1
|
Li J, Peng H, Ru S, Wang B, Su E, Wu D, Wang W. Lower-dose vs high-dose oral bisphenol S action of lipid metabolism in liver of male SD rat via mediating different SREBP isoforms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125186. [PMID: 39454810 DOI: 10.1016/j.envpol.2024.125186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Bisphenol S (BPS) is commonly used for the industrial production of thermal paper, polycarbonate plastics, epoxy resins and other materials. Studies have reported that BPS can lead to triglyceride (TAG) or/and cholesterol (CHO) accumulation in the liver in zebrafish and mice, but the reasons for the different types of lipids that accumulate in the liver following BPS exposure are unclear. Here, the influences of lower-dose (10 mg/kg body weight/day) and high-dose (50 mg/kg body weight/day) BPS exposure to male SD rats on the accumulation of different lipids in the liver were explored. The results indicated that BPS treatment increased the levels of acetyl-CoA and glycogen in the liver. A lower dose of BPS upregulated the mRNA and protein expression levels of sterol regulatory element-binding protein 1 (srebp1), which is involved in the de novo synthesis of TAG in the liver, thus promoting the synthesis of glycerides (diacetylglyceride and TAG). However, a higher dose of BPS induced CHO accumulation, but inhibited the mRNA expression of genes (i.e., srebp2, hmgcr and hmgcs) involved in the de novo synthesis of CHO in the liver. Excessive accumulation of glycerides and CHO led to destruction of the physiological structure of rat liver, causing disorders in liver function. Our data provide new insight into the different mechanisms by which glyceride and CHO accumulate in the liver after BPS exposure.
Collapse
Affiliation(s)
- Jiali Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hongyuan Peng
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Bo Wang
- Shandong Construction Project Environmental Assessment Service Center, China
| | - Enping Su
- Shandong Construction Project Environmental Assessment Service Center, China
| | - Dehua Wu
- Shandong Construction Project Environmental Assessment Service Center, China
| | - Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
2
|
Dogra K, Lalwani D, Dogra S, Panday DP, Raval NP, Trivedi M, Mora A, Hernandez MSG, Snyder SA, Mahlknecht J, Kumar M. Indian and global scenarios of Bisphenol A distribution and its new analogues: Prevalence & probability exceedance. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135128. [PMID: 39094315 DOI: 10.1016/j.jhazmat.2024.135128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024]
Abstract
We compare, the prevalence, fate, and sources of Bisphenol A both globally and in India. India has the highest concentration of BPA and Bisphenol S(BPS) in general, with vegetables, particularly corn, beans, strings, and raw or canned vegetables, being the largest contributors. Among all the matrices, bisphenols (BPs) are found in the highest concentration in food, followed by surface water, wastewater, and indoor dust. BPA, BPS, and BPF are the most commonly reported analogues in India, with BPA being the most dominant category used worldwide. The highest concentration of BPs is observed in Uttar Pradesh, Punjab and Haryana that are three major agricultural states of India however, there is still a research gap regarding the dietary exposure to BPs on an individual level. Environmentally detected BPA occurs in a range of below detection to 10636 ng. L-1, with significant geographic variations. Interestingly, the order of abundance in India was maximum for BPS, which is contrary to the global average, where BPA is observed as most abundant. BPS is found to be the most common BPs analogue in surface water worldwide, with limited removal efficiency by both naturally remediation and conventional treatment methods. Similar patterns were observed in the US-India and Japan-Korea regions in terms of their source-sink-prevalence-fate dynamics. The probability of exceeding safe concentrations of BPs is higher in India and Korea, suggesting that these countries are more vulnerable to high prevalence concentrations and the subsequent public health hazards.
Collapse
Affiliation(s)
- Kanika Dogra
- Sustainability Cluster, School of Advance Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Dipa Lalwani
- Department of Environmental Science & Technology, Institute of Science and Technology for Advanced Studies and Research (ISTAR), Anand, Gujarat, India
| | - Shiwangi Dogra
- Sustainability Cluster, School of Advance Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Durga Prasad Panday
- Sustainability Cluster, School of Advance Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Nirav P Raval
- Department of Environmental Science and Engineering, School of Engineering, SRM University-AP, Andhra Pradesh, 522240, India
| | - Murgesh Trivedi
- Department of Environmental and Life Science, KSKV Kachchh University, Bhuj, 370001, Gujarat, India
| | - Abrahan Mora
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo Leon, Mexico
| | | | - Shane A Snyder
- Sustainability Cluster, School of Advance Engineering, UPES, Dehradun, Uttarakhand 248007, India; School of Civil & Environmental Engineering, Georgia Institute of Technology, 30332 USA
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo Leon, Mexico
| | - Manish Kumar
- Sustainability Cluster, School of Advance Engineering, UPES, Dehradun, Uttarakhand 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo Leon, Mexico.
| |
Collapse
|
3
|
Ko MY, Park H, Kim Y, Min E, Cha SW, Lee BS, Hyun SA, Ka M. Bisphenol S (BPS) induces glioblastoma progression via regulation of EZH2-mediated PI3K/AKT/mTOR pathway in U87-MG cells. Toxicology 2024; 507:153898. [PMID: 39032682 DOI: 10.1016/j.tox.2024.153898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Bisphenol S (BPS), an alternative to bisphenol A (BPA), exerts proliferative effects similar to those of BPA. BPS is a representative endocrine disruptor associated with cancer progression. However, the mechanisms underlying BPS-induced glioblastoma progression are not fully understood. To investigate the effects of BPS on glioblastoma, U-87 MG cancer cell lines were exposed to BPS. The study focused on analyzing the proliferation and migration of U-87 MG cells. Furthermore, the involvement of the enhancer of the zeste homolog 2 (EZH2)-mediated phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of the rapamycin (mTOR) pathway was examined. Pharmacological approaches were employed to inhibit EZH2 activity and observe its effects on BPS-induced changes. The results indicated that BPS promoted the proliferation and migration of U-87 MG cells at a concentration of 0.1 µM. These changes appeared to be linked to the activation of the EZH2-mediated PI3K/AKT/mTOR pathway. Moreover, inhibiting EZH2 activity using pharmacological approaches restored the BPS-mediated induction of proliferation and migration. In conclusion, the results of this study indicated that BPS induces glioblastoma progression through EZH2 upregulation. Therefore, targeting the EZH2-mediated PI3K/AKT/mTOR pathway could be considered a potential therapeutic strategy for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Moon Yi Ko
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Heejin Park
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Younhee Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Euijun Min
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Sin-Woo Cha
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Byoung-Seok Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.
| | - Sung-Ae Hyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.
| | - Minhan Ka
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34114, Republic of Korea.
| |
Collapse
|
4
|
Chouchene L, Boughammoura S, Ben Rhouma M, Mlouka R, Banni M, Messaoudi I, Kessabi K. Effect of thyroid disruption on ovarian development following maternal exposure to Bisphenol S. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52596-52614. [PMID: 39153066 DOI: 10.1007/s11356-024-34666-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
Thyroid hormones play a crucial role in numerous physiological processes, including reproduction. Bisphenol S (BPS) is a structural analog of Bisphenol A known for its toxic effects. Interference of this substitute with normal thyroid function has been described. To investigate the effect of thyroid disruption on ovarian development following maternal exposure to BPS, female rats were exposed, daily, to either AT 1-850 (a thyroid hormone receptor antagonist) (10 nmol/rat) or BPS (0.2 mg/kg) during gestation and lactation. The effects on reproductive outcome, offspring development, histological structures, hormone levels, oxidative status, cytoskeleton proteins expression, and oocyte development gene expression were examined. Our results are in favor of offspring ovarian development disruption due to thyroid disturbance in adult pregnant females. During both fetal and postnatal stages, BPS considerably altered the histological structure of the thyroid tissue as well as oocyte and follicular development, which led to premature ovarian failure and stimulation of oocyte atresia, being accompanied with oxidative stress, hypothalamic-pituitary-ovarian axis disorders, and cytoskeletal dynamic disturbance. Crucially, our study underscores that BPS may induce reproductive toxicity by blocking nuclear thyroid hormone receptors, evidenced by the parallelism and the perfect meshing between the data obtained following exposure to AT 1-850 and those after the treatment by this substitute.
Collapse
Affiliation(s)
- Lina Chouchene
- Laboratory of Genetics, Biodiversity and Bio-Resources Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia.
| | - Sana Boughammoura
- Laboratory of Genetics, Biodiversity and Bio-Resources Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Mariem Ben Rhouma
- Laboratory of Genetics, Biodiversity and Bio-Resources Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Rania Mlouka
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, University of Sousse, Sousse, Tunisia
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, University of Sousse, Sousse, Tunisia
| | - Imed Messaoudi
- Laboratory of Genetics, Biodiversity and Bio-Resources Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Kaouthar Kessabi
- Laboratory of Genetics, Biodiversity and Bio-Resources Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| |
Collapse
|
5
|
Zhang X, Zhang X, Zhang Z, Shi Y, Wang J, Ru S, Tian H. Bisphenol S causes excessive estrogen synthesis by activating FSHR and the downstream cAMP/PKA signaling pathway. Commun Biol 2024; 7:844. [PMID: 38987655 PMCID: PMC11237073 DOI: 10.1038/s42003-024-06449-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
Estrogen excess in females has been linked to a diverse array of chronic and acute diseases. Emerging research shows that exposure to estrogen-like compounds such as bisphenol S leads to increases in 17β-estradiol levels, but the mechanism of action is unclear. The aim of this study was to reveal the underlying signaling pathway-mediated mechanisms, target site and target molecule of action of bisphenol S causing excessive estrogen synthesis. Human ovarian granulosa cells SVOG were exposed to bisphenol S at environmentally relevant concentrations (1 μg/L, 10 μg/L, and 100 μg/L) for 48 h. The results confirms that bisphenol S accumulates mainly on the cell membrane, binds to follicle stimulating hormone receptor (FSHR) located on the cell membrane, and subsequently activates the downstream cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) signaling pathway, leading to enhanced conversion of testosterone to 17β-estradiol. This study deepens our knowledge of the mechanisms of environmental factors in pathogenesis of hyperestrogenism.
Collapse
Affiliation(s)
- Xiaorong Zhang
- College of Marine Life Sciences, Ocean University of China, 266003, Qingdao, Shandong Province, China
- Tai'an Agriculture and Rural Affairs Bureau, 271000, Tai'an, Shandong Province, China
| | - Xinda Zhang
- College of Marine Life Sciences, Ocean University of China, 266003, Qingdao, Shandong Province, China
| | - Zhenzhong Zhang
- College of Marine Life Sciences, Ocean University of China, 266003, Qingdao, Shandong Province, China
| | - Yijiao Shi
- College of Marine Life Sciences, Ocean University of China, 266003, Qingdao, Shandong Province, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, 266003, Qingdao, Shandong Province, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, 266003, Qingdao, Shandong Province, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, 266003, Qingdao, Shandong Province, China.
| |
Collapse
|
6
|
Li X, Xu J, Bi Z, Bian J, Huang J, Guo Z, Xiao Q, Sha Y, Ji J, Zhu T, Lu S. Concentrations, sources and health risk of bisphenols in red swamp crayfish (Procambarus clarkii) from South-Eastern China. CHEMOSPHERE 2024; 358:142187. [PMID: 38685327 DOI: 10.1016/j.chemosphere.2024.142187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/01/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Bisphenol analogs (BPs) are extensively employed in commercial and industrial products and they have been found in a variety of environmental matrices and human samples. The red swamp crayfish (Procambarus clarkii) has been a trendy food in China in recent decades. However, the levels of BPs in Chinese crayfish and the associated hazards of human exposure remain unknown. Thus, in this study, the levels of eight BPs in crayfish gathered from five major provinces engaged in crayfish within the Yangtze River Basin were analyzed. Additionally, the health risks for humans by ingesting crayfish were calculated. BPs were frequently detected in crayfish tissues, indicating the wide occurrence of these chemicals. In comparison to other substitutions, BPA remains the dominant bisphenol analog. Most of the BPs were observed to accumulate in the hepatopancreas compared to the muscle, so consuming the hepatopancreas of crayfish is not recommended. With the exception of BPS, the Estimated Daily Intakes (EDIs) of the remaining BPs exceeded the Tolerable Daily Intake (TDI) specified by the European Food Safety Authority (EFSA) by a factor of 1.75-69.0. The mean hazard index (HI) values exceeded 1 for both hepatopancreas and muscle in all provinces, and the mean HI values for hepatopancreas were significantly higher than those for muscle, indicating potential health risks for local consumers.
Collapse
Affiliation(s)
- Xinjie Li
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Jiayi Xu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Zhuochang Bi
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Junye Bian
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Jiayin Huang
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Zhihui Guo
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Qinru Xiao
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Yujie Sha
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Jiajia Ji
- Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Tingting Zhu
- Shenzhen Academy of Environmental Sciences, Shenzhen, 518001, Shenzhen, China.
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
7
|
Xu Y, Zhang N, Hu Y, Chen F, Hu L, Liao C, Jiang G. A preliminary understanding of the relationship between synthetic phenolic antioxidants and early pregnancy loss: Uncovering the potential molecular mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171972. [PMID: 38554970 DOI: 10.1016/j.scitotenv.2024.171972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Mounting evidence suggests that environmental pollutants may affect reproductive health, potentially leading to adverse outcomes like pregnancy loss. However, it remains unclear whether exposure to synthetic phenolic antioxidants (SPAs) correlates with early pregnancy loss (EPL). This study explores SPA exposure's link to EPL and its potential molecular mechanisms. From 2021 to 2022, 265 early pregnant women (136 serum and 129 villus samples) with and without EPL were enrolled. We quantified 17 SPAs in serum and chorionic villus, with AO1010, AO3114, BHT, AO2246, and BHT-Q frequently being detected, suggesting their ability to cross the placental barrier. AO1135 showed a positive relationship with EPL in sera, indicating a significant monotonic dose-response relationship (p-trend <0.001). BHT-Q exhibited a similar relationship with EPL in villi. Inhibitory effects of BHT-Q on estradiol (E2) were observed. Molecular docking revealed SPA-protein interactions involved in E2 synthesis. SPA-induced EPL might occur with specific serum levels of AO1135 and certain villus levels of AO1010, BHT-Q, and AO2246. BHT-Q emerges as a potential biomarker for assessing EPL risk. This study provides insights into understanding of the exposure to SPAs and potential adverse outcomes in pregnant women.
Collapse
Affiliation(s)
- Yaqian Xu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Na Zhang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Yu Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fu Chen
- Department of Environmental Science and Engineering, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ligang Hu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Gao Z, He W, Liu Y, Gao Y, Fan W, Luo Y, Shi X, Song S. Perinatal bisphenol S exposure exacerbates the oxidative burden and apoptosis in neonatal ovaries by suppressing the mTOR/autophagy axis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123939. [PMID: 38593938 DOI: 10.1016/j.envpol.2024.123939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
Bisphenol S (BPS) is an emerging environmental endocrine disruptor capable of crossing the placental barrier, resulting in widespread exposure to pregnant women due to its extensive usage. However, the impact of perinatal maternal exposure to BPS on reproductive health in offspring and the underlying molecular mechanism remain underexplored. In this study, gestational ICR mice were provided with drinking water containing 3.33 mg/L BPS to mimic possible human exposure in some countries. Results demonstrated that BPS accelerated the breakdown of germ-cell cysts and the assembly of primordial follicles in neonates, leading to oocyte over-loss. Furthermore, the expression levels of folliculogenesis-related genes (Kit, Nobox, Gdf9, Sohlh2, Kitl, Bmp15, Lhx8, Figla, and Tgfb1) decreased, thus compromising oocyte quality and disrupting early folliculogenesis dynamics. BPS also disrupted other aspects of offspring reproduction, including advancing puberty onset, disrupting the estrus cycle, and impairing fertility. Further investigation found that BPS exposure inhibited the activities and expression levels of antioxidant-related enzymes in neonatal ovaries, leading to the substantial accumulation of MDA and ROS. The increased oxidative burden exacerbated the intracellular apoptotic signaling, manifested by increased expression levels of pro-apoptotic markers (Bax, Caspase 3, and Caspase 9) and decreased expression levels of anti-apoptotic marker (Bcl2). Concurrently, BPS inhibited autophagy by increasing p-mTOR/mTOR and decreasing p-ULK1/ULK1, subsequently down-regulating autophagy flux-related biomarkers (LC3b/LC3a and Beclin-1) and impeding the degradation of autophagy substrate p62. However, the imbalanced crosstalk between autophagy, apoptosis and oxidative stress homeostasis was restored after rapamycin treatment. Collectively, the findings demonstrated that BPS exposure induced reproductive disorders in offspring by perturbing the mTOR/autophagy axis, and such autophagic dysfunction exacerbated redox imbalance and promoted excessive apoptosis. These results provide novel mechanistic insights into the role of autophagy in mitigating BPS-induced intergenerational reproductive dysfunction.
Collapse
Affiliation(s)
- Zhangshan Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Wanqiu He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yapei Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yixin Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yan Luo
- Administration for Market Regulation of Guangdong Province Key Laboratory of Supervision for Edible Agricultural Products, Shenzhen Centre of Inspection and Testing for Agricultural Products, Shenzhen, 518000, China
| | - Xizhi Shi
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
9
|
Liao K, Zhao Y, Qu J, Yu W, Hu S, Fang S, Zhao M, Jin H. Association of serum bisphenols, parabens, and triclosan concentrations with Sjögren Syndrome in the Hangzhou, China population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170031. [PMID: 38220002 DOI: 10.1016/j.scitotenv.2024.170031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/18/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Exposure to endocrine-disrupting chemicals (EDCs) has been linked to various immune deficiency disorders, including autoimmune diseases like Sjögren Syndrome (SjS). However, the detrimental effects of exposure to EDCs, including bisphenols, parabens, and triclosan (TCS), on SjS have been inadequately documented. Thus, we conducted a cross-sectional study that included both healthy individuals (controls) and patients with SjS (cases). We assessed serum concentrations of bisphenol A (BPA), bisphenol S (BPS), methyl parabens (MeP), ethyl parabens (EtP), and TCS. The relationship between the five EDCs levels and the risk of SjS was also explored. Additionally, we conducted an in-depth analysis of the collective influence of these EDCs mixtures on SjS, employing a weighted quantile sum regression model. Out of the five EDCs analyzed, EtP displayed the highest mean concentration (2.80 ng/mL), followed by BPA (2.66 ng/mL) and MeP (1.99 ng/mL), with TCS registering the lowest level (0.36 ng/mL). Notably, BPS exposure was significantly positively associated with the risk of being diagnosed with SjS (with an odds ratio [OR] of 1.17, p = 0.042). No statistically significant associations with SjS were observed for BPA, MeP, EtP, and TCS (p > 0.05). And we did not observe any significant effects of the EDCs mixture on SjS. To the best of our knowledge, this study is the first to suggest that BPS may potentially increase the risk of SjS. Although no significant effects were observed between other EDCs and SjS risk, we cannot disregard the potential harm of EDCs due to their non-monotonic dose response.
Collapse
Affiliation(s)
- Kaizhen Liao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Yun Zhao
- Department of Rheumatology, the Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, PR China
| | - Jianli Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Wenfei Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Shetuan Hu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Shuhong Fang
- College Resources & Environment, Chengdu University Information Technology, Chengdu 610225, PR China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China.
| |
Collapse
|
10
|
Yu M, Yang Z, Zhou Y, Guo W, Tian L, Zhang L, Li X, Chen J. Mode of action exploration of reproductive toxicity induced by bisphenol S using human normal ovarian epithelial cells through ERβ-MAPK signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116037. [PMID: 38301581 DOI: 10.1016/j.ecoenv.2024.116037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND In the plastics production sector, bisphenol S (BPS) has gained popularity as a replacement for bisphenol A (BPA). However, the mode of action (MOA) of female reproductive toxicity caused by BPS remains unclear and the safety of BPS is controversial. METHODS Human normal ovarian epithelial cell line, IOSE80, were exposed to BPS at human-relevant levels for short-term exposure at 24 h or 48 h, or for long-term exposure at 28 days, either alone or together with five signaling pathway inhibitors: ICI 18,2780 (estrogen receptor [ER] antagonist), G15 (GPR30 specific inhibitor), U0126 (extracellular regulated protein kinase [ERK] 1/2 inhibitor), SP600125 (c-Jun N-terminal kinase [JNK] inhibitor) or SB203580 (p38 mitogen‑activated protein kinase [p38MAPK] inhibitor). MOA through ERβ-MAPK signaling pathway interruption was explored, and potential thresholds were estimated by the benchmark dose method. RESULTS For short-term exposure, BPS exposure at human-relevant levels elevated the ESR2 and MAPK8 mRNA levels, along with the percentage of the G0/G1 phase. For long-term exposure, BPS raised the MAPK1 and EGFR mRNA levels, the ERβ, p-ERK, and p-JNK protein levels, and the percentage of the G0/G1 phase, which was partly suppressed by U0126. The benchmark dose lower confidence limit (BMDL) of the percentage of the S phase after 24 h exposure was the lowest among all the BMDLs of a good fit, with BMDL5 of 9.55 μM. CONCLUSIONS The MOA of female reproductive toxicity caused by BPS at human-relevant levels might involve: molecular initiating event (MIE)-BPS binding to ERβ receptor, key event (KE)1-the interrupted expression of GnRH, KE2-the activation of JNK (for short-term exposure) and ERK pathway (for long-term exposure), KE3-cell cycle arrest (the increased percentage of the G0/G1 phase), and KE4-interruption of cell proliferation (only for short-term exposure). The BMDL of the percentage of the S phase after 24 h exposure was the lowest among all the BMDLs of a good fit, with BMDL5 of 9.55 μM.
Collapse
Affiliation(s)
- Mengqi Yu
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhirui Yang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Yongru Zhou
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Wanqing Guo
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lin Tian
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lishi Zhang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Xiaomeng Li
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China.
| | - Jinyao Chen
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
11
|
Shang N, Yang Y, Xiao Y, Wu Y, Li K, Jiang X, Sanganyado E, Zhang Q, Xia X. Exposure levels and health implications of fungicides, neonicotinoid insecticides, triazine herbicides and their associated metabolites in pregnant women and men. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123069. [PMID: 38052341 DOI: 10.1016/j.envpol.2023.123069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
Exposure to pesticides can pose a series of advance effects on human health. However, the exposure levels and health implications of the current use pesticides and their metabolites in both men and pregnant women remain unclear. In this study, an analytical method was developed to quantify fungicides, neonicotinoid insecticides, triazine herbicides, and their metabolites in the human serum. Fifty of the 73 target pesticides and metabolites were detected in the human serum of men and pregnant women from Wuxi, China, which included 11 triazine herbicides and metabolites, 17 neonicotinoid insecticides and metabolites, and 22 fungicides. Fungicides had the highest cumulative concentration (49.5 ng/mL), followed by neonicotinoid insecticides and metabolites (6.38 ng/mL), and triazine herbicides and metabolites (5.10 ng/mL). Moreover, the estimated daily intake (EDI) of fungicides was 10.4 and 12.7 times higher than that of triazine herbicides (included their metabolites) and neonicotinoid insecticides (included their metabolites), respectively. Of the three categories of pesticides, exposure to fungicides contributed to the highest exposure risk within the hazard quotient in the range of 5.1 × 10-3-0.17. Correlation analysis revealed that the pesticide exposure levels in human serum were correlated with their maximum residue levels in vegetables and fruits. Pesticide exposure has also been correlated with the weight and Body Mass Index (BMI) of humans based on structural equation modeling. This study provides new insights into the exposure of men and pregnant women to a cocktail of fungicides, neonicotinoid insecticides, triazine herbicides and their metabolites.
Collapse
Affiliation(s)
- Nanxiu Shang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yingying Yang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yilin Xiao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yukang Wu
- Wuxi Center for Disease Control and Prevention, Jiangsu, 214023, China
| | - Kaixuan Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xiaoman Jiang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Edmond Sanganyado
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Qing Zhang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
12
|
Zhang X, Zhang X, Shi Y, Zhang Z, Wang J, Ru S, Tian H. Interacting with luteinizing hormone receptor provides a new elucidation of the mechanism of anti-androgenicity of bisphenol S. CHEMOSPHERE 2024; 350:141056. [PMID: 38158086 DOI: 10.1016/j.chemosphere.2023.141056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Bisphenol S (BPS) exhibited inhibitory effects on androgen synthesis, but its target of action remains unclear. We investigated the effects of BPS exposure at environmentally relevant concentrations (1 μg/L, 10 μg/L and 100 μg/L) for 48 h on androgen synthesis in rat ovarian theca cells and explored the underlying mechanisms, target site and target molecule. The results showed that BPS exposure inhibited the transcript levels of steroidogenic genes and reduced the contents of androgen precursors, testosterone and dihydrotestosterone. BPS exposure decreased the phosphorylation levels of extracellular signal-related kinase 1/2 (ERK1/2), and the inhibitory effects of BPS on testosterone content and steroidogenic gene expression were blocked by ERK1/2 agonist LY2828360, suggesting that ERK1/2 signaling pathway mediates the inhibitory effects of BPS on androgen synthesis. BPS mainly accumulated on the cell membrane, impermeable BPS-bovine serum albumin exposure still inhibited androgen synthesis, BPS interacted with rat luteinizing hormone receptor (LHR) via formation of hydrogen bonds in the transmembrane region, and the inhibitory effects of BPS on ERK1/2 phosphorylation were blocked by luteinizing hormone (the natural agonist of LHR), indicating that LHR located on the cell membrane is the target of action of BPS. This paper provides a new elucidation of the mechanism of anti-androgenicity of BPS, especially for the non-genomic pathways.
Collapse
Affiliation(s)
- Xinda Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaorong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yijiao Shi
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhenzhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
13
|
Fu L, Sun Y, Zhou J, Li H, Liang SX. Parabens, Triclosan and Bisphenol A in Surface Waters and Sediments of Baiyang Lake, China: Occurrence, Distribution, and Potential Risk Assessment. TOXICS 2023; 12:31. [PMID: 38250987 PMCID: PMC10819025 DOI: 10.3390/toxics12010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024]
Abstract
The extensive use of the parabens triclosan (TCS) and bisphenol A (BPA) has potential adverse effects on human health and aquatic organisms. However, their monitoring information in freshwater lakes is still limited. This study simultaneously summarized the concentrations, spatial distribution characteristics, and correlations of four types of parabens, TCS, and BPA in the surface water and sediment of Baiyang Lake. Finally, the potential risks of target pollutants were evaluated from two aspects: human health risks and ecological risks. The average contaminations of target compounds in surface water and sediment-BPA, TCS, and ∑4 parabens-was 33.1, 26.1, 0.7 ng/L and 24.5, 32.5, 2.5 ng/g, respectively. The total concentration of target compounds at the inlet of the upstream Fu River and Baigouyin River is significantly higher than that near Hunan and the outlet. In addition, Spearman's correlation analysis showed a significant positive correlation between compounds. The health hazards of target compounds in surface water were all within safe limits. However, the risk quotient results indicate that in some locations in surface water, TCS poses a high risk to algae and a moderate risk to invertebrates and fish, and appropriate attention should be paid to these areas.
Collapse
Affiliation(s)
- Liguo Fu
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; (L.F.); (Y.S.)
- Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China
| | - Yaxue Sun
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; (L.F.); (Y.S.)
- Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China
| | - Jingbo Zhou
- Baiyangdian Basin Eco-Environmental Support Center, Shijiazhuang 050056, China; (J.Z.)
| | - Hongbo Li
- Baiyangdian Basin Eco-Environmental Support Center, Shijiazhuang 050056, China; (J.Z.)
| | - Shu-xuan Liang
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; (L.F.); (Y.S.)
- Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China
| |
Collapse
|
14
|
Liang J, Xu C, Xu J, Yang C, Kong W, Xiao Z, Chen X, Liu Q, Weng Z, Wang J, Jiang G, Jiang Z, Gu A. PPARα Senses Bisphenol S to Trigger EP300-Mediated Autophagy Blockage and Hepatic Steatosis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21581-21592. [PMID: 38085933 DOI: 10.1021/acs.est.3c05010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The internal exposure dose of bisphenol S (BPS) is increasing since its use as a substitute for BPA. The relationship between BPS and nonalcoholic liver disease (NAFLD) and the underlying mechanism remain unclarified. In this study, we evaluated the correlation of BPS with NAFLD in populations from the Jiangsu Survey and the 2013-2016 National Health Nutrition Examination Survey and unraveled the molecular pathway by which BPS blocked hepatic autophagy, contributing to lipid accumulation. The study found that serum and urine BPS were associated with NAFLD risks in both the Chinese and US populations. For each additional unit of the BPS level, the NAFLD risk increased by 3.163-fold (serum) and 3.979-fold (urine) in the Chinese population. In addition, after BPS exposure at a dose equivalent to human exposure for 20 weeks, mice developed liver lipid accumulation. BPS could trigger PPARα-mediated transcriptional activation of EP300 expression. BPS promoted the translocation of EP300 from the nucleus to the cytoplasm to regulate the acetylation of Raptor and the activation of mTORC1, which in turn induced autophagy blockage and interfered with lipid degradation in hepatocytes. Conversely, knockdown of EP300 reduced Raptor acetylation and ameliorated autophagy blockage. This study demonstrated that EP300 was a key enzyme for the development of BPS-related NAFLD and provided novel evidence that BPS causes NAFLD.
Collapse
Affiliation(s)
- Jingjia Liang
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Cheng Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Jin Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Changjie Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Weirui Kong
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhihao Xiao
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiu Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhenkun Weng
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Jun Wang
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China
| | - Zhaoyan Jiang
- Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200000, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
15
|
Xu S, Guo L, Ding W, Chen Y, Chen Y, Yu Z, Xu L, Jing Q, Chen K, Li J, Wang H. Fate and transformation of uniformly 14C-ring-labeled bisphenol S in different aerobic soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167166. [PMID: 37730034 DOI: 10.1016/j.scitotenv.2023.167166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Bisphenol S (BPS), being structurally similar to bisphenol A (BPA), has been widely used as an alternative to BPA in industrial applications. However, in-depth studies on the environmental behavior and fate of BPS in various soils have been rarely reported. Here, 14C-labeled BPS was used to investigate its mineralization, bound residues (BRs) formation and extractable residues (ERs) in three soils for 64 days. Significant differences were found in the dissipation rates of BPS in three soils with different pH values. The dissipation of BPS followed pseudo first-order kinetics with half-lives (T1/2) of 15.2 ± 0.1 d, 27.0 ± 0.2 d, 180.4 ± 5.3 d, and 280.5 ± 3.3 d in the alkaline soil (fluvo-aquic soil, FS), the neutral soil (cinnamon soil, CS), the acidic soil (red soil, RS), and sterilized cinnamon soil (CS-S), respectively. The mineralization and BRs formation contributed the most to the dissipation of BPS in soil. BPS was persistent in acidic soil, and may pose a significant threat to plants grown in acidic soils. Additionally, soil microorganisms played a key role in BPS degradation, and the organic matter content might be a major factor that promotes the adsorption and degradation of BPS in soils. Two transformed products, P-hydroxybenzenesulfonic acid and methylated BPS were identified in soils. This study provides new insights into the fate of BPS in various soils, which will be useful for risk assessments of BPS in soil.
Collapse
Affiliation(s)
- Shengwei Xu
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Longxiu Guo
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenya Ding
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yandao Chen
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan Chen
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhiyang Yu
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lei Xu
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qing Jing
- Shenzhen Zhonghe Headway Bio-Sci & Tech Co., Ltd., Shenzhen 518057, China
| | - Kai Chen
- Shenzhen Zhonghe Headway Bio-Sci & Tech Co., Ltd., Shenzhen 518057, China
| | - Juying Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Haiyan Wang
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
16
|
Li J, Li Z, Zhu Y, Peng H, Du Z, Ru S, Wang W. Bisphenol S remodels red blood cell membrane lipids by altering plasma lipid levels, causing the risk of venous thrombosis in SD rats and zebrafish embryos. ENVIRONMENT INTERNATIONAL 2023; 182:108331. [PMID: 37995390 DOI: 10.1016/j.envint.2023.108331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/27/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Bisphenol S (BPS) is a raw material that is used extensively in various manufacturing processes but possesses a high detection rate in human red blood cells (RBCs). Accordingly, BPS is a potential toxicant in disturbing the function of RBCs and causing RBC-related diseases. To date, the effects and mechanisms of BPS-induced RBC-related diseases have not been elucidated. Here, using different models, including rats, zebrafish embryos and RBCs, the underlying mechanism of RBC-related diseases induced by BPS was explored. The accumulation of BPS in tissue was colon > kidney > liver > plasma > testicle > heart > brain in SD rats orally administered BPS (10 and 50 mg/kg bw/day) for 32 days, which was similar in both 10 mg/kg bw/day and 50 mg/kg bw/day group. Rats given BPS orally developed hyperlipidemia and increased RBC membrane cholesterol, as well as changes in RBC morphology and function. Moreover, BPS at the concentrations measured in rats plasma caused oxidative stress and phosphatidylserine exposure in vitro RBCs. These combined factors led to RBC aggregation in blood and an increasing in the number of RBCs in the blood vessels of the liver in rats. The dynamic visual observation of RBCs in vein vessels of zebrafish embryos exposed to BPS at 0, 1, 10 and 100 μg/L further found that the flow of RBCs in the tail vein is slow or even immobile, posing the risk of venous thrombosis. The present study provides new insight into the links between environmental pollutants and venous thrombosis.
Collapse
Affiliation(s)
- Jiali Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ze Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yaxuan Zhu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Hongyuan Peng
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zehui Du
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
17
|
Gao Q, Huan C, Song Y, Jia Z, Cao Q, Wang C, Mao Z, Huo W. Exposure Profile and Characteristics of Parabens and Alkylphenols in Plasma among Rural Adults in Central China. TOXICS 2023; 11:926. [PMID: 37999578 PMCID: PMC10675222 DOI: 10.3390/toxics11110926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/29/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Parabens and alkylphenols pose serious hazards to human health, yet there are few studies on their exposure profiles and health risks in rural Chinese populations. In this study, 804 participants were selected from the Henan Rural Cohort in mid-eastern China. The plasma levels of parabens (methylparaben, ethylparaben, propylparaben, butylparaben (BuP)) and alkylphenols (4-tert-butylphenol (4-t-BP), 4-tert-octylphenol (4-t-OP)) were analyzed via liquid chromatography-tandem mass spectrometry. Linear regression models were used to investigate factors that may influence pollutant exposure levels. The correlation between contaminants was assessed using Spearman's correlation. The human contaminant intake was estimated using the estimated daily intake (EDI). The health risk was assessed using the hazard quotient (HQ). The detection frequency of four parabens and two alkylphenols exceeded 75%, with median concentrations of 0.444, 0.067, 0.078, 0.053, 8.810, and 6.401 ng/mL, respectively. Significant correlations were observed between parabens, as well as between 4-t-BP and 4-t-OP. Regarding gender, paraben concentrations were higher in women than in men, except for BuP. The EDI for pollutants except 4-t-OP was lower than their respective tolerable/acceptable daily intake. In total, 85.70% of participants had 4-t-OP HQ > 1. A widespread exposure to parabens and alkylphenols among the rural population was found. The high health risks of alkylphenol exposure indicate that alkylphenols should be used with caution.
Collapse
Affiliation(s)
- Qian Gao
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China (Z.J.)
| | - Changsheng Huan
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China (Z.J.)
| | - Yu Song
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China (Z.J.)
| | - Zexin Jia
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China (Z.J.)
| | - Qingqing Cao
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China (Z.J.)
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (C.W.)
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (C.W.)
| | - Wenqian Huo
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China (Z.J.)
| |
Collapse
|
18
|
Li Z, Ru S, Li J, Yang Y, Wang W. Continuous exposure to bisphenol S increases the accumulation of endogenous metabolic toxicants by obstructing the glucuronic acid pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122433. [PMID: 37659633 DOI: 10.1016/j.envpol.2023.122433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/31/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
Uridine diphosphate glucuronic acid (UDPGA) is an essential substrate in the glucuronidation of exogenous and endogenous lipophilic compounds via the liver glucuronic acid pathway, and its synthesis depends on glucose and energy in the body. Bisphenol S (BPS), as a lipophilic environmental pollutant, has been widely utilized in the manufacturing of daily necessities. The biological effect of BPS in interference with liver energy metabolism might affect UDPGA synthesis and the excretion of lipophilic compounds, but this was not clearly revealed. Here, female zebrafish that were exposed to BPS for 35 days exhibited a significant decrease in UDPGA in the liver with significant accumulation of exogenous BPS and endogenous bilirubin in the body. One vital reason may be that the exposure to BPS for 35 days promoted the lipid formation through PPARg signaling and reduced energy levels in the liver, resulting in the decreased raw materials for UDPGA production in glucuronic acid pathway. Meanwhile, transcriptome analysis showed that BPS inhibited the mRNA expression levels of genes related to the glucuronic acid pathway. The accumulation of endogenous and exogenous lipophilic compounds can trigger a variety of toxicological effect. Thus, weakened liver detoxification might be the primary cause of the toxicological effects of lipophilic pollutants.
Collapse
Affiliation(s)
- Ze Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jiali Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yunjia Yang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
19
|
Wei S, Qiu L, Ru S, Yang Y, Wang J, Zhang X. Bisphenol S disrupts opsins gene expression and impairs the light-sensing function via antagonizing TH-TRβ signaling pathway in zebrafish larvae. Food Chem Toxicol 2023; 172:113588. [PMID: 36574878 DOI: 10.1016/j.fct.2022.113588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Bisphenol S (BPS) is extensively used in "bisphenol A-free" products such as baby bottles. Although the visual toxicity of BPS has been reported, the underlying mechanism was largely unknown. In the present study, zebrafish were exposed to 0, 4 and 400 nM BPS from 2 h post-fertilization (hpf) to 120 hpf to further explore the thyroid disruption mechanism underlying the BPS induced impairment of visual function. The results showed that BPS decreased T3 levels in larval eyes, induced retinal expression of thyroid hormone receptor β (TRβ), and thereby down-regulated the expression of TH-mediated opsin genes (opn1lw1, opn1lw2, opn1mw1, opn1mw2, opn1mw3, and opn1sw2) and impaired subsequent phototransduction pathways, leading to decreased visually mediated phototactic response and body color adaptation but stimulated visual motor response (VMR). Combining exposure of exogenous T3 or 1-850 (antagonist for TRβ) with BPS could partly compensate the inhibited expression of opsin genes (opn1mw2, opn1lw1, and opn1lw2) and alleviate the hyperactivity of larval VMR caused by BPS alone, suggesting that BPS disrupted the opsins expression and also light-sensing function via antagonizing TH-TRβ signaling pathway. This study underlined the importance of TH signaling in regulating the proper vision and proposed a novel mechanism for the visual toxicity of BPS.
Collapse
Affiliation(s)
- Shuhui Wei
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, PR China
| | - Liguo Qiu
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, PR China
| | - Shaoguo Ru
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, PR China
| | - Yang Yang
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, PR China
| | - Jun Wang
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, PR China
| | - Xiaona Zhang
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, PR China.
| |
Collapse
|
20
|
Czarny-Krzymińska K, Krawczyk B, Szczukocki D. Bisphenol A and its substitutes in the aquatic environment: Occurrence and toxicity assessment. CHEMOSPHERE 2023; 315:137763. [PMID: 36623601 DOI: 10.1016/j.chemosphere.2023.137763] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Bisphenol A is classified as a high production volume chemical commonly used in the manufacture of polycarbonate plastics, epoxy resins and thermal paper. The endocrine disrupting properties of this xenobiotic have led to the restriction and prohibition of its use in many consumer products. To date, many chemical compounds with a chemical structure similar to bisphenol A have been used in consumer products as its replacement. The ubiquitous occurrence of bisphenol A and its substitutes in the environment and their endocrine activity as well as adverse effects on aquatic organisms is a global concern, especially because many available literature reports show that many substitutes (e.g. bisphenol AF, bisphenol AP, bisphenol B, bisphenol C, bisphenol F, bisphenol G, bisphenol FL, tetrabromobisphenol A) exert adverse effects on aquatic organisms, similar to, or even stronger than bisphenol A. Therefore, the objective of this paper is to provide a comprehensive overview of the production, sources, occurrence and associated toxicity, as well as the endocrine activity of bisphenol A and its substitutes on aquatic species. The environmental levels and ecotoxicological data presented in this review allowed for a preliminary assessment and prediction of the risk of bisphenol A and its substitutes for aquatic organisms. Furthermore, the data collected in this paper highlight that several compounds applied in bisphenol A-free products are not safe alternatives and regulations regarding their use should be introduced.
Collapse
Affiliation(s)
- Karolina Czarny-Krzymińska
- Laboratory of Environmental Threats, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 91-403, Lodz, Tamka 12, Poland.
| | - Barbara Krawczyk
- Laboratory of Environmental Threats, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 91-403, Lodz, Tamka 12, Poland
| | - Dominik Szczukocki
- Laboratory of Environmental Threats, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 91-403, Lodz, Tamka 12, Poland
| |
Collapse
|
21
|
Li M, Li T, Yin J, Xie C, Zhu J. Evaluation of toxicological effects of bisphenol S with an in vitro human bone marrow mesenchymal stem cell: Implications for bone health. Toxicology 2023; 484:153408. [PMID: 36565802 DOI: 10.1016/j.tox.2022.153408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
As the use of bisphenol A (BPA) has been restricted in consumer products, bisphenol S (BPS) is one major alternative to BPA for various materials, leading to growing concerns about its health risks in human beings. However, little is known about the toxic effects of BPS on bone health. We employed human bone marrow mesenchymal stem cells (hBMSCs) for the in vitro assessment of BPS on cell proliferation, differentiation, and self-renewal. Our study revealed that BPS at concentrations of 10-10-10-7 M increased cell viability but induced the morphological changes of hBMSCs. Moreover, BPS decreased ROS generation and increased Nrf2 expression. Furthermore, BPS not only activated ERα/β expression but also increased β-catenin expression and induced the replicative senescence of hBMSCs. Furthermore, we found that the upregulation of β-catenin induced by BPS was mediated, in part, by ER signaling. Overall, our results suggested BPS exposure caused the homeostatic imbalance of hBMSCs.
Collapse
Affiliation(s)
- Mei Li
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China; School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Tenglong Li
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Juan Yin
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Jianyun Zhu
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China.
| |
Collapse
|
22
|
Li Z, Wang W, Li J, Ru S. New insight on the mechanism of eating disorder in females based on metabolic differences of bisphenol S in female and male zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120820. [PMID: 36493936 DOI: 10.1016/j.envpol.2022.120820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/15/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
The different capacity of glucuronic acid metabolism might lead to the difference of bisphenol S (BPS) residual in tissues of male and female zebrafish. This may be the fundamental reason why BPS causes different effects in females and males. Here, adult zebrafish are exposed to 1, 10 and 100 μg/L BPS for 35 days to explore the main effect on females. After exposure, the liver of females showed stronger BPS metabolism ability than males, resulting in the accumulation of BPS in the gut of females. The results of neurotransmitters in gut of females revealed that the content of serotonin was decreased by BPS treatments. In addition, the mRNA expression levels of tryptophan 5-monooxygenase (Tph1) that regulated serotonin synthesis was reduced in gut of females in all BPS groups, and Tph1 protein has very high affinity with BPS molecule. Adult females treated with BPS exhibited symptoms including overeating, a decrease of serotonin in the gut, hypoglycemia and hyperlipidemia, a similar effect of Tph1 protein inhibitor LP533401 on adult females. This hypoglycemia stimulates brain agrp/pomc and orexin neurons to induce overfeeding behavior, causing intestinal homeostasis imbalance and hyperlipidemia. Our data elucidate a potential pathogenesis of eating disorder under pollutant stress.
Collapse
Affiliation(s)
- Ze Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jiali Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
23
|
Wang W, Li Z, Zhang X, Zhang J, Ru S. Bisphenol S Impairs Behaviors through Disturbing Endoplasmic Reticulum Function and Reducing Lipid Levels in the Brain of Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:582-594. [PMID: 36520979 DOI: 10.1021/acs.est.2c07828] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The number of neurotoxic pollutants is increasing, but their mechanism of action is unclear. Here, zebrafish were exposed to 0, 1, 10, and 100 μg/L bisphenol S (BPS) for different durations beginning at 2 h postfertilization (hpf) to explore the neurotoxic mechanisms of BPS. Zebrafish larvae exposed to BPS displayed abnormal neurobehaviors. At 48 and 120 hpf, BPS inhibited yolk lipid consumption and reduced the lipid distribution in the zebrafish brain. Moreover, BPS downregulated the mRNA levels of genes involved in fatty acid elongation in the endoplasmic reticulum (ER) and activated ER stress pathways at 48 and 120 hpf, and KEGG analysis after RNA-seq showed that the protein processing pathway in the ER was significantly enriched after BPS exposure. Exposure to ER toxicants (thapsigargin and tunicamycin), two positive controls, induced neurotoxic effects on zebrafish embryos and larvae similar to those of BPS exposure. These data suggested that BPS and ER toxicants disturbed ER function and reduced brain lipid levels. Continued exposure to BPS into adulthood not only inhibited brain fatty acid elongation and ER function but also caused abnormal swelling of the ER in zebrafish. Our data provide new insights into the neurotoxic mechanism of BPS.
Collapse
Affiliation(s)
- Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ze Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jie Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
24
|
Zhang L, Cheng Y, Qian Y, Ding T, Li J. Phytotoxicity and accumulation of BPS to Pistia stratiotes under the influence of microplastics. CHEMOSPHERE 2022; 307:135854. [PMID: 35952788 DOI: 10.1016/j.chemosphere.2022.135854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/23/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol S (BPS) is a contaminant of emerging concern, its exposure and phytotoxicity towards plants, however, is scarce. This study aimed at revealing the BPS translocation in plants and phytotoxicity in the presence of Polystyrene (PS) microplastics. Results found that BPS and PS showed no effect on plant growth, indicating the tolerance of plants towards BPS and PS co-contamination. In addition, plants enriched BPS from soil, and a major part of absorbed BPS was accumulated in roots, as supported by the higher BCF value in roots compared with leaves. Besides, the low TF (<1) suggested the capacity of plants to accumulate BPS in roots, and less translocation to leaves. PS negatively affected the translocation of BPS in plants. PS with large size (5 μm) also increased the distribution of BPS in organelles. Exposure risk assessment suggested low concern of BPS carried in plants to human health. This study underlines the bioaccumulation of BPS in plants, and the effects of PS in the translocation process.
Collapse
Affiliation(s)
- Lili Zhang
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yanan Cheng
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yiguang Qian
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tengda Ding
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Juying Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
25
|
Zhang J, Wang W, Li P, Li Z, Hao L, Zhang X, Ru S. Bisphenol S induces cardiovascular toxicity by disturbing the development of the common cardinal vein and myocardial contractility in zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 251:106294. [PMID: 36116344 DOI: 10.1016/j.aquatox.2022.106294] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol S (BPS) has been widely used as a substitute for bisphenol A in industrial manufacturing. However, the safety of BPS is controversial, and the mechanism by which BPS exerts cardiovascular toxicity remains unclear. In this study, zebrafish embryos, including wild-type zebrafish and transgenic (flk1:eGFP), (gata1:DsRed) and (cmlc2:eGFP) zebrafish at 2 h postfertilization (hpf), were exposed to BPS at concentrations of 1, 10 and 100 μg/L for 24, 48 and 72 h, respectively. The data showed that BPS accelerated the expansion of the common cardinal vein and inhibited lumen formation between 24 hpf and 72 hpf. Moreover, low-dose BPS disturbed cardiac muscle contraction by breaking the calcium balance in cardiac muscle cells according to the RNA-seq results. As a consequence, increased heart rate and irregular blood circulation were observed in the BPS treatment groups. This result suggested that BPS at environmental relevant concentrations caused cardiovascular toxicity during the development of zebrafish embryos, possibly being an important inducer of cardiovascular injury later in life. These findings provide insight into the rational and safe application of BPS.
Collapse
Affiliation(s)
- Jie Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Peng Li
- Shandong Gold Group Co., Ltd, Jinan 250100, China
| | - Ze Li
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Liping Hao
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China.
| |
Collapse
|
26
|
Rezg R, Oral R, Tez S, Mornagui B, Pagano G, Trifuoggi M. Cytogenetic and developmental toxicity of bisphenol A and bisphenol S in Arbacia lixula sea urchin embryos. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1087-1095. [PMID: 35838932 PMCID: PMC9458557 DOI: 10.1007/s10646-022-02568-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 06/02/2023]
Abstract
Bisphenol S (BP-S) is one of the most important substitutes of bisphenol A (BP-A), and its environmental occurrence is predicted to intensify in the future. Both BP-A and BP-S were tested for adverse effects on early life stages of Arbacia lixula sea urchins at 0.1 up to 100 µM test concentrations, by evaluating cytogenetic and developmental toxicity endpoints. Embryonic malformations and/or mortality were scored to determine embryotoxicity (72 h post-fertilization). It has been reported in academic dataset that bisphenols concentration reached μg/L in aquatic environment of heavily polluted areas. We have chosen concentrations ranging from 0.1-100 μM in order to highlight, in particular, BP-S effects. Attention should be paid to this range of concentrations in the context of the evaluation of the toxicity and the ecological risk of BP-S as emerging pollutant. Cytogenetic toxicity was measured, using mitotic activity and chromosome aberrations score in embryos (6 h post-fertilization). Both BP-A and BP-S exposures induced embryotoxic effects from 2.5 to 100 µM test concentrations as compared to controls. Malformed embryo percentages following BP-A exposure were significantly higher than in BP-S-exposed embryos from 0.25 to 100 µM (with a ~5-fold difference). BP-A, not BP-S exhibited cytogenetic toxicity at 25 and 100 µM. Our results indicate an embryotoxic potential of bisphenols during critical periods of development with a potent rank order to BP-A vs. BP-S. Thus, we show that BP-A alternative induce similar toxic effects to BP-A with lower severity.
Collapse
Affiliation(s)
- Raja Rezg
- University of Monastir, ISBM, Biolival LR-14ES06, TN-5000, Monastir, Tunisia
| | - Rahime Oral
- Faculty of Fisheries, Ege University, TR-35100, İzmir, Turkey
| | - Serkan Tez
- Faculty of Fisheries, Ege University, TR-35100, İzmir, Turkey
| | - Bessem Mornagui
- Faculty of Sciences of Gabes, LR-18ES36, University of Gabes, TN-6072, Zrig, Gabes, Tunisia
| | - Giovanni Pagano
- Department of Chemical Sciences, Federico II Naples University, I-80126, Naples, Italy.
| | - Marco Trifuoggi
- Department of Chemical Sciences, Federico II Naples University, I-80126, Naples, Italy
| |
Collapse
|
27
|
Li YZ, Wu ZY, Zhu BQ, Wang YX, Kan YQ, Zeng HC. The BDNF-TrkB-CREB Signalling Pathway Is Involved in Bisphenol S-Induced Neurotoxicity in Male Mice by Regulating Methylation. TOXICS 2022; 10:toxics10080413. [PMID: 35893846 PMCID: PMC9331819 DOI: 10.3390/toxics10080413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023]
Abstract
Bisphenol S (BPS), the most common substitute for bisphenol A in manufacturing, is associated with neurotoxicity, but its molecular mechanisms are unclear. Here, we studied the role of the BDNF-TrkB-CREB (brain-derived neurotrophic factor-tropomyosin-related kinase B-CAMP response element-binding protein) signalling pathway in bisphenol S-induced neurotoxicity via methylation regulation in male C57BL/6 mice. The mice were treated with sesame oil or 2, 20 and 200 mg/kg body weight BPS for 28 consecutive days, and the hippocampus was extracted. We recorded the body weight, organ index, and hippocampal pathology and ultrastructure of the mice. The BDNF, TrkB, CREB, phosphorylated (p)-CREB, DNMTs (DNA methyltransferases) levels were determined by qRT-PCR and/or Western blotting. BDNF promoter IV methylation level was detected by bisulfite sequencing PCR. BPS damaged the mouse hippocampus ultrastructure and reduced the number of synapses. Further, it increased the methylation rate of BDNF promoter IV; downregulated BDNF, CREB, p-CREB/CREB and DNMT1 expression; and upregulated DNMT3a and DNMT3b expression. Therefore, we speculate that the BDNF-TrkB-CREB pathway may be involved in BPS-induced neurotoxicity in male mice by regulating methylation.
Collapse
Affiliation(s)
- Yi-Zhou Li
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, China; (Y.-Z.L.); (Z.-Y.W.); (Y.-X.W.); (Y.-Q.K.)
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin 541199, China
- Department of Environmental and Occupational Health, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Zi-Yao Wu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, China; (Y.-Z.L.); (Z.-Y.W.); (Y.-X.W.); (Y.-Q.K.)
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin 541199, China
- Department of Environmental and Occupational Health, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Bi-Qi Zhu
- Department of Preventive Medicine, School of Public Health, University of South China, Hengyang 421001, China;
| | - Yu-Xiao Wang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, China; (Y.-Z.L.); (Z.-Y.W.); (Y.-X.W.); (Y.-Q.K.)
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin 541199, China
- Department of Environmental and Occupational Health, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Ya-Qi Kan
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, China; (Y.-Z.L.); (Z.-Y.W.); (Y.-X.W.); (Y.-Q.K.)
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin 541199, China
- Department of Environmental and Occupational Health, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Huai-Cai Zeng
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, China; (Y.-Z.L.); (Z.-Y.W.); (Y.-X.W.); (Y.-Q.K.)
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin 541199, China
- Department of Environmental and Occupational Health, School of Public Health, Guilin Medical University, Guilin 541199, China
- Correspondence:
| |
Collapse
|
28
|
Salahinejad A, Attaran A, Meuthen D, Rachamalla M, Chivers DP, Niyogi S. Maternal exposure to bisphenol S induces neuropeptide signaling dysfunction and oxidative stress in the brain, and abnormal social behaviors in zebrafish (Danio rerio) offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154794. [PMID: 35341835 DOI: 10.1016/j.scitotenv.2022.154794] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Recent studies show that bisphenol S (BPS) induces multiple adverse effects in exposed organisms; however, the maternal effects of BPS exposure remain poorly understood. Here, we expose adult female zebrafish to environmentally relevant concentrations of BPS (0, 1, 10, 30 μg/L) and 1 μg/L of 17-β-estradiol (E2) as a positive control for 60 days. Females were then paired with BPS-unexposed males and their offspring were raised in control water for 6 months. Maternal exposure to BPS was found to alter social behavior and anxiety response in a dose-specific manner in male offspring. Group preferences and social cohesion were significantly reduced by maternal exposure to 1 and 10 μg/L BPS, respectively. Additionally, maternal exposure to 1 and 30 μg/L BPS and E2 decreased offspring stress responses during the novel tank test. The impaired social behavior was associated with elevated arginine-vasotocin (AVT) level as well as with the altered expression of genes involved in AVT signaling pathway (AVT, avpr1aa) and enzymatic antioxidant genes (cat and Mn-sod) in the brain. Collectively, these results suggest that maternal exposure to environmentally relevant concentrations of BPS alters social behavior in zebrafish offspring, which is likely mediated by oxidative stress and disruption of neuropeptide signaling pathways in the brain.
Collapse
Affiliation(s)
- Arash Salahinejad
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada.
| | - Anoosha Attaran
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Denis Meuthen
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Evolutionary Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| |
Collapse
|
29
|
Tang S, Sun X, Qiao X, Cui W, Yu F, Zeng X, Covaci A, Chen D. Prenatal Exposure to Emerging Plasticizers and Synthetic Antioxidants and Their Potency to Cross Human Placenta. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8507-8517. [PMID: 35674357 DOI: 10.1021/acs.est.2c01141] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gestational exposure to environmental chemicals and subsequent permeation through the placental barrier represents potential health risks to both pregnant women and their fetuses. In the present study, we explored prenatal exposure to a suite of 46 emerging plasticizers and synthetic antioxidants (including five transformation products of 2,6-di-tert-butyl-4-hydroxytoluene, BHT) and their potency to cross human placenta based on a total of 109 maternal and cord serum pairs. Most of these chemicals have rarely or never been investigated for prenatal exposure and associated health risks. Eleven of them exhibited detection frequency greater than 50% in maternal blood, including dibutyl fumarate (DBF), 2,6-di-tert-butylphenol (2,4-DtBP), 1,3-diphenylguanidine (DPG), methyl-2-(benzoyl)benzoate (MBB), triethyl citrate (TEC), BHT, and its five metabolites, with a median concentration from 0.05 to 3.1 ng/mL. The transplacental transfer efficiency (TTE) was determined for selected chemicals with valid measurements in more than 10 maternal/cord blood pairs, and the mean TTEs exhibited a large variation (i.e., 0.29-2.14) between chemicals. The determined TTEs for some of the target chemicals were comparable to the predicted values by our previously proposed models developed from molecular descriptors, indicating that their transplacental transfer potency could be largely affected by physicochemical properties and molecular structures. However, additional biological and physiological factors may influence the potency of environmental chemicals to cross human placenta. Overall, our study findings raise concern on human exposure to an increasing list of plastic additives during critical life stages (e.g., pregnancy) and potential health risks.
Collapse
Affiliation(s)
- Shuqin Tang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiangfei Sun
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xinhang Qiao
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Wenxuan Cui
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Feixiang Yu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiaowen Zeng
- Department of Environmental and Occupational Health, School of Public Health, Sun Yat-Sen University, 510080 Guangzhou, China
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| |
Collapse
|
30
|
Mahai G, Wan Y, Xia W, Wang A, Qian X, Li Y, He Z, Li Y, Xu S. Exposure assessment of neonicotinoid insecticides and their metabolites in Chinese women during pregnancy: A longitudinal study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151806. [PMID: 34808166 DOI: 10.1016/j.scitotenv.2021.151806] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Neonicotinoid insecticides (NNIs) are the most widely used insecticides globally and ubiquitous in the environment, which has led to widespread human exposure. However, studies on internal exposure levels of NNIs and their metabolites in pregnant women are scarce. In this study, we measured nine parent NNIs and ten main metabolites in 1224 urine samples donated by 408 pregnant women at three trimesters. In the urine samples, the unadjusted vs. specific gravity (SG) adjusted median concentrations and detection frequencies (DFs) of desmethyl-acetamiprid (DM-ACE; 1.01 vs. 1.08 ng/mL; DF: 99.7%), 5-hydroxy-imidacloprid (5-hydroxy-IMI; 0.54 vs. 0.56 ng/mL; 98.5%), imidacloprid-olefin (IMI-olefin; 0.41 vs. 0.44 ng/mL; 99.3%), and desnitro-imidacloprid (DN-IMI; 0.12 vs. 0.12 ng/mL; 90.4%) were higher than their corresponding parent NNIs, acetamiprid (ACE; <0.01 vs. <0.01 ng/mL; 26.4%) and imidacloprid (IMI; 0.04 vs. 0.04 ng/mL; 69.9%). The unadjusted and SG-adjusted median concentrations of clothianidin (CLO), thiamethoxam (THM), and desmethyl-clothianidin (DM-CLO) were 0.05 vs. 0.07, 0.05 vs. 0.06, and 0.04 vs. 0.05 ng/mL, with the DFs of 61.0%, 57.5%, and 75.7%, respectively. The cumulative exposure level, imidacloprid-equivalent total NNIs (IMIeq), was generated by the relative potency factor approach considering the toxic effects of NNIs and their metabolites. The unadjusted IMIeq varied from 0.17 ng/mL (SG-adjusted: 0.20) to 1969 ng/mL (SG-adjusted: 1817) with a median of 14.1 ng/mL (SG-adjusted: 14.1). A decreased trend was observed in urinary NNIs and their metabolites throughout the three trimesters. Maternal age, educational level, and household income were related to the concentrations of NNIs and their metabolites. DM-ACE, 5-hydroxy-IMI, and IMI-olefin were significantly lower in winter than in autumn; DN-IMI, THM, CLO, and DM-CLO were significantly higher in both summer and autumn than in winter. The maximum estimated daily intake of IMIeq [34.8 μg/kg-body weight (bw)/d] was lower than the chronic reference dose of IMI (57 μg/kg-bw/d) currently recommended by the United States Environmental Protection Agency. Human health risk of exposure to NNIs and their main metabolites warranted further studies.
Collapse
Affiliation(s)
- Gaga Mahai
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei 430024, PR China.
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Aizhen Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Xi Qian
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Ying Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Zhenyu He
- Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei 430024, PR China.
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
31
|
Dias P, Tvdrý V, Jirkovský E, Dolenc MS, Peterlin Mašič L, Mladěnka P. The effects of bisphenols on the cardiovascular system. Crit Rev Toxicol 2022; 52:66-87. [PMID: 35394415 DOI: 10.1080/10408444.2022.2046690] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bisphenols, endocrine disrupting chemicals, have frequently been used for producing food packaging materials. The best-known member, bisphenol A (BPA), has been linked to impaired foetal development in animals. Possible negative effects of BPA on human health have resulted in the production of novel, so-called next-generation (NextGen) bisphenols whose effects on humans are much less explored or even missing. This review aimed to summarise and critically assess the main findings and shortages in current bisphenol research in relation to their potential impact on the cardiovascular system in real biological exposure. Because of the common presence of bisphenols in daily use products, humans are clearly exposed to these compounds. Most data are available on BPA, where total serum levels (i.e. included conjugated metabolite) can reach up to ∼430 nM, while free bisphenol levels have been reported up to ∼80 nM. Limited data are available for other bisphenols, but maximal serum levels of bisphenol S have been reported (680 nM). Such levels seem to be negligible, although in vitro studies have showed effects on ion channels, and thyroid, oestrogenic and androgenic receptors in low micromolar concentrations. Ex vivo studies suggest vasodilatory effects of bisphenols. This stays in clear contrast to the elevation of arterial blood pressure documented in vivo and in observatory cross-sectional human studies. Bisphenols are also claimed to have a negative effect on lipidic spectrum and coronary artery disease. Regardless, the reported data are generally inconsistent and unsatisfactory. Hence novel well-designed studies, testing in particular NextGen bisphenols, are needed.
Collapse
Affiliation(s)
- Patrícia Dias
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Václav Tvdrý
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Eduard Jirkovský
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | | | | | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
32
|
Wang W, Zhang J, Li Z, Gu J, Qin J, Li J, Zhang X, Ru S. Bisphenol S exposure accelerates the progression of atherosclerosis in zebrafish embryo-larvae. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128042. [PMID: 34942454 DOI: 10.1016/j.jhazmat.2021.128042] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Bisphenol S (BPS), widely utilized in manufacturing of daily necessities, is a toxicant with potential to induce atherosclerotic cardiovascular disease (ASCVD). However, the mode of action by which BPS exposure induces ASCVD remains unknown. Here, macrophages that were exposed to BPS in combination with oxidized low-density lipoprotein (oxLDL) exhibited enhanced formation of foam cells, a hallmark of ASCVD. Furthermore, zebrafish embryo-larvae were exposed to BPS (0, 1, 10 and 100 μg/L) for 15 days (d) and the characteristic symptoms of ASCVD including an inflammatory response, macrophage recruitment around blood vessels, and accumulation of oxLDL on vascular endothelium, were induced in 15-d larvae. After zebrafish were exposed to BPS for 45 d, BPS mobilized fatty acid metabolism and activated peroxisome proliferator-activated receptor signaling in larval liver, the hub of endogenous lipid metabolism, causing an increase in plasma LDL. Driven by high plasma LDL levels, the caudal artery of zebrafish larvae exhibited lipid accumulation and a thickened area with a large number of collagen fibers, accompanied by characteristic lesions, as well as hyperlipidemia, erythrocyte aggregation, thinner blood vessel walls and increased levels of leukocytes and thromboocytes in plasma. Our data demonstrate that BPS accelerates the progression of ASCVD using zebrafish embryo-larvae as a model.
Collapse
Affiliation(s)
- Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jie Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Ze Li
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jie Gu
- Nanjing Institute of Environmental Sciences, Nanjing 210000, China
| | - Jingyu Qin
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jiali Li
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| |
Collapse
|
33
|
Mao W, Mao L, Zhao N, Zhang Y, Zhao M, Jin H. Disposition of Bisphenol S metabolites in Sprague-Dawley rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152288. [PMID: 34902425 DOI: 10.1016/j.scitotenv.2021.152288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/09/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Bisphenol S (BPS), a primary bisphenol A (BPA) substitute, has shown a comparable estrogenic activity to BPA. To comprehensively evaluate the toxic effect of human BPS exposure, it is necessary to understand the occurrence of free BPS and its conjugated metabolites in human internal tissues, but which remains unclear. In this study, Sprague-Dawley rats were orally and continuously dosed at 500 μg/kg/day to mimic the actual human BPS exposure scenario, and then free BPS and its conjugated metabolites were analyzed in rat internal tissues, blood, and excreta. Results showed that concentrations of free BPS and its metabolites in most rat tissues, excreta, and blood reached the steady state after 9 days of continuous BPS dosage. In rat urine, 81-84% of BPS was present in the conjugated form, with BPS glucuronide (BPS-G) and BPS sulfate (BPS-S) accounting for mean 83% and 16% of total conjugated BPS, respectively. In rat blood, mean 55% of total BPS was present in the conjugated form, with BPS-G (2.4-2.8 ng/mL) being more abundant than BPS-S (0.19-0.25 ng/mL). Among rat tissues, the mean proportion of free BPS was relatively higher in spleen (76%) and stomach (75%), while lower in intestine (14%) and kidney (36%). BPS-G was more abundant than BPS-S in most rat tissues, such as intestine (mean 93% versus 6.5%) and muscle (78% versus 19%). While, the mean proportion of BPS-S (48%) was higher than BPS-G (33%) in rat liver. These data suggest that analyzing human blood and urine may not accurately reflect the contamination of BPS metabolites in human internal tissues. This study contributes to the better understanding of the metabolic fate of BPS in humans.
Collapse
Affiliation(s)
- Weili Mao
- Department of Pharmacy, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, PR China
| | - Lingling Mao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Nan Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Yingying Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China.
| |
Collapse
|
34
|
Bisphenol S exposure induces cytotoxicity in mouse Leydig cells. Food Chem Toxicol 2022; 160:112805. [PMID: 34990787 DOI: 10.1016/j.fct.2021.112805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/23/2021] [Accepted: 12/31/2021] [Indexed: 11/22/2022]
Abstract
Bisphenol S (BPS), an increasingly used alternative to bisphenol A, has been linked to testosterone deficiency and male reproductive dysfunction in laboratory animals. This study aimed to examine the cytotoxicity of BPS exposure to Leydig cells and to investigate its possible mechanisms. After treatment with BPS (100, 200 and 400 μM) for 48 h in vitro, TM3 mouse Leydig cells exhibited a dose-dependent decrease in the viability. Furthermore, BPS challenge triggered oxidative stress manifested by compromised activities of superoxide dismutase and catalase with exaggerated formation of reactive oxygen species. Especially, BPS exposure resulted in augmented mitochondrial permeability transition pore opening, dissipated mitochondrial membrane potential and reduced ATP generation, along with an altered energy metabolism. Moreover, BPS stimulation enhanced BAX expression and caspase-3 activity and inhibited BCL-2 expression. In addition, BPS-treated TM3 cells showed an accumulation of autophagic vacuoles, together with increased Beclin1 and P62 expression and elevated LC3B-II/LC3B-I ratio. These results demonstrated that in vitro exposure to BPS exerted cytotoxicity to TM3 Leydig cells through inducing oxidative stress, mitochondrial impairment, autophagic disturbance and apoptosis.
Collapse
|
35
|
Wang P, Cao M, Pan F, Liu J, Wan Y, Wang H, Xia W. Bentazone in water and human urine in Wuhan, central China: exposure assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:7089-7095. [PMID: 34467478 DOI: 10.1007/s11356-021-16177-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Bentazone is a widely used post-emergence herbicide, while no data was available on its concentrations in tap water from China and in urine among the general population. It was determined in the source (Wuhan section of the Yangtze River watershed), treated, and tap water (n = 20, 20, and 170, respectively) in different seasons (2019) in Wuhan, central China. Also, urine samples (n = 38) collected from healthy adults in Wuhan (September 2020) were analyzed to characterize its urinary concentration. Bentazone was detected in all the source and treated water samples. Its concentrations in the source water in July were higher than those in February (median: 17.9 ng/L vs. 2.86 ng/L) (p < 0.05). It cannot be removed efficiently (27.8-27.9%) by conventional drinking water treatment using NaClO, but it can be efficiently removed by using chlorine dioxide or ozone combined with activated carbon. Bentazone was frequently detected (detection frequency: 96.3%) in 160 tap water samples (underwent conventional treatment) (median: 1.95 ng/L, range: <0.02-47.0 ng/L), while it was not detectable in tap water samples that underwent ozone combined with activated carbon. Seasonal variations were found, with the lowest median concentration (ng/L) in April (0.46) and the highest in July (17.6). In addition, bentazone was frequently (92.1%) detected in human urine samples (median: 0.02 ng/mL; range: < 0.01-0.11 ng/mL). The estimated daily intake of bentazone based on its median concentration in tap water (0.04 ng/kg-body weight [bw]/day) accounted for approximately 8% of that based on the median urinary concentration (0.48 ng/kg-bw/day). This is the first time to characterize its occurrence in drinking water from China and its occurrence in the urine of the general population.
Collapse
Affiliation(s)
- Pei Wang
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei, 430024, People's Republic of China
| | - Meiling Cao
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei, 430024, People's Republic of China
| | - Feng Pan
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei, 430024, People's Republic of China
| | - Junling Liu
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei, 430024, People's Republic of China
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei, 430024, People's Republic of China.
| | - Huaiji Wang
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei, 430024, People's Republic of China.
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
36
|
Park CB, Kim GE, On J, Pyo H, Park JW, Cho SH. Sex-specific effects of bisphenol S with tissue-specific responsiveness in adult zebrafish: The antiandrogenic and antiestrogenic effects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113102. [PMID: 34942420 DOI: 10.1016/j.ecoenv.2021.113102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
This study investigates the adverse effects and the associated underlying mechanism of bisphenol S (BPS) exposure on reproductive endocrine activity in adult zebrafish. Fish were exposed for 21 days to different BPS concentrations (0, 8, 40, and 200 µg/mL) determined via the lowest observed adverse effect level (LOAEL, i.e., < EC15 = 250 µg/mL) for zebrafish embryos. Exposure to 200 µg/mL BPS in female zebrafish in the absence of vitellogenic oocytes or the presence of degenerated oocytes in the ovary significantly decreased the biosynthesis of hepatic vitellogenin (VTG) mRNA, while hepatic VTG mRNA in male fish abundance was significantly elevated (P < 0.05). The levels of gonadal steroids were significantly increased in female zebrafish, while in male zebrafish, the levels of endogenous androgens were reduced (P < 0.05). However, the activities of 17β-estradiol and aromatase in male zebrafish were significantly elevated in all BPS exposure groups in male zebrafish (P < 0.05). Interestingly, thyroid hormone levels and residual whole-body BPS levels increased in female and male zebrafish with increasing exposure concentrations. A novel finding is that the response to BPS depends on zebrafish sex and tissue-specific responsiveness to the accumulation of BPS, suggesting that BPS may cause long-term environmental problems in adult zebrafish through tissue-specific suppression and hormonal imbalance.
Collapse
Affiliation(s)
- Chang-Beom Park
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - Go-Eun Kim
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - Jiwon On
- Korea Enviornment Corporation, Korea Water Cluster, Daegu 43008, Republic of Korea; Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Heesoo Pyo
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - June-Woo Park
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - Sung-Hee Cho
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| |
Collapse
|
37
|
Fan J, Huang G, Chi M, Shi Y, Jiang J, Feng C, Yan Z, Xu Z. Prediction of chemical reproductive toxicity to aquatic species using a machine learning model: An application in an ecological risk assessment of the Yangtze River, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148901. [PMID: 34265613 DOI: 10.1016/j.scitotenv.2021.148901] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
The endocrine disrupting chemicals (EDCs) have been at the forefront of environmental issues for over 20 years and are a principle factor considered in every ecological risk assessment, but this kind of risk assessment faces difficulties. The expense, time cost of in vivo tests, and lack of toxicity data are key limiting factors for the ability to conduct ecological risk assessments of EDCs to aquatic species. In this study, a machine learning model named the support vector machine (SVM) was used to predict the reproductive toxicity of EDCs, and the performance of the models was evaluated. The results showed that the SVM model provided more accurate toxicity prediction data compared with the interspecies correlation estimation (ICE) model developed by previous study to predict the reproductive toxicity. The application of the predicted toxicity data was an important supplement to the observed data for the ecological risk assessment of EDCs in the Yangtze River, where estrogens and phenolic compounds have been found at some sampling sites in the middle and lower reaches. The results showed that the ecological risk of estrone, 17β-estradiol, and ethinyl estradiol were significant. This study revealed the application potential of machine learning models for the prediction of reproductive toxicity effects of EDCs. This can provide reliable alternative toxicity data for the ecological risk assessments of EDCs.
Collapse
Affiliation(s)
- Juntao Fan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Guoxian Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Minghui Chi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yao Shi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jinyuan Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chaoyang Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Zongxue Xu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
38
|
Shi L, Wan Y, Liu J, He Z, Xu S, Xia W. Insecticide fipronil and its transformation products in human blood and urine: Assessment of human exposure in general population of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147342. [PMID: 33964773 DOI: 10.1016/j.scitotenv.2021.147342] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/03/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Fipronil (FP) is widely used as a highly effective insecticide worldwide, thereby raising concern about environmental contamination and risk for human health. However, data on the occurrence of FP and its transformation products (FPs) in human blood and urine are limited. In this study, 39 pairs of serum, plasma, blood cells (BCs), and urine samples were collected from adults in Wuhan, central China (2020), in order to characterize the concentration profiles of FPs in different matrices. FPs were also determined in serum samples (n = 226, including 57, 56, 56, and 57 samples for Wuhan, Huangshi, Nanjing, and Zhenjiang, respectively) collected from four cities of China (2015) to characterize the exposure levels of FPs among the general population and potential spatial variations. Fipronil sulfone (FP-SFO) was 100% detectable in blood samples, and it was the predominant metabolite (accounting for 86-95% of the cumulative concentrations of FPs [ΣFPs]), with the median concentrations (ng/mL) of 0.17, 0.16, and 0.03 in serum (range: 0.07-1.53), plasma (range: 0.06-1.41), and BCs (range: 0.01-0.24), respectively. The compositional profiles of FPs in serum, plasma, and BCs were similar; very strong positive correlations were observed between different blood matrices for FP-SFO (r = 0.94-0.97, p < 0.01) but not between blood and urine. The median ΣFPs (ng/mL) in the serum (0.20; range: 0.09-1.56) and the plasma samples (0.19; range: 0.09-1.43) was higher than that in BCs samples (0.04; range: 0.01-0.24). In the urine samples, only the major metabolite FP-SFO was detectable in approximately 10% of the samples. Additionally, the highest median ΣFPs (ng/mL) in the serum samples was found in Nanjing (0.56; range: 0.13-1.88), followed by Wuhan (0.34; range: 0.06-1.02), Huangshi (0.10; range: 0.03-0.60), and Zhenjiang (0.08; range: 0.02-0.42). The level of ΣFPs seemed to increase with city sizes and urbanization scale, though further studies are needed to confirm the variations with larger sample size. The estimated daily intake of ΣFPs based on the median concentration of samples from Nanjing (18.5 ng/kg-bw/d) was higher than that of Wuhan (11.3), Huangshi (3.40), and Zhenjiang (2.80). Dietary intake should be the major exposure route for the general population, while water or indoor dust accounted for <1% of the ΣFPs intake. This pilot study provided the first data on the profiles of FPs in paired human serum, plasma, BCs, and urine samples, and potential spatial variations of ΣFPs in China. FP-SFO and FP desulfinyl should be considered among priority substances worthy to be bio-monitored in China due to its moderated persistence and ubiquitous occurrence in human blood.
Collapse
Affiliation(s)
- Lisha Shi
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Yanjian Wan
- Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei 430024, PR China.
| | - Juan Liu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Zhenyu He
- Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei 430024, PR China
| | - Shunqing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Wei Xia
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
39
|
Jing J, Pu Y, Veiga-Lopez A, Lyu L. In Vitro Effects of Emerging Bisphenols on Myocyte Differentiation and Insulin Responsiveness. Toxicol Sci 2021; 178:189-200. [PMID: 32750123 DOI: 10.1093/toxsci/kfaa130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bisphenols are endocrine disrupting chemicals to which humans are ubiquitously exposed to. Prenatal bisphenol A exposure can lead to insulin resistance. However, the metabolic effects of other emerging bisphenols, such as bisphenol S (BPS) and bisphenol F (BPF), are less understood. Because the skeletal muscle is the largest of the insulin target tissues, the goal of this study was to evaluate the effects of 2 emerging bisphenols (BPS and BPF) on cytotoxicity, proliferation, myogenic differentiation, and insulin responsiveness in skeletal muscle cells. We tested this using a dose-response approach in C2C12 mouse and L6 rat myoblast cell lines. The results showed that C2C12 mouse myoblasts were more susceptible to bisphenols compared with L6 rat myoblasts. In both cell lines, bisphenol A was more cytotoxic, followed by BPF and BPS. C2C12 myoblast proliferation was higher upon BPF exposure at the 10-4 M dose and the fusion index was increased after exposure to either BPF or BPS at doses over 10-10 M. Exposure to BPS and BPF also reduced baseline expression of p-AKT (Thr) and p-GSK-3β, but not downstream effectors such as mTOR and glucose transporter-4. In conclusion, at noncytotoxic doses, BPS and BPF can alter myoblast cell proliferation, differentiation, and partially modulate early effectors of the insulin receptor signaling pathway. However, BPS or BPF short-term exposure evaluated here does not result in impaired insulin responsiveness.
Collapse
Affiliation(s)
- Jiongjie Jing
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yong Pu
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| | - Almudena Veiga-Lopez
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| | - Lihua Lyu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| |
Collapse
|
40
|
Cai Y, Ren J, You Z, Liu J, Lu G, Li Y, Li J. The sinking behavior of micro-nano particulate matter for bisphenol analogues in the surface water of an ecological demonstration zone, China. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:98-108. [PMID: 33196070 DOI: 10.1039/d0em00366b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bisphenol analogues (BPs) have been widely used in industrial production as substitutes of bisphenol A (BPA). The demand and production of BPs are growing rapidly in China. In this study, the pollution levels and distribution characteristics of five BPs were investigated in surface water from rivers located in different land-use types of an ecological demonstration zone. All BPs were detected at least once in the traditionally dissolved phase, colloidal phase and suspended particulate matter (SPM) with the mean total concentrations of 465.1 ng L-1, 114.4 ng L-1 and 11.3 μg g-1 dry weight, respectively. BPA is the dominant BP in the traditionally dissolved phase and colloidal phase, with the mean contribution rates of 77.6% and 70.7%, respectively, followed by bisphenol F (BPF) and/or bisphenol S (BPS). The colloids as the important sinks of contaminants contributed 42.3% of bisphenol Z, 37.3% of BPF, 24.9% of BPA, 22.3% of BPAF and 18.4% of BPS in the traditionally dissolved phase. However, BPA alternatives are found primarily in the SPM, in which the contribution rate of BPA ranges from 0.6% to 48.1%, with the mean contribution of 12.4%. Based on BP concentrations in the traditionally dissolved phase, moderate ecological risk levels of BPA and BPF towards aquatic organisms were posed. Fish and/or algae are the most sensitive aquatic organisms, and hence chronic toxicological effects should not be ignored especially in fish.
Collapse
Affiliation(s)
- Yuanfei Cai
- Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai University, Nanjing 210098, China. and Wanjiang University of Technology, Ma'anshan 243031, China
| | - Jinghua Ren
- Technology Innovation Center of Ecological Monitoring & Restoration Project on Land (arable), MNR Geological Survey of Jiangsu Province, China
| | - Zijian You
- Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai University, Nanjing 210098, China.
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai University, Nanjing 210098, China.
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai University, Nanjing 210098, China.
| | - Yiping Li
- Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai University, Nanjing 210098, China.
| | - Junfeng Li
- College of Water Conservancy and Architecture Engineering, Shihezi University, Shihezi 832000, Xinjiang, China
| |
Collapse
|
41
|
Gao C, He H, Qiu W, Zheng Y, Chen Y, Hu S, Zhao X. Oxidative Stress, Endocrine Disturbance, and Immune Interference in Humans Showed Relationships to Serum Bisphenol Concentrations in a Dense Industrial Area. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1953-1963. [PMID: 33496180 DOI: 10.1021/acs.est.0c07587] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Bisphenol A (BPA) analogues, used in a range of products due to health concerns regarding BPA, have emerged as ubiquitous environmental contaminants worldwide. This study aims to evaluate the levels of nine bisphenols (BPs) and eight biomarkers (malondialdehyde, MDA; 8-hydroxy-2'-deoxyguanosine, 8-OHdG; estradiol, E2; follicle-stimulating hormone, FSH; luteinizing hormone, LH; complement compound 3, C3; immunoglobulin M, IgM and c-reaction protein, CRP) in human serum (n = 353) to explore their potential relationships. The detection rates (DRs) of eight BPs in serum samples taken from people working in a dense industrial area of Shenzhen (Guangdong Province, China) were over 72% except for bisphenol B (BPB) (DR = 27.5%). The mean concentrations of BPA, bisphenol P (BPP), BPB, bisphenol F (BPF), bisphenol FL (BPFL), 4,4'-dihydroxy-benzophenone (DHBP), bisphenol AF (BPAF), 4,4'-thiodiphenol (TDP) and bisphenol S (BPS) were 42.062, 2.083, 0.765, 0.578, 0.423, 0.402, 0.191, 0.120, and 0.071 ng/mL, respectively. BPA and BPFL were significantly correlated with the level of oxidative stress indices MDA and 8-OHdG; BPAF, BPB, and DHBP were strongly correlated with the level of endocrine disturbance indices E2, FSH, and LH; and BPF, DHBP, and BPAF were apparently related to the level of immune interference indices C3 and IgM. This study also suggests multiple impacts (oxidative stress, endocrine disturbance, and immune interference) mediated by BPs contaminants in vivo. To our knowledge, this is the first study to report the correlations among these nine serum BPs and oxidative stress and endocrine and immune system indices in human serum samples collected from dense industrial areas.
Collapse
Affiliation(s)
- Chuanzi Gao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Haihong He
- Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, China
| | - Wenhui Qiu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yi Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Shenzhen Municipal Engineering Lab of Environmental IoT Technologies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuyang Chen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Shiyao Hu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xue Zhao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
42
|
Mahai G, Wan Y, Xia W, Wang A, Shi L, Qian X, He Z, Xu S. A nationwide study of occurrence and exposure assessment of neonicotinoid insecticides and their metabolites in drinking water of China. WATER RESEARCH 2021; 189:116630. [PMID: 33221583 DOI: 10.1016/j.watres.2020.116630] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/18/2020] [Accepted: 11/09/2020] [Indexed: 05/14/2023]
Abstract
Neonicotinoid insecticides (NNIs) are the most extensively used insecticides worldwide, threatening ecosystem and human health. However, nationwide studies of NNIs and their metabolites in drinking water are limited. In order to characterize the contamination status of NNIs in drinking water throughout China, we collected 884 drinking water samples including 789 tap water and 95 groundwater samples from 32 provinces (covering seven regions of mainland China: south, central, east, north, northeast, northwest, and southwest) and Hong Kong. Ten NNIs and six of their main metabolites were determined in the water samples. The relative potency factor method was used to assess the cumulative concentrations of NNIs and their metabolites (imidacloprid-equivalent total NNIs, IMIeq) based on the chronic reference doses (cRfDs) of the NNIs or the toxic effects of the mataboilites. The IMIeq varied among the studied regions, with a median concentration of 24.5 ng/L and a maximum concentration of 8,622 ng/L. The predominant NNIs in drinking water were acetamiprid (ACE) and imidacloprid (IMI). Compared with tap water derived from groundwater, much higher concentrations of IMIeq and NNIs were found in tap water derived from surface water. Different concentrations and patterns of NNIs in drinking water were observed in different regions, provinces, and capital cities, mainly due to regional and provincial differences in crop types and volumes of pesticide usage. The concentrations of NNIs in the drinking water of provincial capitals and small/medium cities were higher than the concentrations in rural areas. The estimated daily intake (EDI) of IMIeq was at least two orders of magnitude lower than the cRfD of IMI, while the NNIs in 16 drinking water samples exceeded the acceptable value (100 ng/L) recommended by the European Union. This study provided a nationwide profile of the occurrence of NNIs and their metabolites in the drinking water of China and the associated potential cumulative human health risks, taking into account of the toxicity differences between NNIs and their metabolites.
Collapse
Affiliation(s)
- Gaga Mahai
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei, 430024, PR China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Aizhen Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Lisha Shi
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xi Qian
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Zhenyu He
- Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei, 430024, PR China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| |
Collapse
|
43
|
Waidyanatha S, Black SR, Croutch CR, Collins BJ, Silinski MAR, Kerns S, Sutherland V, Robinson VG, Aillon K, Fernando RA, Mutlu E, Fennell TR. Comparative toxicokinetics of bisphenol S and bisphenol AF in male rats and mice following repeated exposure via feed. Xenobiotica 2021; 51:210-221. [PMID: 32985913 PMCID: PMC7931638 DOI: 10.1080/00498254.2020.1829171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023]
Abstract
We investigated the plasma toxicokinetic behavior of free (parent) and total (parent and conjugated forms) of bisphenol S (BPS) and bisphenol AF (BPAF) in plasma of adult male rats and mice following exposure via feed for 7 days to BPS (338, 1125, and 3375 ppm) or BPAF (338, 1125, and 3750 ppm). In rats, the exposure concentration-normalized maximum concentration [Cmax/D (ng/mL)/(ppm)] and area under the concentration time curve [AUC/D (h × ng/mL)/(ppm)] for free was higher for BPS (Cmax/D: 0.476-1.02; AUC/D: 3.58-8.26) than for BPAF (Cmax/D: 0.017-0.037; AUC/D:0.196-0.436). In mice, the difference in systemic exposure parameters between free BPS (Cmax/D: 0.376-0.459; AUC/D: 1.52-2.54) and free BPAF (Cmax/D: 0.111-0.165; AUC/D:0.846-1.09) was marginal. Elimination half-lives for free analytes (4.41-10.4 h) were comparable between species and analogues. When systemic exposure to free analyte was compared between species, in rats, BPS exposure was slightly higher but BPAF exposure was much lower than in mice. BPS and BPAF were highly conjugated; total BPS AUC values (rats ≥18-fold, mice ≥17-fold) and BPAF (rats ≥127-fold, mice ≥16-fold) were higher than corresponding free values. Data demonstrated that there are analogue and species differences in the kinetics of BPS and BPAF.
Collapse
Affiliation(s)
- Suramya Waidyanatha
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Sherry R. Black
- RTI International, Discovery Sciences, Research Triangle Park, NC
| | | | - Bradley J. Collins
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | | | | | - Vicki Sutherland
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Veronica Godfrey Robinson
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | | | | | - Esra Mutlu
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | | |
Collapse
|
44
|
Liu J, Zhang L, Lu G, Jiang R, Yan Z, Li Y. Occurrence, toxicity and ecological risk of Bisphenol A analogues in aquatic environment - A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111481. [PMID: 33120264 DOI: 10.1016/j.ecoenv.2020.111481] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 05/12/2023]
Abstract
Bisphenol analogues (BPs) have been widely applied to industry as the substitutes for bisphenol A (BPA), which have been detected frequently in surface water, sediment, sewage and sludge. The presence of BPs in natural environment could pose risks to the aquatic ecosystem and human health. This study outlined the occurrence, toxicity of BPs in aquatic environment and manifested their potential ecological risk to the aquatic ecosystem throughout the world. As for occurrence, BPA was losing its dominance, while BPs were occupying a large part, especially for bisphenol S (BPS), bisphenol F (BPF) and bisphenol AF (BPAF). In some heavily polluted areas, BPs concentration reached µg/L in aquatic environment, which in the effluent of sewage plants was higher than that in the surface water. BPs content in sludge and sediment was more than that in the aqueous phase. All BPs other than BPS and Bisphenol P (BPP) had moderate toxicity. The current data supports that exposure to BPs may have adverse effects on dysfunction of endocrine system such as thyroid hormone concentration, enzyme activity, and even cell dysfunction, gene damage and chromosomal abnormalities. According to the risk quotient (RQ), BPF shows the highest ecological risk in China, Japan and South Korea, followed by BPA and BPS. The occurrence of bisphenols and their neurotoxicity on aquatic organisms merit further investigation.
Collapse
Affiliation(s)
- Jianchao Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Lingyu Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, Linzhi 860000, China.
| | - Runren Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yiping Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
45
|
Rehder Silinski MA, Fletcher BL, Fernando RA, Robinson VG, Waidyanatha S. Development and Validation of an Analytical Method for Quantitation of Bisphenol S in Rodent Plasma, Amniotic Fluid and Fetuses by UPLC-MS-MS. J Anal Toxicol 2021; 46:277-284. [PMID: 33512500 DOI: 10.1093/jat/bkab008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/15/2020] [Accepted: 01/08/2021] [Indexed: 11/12/2022] Open
Abstract
Bisphenol S (BPS) has been detected in personal care products, water, food and indoor house dust, demonstrating the potential for human exposure. Due to limited data to characterize the hazard of BPS, the National Toxicology Program (NTP) is investigating the toxicity of BPS in rodent models. Generating systemic exposure data is integral to putting toxicological findings into context. The objective of this work was to develop and validate a method to quantitate free (unconjugated parent) and total (free and all conjugated forms of) BPS in rodent plasma, amniotic fluid and fetal homogenate in support of NTP studies. The method used incubation with (total BPS) and without (free BPS) deconjugating enzyme and then protein precipitation followed by ultra-performance liquid chromatography-tandem mass spectrometry. In Sprague Dawley rat plasma, the method was linear (r ≥ 0.99) over the range 5-1,000 ng/mL, accurate (mean relative error (RE) ≤ ±10.5%) and precise (relative standard deviation (RSD) ≤ 7.7%). Mean recoveries were ≥93.1% for both free and total analyses. The limits of detection were 1.15 ng/mL (free) and 0.862 ng/mL (total) in plasma. The method was evaluated in the following study matrices: (i) male Hsd:Sprague Dawley®SD® (HSD) rat plasma, (ii) female HSD rat plasma, (iii) male B6C3F1 mouse plasma, (iv) female B6C3F1 mouse plasma, (v) HSD rat gestational day (GD) 18 dam plasma, (vi) HSD rat GD 18 amniotic fluid, (vii) HSD rat GD 18 fetal homogenate and (viii) HSD rat postnatal day 4 pup plasma (mean %RE ≤ ±8.2 and %RSD ≤ 8.7). Stability of BPS in extracted samples was demonstrated for up to 7 days at various temperatures, and freeze-thaw stability was demonstrated after three cycles over 7 days. BPS in various matrices stored at -80°C for at least 60 days was within 92.1-115% of Day 0 concentrations, demonstrating its stability in these matrices. These data demonstrate that this simple method is suitable for determination of free and total BPS in plasma, amniotic fluid and fetuses following exposure of rodents to BPS.
Collapse
Affiliation(s)
| | - Brenda L Fletcher
- Discovery Sciences Unit, RTI International, P.O. Box 12194, Research Triangle Park, NC 27709, USA
| | - Reshan A Fernando
- Discovery Sciences Unit, RTI International, P.O. Box 12194, Research Triangle Park, NC 27709, USA
| | - Veronica G Robinson
- Division of the National Toxicology Program, NIEHS, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Suramya Waidyanatha
- Division of the National Toxicology Program, NIEHS, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| |
Collapse
|
46
|
Wan Y, Tran TM, Nguyen VT, Wang A, Wang J, Kannan K. Neonicotinoids, fipronil, chlorpyrifos, carbendazim, chlorotriazines, chlorophenoxy herbicides, bentazon, and selected pesticide transformation products in surface water and drinking water from northern Vietnam. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141507. [PMID: 32841807 DOI: 10.1016/j.scitotenv.2020.141507] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Studies on the occurrence of emerging pesticides in surface and drinking water in Vietnam are limited. In this study, lake water (n = 7), river water (n = 1), tap water (n = 46), and bottled water (n = 3) collected from Hanoi and other four provinces in northern Vietnam were analyzed for selected pesticides (including insecticides such as neonicotinoids, fipronil, and chlorpyrifos; fungicide carbendazim; herbicides such as atrazine, terbuthylazine, simazine, 2,4-dichlorophenoxyacetic acid, 2-methyl-4-chlorophenoxyacetic acid, and bentazon) and some of their degradates by liquid chromatography-tandem mass spectrometry. Carbendazim (median: 86.7 ng/L) and triazines (49.3 ng/L) were the major pesticides found in lake water samples, followed by neonicotinoids and their degradation products (15.1 ng/L), chlorpyrifos and its degradate (13.4 ng/L), fipronil and its degradates (3.76 ng/L), chlorophenoxy acid herbicides (2.10 ng/L), and bentazon (0.62 ng/L). Triazines (164 ng/L) were the major pesticides in river water. Higher concentrations (median: 39.3 ng/L; range: 1.20-127) of selected pesticides were found in tap water from Hanoi than those from four other provinces studied (5.49 ng/L; 4.73-66.8 ng/L). Bottled water samples collected from Hanoi contained lower concentrations of pesticide residues (median: 3.54 ng/L, range: 2.18-8.09) than those of tap water samples. The calculated risks from pesticide exposure through ingestion of tap water by the general populations were low. However, fipronil concentrations in lake water exceeded the benchmark value recommended for freshwater in the United States or the Netherlands. Degradation of acetamiprid into desmethyl-acetamiprid was found in lake water.
Collapse
Affiliation(s)
- Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei 430024, PR China.
| | - Tri Manh Tran
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Viet Nam.
| | - Vinh Thi Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Viet Nam.
| | - Aizhen Wang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Jiawei Wang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
47
|
Naderi M, Kwong RWM. A comprehensive review of the neurobehavioral effects of bisphenol S and the mechanisms of action: New insights from in vitro and in vivo models. ENVIRONMENT INTERNATIONAL 2020; 145:106078. [PMID: 32911243 DOI: 10.1016/j.envint.2020.106078] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
The normal brain development and function are delicately driven by an ever-changing milieu of steroid hormones arising from fetal, placental, and maternal origins. This reliance on the neuroendocrine system sets the stage for the exquisite sensitivity of the central nervous system to the adverse effects of endocrine-disrupting chemicals (EDCs). Bisphenol A (BPA) is one of the most common EDCs which has been a particular focus of environmental concern for decades due to its widespread nature and formidable threat to human and animal health. The heightened regulatory actions and the scientific and public concern over the adverse health effects of BPA have led to its replacement with a suite of structurally similar but less known alternative chemicals. Bisphenol S (BPS) is the main substitute for BPA that is increasingly being used in a wide array of consumer and industrial products. Although it was considered to be a safe BPA alternative, mounting evidence points to the deleterious effects of BPS on a wide range of neuroendocrine functions in animals. In addition to its reproductive toxicity, recent experimental efforts indicate that BPS has a considerable potential to induce neurotoxicity and behavioral dysfunction. This review analyzes the current state of knowledge regarding the neurobehavioral effects of BPS and discusses its potential mode of actions on several aspects of the neuroendocrine system. We summarize the role of certain hormones and their signaling pathways in the regulation of brain and behavior and discuss how BPS induces neurotoxicity through interactions with these pathways. Finally, we review potential links between BPS exposure and aberrant neurobehavioral functions in animals and identify key knowledge gaps and hypotheses for future research.
Collapse
Affiliation(s)
- Mohammad Naderi
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - Raymond W M Kwong
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
48
|
Wan Y, Han Q, Wang Y, He Z. Five degradates of imidacloprid in source water, treated water, and tap water in Wuhan, central China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140227. [PMID: 32574922 DOI: 10.1016/j.scitotenv.2020.140227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Imidacloprid (IMI) is one of the most applied neonicotinoid insecticides worldwide. The occurrence of its degradates such as desnitro-imidacloprid (DN-IMI), imidacloprid-urea (IMI-urea), and desnitro-imidacloprid-olefin (DN-IMI-olefin) in environment water and their fate during drinking water treatment were seldom documented. In this study, IMI and its degradates were determined in source water (the Yangtze River and its largest tributary, the Hanshui River), treated water, and tap water (n = 20, 20, and 169, respectively) in different seasons of 2019 in Wuhan, central China. Their occurrence, removal efficiency, and seasonal variations were evaluated. Advanced water treatment with ozone combined with activated carbon might remove target analytes efficiently but conventional water treatment cannot. IMI and its degradates were 100% detectable in the conventionally treated water samples in July. IMI and DN-IMI decreased while IMI-urea, DN-IMI-olefin, imidacloprid-olefin (IMI-olefin), and 5-hydroxy-imidacloprid (5-OH-IMI) increased during conventional drinking water treatment. IMI and its degradates were found in the tap water samples treated conventionally (range: 1.17-32.0 ng/L for IMI; 0.57-7.00 ng/L for DN-IMI; 0.58-4.50 ng/L for IMI-urea; 0.04-0.65 ng/L for DN-IMI-olefin; < method detection limit [MDL]-0.80 ng/L for IMI-olefin; < MDL-0.35 ng/L for 5-OH-IMI). The concentrations of DN-IMI and IMI-urea observed in this study were higher than those observed in North America. Sodium sulfite did not increase the levels of DN-IMI and IMI-urea in tap water samples in the present study. This is the first study to demonstrate the occurrence of DN-IMI and IMI-urea in water in China and the occurrence of DN-IMI-olefin, IMI-olefin, and 5-OH-IMI in water.
Collapse
Affiliation(s)
- Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei 430024, PR China.
| | - Qing Han
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei 430024, PR China
| | - Yao Wang
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei 430024, PR China
| | - Zhenyu He
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei 430024, PR China.
| |
Collapse
|
49
|
Shi L, Jiang Y, Wan Y, Huang J, Meng Q, He Z, Xu S, Xia W. Occurrence of the insecticide fipronil and its degradates in indoor dust from South, Central, and North China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140110. [PMID: 32574918 DOI: 10.1016/j.scitotenv.2020.140110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
No known data are available regarding the occurrence of fipronil (FP) in indoor dust in China, despite the fact that it is an emerging insecticide that is used extensively. In this study, FP and its derivatives (FPs), including fipronil sulfone (FP-SFO), fipronil sulfide, fipronil desulfinyl, and fipronil amide, were determined in indoor dust samples (n = 436) collected from three different cities in China between 2016 and 2019, namely Shenzhen (February and September 2019), Wuhan (October 2016, October 2018, and August 2019), and Taiyuan (October 2016), located in south, central, and north China, respectively. FP and FP-SFO were the major target analytes detected in all dust samples, accounting for approximately 68.6-90.1% of the cumulative concentration of FPs (ΣFPs). The ΣFPs values for the dust samples ranged from not detected (ND) to 33.6 μg/g (median ± median absolute deviation [MAD]: 7.12 ± 6.44 ng/g), with a detection frequency of 95.6%. The median value of the ΣFPs of the dust samples collected from Shenzhen (22.6 ± 15.6 ng/g) was higher than that found in the dust samples collected in Taiyuan 2016 (1.87 ± 1.65 ng/g) and Wuhan (6.43 ± 5.62 ng/g). Significantly higher ΣFPs were observed in the dust samples collected in urban areas than in the rural areas of Taiyuan and Wuhan. Furthermore, an increasing trend of FP (from 2016 to 2018) in the rural areas of Wuhan, and a seasonal variation (summer > autumn) in FP, FP-SFO, and ΣFPs in the dust samples from urban areas of Wuhan were observed. The estimated daily intake of FPs via dust ingestion for people in Shenzhen was approximately 12 times higher than in Taiyuan based on the samples analyzed. This is the first study to describe the occurrence and spatiotemporal variations of FPs in indoor dust in China.
Collapse
Affiliation(s)
- Lisha Shi
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Ying Jiang
- Nanshan District Center for Disease Control and Prevention, Shenzhen, Guangdong 518054, PR China
| | - Yanjian Wan
- Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei 430024, PR China
| | - Juan Huang
- Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei 430024, PR China
| | - Qianqian Meng
- China Institute for Radiation Protection, Taiyuan, Shanxi 030006, PR China
| | - Zhenyu He
- Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei 430024, PR China
| | - Shunqing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Wei Xia
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
50
|
Wang W, Ru S, Wang L, Wei S, Zhang J, Qin J, Liu R, Zhang X. Bisphenol S exposure alters behavioral parameters in adult zebrafish and offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140448. [PMID: 32610242 DOI: 10.1016/j.scitotenv.2020.140448] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/15/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
The environmental emission of bisphenol S (BPS), which is globally utilized in the manufacturing of polycarbonates, epoxy resin and thermal paper, has affected the aquatic ecosystem. Thus, effects of BPS exposure on the fitness of aquatic animals have been noted. Here, adult male and female zebrafish were used as aquatic model organisms and separately exposed to environmentally relevant doses of BPS (0, 1, 10 and 100 μg/L) for 14 days. The results showed that BPS changed the body pigment of zebrafish and slowed the maturation of oocytes in the ovary, resulting in a significant decrease in the shoaling behavior of adult zebrafish and the attraction of BPS-treated females during the mating process. Furthermore, in the subgeneration of adult zebrafish exposed to BPS for 7 days, survival behaviors, such as locomotor, phototaxis and feeding behaviors, deviated from normal behaviors. After exposing the adult zebrafish to BPS for an additional 7 days, the above described survival behaviors and light adaptation were disrupted in offspring. Our data, based on intergenerational behavioral studies, demonstrate that BPS affects the behaviors of aquatic animals and the ability of offspring to feed and avoid predators, possibly jeopardizing the survival of aquatic animals.
Collapse
Affiliation(s)
- Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Liangliang Wang
- Institute of Biomedical Research (YC), Yunnan University, Kunming 650091, China
| | - Shuhui Wei
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jie Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jingyu Qin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Rui Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|