyraclostrobin or oligochitosan alone. Concurrently, the application of this formula could more effectively improve the resistance, leaf photosynthesis, agronomic plant traits, root yield, and medicinal quality of P. heterophylla, as well as reduce the application of pyraclostrobin. This finding suggests that 30% pyraclostrobin suspension concentrate (SC) 1500-time + 5% oligosaccharin aqueous solutions (AS) 500-time diluent can be recommended for use as a feasible formula to manage LSD and reduce the application of chemical pesticides.
Collapse
Affiliation(s)
- Cheng Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease of Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Chenglin Tang
- Guizhou Crop Technology Extension Station, Agriculture and Rural Affairs Department of Guizhou Province, Guiyang 550001, China
| | - Qiuping Wang
- Department of Food and Medicine, Guizhou Vocational College of Agriculture, Qingzhen 551400, China
| | - Yue Su
- Department of Food and Medicine, Guizhou Vocational College of Agriculture, Qingzhen 551400, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qinghai Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease of Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
13
|
Zhao P, Liu R, Yuan L. Dissipation, Residue and Human Dietary Risk Assessment of Pyraclostrobin and Cyazofamid in Grapes Using an HPLC-UV Detector. Foods 2024; 13:314. [PMID: 38254615 PMCID: PMC10814842 DOI: 10.3390/foods13020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Pyraclostrobin is a new broad-spectrum methoxyacrylic acid fungicide. Cyazofamid is a new selective foliar spray acaricide. Here, we studied the degradation rate and final residues of pyraclostrobin and cyazofamid in grape and evaluated their dietary risk to consumers. The average recoveries of pyraclostrobin ether ester, cyazofamid and cyazofamid metabolite (CCIM) in grapes were 84-94%, 92-98% and 99-104%, respectively. The relative standard deviations (RSDs) were 6.0-20.3%, 2.4-10.5% and 1.3-4.0%, respectively, and the LOQs were all 0.05 mg/kg. The digestion dynamics of the experimental sites were in accordance with the first-order kinetic equation. The degradation half-lives of pyraclostrobin ether ester and cyazofamid were 17.8 d-28.9 d and 4.3 d-7.8 d, respectively. The final residues of pyraclostrobin ether ester, cyazofamid and CCIM in grapes were <0.05-1.88 mg/kg, <0.05-0.31 mg/kg and <0.05-0.47 mg/kg, respectively. Using probability models, the total chronic risk values for pyraclostrobin and cyazofamid were calculated to be 0.112-189.617% and 0.021-1.714%, respectively. The results of the contribution analysis indicate that pyraclostrobin poses a much greater risk to Chinese consumers than cyazofamid, especially to children and adolescents, who have a significantly greater risk than adults. This suggests that more consideration should be given to the cumulative risk of compounds for vulnerable groups in the future.
Collapse
Affiliation(s)
- Peiying Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Rong Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Longfei Yuan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
| |
Collapse
|
14
|
Duan X, Wang L, Wang R, Xiong M, Qin G, Huang S, Li J. Variation in the physiological response of adult worker bees of different ages (Apis mellifera L.) to pyraclostrobin stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115754. [PMID: 38043416 DOI: 10.1016/j.ecoenv.2023.115754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/02/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
The social division of labor within the honeybee colony is closely related to the age of the bees, and the age structure is essential to the development and survival of the colony. Differences in tolerance to pesticides and other external stresses among worker bees of different ages may be related to their social division of labor and corresponding physiological states. Pyraclostrobin was widely used to control the fungal diseases of nectar and pollen plants, though it was not friend to honey bees and other pollinators. This work aimed to determine the effects of field recommended concentrations of pyraclostrobin on the activities of protective and detoxifying enzymes, on the expression of genes involved in nutrient metabolism, and immune response in worker bees of different ages determined to investigate the physiological and biochemical differences in sensitivity to pyraclostrobin among different age of worker bees. The result demonstrates that the tolerance of adult worker bees to pyraclostrobin was negatively correlated with their age, and the significantly reduced survival rate of forager bees (21 day-old) with continued fungicide exposure. The activities of protective enzymes (CAT and SOD) and detoxifying enzymes (CarE, GSTs and CYP450) in different ages of adult worker bees were significantly altered, indicating the physiological response and the regulatory capacity of worker bees of different ages to fungicide stress was variation. Compared with 1 and 8 day-old worker bees, the expression of nutrient-related genes (ilp1 and ilp2) and immunity-related genes (apidaecin and defensin1) in forager bees (21 day-old) was gradually downregulated with increasing pyraclostrobin concentrations. Moreover, the expression of vitellogenin and hymenoptaecin in forager bees (21 day-old) was also decreased in high concentration treatment groups (250 and 313 mg/L). The present study confirmed the findings of the chronic toxicity of pyraclostrobin on the physiology and biochemistry of worker bees of different ages, especially to forager bees (21 day-old). These results would provide important physiological and biochemical insight for better understanding the potential risks of pyraclostrobin on honeybees and other non-target pollinators.
Collapse
Affiliation(s)
- Xinle Duan
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Honey Bee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China.
| | - Lizhu Wang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruyi Wang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Manqiong Xiong
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Gan Qin
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaokang Huang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Honey Bee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Jianghong Li
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Honey Bee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| |
Collapse
|
15
|
Wang C, Qiao K, Ding Y, Liu Y, Niu J, Cao H. Enhanced control efficacy of spinosad on corn borer using polylactic acid encapsulated mesoporous silica nanoparticles as a smart delivery system. Int J Biol Macromol 2023; 253:126425. [PMID: 37607654 DOI: 10.1016/j.ijbiomac.2023.126425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/27/2023] [Accepted: 08/17/2023] [Indexed: 08/24/2023]
Abstract
Asion corn borer (Ostrinia furnacalis (Guenee)) is one of the most important factors affecting the normal growth and yield of corn. However, chemical control methods currently in use cause severe pollution. In the present study, aminated mesoporous silica nanoparticles (MSNs-NH2) and polylactic acid (PLA) were used as the carrier and capping agent respectively to construct an insect gut microenvironment nano-response system that loaded spinosad, a biopesticide used to control O. furnacalis. The resulting spinosad@MSNs-PLA demonstrated high loading capacity (38.6 %) and improved photostability of spinosad. Moreover, this delivery system could intelligently respond to the intestinal microenvironment of the corn borer's gut and achieve the smart release of spinosad. Compared with the conventional pesticide, spinosad@MSNs-PLA exhibited superior efficacy in controlling the O. furnacalis and could uptake and transport in maize plants without adverse effects on their growth. Furthermore, the toxicity of spinosad@MSNs-PLA on zebrafish was reduced by over 50 times. The prepared spinosad@MSNs-PLA has great potential and could be widely applied in agricultural production in the future. This approach could improve the utilization of pesticide and reduce environmental pollution. In addition, MSNs-PLA nano vectors provide new ideas for the control of other borer pests.
Collapse
Affiliation(s)
- Chao Wang
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Ke Qiao
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yi Ding
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Ying Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Junfan Niu
- School of Plant Protection, Anhui Agricultural University, Hefei, China.
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
16
|
Wu M, Bian J, Han S, Zhang C, Xu W, Tao L, Li Z, Zhang Y. Characterization of hepatotoxic effects induced by pyraclostrobin in human HepG2 cells and zebrafish larvae. CHEMOSPHERE 2023; 340:139732. [PMID: 37549743 DOI: 10.1016/j.chemosphere.2023.139732] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/16/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Pyraclostrobin is a highly effective and broad-spectrum strobilurin fungicide. With the widespread use of pyraclostrobin to prevent and control crop diseases, its environmental pressure and potential safety risks to humans have attracted much attention. Herein, the toxicological risks of pyraclostrobin toward HepG2 cells and the mechanisms of intoxication in vitro were investigated. The liver toxicity of pyraclostrobin in zebrafish larvae was also evaluated. It was found that pyraclostrobin induced DNA damage and reactive oxygen species generation in HepG2 cells, indicating the potential genotoxicity of pyraclostrobin. The results of fluorescent staining experiments and the expression of cytochrome c, Bcl-2 and Bax demonstrated that pyraclostrobin induced mitochondrial dysfunction, resulting in cell apoptosis. Monodansylcadaverine staining and autophagy marker-related proteins LC3, p62, Beclin-1 protein expression showed that pyraclostrobin promoted cell autophagy. Furthermore, immunoblotting analysis suggested that pyraclostrobin induced autophagy accompanied with activation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/mTOR signaling pathway. Visualization of zebrafish liver and oil red staining indicated that pyraclostrobin could induce liver degeneration and liver steatosis in zebrafish. Collectively, these results help to better understand the hepatotoxicity of pyraclostrobin and provide a scientific basis for its safe applications and risk control.
Collapse
Affiliation(s)
- Mengqi Wu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Jinhao Bian
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Shuang Han
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Cheng Zhang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, United States.
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
17
|
Cui J, Tian S, Gu Y, Wu X, Wang L, Wang J, Chen X, Meng Z. Toxicity effects of pesticides based on zebrafish (Danio rerio) models: Advances and perspectives. CHEMOSPHERE 2023; 340:139825. [PMID: 37586498 DOI: 10.1016/j.chemosphere.2023.139825] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/02/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Pesticides inevitably enter aquatic environments, posing potential risks to organisms. The common aquatic model organism, zebrafish (Danio rerio), are widely used to evaluate the toxicity of pesticides. In this review, we searched the Web of Science database for articles published between 2012 and 2022, using the keywords "pesticide", "zebrafish", and "toxicity", retrieving 618 publications. Furthermore, we described the main pathways by which pesticides enter aquatic environments and the fate of their residues in these environments. We systematically reviewed the toxicity effects of pesticides on zebrafish, including developmental toxicity, endocrine-disrupting effects, reproductive toxicity, neurotoxicity, immunotoxicity, and genotoxicity. Importantly, we summarized the latest research progress on the toxicity mechanism of pesticides to zebrafish based on omics technologies, including transcriptomics, metabolomics, and microbiomics. Finally, we discussed future research prospects, focusing on the combined exposure of multiple pollutants including pesticides, the risk of multigenerational exposure to pesticides, and the chronic toxicity of aquatic nanopesticides. This review provides essential data support for ecological risk assessments of pesticides in aquatic environments, and has implications for water management in the context of pesticide pollution.
Collapse
Affiliation(s)
- Jiajia Cui
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Sinuo Tian
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yuntong Gu
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Xinyi Wu
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Lei Wang
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Jianjun Wang
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Xiaojun Chen
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China.
| | - Zhiyuan Meng
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China.
| |
Collapse
|
18
|
Carbone M, Mathieu B, Vandensande Y, Gallez B. Impact of Exposure to Pyraclostrobin and to a Pyraclostrobin/Boscalid Mixture on the Mitochondrial Function of Human Hepatocytes. Molecules 2023; 28:7013. [PMID: 37894492 PMCID: PMC10609024 DOI: 10.3390/molecules28207013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/29/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Fungicides are widely used in agriculture for crop protection. Succinate dehydrogenase inhibitors (SDHIs) and strobilurins inhibit mitochondria electron transport chain (ETC) in fungi, by blocking complex II and complex III, respectively. Questions regarding their selectivity of action for fungi have been raised in the literature, and we previously showed that boscalid and bixafen (SDHIs) alter the mitochondrial function of human hepatocytes. Here, we analyzed the impact of the exposure of human hepatocytes to pyraclostrobin, a fungicide belonging to the class of strobilurins. Using electron paramagnetic resonance (EPR), we observed a decrease in oxygen consumption rate (OCR) and an increase in mitochondrial superoxide levels after 24 h exposure to 0.5 µM concentration. As a consequence, the content in ATP amount in the cells was reduced, the ratio reduced/oxidized glutathione was decreased, and a decrease in cell viability was observed using three different assays (PrestoBlue, crystal violet, and annexin V assays). In addition, as SDHIs and strobilurins are commonly associated in commercial preparations, we evaluated a potential "cocktail" toxic effect. We selected low concentrations of boscalid (0.5 µM) and pyraclostrobin (0.25 µM) that did not induce a mitochondrial dysfunction in liver cells when used separately. In sharp contrast, when both compounds were used in combination at the same concentration, we observed a decrease in OCR, an increase in mitochondrial superoxide production, a decrease in the ratio reduced/oxidized glutathione, and a decrease in cell viability in three different assays.
Collapse
Affiliation(s)
| | | | | | - Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), Avenue Mounier 73.08, B-1200 Brussels, Belgium; (M.C.); (B.M.); (Y.V.)
| |
Collapse
|
19
|
Wang K, Che W, Duan M, Wang C, Li X, He L. Effects of Broflanilide on Oxidative Stress and Expression of Apoptotic Genes in Zebrafish (Danio rerio) Gill. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:91. [PMID: 37156957 DOI: 10.1007/s00128-023-03733-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 04/20/2023] [Indexed: 05/10/2023]
Abstract
Broflanilide exerted negative impacts on the gill of zebrafish. Thus, in this study, zebrafish gill was used to assess the apoptosis toxicity of broflanilide by determining the levels of reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and malondialdehyde (MDA) and apoptosis-related genes. The results found that the minimum threshold for the content and time of broflanilide affecting enzyme content and gene expression was 0.26 mg/L after 24 h exposure. After 96 h exposure, broflanilide could cause apoptosis and exerted significantly increased contents of ROS and MDA, while inhibiting the activities of SOD, CAT, and GPx at 0.26 and 0.57 mg/L. Broflanilide also had adverse effects on apoptosis-related genes, such as tumor protein p53 (p53), associated × (Bax), B-cell lymphama-2 (Bcl-2), caspase-3, caspase-9, and apoptotic protease activating factor-1(apaf-1), at 0.26 mg/L and 0.57 mg/L after 96 h exposure, respectively. These results provide new insight into the potential toxicity mechanisms of broflanilide in zebrafish gills.
Collapse
Affiliation(s)
- Kai Wang
- Plant Protection College, Shenyang Agricultural University, Shenyang, China.
| | - Wunan Che
- Plant Protection College, Shenyang Agricultural University, Shenyang, China
| | - Manman Duan
- College of Science, China Agricultural University, Beijing, China
| | - Chengju Wang
- College of Science, China Agricultural University, Beijing, China
| | - Xiuwei Li
- Plant Protection College, Shenyang Agricultural University, Shenyang, China
| | - Lu He
- Plant Protection College, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
20
|
Wang A, Sun Y, Sun Z, Liu X, Yu X, Li K, Zhang X, Xu Y, Mu W, Li B. Modification of sedimentation and bioaccumulation behavior as an efficient strategy to modulate the toxicity of pyraclostrobin to zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121164. [PMID: 36720336 DOI: 10.1016/j.envpol.2023.121164] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The behavior of pesticide particles or droplets might significantly influence their environmental risks. However, studies on the risk of different pesticide formulations in aqueous environments have rarely been reported. In this study, we prepared three types of pyraclostrobin formulations to evaluate their behavior in the aqueous environment and toxicological risks to zebrafish. The results showed that pyraclostrobin emulsifiable concentrate (EC) sank faster in water with increasing hydrophilicity and density of the solvent. The particles also sank faster with increasing particle size and particle density for suspension concentrate (SC) and microcapsules (MCs). Diverse behavior in water results in different temporal and spatial distributions of the active ingredient. EC-EGDA, SC-5 μm, CS-Large and EC-MO sink or float over time, therefore reducing the effective dose suspended in water. Lower toxicological risks of the pesticides were also observed by reducing the enrichment of pyraclostrobin in zebrafish. In addition to the direct toxicity of the active ingredient, the type of pesticide formulations and their specific compositions might also influence the integrated toxicity. The environmental behavior of pesticide formulations should also be considered for their systematic assessment of environmental risks to ensure the scientific application of pesticides in different scenarios.
Collapse
Affiliation(s)
- Aiping Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Yue Sun
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Zhengyi Sun
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xiao Liu
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xin Yu
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Ke Li
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xianxia Zhang
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Yue Xu
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Wei Mu
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Beixing Li
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| |
Collapse
|
21
|
Hopkins AP, Hoverman JT. Acute aquatic toxicity of two commonly used fungicides to midwestern amphibian larvae. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:188-195. [PMID: 36692802 DOI: 10.1007/s10646-023-02629-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Fungicide usage has increased globally in response to the rise in fungal pathogens, especially in the agricultural sector. However, research examining the toxicity of fungicides is still limited for many aquatic species. In this study, we examined the acute toxicity of two widely used fungicides, chlorothalonil and pyraclostrobin, on six North American larval amphibian species across multiple families using 96-h LC50 tests. We found that pyraclostrobin was approximately 3.5x more toxic than chlorothalonil; estimated LC50 values ranged from 5-18 µg/L for pyraclostrobin and 15-50 µg/L for chlorothalonil. Comparing across amphibian groups, we found that salamanders were 3x more sensitive to pyraclostrobin than anuran species and equally as sensitive to chlorothalonil. Notably, our estimated LC50 values within the range of the expected environmental concentration for these fungicides suggesting environmental exposures could lead to direct mortality in these species. Given the widespread and increasing usage of fungicides, additional work should be conducted to assess the general risk posed by these chemicals to amphibian and their associated aquatic habitats.
Collapse
Affiliation(s)
- Andrew P Hopkins
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA.
| | - Jason T Hoverman
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
22
|
Wang Y, Gao Z, Liu C, Mao L, Liu X, Ren J, Lu Z, Yao J, Liu X. Mixture toxicity of pyraclostrobine and metiram to the zebrafish (Danio rerio) and its potential mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44400-44414. [PMID: 36692725 DOI: 10.1007/s11356-023-25518-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
The interplay between pesticides plays a critical role in ecotoxicology since these chemicals rarely emerge as single substances but rather in mixtures with other chemicals. In the present work, we purposed to clarify the combined toxic impacts of pyraclostrobine (PYR) and metiram (MET) on the zebrafish by using numerous indicators. Results exhibited that the 4-day LC50 value of MET to fish embryos was 0.0025 mg a.i. L-1, which was lower compared with PYR (0.019 mg a.i. L-1). Combinations of PYR and MET presented a synergetic impact on fish embryos. Contents of POD, CYP450, and VTG were drastically increased in the plurality of the single and joint treatments relative to the baseline value. Three genes, including vtg1, crh, and il-8, related to the endocrine and immune systems, were also surprisingly up-regulated when fish were challenged by the individual and mixture pesticides compared with the baseline value. These results afforded valuable information on the latent toxicity mechanisms of co-exposure for PYR and MET in the early growth stage of fish. Moreover, our data also revealed that frequent application of these two pesticides might exert a potentially ecotoxicological hazard on aquatic ecosystems. Collectively, the present study provided valuable guidance for the risk evaluation of chemical combinations.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, HangzhouZhejiang, 310021, China
| | - Zhongwen Gao
- College of Chemistry, Research Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Chuande Liu
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xinju Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, HangzhouZhejiang, 310021, China
| | - Jindong Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, HangzhouZhejiang, 310021, China
| | - Zeqi Lu
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Jie Yao
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Xuan Liu
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China.
| |
Collapse
|
23
|
Zemheri-Navruz F, Ince S, Arslan-Acaroz D, Acaroz U, Demirel HH, Demirkapi EN. Resveratrol alleviates pyraclostrobin-induced lipid peroxidation, oxidative stress, and DNA damage in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:6414-6423. [PMID: 35996050 DOI: 10.1007/s11356-022-22613-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Pyraclostrobin (Pyra) is a fungicide in the strobilurin class and has proven to be very toxic to organisms primarily aquatic species. Resveratrol (Res) is a phytoalexin that exhibits multiple bioactivities as anti-oxidative, anti-inflammatory, cardiovascular protective, and anti-aging and is found in plant species such as mulberry, peanut, and grape. This study aimed to determine the protective effect of Res against Pyra-induced lipid peroxidation, oxidative stress, and DNA damage in rats. For this purpose, a total of 48 male rats divided into 6 groups - 8 in each group - were exposed to 30 mg/kg Pyra by oral gavage once a day for 30 days and to three different concentrations of Res (5, 10, and 20 mg/kg) together with Pyra. Pyra administration increased liver enzyme parameters and malondialdehyde (MDA) levels whereas decreased glutathione (GSH) levels and activities of superoxide dismutase (SOD) and catalase (CAT). Also, Pyra treatment increased pro-apoptotic (Bax), apoptotic (Caspase-3, Caspase-8, and Caspase-9), pro-inflammatory (NFκB), cancer (CYP2E1), and cell regulatory (p53) gene expressions and decreased anti-apoptotic (Bcl-2) gene expression in the liver. Furthermore, DNA damage in blood and histopathological changes in the liver and kidney were observed with Pyra administration. In contrast, Res administrations in a dose-dependent manner improved Pyra-induced lipid peroxidation, oxidative and DNA damages, expression levels of these genes in the liver, and histopathological changes in the liver and kidney. Consequently, the treatment of Res, known for its anti-oxidant and protective properties, exhibited a protective effect on Pyra-induced lipid peroxidation, oxidant/anti-oxidant status, gene expressions, and DNA damage in rats.
Collapse
Affiliation(s)
- Fahriye Zemheri-Navruz
- Department of Molecular Biology and Genetics, Faculty of Science, Bartın University, 07400, Bartın, Turkey.
| | - Sinan Ince
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | - Damla Arslan-Acaroz
- Bayat Vocational School, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | - Ulas Acaroz
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | - Hasan Huseyin Demirel
- Department of Laboratory and Veterinary Health, Bayat Vocational School, Afyon Kocatepe University, 03780, Afyonkarahisar, Turkey
| | - Ezgi Nur Demirkapi
- Department of Physiology, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| |
Collapse
|
24
|
YAN Z, CAI G, JIN Z, FU Y, MA J, LI M, HAN W, WU Y. Determination of pyraclostrobin residue in wax gourd and its dietary risk assessment. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.110622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Zhenmin YAN
- Henan Institute of Science and Technology, China; Key Laboratory of Pesticide Chemistry and Application Risk Control, China
| | - Guanghui CAI
- Henan Institute of Science and Technology, China; Key Laboratory of Pesticide Chemistry and Application Risk Control, China; Institute of Quality Standard and Testing Technology for Agro-products, China
| | - Zhong JIN
- Henan Institute of Science and Technology, China; Key Laboratory of Pesticide Chemistry and Application Risk Control, China
| | - Yanyan FU
- Henan Institute of Science and Technology, China; Key Laboratory of Pesticide Chemistry and Application Risk Control, China
| | - Jingwei MA
- Institute of Quality Standard and Testing Technology for Agro-products, China
| | - Meng LI
- Institute of Quality Standard and Testing Technology for Agro-products, China
| | - Wenhao HAN
- Henan Institute of Science and Technology, China; Key Laboratory of Pesticide Chemistry and Application Risk Control, China
| | - Yanbing WU
- Henan Institute of Science and Technology, China; Key Laboratory of Pesticide Chemistry and Application Risk Control, China
| |
Collapse
|
25
|
Zhao H, Zhang J, Rajeshkumar S, Feng Y, Liu Y, Li X, Zhang B. Hepatopancreas toxicity and immunotoxicity of a fungicide, pyraclostrobin, on common carp. Comp Biochem Physiol C Toxicol Pharmacol 2022; 262:109445. [PMID: 36030005 DOI: 10.1016/j.cbpc.2022.109445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/31/2022] [Accepted: 08/21/2022] [Indexed: 11/23/2022]
Abstract
Pyraclostrobin (PYR), a strobilurin fungicide, has been widely used to control fungal diseases, posing potential risk to aquatic organisms. However, the toxic effects of PYR to fish remained largely unknown. In this study, common carp (Cyprinus carpio L.) was exposed to environmentally relevant levels of PYR (0, 0.5 and 5.0 μg/L) for 30 days to assess its chronic toxicity and potential toxicity mechanism. The results showed that long-term exposure to PYR induced hepatopancreas damage as evident by increased in serum transaminase activities (AST and ALT). Moreover, PYR exposure remarkably enhanced the expressions of hsp70 and hsp90, decreased the levels of antioxidant enzymes and biomarkers and promoted the reactive oxygen species (H2O2 and O2-) and MDA contents in carp hepatopancreas. PYR exposure also upregulated apoptosis-related genes (bax, apaf-1, caspase-3 and caspase-9) and reduced anti-apoptosis gene bcl-2 in fish hepatopancreas. Moreover, PYR exposure altered the expressions of inflammatory cytokines (IL-1β, IL-6, TNF-α and TGF-β) in the serum and hepatopancreas and the level of NF-κB p65 in the hepatopancreas. Further research indicated that PYR exposure markedly changed the levels of immune parameters (LYZ, C3, IgM, ACP and AKP) in the serum and/or hepatopancreas, indicating that chronic PYR exposure also has immunotoxicity on fish. Additionally, we found that PYR exposure upregulated p38 and jnk MAPK transcription levels, suggesting that MAPK may be play important role in PYR-induced apoptosis and inflammatory response in the hepatopancreas of common carp. In summary, PYR exposure induced oxidative stress, triggered apoptosis, inflammatory and immune response in common carp, which can help to elucidate the possible toxicity mechanism of PYR in fish.
Collapse
Affiliation(s)
- Haoyang Zhao
- Henan International Joint Laboratory of Aquatic Ecotoxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Jiale Zhang
- Henan International Joint Laboratory of Aquatic Ecotoxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | | | - Yiyi Feng
- Henan International Joint Laboratory of Aquatic Ecotoxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yang Liu
- Henan International Joint Laboratory of Aquatic Ecotoxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Journal of Henan Normal University, Xinxiang 453007, China
| | - Xiaoyu Li
- Henan International Joint Laboratory of Aquatic Ecotoxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Bangjun Zhang
- Henan International Joint Laboratory of Aquatic Ecotoxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
26
|
Han Y, Liu Y, Wang M, Xue Y. Effects of BPZ, BPC, BPF, and BPS Exposure on Adult Zebrafish ( Danio rerio): Accumulation, Oxidative Stress, and Gene Expression. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192315784. [PMID: 36497860 PMCID: PMC9739024 DOI: 10.3390/ijerph192315784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 05/19/2023]
Abstract
As substitutes for bisphenol A (BPA), bisphenol analogs (BPs) have been found to cause endocrine disorders and induce toxic effects. The objective of this study was to evaluate the bioaccumulation and subacute toxicity of bisphenol Z (BPZ), bisphenol C (BPC), bisphenol F (BPF), and bisphenol S (BPS) to zebrafish. Five-month-old zebrafish were exposed to 1/100 LC50, 1/50 LC50, and 1/10 LC50 of BPZ, BPC, BPF, and BPS for 13 days, respectively. Bioaccumulation, oxidative stress, and related mRNA expression in zebrafish tissues were measured on days 1, 7, and 13. After exposure, the four kinds of BPs all resulted in the accumulation of concentration and lipid peroxidation in zebrafish tissues to varying degrees. BPZ and BPC had the highest bioaccumulation level and had the greatest influence on malonic dialdehyde (MDA). In addition, the enzyme activities of superoxide dismutase (SOD), peroxidase (POD), glutathione peroxidase (GSH-PX), and the content of glutathione (GSH) in zebrafish tissues were also affected at different levels. However, the enzyme activities of SOD and POD were inactivated in zebrafish exposed to a high concentration of BPC. Further studies showed that BPs exposure down-regulated the transcription level of sod but up-regulated the relative expression levels of cat and gpx. The mRNA relative expression level of erα was not significantly changed, while the mRNA relative expression level of erβ1 was significantly down-regulated except under BPS exposure. These results indicate that BPZ, BPC, and BPF significantly affect the expression level of the estrogen receptor (ER) in zebrafish tissues. Overall, the results suggest that exposure to waterborne BPs can cause severe oxidative stress and tissue damage in adult zebrafish that is not sufficient to kill them after 13 days of waterborne exposure. The toxicity of BPs to organisms, therefore, should be further analyzed and evaluated.
Collapse
|
27
|
Zhang C, Li Q, Li J, Su Y, Wu X. Chitosan as an Adjuvant to Enhance the Control Efficacy of Low-Dosage Pyraclostrobin against Powdery Mildew of Rosa roxburghii and Improve Its Photosynthesis, Yield, and Quality. Biomolecules 2022; 12:biom12091304. [PMID: 36139143 PMCID: PMC9496052 DOI: 10.3390/biom12091304] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 12/25/2022] Open
Abstract
Powdery mildew is the most serious fungal disease of Rosa roxburghii in Guizhou Province, China. In this study, the control role of chitosan-assisted pyraclostrobin against powdery mildew of R. roxburghii and its influences on the resistance, photosynthesis, yield, quality and amino acids of R. roxburghii were evaluated. The results indicate that the foliar application of 30% pyraclostrobin suspension concentrate (SC) 100 mg L−1 + chitosan 500 mg L−1 displayed a superior control potential against powdery mildew, with a control efficacy of 89.30% and 94.58% after 7 d and 14 d of spraying, respectively, which significantly (p < 0.01) exceeded those of 30% pyraclostrobin SC 150 mg L−1, 30% pyraclostrobin SC 100 mg L−1, and chitosan 500 mg L−1. Simultaneously, their co-application could effectively enhance their effect on the resistance and photosynthesis of R. roxburghii leaves compared to their application alone. Meanwhile, their co-application could also more effectively enhance the yield, quality, and amino acids of R. roxburghii fruits compared to their application alone. This work highlights that chitosan can be applied as an effective adjuvant to promote the efficacy of low-dosage pyraclostrobin against powdery mildew in R. roxburghii and improve its resistance, photosynthesis, yield, quality, and amino acids.
Collapse
Affiliation(s)
- Cheng Zhang
- Guizhou Food Quality and Safety Technology Service Platform, School of Public Health, Guizhou Medical University, Guiyang 550025, China
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Qinju Li
- Guizhou Food Quality and Safety Technology Service Platform, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Jiaohong Li
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Yue Su
- Department of Food and Medicine, Guizhou Vocational College of Agriculture, Qingzhen 551400, China
- Correspondence: (Y.S.); (X.W.)
| | - Xiaomao Wu
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
- Correspondence: (Y.S.); (X.W.)
| |
Collapse
|
28
|
Hou K, Shi B, Liu Y, Lu C, Li D, Du Z, Li B, Zhu L. Toxicity evaluation of pyraclostrobin exposure in farmland soils and co-exposure with nZnO to Eisenia fetida. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128794. [PMID: 35366441 DOI: 10.1016/j.jhazmat.2022.128794] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Although the toxicity of pyraclostrobin (PYRA) to earthworms in artificial soil is well known, the toxicity of PYRA in farmland soils is yet to be explored in detail. Additionally, with more zinc oxide nanoparticles (nZnO) entering the soil environment, the risk of PYRA co-exposure with nZnO is increasing alarmingly. However, toxicity caused by this co-exposure of PYRA and nZnO is still unknown. Therefore, we assessed the biomarkers responses to reveal the toxicity of PYRA (0.1, 1, 2.5 mg/kg) on earthworms in farmland soils (black soil, fluvo-aquic soil, and red clay) and evaluated the biomarkers responses of Eisenia fetida exposed to PYRA (0.5 mg/kg)/PYRA+nZnO (10 mg/kg). Moreover, transcriptomic analysis was performed on E. fetida exposed to PYRA/PYRA+nZnO for 28 days to reveal the mechanism of genotoxicity. The Integrated Biomarker Responses (IBR) showed PYRA induced more severe oxidative stress and damage to E. fetida in farmland soils than that in artificial soil. The oxidative stress and damage induced by PYRA+nZnO were greater than that induced by PYRA. Transcriptomic analysis showed that PYRA and PYRA+nZnO significantly altered gene expression of both biological processes and molecular functions. These results provided toxicological data for PYRA exposure in three typical farmland soils and co-exposure with nZnO.
Collapse
Affiliation(s)
- Kaixuan Hou
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| | - Baihui Shi
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| | - Yu Liu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| | - Chengbo Lu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| | - Dengtan Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| |
Collapse
|
29
|
de Barros WA, Nunes CDS, Souza JADCR, Nascimento IJDS, Figueiredo IM, de Aquino TM, Vieira L, Farias D, Santos JCC, de Fátima Â. The new psychoactive substances 25H-NBOMe and 25H-NBOH induce abnormal development in the zebrafish embryo and interact in the DNA major groove. Curr Res Toxicol 2021; 2:386-398. [PMID: 34888530 PMCID: PMC8637007 DOI: 10.1016/j.crtox.2021.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/19/2021] [Accepted: 11/18/2021] [Indexed: 11/24/2022] Open
Abstract
25H-NBOMe and 25H-NBOH recreational drugs induces abnormal formation in zebrafish embryos. Biophysical and theoretical studies indicate that these drugs have affinity for the DNA major groove. The toxicity observed in the zebrafish embryos and DNA interaction may be correlated.
Toxicological effects of 25H-NBOMe and 25H-NBOH recreational drugs on zebrafish embryos and larvae at the end of 96 h exposure period were demonstrated. 25H-NBOH and 25H-NBOMe caused high embryo mortality at 80 and 100 µg mL−1, respectively. According to the decrease in the concentration tested, lethality decreased while non-lethal effects were predominant up to 10 and 50 µg mL−1 of 25H-NBOH and 25H-NBOMe, respectively, including spine malformation, egg hatching delay, body malformation, otolith malformation, pericardial edema, and blood clotting. We can disclose that these drugs have an affinity for DNA in vitro using biophysical spectroscopic assays and molecular modeling methods. The experiments demonstrated that 25H-NBOH and 25H-NBOMe bind to the unclassical major groove of ctDNA with a binding constant of 27.00 × 104 M−1 and 5.27 × 104 M−1, respectively. Furthermore, these interactions lead to conformational changes in the DNA structure. Therefore, the results observed in the zebrafish embryos and DNA may be correlated.
Collapse
Affiliation(s)
- Wellington Alves de Barros
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Camila da Silva Nunes
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | | | | | | | | | - Leonardo Vieira
- Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | - Davi Farias
- Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | | | - Ângelo de Fátima
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
30
|
Sulukan E, Ghosigharehagaji A, Baran A, Yildirim S, Bolat İ, Ceyhun SB. A versatile toxicity evaluation of ethyl carbamate (urethane) on zebrafish embryos: Morphological, physiological, histopathological, immunohistochemical, transcriptional and behavioral approaches. Toxicol Lett 2021; 353:71-78. [PMID: 34606945 DOI: 10.1016/j.toxlet.2021.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 08/10/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Ethyl carbamate (EC, urethane), which is used as an anesthetic especially by veterinarians due to its very long duration of action, is also a naturally occurring compound in all fermented foods and beverages. Although the health problem of EC is related to its carcinogenic potential, the scarcity of current studies that can be used in the evaluation of usage limits encouraged us to do this study. In this context, zebrafish embryos were exposed to serial doses of EC. According to the results, it was observed that EC exposure caused a significant decrease in survival and hatching rates as well as significant body malformations. Whole-mount staining results showed that EC caused dose-dependent increased apoptosis. Oxidative stress caused by EC exposure was demonstrated by whole-mount staining, transcriptional and immunohistochemically. Furthermore, it has been shown histochemically that EC exposure causes necrosis and degeneration in the brain. In behavioral tests, it was observed that EC caused hyperactivity associated with these neuronal degenerations. In addition, a dramatic decrease in blood flow was detected in association with pericardial edema. In the light of the current results, it should be carefully considered that EC can be found naturally in many human diets, especially fermented foods.
Collapse
Affiliation(s)
- Ekrem Sulukan
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Aquaculture Department, Fisheries Faculty, Atatürk University, Erzurum, Turkey
| | - Atena Ghosigharehagaji
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey
| | - Alper Baran
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Food Quality Control and Analysis, Technical Vocational School, Atatürk University, Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - İsmail Bolat
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Saltuk Buğrahan Ceyhun
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Aquaculture Department, Fisheries Faculty, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
31
|
Zekri Y, Agnol LD, Flamant F. In vitro assessment of pesticides capacity to act as agonists/antagonists of the thyroid hormone nuclear receptors. iScience 2021; 24:102957. [PMID: 34485856 PMCID: PMC8403745 DOI: 10.1016/j.isci.2021.102957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/17/2021] [Accepted: 08/03/2021] [Indexed: 11/29/2022] Open
Abstract
Chemicals acting as thyroid hormone disruptors (THDs) are of a particular concern for public health, considering the importance of this hormone in neurodevelopment and metabolic processes. They might either alter the circulating level of thyroid hormone (TH) or interfere with the cellular response to the hormonal stimulation. In order to assess this later possibility we selected 39 pesticides and combined several in vitro tests. Reporter assays respectively addressed the transactivation capacity of the full-length TH nuclear receptor TRα1, the transactivation capacity of its C-terminal ligand binding domain, or the ability of the hormone to destabilize the interaction between TRα1 and the transcriptional corepressor NcoR. Although some pesticides elicit a cellular response, which sometimes interferes with TH signaling, RNA-seq analysis provided no evidence that they can act as TRα1 agonists or antagonists. Their neurodevelopmental toxicity in mammals cannot be explained by an alteration of the response to TH. Pesticides were tested for their capacity to interfere with thyroid hormone receptors Three reporter assays were combined to identify possible agonists/antagonists The tested pesticides are not major disruptors of thyroid hormone signaling
Collapse
Affiliation(s)
- Yanis Zekri
- Romain Guyot Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, INRAE USC 1370 École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allee d'Italie, 69364 Lyon, France
| | - Laure Dall Agnol
- Romain Guyot Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, INRAE USC 1370 École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allee d'Italie, 69364 Lyon, France
| | - Frédéric Flamant
- Romain Guyot Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, INRAE USC 1370 École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allee d'Italie, 69364 Lyon, France
| |
Collapse
|
32
|
Li H, Jing T, Li T, Huang X, Gao Y, Zhu J, Lin J, Zhang P, Li B, Mu W. Ecotoxicological effects of pyraclostrobin on tilapia (Oreochromis niloticus) via various exposure routes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117188. [PMID: 33957519 DOI: 10.1016/j.envpol.2021.117188] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/15/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Pyraclostrobin is a widely used and highly efficient fungicide that also has high toxicity to aquatic organisms, especially fish. Although some research has reported the toxic effects of pyraclostrobin on fish, the main toxic pathways of pyraclostrobin in fish remain unclear. The present study has integrated histopathological, biochemical and hematological techniques to reveal the main toxic pathways and mechanisms of pyraclostrobin under different exposure routes. Our results indicated that pyraclostrobin entered fish mainly through the gills. The highest accumulation of pyraclostrobin was observed in the gills and heart compared with accumulation in other tissues and gill tissue showed the most severe damage. Hypoxia symptoms (water jacking, tummy turning and cartwheel formation) in fish were observed throughout the experiment. Taken together, our results suggested that the gills are important target organs. The high pyraclostrobin toxicity to gills might be associated with oxidative damage to the gills, inducing alterations in ventilation frequency, oxygen-carrying substances in blood and disorders of energy metabolism. Our research facilitates a better understanding of the toxic mechanisms of pyraclostrobin in fish, which can promote the ecotoxicological research of agrochemicals on aquatic organisms.
Collapse
Affiliation(s)
- Hong Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Tongfang Jing
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Tongbin Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xueping Huang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Yangyang Gao
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Jiamei Zhu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Jin Lin
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Peng Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Beixing Li
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Wei Mu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| |
Collapse
|
33
|
Huang X, Yang S, Li B, Wang A, Li H, Li X, Luo J, Liu F, Mu W. Comparative toxicity of multiple exposure routes of pyraclostrobin in adult zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:145957. [PMID: 33676221 DOI: 10.1016/j.scitotenv.2021.145957] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/05/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
Pyraclostrobin, one of the most widely used fungicides globally, is highly toxic to aquatic organisms, which restricts its application in paddy fields. Most studies have focused on the molecular mechanism of pyraclostrobin toxicity; however, the exposure routes and target organs of pyraclostrobin in fish are poorly known. Here, we found that the lethal effects of aquatic exposure, head immersion, trunk immersion and oral exposure on the toxicity and accumulation of pyraclostrobin in adult zebrafish were different. The major pathway leading to pyraclostrobin accumulation, followed by high hazard to fish, was crossing over the gill rather than the intestine or skin. Additionally, serious histological abnormalities, mitochondrial dysfunction, energy deficiency and respiratory impairment occurred in the gills, while no overt change was observed in the heart and brain at the organic and cellular levels. This result suggested that the gill is the dominant portal and target organ of pyraclostrobin in fish, a fact that has been further verified by intravenous injection. The differences in the toxicity and translocation factor of crystalline and dissolved pyraclostrobin in fish demonstrated that reducing the concentration in the branchial environment is a vital direction for the future design of an effective toxicity regulation strategy to protect key sites from pyraclostrobin attack.
Collapse
Affiliation(s)
- Xueping Huang
- Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Song Yang
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Beixing Li
- Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Aiping Wang
- Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Hong Li
- Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xiuhuan Li
- Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jian Luo
- Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Feng Liu
- Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Wei Mu
- Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
34
|
Mohapatra S, Siddamallaiah L, Matadha NY. Behavior of acetamiprid, azoxystrobin, pyraclostrobin, and lambda-cyhalothrin in/on pomegranate tissues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27481-27492. [PMID: 33506422 DOI: 10.1007/s11356-021-12490-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Pomegranate crop is affected by several insect pests and requires usage of a large number of pesticides, but the information on their behavior in pomegranate tissues is limited. A study was conducted to assess the behavior of acetamiprid, azoxystrobin, pyraclostrobin, and lambda-cyhalothrin in pomegranate fruits and leaves. The QuEChERS analytical method and LC-MS/MS and GC-MS were used for quantification of the analytes. The LOD (limit of detection) of acetamiprid, azoxystrobin, and pyraclostrobin was 0.0015 mg kg-1 and lambda-cyhalothrin was 0.003 mg kg-1. The respective LOQ (limit of quantification) was 0.005 and 0.01 mg kg-1. The dissipation of the analytes best fitted into first-order rate kinetics and the half-lives of the chemicals in pomegranate fruits were 9.2-13 days and in the leaves were 13.5-17 days. In the pomegranate aril, the residue levels of acetamiprid, lambda-cyhalothrin, and pyraclostrobin were always < LOQ of these chemicals. Azoxystrobin was detected in pomegranate aril, and its residue was highest at 0.04 mg kg-1 on the 10th day and reached < LOQ by the 25th day. The pre-harvest interval (PHI) required for acetamiprid, azoxystrobin, pyraclostrobin, and lambda-cyhalothrin at standard-dose treatment was 50, 58, 44, and 40 days, respectively. From double-dose treatment, the PHIs were 70, 75, 58, and 54 days, respectively. The pesticides used in this study were more persistent in the pomegranate leaves compared to the fruits. The outcome of this study can be incorporated into production of pomegranate fruits safe for consumption and to meet the domestic and export quality control requirements.
Collapse
Affiliation(s)
- Soudamini Mohapatra
- Pesticide Residue Laboratory, Division of Plant Physiology and Biochemistry, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake P.O, Bangalore, 560089, India.
| | - Lekha Siddamallaiah
- Pesticide Residue Laboratory, Division of Plant Physiology and Biochemistry, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake P.O, Bangalore, 560089, India
| | - Nagapooja Yogendraiah Matadha
- Pesticide Residue Laboratory, Division of Plant Physiology and Biochemistry, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake P.O, Bangalore, 560089, India
| |
Collapse
|
35
|
Wang X, Li X, Wang Y, Qin Y, Yan B, Martyniuk CJ. A comprehensive review of strobilurin fungicide toxicity in aquatic species: Emphasis on mode of action from the zebrafish model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116671. [PMID: 33582629 DOI: 10.1016/j.envpol.2021.116671] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Strobilurins are popular fungicides used in agriculture on a global scale. Due to their widespread use as agrochemicals, they can enter aquatic environments at concentrations that can elicit adverse effects in organisms. This review synthesizes the current state of knowledge regarding the toxic effects of strobilurin fungicides on aquatic species, including algal species, Daphnia magna, and fish species, to determine risk to aquatic organisms and ecosystems. Data show that the toxicities of strobilurins vary widely across aquatic species. Strobilurins bind cytochrome bc1 in mitochondrial complex III in fungi, and as such, research in aquatic species has focused on mitochondria-related endpoints following exposures to strobilurins. In fish, studies into the activities of mitochondrial complexes and the expression of genes involved in the electron transfer chain have been conducted, converging on the theme that mitochondrial complexes and their enzymes are impaired by strobilurins. In general, the order of toxicity of strobilurins for fish species are pyraoxystrobin > pyraclostrobin ≈ trifloxystrobin > picoxystrobin > kresoxim-methyl > fluoxastrobin > azoxystrobin. In addition to mitochondrial toxicity, studies also report genotoxicity, immunotoxicity, cardiotoxicity, neurotoxicity, and endocrine disruption, and each of these events can potentially impact whole organism-level processes such as development, reproduction, and behavior. Screening data from the US Environmental Protection Agency ToxCast database supports the hypothesis that these fungicides may act as endocrine disruptors, and high throughput data suggest estrogen receptor alpha and thyroid hormone receptor beta can be activated by some strobilurins. It is recommended that studies investigate the potential for endocrine disruption by strobilurins more thoroughly in aquatic species. Based on molecular, physiological, and developmental outcomes, a proposed adverse outcome pathway is presented with complex III inhibition in the electron transfer chain as a molecular initiating event. This review comprehensively addresses sub-lethal toxicity mechanisms of strobilurin fungicides, important as the detection of strobilurins in aquatic environments suggests exposure risks in wildlife.
Collapse
Affiliation(s)
- Xiaohong Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Xiaoyu Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yue Wang
- The New Hope Liuhe Co., Ltd., Qingdao, China
| | - Yingju Qin
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences in Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
36
|
Li XY, Qin YJ, Wang Y, Huang T, Zhao YH, Wang XH, Martyniuk CJ, Yan B. Relative comparison of strobilurin fungicides at environmental levels: Focus on mitochondrial function and larval activity in early staged zebrafish (Danio rerio). Toxicology 2021; 452:152706. [PMID: 33548355 DOI: 10.1016/j.tox.2021.152706] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 01/27/2023]
Abstract
Strobilurin fungicides are used globally and have been detected in microgram per liter concentrations in aquatic environments. Here, we determined the potential toxicity of four commonly used strobilurins (azoxystrobin, kresoxim-methyl, pyraclostrobin, trifloxystrobin) on mitochondrial function and locomotor activity of larval zebrafish at an environmentally relevant level. As the mode of action of strobilurins in fungi is binding to cytochrome bc1 in mitochondrial complex III, we evaluated exposure effects on mitochondrial oxidative phosphorylation of zebrafish, by measuring oxygen consumption rates, mitochondria-related enzyme activities, and transcripts levels for genes associated with the electron transfer chain and citric acid cycle. We found that 50 nM pyraclostrobin and trifloxystrobin lowered basal respiration, oligomycin-induced ATP respiration, and maximal respiration of embryos. Dysfunction in mitochondrial bioenergetics was associated with changes in mitochondrial complex III activity and transcripts of oxidative respiration and stress-related genes. Lower activity of complex III, and reduced cytb mRNA levels were hypothesized to contribute to reduced electron supply to complex IV and V. Both coxI and atp6 were up-regulated, suggesting a compensatory response to impaired oxidative respiration. Cluster analysis indicated that strobilurin-induced oxidative stress and cytb transcript were related to impaired oxidative phosphorylation. We also assessed larval behavior responses, as reduced ATP can affect activity. We observed that pyraclostrobin and trifloxystrobin induced hypoactive responses in zebrafish. At 50 nM, azoxystrobin and kresoxim-methyl exerted no effects on mitochondrial function nor locomotion of zebrafish. Studies such as this are important for determining sublethal toxicity to these fungicides, as widespread detection of strobilurins in aquatic environments suggests there is a potential for adverse effects in aquatic organisms.
Collapse
Affiliation(s)
- Xiao Y Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Ying J Qin
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yue Wang
- The New Hope Liuhe Co., Ltd., Qingdao, China
| | - Tao Huang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Yuan H Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Xiao H Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL 32611, USA.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
37
|
Yang L, Huang T, Li R, Souders CL, Rheingold S, Tischuk C, Li N, Zhou B, Martyniuk CJ. Evaluation and comparison of the mitochondrial and developmental toxicity of three strobilurins in zebrafish embryo/larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116277. [PMID: 33360065 DOI: 10.1016/j.envpol.2020.116277] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/27/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Strobilurin fungicides have been frequently detected in aquatic environments and can induce mitochondrial toxicity to non-target aquatic organisms. However, the derived toxicity and subsequent mechanisms related to their adverse effects are not fully elucidated. In the present study, we compared the mitochondrial and developmental toxicity of azoxystrobin, pyraclostrobin, and trifloxystrobin using zebrafish embryo/larvae. The results showed that all three strobilurins inhibited mitochondrial and non-mitochondrial respiration (the potency is pyraclostrobin ≈ trifloxystrobin > azoxystrobin). Behavioral changes indicated that sublethal doses of pyraclostrobin and azoxystrobin caused hyperactivity of zebrafish larvae in dark cycles, whereas trifloxystrobin resulted in hypoactivity of zebrafish larvae. In addition, pyraclostrobin exposure impaired the inflation of swim bladder, and caused down-regulation of annexin A5 (anxa5) mRNA levels, and up-regulated transcript levels of pre-B-cell leukemia homeobox 1a (pbx1a); conversely, azoxystrobin and trifloxystrobin did not cause detectable effects with swim bladder inflation. Molecular docking results indicated that azoxystrobin had higher interacting potency with iodotyrosine deiodinase (IYD), prolactin receptor (PRLR), antagonistic conformation of thyroid hormone receptor β (TRβ) and glucocorticoid receptor (GR) compared to pyraclostrobin and trifloxystrobin; pyraclostrobin and azoxystrobin were more likely to interact with the antagonistic conformation of TRβ and GR, respectively. These results may partially explain the different effects observed in behavior and swim bladder inflation, and also point to potential endocrine disruption induced by these strobilurins. Taken together, our study revealed that all three strobilurins alter mitochondrial bioenergetics and cause developmental toxicity. However, the toxic phenotypes and underlying mechanisms of each chemical may differ, and this requires further investigation. Pyraclostrobin showed higher mitochondrial toxicity at lethal doses and higher developmental toxicity at sublethal doses compared to the two other strobilurins tested. These results provide novel information for toxicological study as well as risk assessment of strobilurin fungicides.
Collapse
Affiliation(s)
- Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Tao Huang
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Ruiwen Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; Ecological Environment Monitoring and Scientific Research Center, Changjiang River Basin Ecological Environment Administration, Ministry of Ecology and Environment, Wuhan, 430014, PR China
| | - Christopher L Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Spencer Rheingold
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Claire Tischuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 10085, PR China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
38
|
Bhagat J, Singh N, Nishimura N, Shimada Y. A comprehensive review on environmental toxicity of azole compounds to fish. CHEMOSPHERE 2021; 262:128335. [PMID: 33182121 DOI: 10.1016/j.chemosphere.2020.128335] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/04/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Azoles are considered as one of the most efficient fungicides for the treatment of humans, animals, and plant fungal pathogens. They are of significant clinical importance as antifungal drugs and are widely used in personal care products, ultraviolet stabilizers, and in aircraft for its anti-corrosive properties. The prevalence of azole compounds in the natural environment and its accumulation in fish raises questions about its impact on aquatic organisms. OBJECTIVES The objective of this paper is to review the scientific studies on the effects of azole compounds in fish and to discuss future opportunities for the risk evaluation. METHODS A systematic literature search was conducted on Web of Science, PubMed, and ScienceDirect to locate peer-reviewed scientific articles on occurrence, environmental fate, and toxicological impact of azole fungicides on fish. RESULTS Studies included in this review provide ample evidence that azole compounds are not only commonly detected in the natural environment but also cause several detrimental effects on fish. Future studies with environmentally relevant concentrations of azole alone or in combination with other commonly occurring contaminants in a multigenerational study could provide a better understanding. CONCLUSION Based on current knowledge and studies reporting adverse biological effects of azole on fish, considerable attention is required for better management and effective ecological risk assessment of these emerging contaminants.
Collapse
Affiliation(s)
- Jacky Bhagat
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie, 514-8507, Japan; Mie University Zebrafish Drug Screening Center, Tsu, Mie, 514-8507, Japan.
| | - Nisha Singh
- Environment Nanoscience Laboratory, Department of Earth Science, Indian Institute of Science Education and Research, Kolkata, 741246, India.
| | - Norihiro Nishimura
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie, 514-8507, Japan; Mie University Zebrafish Drug Screening Center, Tsu, Mie, 514-8507, Japan.
| | - Yasuhito Shimada
- Mie University Zebrafish Drug Screening Center, Tsu, Mie, 514-8507, Japan; Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan; Department of Bioinformatics, Mie University Advanced Science Research Promotion Center, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
39
|
Zhao Z, Sun R, Su Y, Hu J, Liu X. Fate, residues and dietary risk assessment of the fungicides epoxiconazole and pyraclostrobin in wheat in twelve different regions, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111236. [PMID: 32911182 DOI: 10.1016/j.ecoenv.2020.111236] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/15/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
The fungicides epoxiconazole and pyraclostrobin have been widely used to control wheat fusarium head blight. This study was designed to investigate the dissipation behaviors in different climate regions and provide data for the modification of maximum residue limits of the two fungicides. Wheat samples were collected from field sites in twelve different regions, China and analyzed with an HPLC-MS/MS method for simultaneous detection of epoxiconazole and pyraclostrobin in wheat. The average recoveries of epoxiconazole and pyraclostrobin in wheat matrix were 87-112% and 85-102%, respectively, with the relative standard deviations ≤8.1%. The limits of quantification of epoxiconazole and pyraclostrobin in grain and straw were both 0.01 mg/kg. The dissipations of epoxiconazole and pyraclostrobin followed first-order kinetics, with the half-lives of 10.3 days and 7.6 days, respectively. The terminal residues of epoxiconazole and pyraclostrobin in grain were below 0.034 and 0.028 mg/kg, separately, both lower than the maximum residue limits recommended by China. Based on Chinese dietary pattern and terminal residue distributions, the risk quotients of epoxiconazole and pyraclostrobin were 13.9% and 65.9%, respectively, revealing the evaluated wheat exhibited an acceptably low dietary risk to consumers.
Collapse
Affiliation(s)
- Zixi Zhao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Runxia Sun
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yue Su
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiye Hu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaolu Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
40
|
da Costa Domingues CE, Bello Inoue LV, da Silva-Zacarin ECM, Malaspina O. Fungicide pyraclostrobin affects midgut morphophysiology and reduces survival of Brazilian native stingless bee Melipona scutellaris. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111395. [PMID: 33031995 DOI: 10.1016/j.ecoenv.2020.111395] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/15/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Native stingless bees are key pollinators of native flora and important for many crops. However, the loss of natural fragments and exposure to pesticides can hinder the development of colonies and represent a high risk for them. Nevertheless, most studies are conducted with honeybees and there are not many studies on native species, especially in relation to the effects of fungicides on them. Therefore, the objective of this paper is to evaluate the effects of sublethal concentrations of pyraclostrobin, on Melipona scutellaris forager workers. These Brazilian native stingless bees were submitted to continuous oral exposure to three concentrations of pyraclostrobin in sirup: 0.125 ng a.i./µL (P1), 0.025 ng a.i./µL (P2), and 0.005 ng a.i./µL (P3). Histopathological and histochemical parameters of midgut, as well as survival rate were evaluated. All concentrations of fungicide showed an increase in the midgut lesion index and morphological signs of cell death, such as cytoplasmic vacuolizations, presence of atypical nuclei or pyknotic nuclei. Histochemical analyzes revealed a decreased marking of polysaccharides and neutral glycoconjugates both in the villi and in peritrophic membrane in all exposed-groups in relation to control-groups. P1 and P2 groups presented a reduction in total protein marking in digestive cells in relation to control groups. As a consequence of alteration in the midgut, all groups exposed to fungicide showed a reduced survival rate. These findings demonstrate that sublethal concentrations of pyraclostrobin can lead to significant adverse effects in stingless bees. These effects on social native bees indicate the need for reassessment of the safety of fungicides to bees.
Collapse
Affiliation(s)
- Caio Eduardo da Costa Domingues
- Universidade Estadual Paulista (UNESP) - "Júlio de Mesquita Filho", Instituto de Biociências (IB), Departamento de Biologia, Centro de Estudos de Insetos Sociais (CEIS), Rio Claro, SP, Brazil.
| | - Lais Vieira Bello Inoue
- Universidade Estadual Paulista (UNESP) - "Júlio de Mesquita Filho", Instituto de Biociências (IB), Departamento de Biologia, Centro de Estudos de Insetos Sociais (CEIS), Rio Claro, SP, Brazil
| | - Elaine Cristina Mathias da Silva-Zacarin
- Universidade Federal de São Carlos (UFSCar), Departamento de Biologia (DBio), NuPECA (Núcleo de Pesquisa em Ecotoxicologia e Conservação de Abelhas), Laboratório de Ecotoxicologia e Análise de Integridade Ambiental (LEIA), Sorocaba, SP, Brazil
| | - Osmar Malaspina
- Universidade Estadual Paulista (UNESP) - "Júlio de Mesquita Filho", Instituto de Biociências (IB), Departamento de Biologia, Centro de Estudos de Insetos Sociais (CEIS), Rio Claro, SP, Brazil
| |
Collapse
|
41
|
Li H, Yang S, Li T, Li X, Huang X, Gao Y, Li B, Lin J, Mu W. Determination of pyraclostrobin dynamic residual distribution in tilapia tissues by UPLC-MS/MS under acute toxicity conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111182. [PMID: 32911370 DOI: 10.1016/j.ecoenv.2020.111182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
As a lipophilic fungicide, pyraclostrobin is highly toxic to aquatic organisms, especially to fish. In recent years, research has mainly focused on the pyraclostrobin residue in fish tissues under chronic toxicity, but less is known about its distribution in fish tissues under acute toxicity conditions. In this study, the distribution of pyraclostrobin in fish tissues (blood, liver, muscle and gill) was determined by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The purification effects of different purification materials [1) mixtures of PSA, C18 and MgSO4; 2) QuEChERS-PC; and 3) Oasis HLB SPE] were compared for the detection of pyraclostrobin in fish tissues. Finally, the quick and easy clean-up tool of the Oasis HLB SPE procedure was selected. Under optimum conditions, the linearities had a good relationship (determination coefficient R2 > 0.999). The mean recoveries of the analyte for all tested concentrations ranged from 86.94% to 108.81% with RSDs of 0.7%-4.9%. The pyraclostrobin residue amount was much different in fish tissues. Furthermore, the pyraclostrobin residue in different fish tissues increased initially and then decreased gradually. The concentrations in each tissue were initially ranked before 120 min in the following order: gill > liver > blood > muscle. These phenomena may be attributed to the stress response of fish under acute poisoning. This is the first study to document the distribution of pyraclostrobin in fish tissues under acute toxicity conditions, and it provides reference for the management of agrochemicals in terms of aquatic ecological risks.
Collapse
Affiliation(s)
- Hong Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Song Yang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Tongbin Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xiuhuan Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xueping Huang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Yangyang Gao
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Beixing Li
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Jin Lin
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| | - Wei Mu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| |
Collapse
|
42
|
Shen C, Zuo Z. Zebrafish (Danio rerio) as an excellent vertebrate model for the development, reproductive, cardiovascular, and neural and ocular development toxicity study of hazardous chemicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43599-43614. [PMID: 32970263 DOI: 10.1007/s11356-020-10800-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
In the past decades, the type of chemicals has gradually increased all over the world, and many of these chemicals may have a potentially toxic effect on human health. The zebrafish, as an excellent vertebrate model, is increasingly used for assessing chemical toxicity and safety. This review summarizes the efficacy of zebrafish as a model for the study of developmental toxicity, reproductive toxicity, cardiovascular toxicity, neurodevelopmental toxicity, and ocular developmental toxicity of hazardous chemicals, and the transgenic zebrafish as biosensors are used to detect the environmental pollutants.
Collapse
Affiliation(s)
- Chao Shen
- Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, School of Life Sciences, Xiamen University, Xiangan South Road, Xiamen, 361002, Fujian, China
| | - Zhenghong Zuo
- Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, School of Life Sciences, Xiamen University, Xiangan South Road, Xiamen, 361002, Fujian, China.
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361002, Fujian, China.
| |
Collapse
|
43
|
Zhang C, Zhou T, Xu Y, Du Z, Li B, Wang J, Wang J, Zhu L. Ecotoxicology of strobilurin fungicides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140611. [PMID: 32721740 DOI: 10.1016/j.scitotenv.2020.140611] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/23/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Strobilurin fungicides (SFs), a class of new fungicides, use strobilurin A as a lead compound. However, with excessive production and usage, the SF residues in soil and aquatic ecosystems may lead to environmental pollution. The mechanism of action (MOA) of SFs is respiratory inhibition of fungal mitochondria. Specifically, azoxystrobin (AZO), pyraclostrobin (PYR), trifloxystrobin (TRI), fluoxastrobin (FLUO), picoxystrobin (PICO), and kresoxim-methyl (KRE) are considered the most widely used SFs. The toxicities of those six fungicides in the environment are still unclear. The present review summarized the toxicities of the six SFs to terrestrial and aquatic biota, including mice, amphibians, aquatic organisms (fish, daphnia, algae, etc.), apoidea, soil animals (earthworms and Folsomia fimetaria), and soil microorganisms. We also review the residue, fate, and transportation of SFs. The results indicate that SFs are highly toxic to aquatic and soil organisms and pose potential risks to ecosystems. Current toxicology studies are more focused on acute or chronic toxicity, but the underlying mechanisms are still unclear and require further analysis. In addition, a simple and scientific analysis method is needed to compare the toxicity differences of different SFs to the same test organisms or differences in the same SFs to different test organisms.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Daizong Road 61, Taian 271018, PR China
| | - Tongtong Zhou
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Daizong Road 61, Taian 271018, PR China
| | - Yaqi Xu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Daizong Road 61, Taian 271018, PR China
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Daizong Road 61, Taian 271018, PR China
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Daizong Road 61, Taian 271018, PR China
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Daizong Road 61, Taian 271018, PR China.
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Daizong Road 61, Taian 271018, PR China.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Daizong Road 61, Taian 271018, PR China.
| |
Collapse
|
44
|
Hemalatha D, Rangasamy B, Nataraj B, Maharajan K, Narayanasamy A, Ramesh M. Transcriptional, biochemical and histological alterations in adult zebrafish (Danio rerio) exposed to benzotriazole ultraviolet stabilizer-328. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139851. [PMID: 32758936 DOI: 10.1016/j.scitotenv.2020.139851] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
The occurrence of Benzotriazole Ultraviolet Stabilizer-328 (BUV-328) in different environmental and biological matrices is of immediate environmental concern. In the present study, we evaluated the toxicity of BUV-328 in zebrafish liver tissues to understand the role of oxidative damage in hepatotoxicity. Adult zebrafish were exposed to 0.01, 0.1 and 1 mg/L of BUV-328. At the end of 14, 28 and 42 days, liver tissues were examined for the responses of antioxidant enzymes, gene expression and histopathological alterations. The results indicated that superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities were elevated at concentrations of 0.1 and 1 mg/L on 14th and 28th day. Glutathione S-transferase (GST) activity and malondialdehyde (MDA) levels were elevated in all the treated groups. The transcriptional levels of genes encoding sod, cat, gpx and gst enzymes were increased at 14th day and then declined (except sod on 28th day). Moreover, transcription of cyp1a and hsp70 were up-regulated throughout the study period. Histopathological lesions such as hypertrophy, cellular and nuclear enlargement, cytoplasmic and nuclear degeneration, necrosis with pyknotic nuclei, lipid and cytoplasmic vacuolization and nuclear displacement to the periphery were found to be increased with the dose and exposure duration. In brief, our findings indicate that even a low dose of BUV-328 is toxic to induce oxidative stress and liver damage in zebrafish over a long period of exposure.
Collapse
Affiliation(s)
- Devan Hemalatha
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India; Department of Zoology, PSG College of Arts & Science, Avinashi Road, Civil Aerodrome Post, Coimbatore 641014, Tamil Nadu, India
| | - Basuvannan Rangasamy
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Bojan Nataraj
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Kannan Maharajan
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India; Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, China
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| |
Collapse
|
45
|
Mao L, Jia W, Zhang L, Zhang Y, Zhu L, Sial MU, Jiang H. Embryonic development and oxidative stress effects in the larvae and adult fish livers of zebrafish (Danio rerio) exposed to the strobilurin fungicides, kresoxim-methyl and pyraclostrobin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:139031. [PMID: 32387777 DOI: 10.1016/j.scitotenv.2020.139031] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Two important strobilurin fungicides, kresoxim-methyl and pyraclostrobin, are widely used globally. Their effects on embryonic development and oxidative stress effects in the larvae and adult fish livers of zebrafish (Danio rerio) were assessed in our study. The hatching, mortality, and teratogenic rates were determined when the eggs of fish were exposed to kresoxim-methyl and pyraclostrobin for 24-144 h postfertilization (hpf). For further study, the effects of kresoxim-methyl and pyraclostrobin on antioxidant enzymes [catalase (CAT), superoxide dismutase (SOD) and peroxidase (POD)], detoxification enzymes [carboxylesterase (CarE) and glutathione S-transferase (GST)] and the malondialdehyde (MDA) content of larval zebrafish (96 h) and male or female adult zebrafish livers (up to 28 d) were evaluated for potential toxicity mechanisms. The study of embryonic development revealed that both kresoxim-methyl and pyraclostrobin caused developmental toxicity (hatching inhibition, mortality, and teratogenic rates) increase with significant concentration- and time-dependent responses, and the 144-h median lethal values (LC50) of kresoxim-methyl and pyraclostrobin were 195.0 and 81.3 μg L-1, respectively. In the larval zebrafish study, both kresoxim-methyl and pyraclostrobin at the highest concentrations (100 μg L-1 and 15 μg L-1, respectively) significantly increased the CAT, POD and CarE activities and MDA content compared with those of the control group (P < 0.05). We further found that oxidative stress effects in adult zebrafish livers caused by long-term kresoxim-methyl and pyraclostrobin exposure differed with time and sex. Regarding the residues in natural waters, the potential adverse effects of kresoxim-methyl and pyraclostrobin would be relatively low for adult zebrafish but must not be overlooked for zebrafish embryos/larvae (hatching impairment). Our results from the detoxification enzyme study also initially indicated that adult zebrafish had a greater detoxification ability than larvae and that males had a greater detoxification ability than females.
Collapse
Affiliation(s)
- Liangang Mao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Wei Jia
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Lan Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yanning Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Lizhen Zhu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Muhammad Umair Sial
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Hongyun Jiang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China..
| |
Collapse
|
46
|
Wang A, Cui J, Wang Y, Zhu H, Li N, Wang C, Shen Y, Liu P, Cui B, Sun C, Zhao X, Wang C, Gao F, Zeng Z, Cui H. Preparation and characterization of a novel controlled-release nano-delivery system loaded with pyraclostrobin via high-pressure homogenization. PEST MANAGEMENT SCIENCE 2020; 76:2829-2837. [PMID: 32246522 DOI: 10.1002/ps.5833] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/26/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The development of efficient and safe green pesticides is a scientific strategy to alleviate current pesticide residues, environmental pollution, and threats to non-target organisms. Pesticide controlled-release formulations (CRFs) have attracted wide attention because they can control the rate of release of active ingredients and prolong the effective duration. In particular, nanoscale pesticide sustained-release systems have excellent biological activity and distribution performance because of their small particle size. Some technical difficulties remain in obtaining nanoscale CRFs. RESULTS We successfully fabricated pyraclostrobin nanosphere CRF by combining high-pressure homogenization technology and emulsion-solvent evaporation methods. The pyraclostrobin nanospheres had a uniform spherical shape with a mean particle size of 450 nm and polydispersity index of less than 0.3. The pyraclostrobin loading capacity reached 53.6%, with excellent storage stability. The contact angle of nanospheres on cucumber leaf surfaces demonstrated that it had good wettability. Compared with pyraclostrobin technical and commercial formulations, the nanosphere systems showed a significantly sustained release of pyraclostrobin for longer (up to 250 h). A preliminary bioassay against Penicillium ochrochloron showed that the bioactivity and long-term efficiency of pyraclostrobin nanospheres were superior to those of the commercial formulation. CONCLUSION This research introduced a simple, fast, expandable method for preparing pyraclostrobin nanospheres. The results showed that pyraclostrobin nanospheres could prolong the duration of pesticide efficacy and enhance bioactivity. Furthermore, this technology provides a platform for scale-up production of nano-scale pesticide CRFs. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Anqi Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianxia Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huaxin Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ningjun Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunxin Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yue Shen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pengfei Liu
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Bo Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changjiao Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chong Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fei Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhanghua Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
47
|
Zhang C, Zhang J, Zhu L, Du Z, Wang J, Wang J, Li B, Yang Y. Fluoxastrobin-induced effects on acute toxicity, development toxicity, oxidative stress, and DNA damage in Danio rerio embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:137069. [PMID: 32041080 DOI: 10.1016/j.scitotenv.2020.137069] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Strobilurin fungicides (SFs), the most commonly used fungicides, pose threats for controlling fungal diseases. The fungicides were monitored in aquatic ecosystems and may have negative effects on nontarget organisms. This project was undertaken to monitor the toxic effects of fluoxastrobin (FLUO) on Danio rerio embryos and to evaluate the SF risks in aquatic ecosystems. The 96-hour median lethal concentration (96 h LC50), hatching rates, and morphological abnormalities were used to analyze acute toxicity and teratogenicity of FLUO to Danio rerio embryos at an FLUO dose of 0.549 mg/L (95% confidence limits: 0.423 to 0.698 mg/L); the results showed that FLUO has high toxicity in embryos that is analogous to the toxicity observed in adult Danio rerio. Fluoxastrobin may lead embryos to delayed hatching at concentrations >0.6 mg/L, and it may lead to teratogenicity (i.e., pericardial edema and spinal curvature). Based on the 96 h LC50 results, the following parameters were evaluated in Danio rerio: development-related indicators (body length and heart rates), reactive oxygen species (ROS) levels, lipid peroxidation (LPO) levels, the levels of three antioxidants, 8-hydroxy-2-deoxyguanosine (8-OHdG), and apoptosis. The results elucidated that FLUO inhibition of spinal and heart development may be induced by oxidative stress. In addition, FLUO induced a notable climb in ROS content, LPO, the activated activity of superoxide dismutase (SOD) and catalase (CAT), and it inhibited glutathione peroxidase (GSH-PX) activity. Fluoxastrobin led to DNA damage (i.e., a notable climb of 8-OHdG contents and apoptotic cells). Collectively, FLUO posed threats to Danio rerio embryos at multiple levels, and this investigation could be a reminder for people to be more judicious in SF-use to avoid or relieve SF toxicity to nontarget organisms.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Jingwen Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Zhongkun Du
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Bing Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Yue Yang
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
48
|
Gonçalves ÍFS, Souza TM, Vieira LR, Marchi FC, Nascimento AP, Farias DF. Toxicity testing of pesticides in zebrafish-a systematic review on chemicals and associated toxicological endpoints. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10185-10204. [PMID: 32062774 DOI: 10.1007/s11356-020-07902-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
The use of zebrafish (Danio rerio) has arisen as a promising biological platform for toxicity testing of pesticides such as herbicides, insecticides, and fungicides. Therefore, it is relevant to assess the use of zebrafish in models of exposure to investigate the diversity of pesticide-associated toxicity endpoints which have been reported. Thus, this review aimed to assess the recent literature on the use of zebrafish in pesticide toxicity studies to capture data on the types of pesticide used, classes of pesticides, and zebrafish life stages associated with toxicity endpoints and phenotypic observations. A total of 352 articles published between September 2012 and May 2019 were curated. The results show an increased trend in the use of zebrafish for testing the toxicity of pesticides, with a great diversity of pesticides (203) and chemical classes (58) with different applications (41) being used. Furthermore, experimental outcomes could be clustered in 13 toxicity endpoints, mainly developmental toxicity, oxidative stress, and neurotoxicity. Organophosphorus, pyrethroid, azole, and triazine were the most studied classes of pesticides and associated with various toxicity endpoints. Studies frequently opted for early life stages (embryos and larvae). Although there is an evident lack of standardization of nomenclatures and phenotypic alterations, the information gathered here highlights associations between (classes of) pesticides and endpoints, which can be used to relate mechanisms of action specific to certain classes of chemicals.
Collapse
Affiliation(s)
- Íris Flávia Sousa Gonçalves
- Laboratory of Risk Assessment for Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, Campus I, CEP, João Pessoa, 58051-900, Brazil
- Post-Graduation Program in Biochemistry, Federal University of Ceara, Campus Pici, CEP, Fortaleza, 60440-900, Brazil
| | - Terezinha Maria Souza
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, 6229 ER, The Netherlands.
| | - Leonardo Rogério Vieira
- Post-Graduation Program in Biochemistry, Federal University of Ceara, Campus Pici, CEP, Fortaleza, 60440-900, Brazil
| | - Filipi Calbaizer Marchi
- Laboratory of Risk Assessment for Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, Campus I, CEP, João Pessoa, 58051-900, Brazil
| | - Adailton Pascoal Nascimento
- Laboratory of Risk Assessment for Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, Campus I, CEP, João Pessoa, 58051-900, Brazil
| | - Davi Felipe Farias
- Laboratory of Risk Assessment for Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, Campus I, CEP, João Pessoa, 58051-900, Brazil.
- Post-Graduation Program in Biochemistry, Federal University of Ceara, Campus Pici, CEP, Fortaleza, 60440-900, Brazil.
| |
Collapse
|
49
|
Bevilaqua F, Sachett A, Chitolina R, Garbinato C, Gasparetto H, Marcon M, Mocelin R, Dallegrave E, Conterato G, Piato A, Siebel AM. A mixture of fipronil and fungicides induces alterations on behavioral and oxidative stress parameters in zebrafish. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:140-147. [PMID: 31865514 DOI: 10.1007/s10646-019-02146-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Pesticide commercial mixtures, including the insecticide fipronil and the fungicides pyraclostrobin and methyl-thiophanate, have been used in concomitant pest control, facilitating agricultural management. Their widespread use can lead to soil and water contamination and potentially induce damages in the ecosystem, producing toxic effects in non-target organisms. Despite their toxicological potential, their effects on behavioral and biochemical parameters are not well understood. Here we investigated the effects of the mixture of fipronil and fungicides (MFF) pyraclostrobin and methyl- thiophanate on behavioral and biochemical parameters of oxidative stress in adult zebrafish. Animals exposed to the highest MFF tested concentration showed a decrease in the total distance traveled and in the number of crossings in the different zones of the tank. Furthermore, animals exposed to highest MFF tested concentration spent more time in water surface. In addition, our data showed that the exposure to this preparation promoted a decrease in non-protein thiol content as well as in catalase activity. Finally, pesticide exposure induced an increase in the superoxide dismutase/catalase ratio. Our results indicate that alterations in behavioral and oxidative parameters are involved in MFF toxicity in zebrafish. The antioxidant mechanisms analyzed were altered in concentrations that did not affect zebrafish behavior. Therefore, the assessment of oxidative stress parameters in zebrafish brains could be very useful to detect the early effects of environmental exposure to the MFF.
Collapse
Affiliation(s)
- Fernanda Bevilaqua
- Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Adrieli Sachett
- Laboratório de Psicofarmacologia e Comportamento, Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Chitolina
- Laboratório de Psicofarmacologia e Comportamento, Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cristiane Garbinato
- Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Henrique Gasparetto
- Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Matheus Marcon
- Laboratório de Psicofarmacologia e Comportamento, Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ricieri Mocelin
- Laboratório de Psicofarmacologia e Comportamento, Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Eliane Dallegrave
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Greicy Conterato
- Laboratório de Fisiologia da Reprodução Animal, Departamento de Agricultura, Biodiversidade e Floresta, Universidade Federal de Santa Catarina, Campus de Curitibanos, Curitibanos, SC, Brazil
| | - Angelo Piato
- Laboratório de Psicofarmacologia e Comportamento, Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Anna M Siebel
- Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil.
| |
Collapse
|
50
|
Zhang C, Zhou T, Du Z, Juhasz A, Zhu L, Wang J, Wang J, Li B. Applying fungicide on earthworms: Biochemical effects of Eisenia fetida exposed to fluoxastrobin in three natural soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113666. [PMID: 31806462 DOI: 10.1016/j.envpol.2019.113666] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/31/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Fluoxastrobin is one of the most widely used strobilurin fungicides, however, application of the fungicides may result in soil residues leading to environmental damage including oxidative stress and damage to sentinel organisms (i.e. earthworms). While this has been demonstrated in artificial soil, the biochemical response of Eisenia fetida exposed to fluoxastrobin in natural soils is unclear. This study utilized three typical natural soils (fluvo-aquic soils, red clay, and black soils) to evaluate the biochemical response of Eisenia fetida exposed to fluoxastrobin (0.1, 1.0, 2.5 mg/kg) including the production of reactive oxygen species, impact on three enzyme activities, lipid peroxidation, and 8-hydroxydeoxyguanosine after a 4-week exposure. The effects of fluoxastrobin on Eisenia fetida in different soils were assessed using an integrated biomarker response (IBR). The findings may be possible to state that the toxic effects of fluoxastrobin in artificial cannot exactly represent that in natural soils. Specifically, the fluoxastrobin subchronic toxicity was highest in red clay and lowest in black soil among the three natural soils. Furthermore, the 8-OHdG content was more sensitive to fluoxastrobin in all six environmental indicators of the present study.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian, 271018, PR China.
| | - Tongtong Zhou
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian, 271018, PR China.
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian, 271018, PR China.
| | - Albert Juhasz
- Future Industries Institute, Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA, 5095, Australia.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian, 271018, PR China.
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian, 271018, PR China.
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian, 271018, PR China.
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian, 271018, PR China.
| |
Collapse
|