1
|
Ghosh A, Mondal S, Kanrar S, Srivastava A, Pandey MD, Ghosh UC, Sasikumar P. Efficient removal of chromate from wastewater using a one-pot synthesis of chitosan cross-linked ceria incorporated hydrous copper oxide bio-polymeric composite. Int J Biol Macromol 2024; 276:134016. [PMID: 39032886 DOI: 10.1016/j.ijbiomac.2024.134016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Remediating hexavalent chromium [Cr(VI)] from contaminated water systems is a significant concern due to its harmful effects on human health, aquatic life, and plants. To tackle this issue, scientists have created a chitosan cross-linked hydrous ceria incorporated cupric oxide bio-polymeric composite (CHCCO) by combining chitosan biopolymer with corresponding metal ions using glutaraldehyde as a cross-linker. The composite was characterized using advanced analytical instruments such as FTIR, p-XRD, SEM, XPS, etc. The synthesized composite (CHCCO) was then tested for its efficiency in removing Cr(VI) from synthetic Cr(VI) aqueous samples. The parameters examined included pH, material dose, contact time, concentration, temperature, and co-existing ions. The experimental data showed that the kinetics and equilibrium data fit well with the pseudo-second-order and the Freundlich isotherm models, respectively. Thermodynamic analysis demonstrated that the investigated surface adsorption process is spontaneous and endothermic. Except for the SO42- ion, no other species imparts adverse influence significantly on the reaction. The CHCCO bio-composite surfaces were refreshed using a dilute NaOH (1.0 M) solution and effectively recycled five times for Cr(VI) adsorption, indicating no significant surface activity deterioration. This study highlights the high effectiveness of CHCCO bio-polymeric composites in Cr(VI) remediation and the potential for this technology as an easy-to-use technique for environmental restoration.
Collapse
Affiliation(s)
- Ayan Ghosh
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, West Bengal 700073, India
| | - Sumana Mondal
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, West Bengal 700073, India
| | - Sarat Kanrar
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, West Bengal 700073, India
| | - Ankur Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Mrituanjay D Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Uday Chand Ghosh
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, West Bengal 700073, India
| | - Palani Sasikumar
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, West Bengal 700073, India.
| |
Collapse
|
2
|
Lingait D, Rahagude R, Gaharwar SS, Das RS, Verma MG, Srivastava N, Kumar A, Mandavgane S. A review on versatile applications of biomaterial/polycationic chitosan: An insight into the structure-property relationship. Int J Biol Macromol 2024; 257:128676. [PMID: 38096942 DOI: 10.1016/j.ijbiomac.2023.128676] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/06/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
Chitosan is a versatile and generous biopolymer obtained by alkaline deacetylation of naturally occurring chitin, the second most abundant biopolymer after cellulose. The excellent physicochemical properties of polycationic chitosan are attributed to the presence of varied functional groups such as amino, hydroxyl, and acetamido groups enabling researchers to tailor the structure and properties of chitosan by different methods such as crosslinking, grafting, copolymerization, composites, and molecular imprinting techniques. The prepared derivatives have diverse applications in the food industry, water treatment, cosmetics, pharmaceuticals, agriculture, textiles, and biomedical applications. In this review, numerous applications of chitosan and its derivatives in various fields have been discussed in detail with an insight into their structure-property relationship. This review article concludes and explains the chitosan's biocompatibility and efficiency that has been done so far with future usage and applications as well. Moreover, the possible mechanism of chitosan's activity towards several emerging fields such as energy storage, biodegradable packaging, photocatalysis, biorefinery, and environmental bioremediation are also discussed. Overall, this comprehensive review discusses the science and complete information behind chitosan's wonder function to improve our understanding which is much needful as well as will pave the way towards a sustainable future.
Collapse
Affiliation(s)
- Diksha Lingait
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Rashmi Rahagude
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Shivali Singh Gaharwar
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Ranjita S Das
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Manisha G Verma
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Nupur Srivastava
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India.
| | - Anupama Kumar
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India.
| | - Sachin Mandavgane
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| |
Collapse
|
3
|
Xu K, He T, Li L, Iqbal J, Tong Y, Hua L, Tian Z, Zhao L, Li H. DOTA functionalized adsorbent DOTA@Sludge@Chitosan derived from recycled shrimp shells and sludge and its application for lead and chromium removal from water. Int J Biol Macromol 2024; 255:128263. [PMID: 37984580 DOI: 10.1016/j.ijbiomac.2023.128263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
DOTA@Sludge@Chitosan was synthesized by a facile treatment using DOTA (1,4,7,10-tetraazacyclododecane-N,N',N,N'-tetraacetic acid) to modify dry sludge and chitosan in an acidic solution. The performance of developed DOTA@Sludge@Chitosan was investigated for the adsorptive removal of Cr6+ and Pb2+ from water. Characterization studies showed that the materials possess a large surface area (52.009 m2/g), pore volume (0.069 cm3/g), and abundant functional groups of amino and hydroxyl. The prepared material showed a synergetic effect due to carboxylic acid and sludge, effectively removing Cr6+ and Pb2+. It reached 329.4 mg/g (Pb2+) and 273.3 mg/g (Cr6+) at 20 °C, much higher than commercial activated carbon. The regeneration of the adsorbent was tested for six adsorption and desorption cycles. The results demonstrate that the DOTA@Sludge@Chitosan adsorbent well-maintained high adsorption capacity attributed to its stability, making it a promising adsorbent for heavy metals removal from industrial effluent.
Collapse
Affiliation(s)
- Kehan Xu
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Ting He
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China
| | - Long Li
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China.
| | - Jibran Iqbal
- College of Interdisciplinary Studies, Zayed University, Abu Dhabi, United Arab Emirates
| | - Yuping Tong
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Lin Hua
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China
| | - Zhenbang Tian
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China
| | - Liang Zhao
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China
| | - Hui Li
- School of Agronomy and Bioscience, Dehong Teachers' College, Dehong Prefecture 678499, China
| |
Collapse
|
4
|
Dong K, Jiang Y, Zhang Y, Qin Z, Mo L. Tannic acid-assisted fabrication of antibacterial sodium alginate-based gel beads for the multifunctional adsorption of heavy metal ions and dyes. Int J Biol Macromol 2023; 252:126249. [PMID: 37562481 DOI: 10.1016/j.ijbiomac.2023.126249] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/17/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
The existence of heavy metals and dyes seriously affects the ecological environment and human safety. Antibacterial adsorption materials with the broad-spectrum removal of multiple pollutants are urgently required for water remediation. Herein, a sustainable and antibacterial sodium alginate (SA) gel bead adsorbent with honeycomb cellular architecture is developed by the biomimetic deposition polyphenolic tannic acid (TA) induced grafting diethylenetriamine (DETA) under mild conditions for efficient removal of Cr(VI) and dyes. Taking advantage of the catechol surface chemistry, TA occurring rapid polymerization with DETA monomers not only enhances the water resistance and thermal stability of the gel bead, but also introduces abundant polyphenolic functional groups and active adsorption sites. The multifunctional gel bead showed outstanding antibacterial activity against S. aureus (sterilization rates: 83.8 %) and E. coli (sterilization rates: 99.5 %). The maximum adsorption capacity of gel bead for Cr(VI) was 163.9 mg/g. Moreover, the removal efficiency of the gel bead for dyes of Safranine T and Rhodamine B was 89.5 % (maximum adsorption capacity: 537 mg/g) and 76.7 % (maximum adsorption capacity: 460.2 mg/g), respectively, indicating its excellent broad-spectrum adsorption performance for multiple pollutants. Therefore, TA-assisted fabrication of SA-based gel bead with excellent antibacterial property is a promising multifunctional adsorption material for practical water remediation.
Collapse
Affiliation(s)
- Kaiqiang Dong
- School of Resources Environment and Materials, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning 530004, China
| | - Yanling Jiang
- School of Resources Environment and Materials, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning 530004, China
| | - Yidan Zhang
- School of Resources Environment and Materials, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning 530004, China
| | - Zhiyong Qin
- School of Resources Environment and Materials, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning 530004, China.
| | - Liuting Mo
- School of Resources Environment and Materials, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning 530004, China.
| |
Collapse
|
5
|
Vo TK, Phuong NHY, Nguyen VC, Quang DT. ZIF-67 grafted-boehmite-PVA composite membranes with enhanced removal efficiency towards Cr(VI) from aqueous solutions. CHEMOSPHERE 2023; 341:139996. [PMID: 37648167 DOI: 10.1016/j.chemosphere.2023.139996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
In this work, we developed a thin membrane of boehmite-polyvinyl alcohol composite (BOPOM) (diameter ∼ 5 cm) grafted ZIF-67 combing sol-gel and in-situ growth methods. The fabricated materials were characterized using FT-IR, SEM, XRD, TGA, XPS, and N2 sorption techniques. Results indicate that ZIF-67 nanocrystals were well-grafted into the AlOOH-PVA matrix with reduced crystallite size. Furthermore, the decorated ZIF-67 offered additional porous structures and adsorption sites onto the membrane, enhancing their removal efficiency towards Cr6+ compared to the undecorated and pristine ZIF-67. At pH ∼5.5, the harvested ZIF-67/BOPOM exhibited the highest Cr6+ uptake capacity of ∼56.4 mg g-1. Kinetic studies showed that the chromium adsorption on the prepared materials obeyed the pseudo-second-order model, and the kinetic parameters followed the order ZIFF-67/BOPOM (0.020 mg g-1 min-1) > BOPOM (0.011 mg g-1 min-1) > ZIF-67 (0.006 mg g-1 min-1). Notably, the adsorption mechanism study revealed that adsorbed Cr6+ was reduced to Cr3+, and the reduction yield was boosted owing to grafting ZIF-67 into the BOPOM. In addition, the fabricated ZIF-67/BOPOM can simultaneously remove Cr6+ and methyl orange dye (MO) in the solution due to their synergetic effects on each other. Furthermore, the hybrid membrane ZIF-67/BOPOM showed a chromium removal efficiency of ∼78.2% after four successive adsorption-desorption cycles. This study indicates that grafting nanocrystals ZIF-67 onto the super-platform boehmite-PVA is a promising strategy to harvest an adsorbent with a high adsorption ability, cost-effectiveness, and reduced secondary pollution risks.
Collapse
Affiliation(s)
- The Ky Vo
- Department of Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Go Vap, Ho Chi Minh City, Viet Nam.
| | - Nguyen Hoang Yen Phuong
- Department of Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Go Vap, Ho Chi Minh City, Viet Nam
| | - Van Cuong Nguyen
- Department of Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Go Vap, Ho Chi Minh City, Viet Nam
| | - Duong Tuan Quang
- University of Education, Hue University, Hue City, 530000, Viet Nam
| |
Collapse
|
6
|
Shan B, Hao R, Zhang J, Ye Y, Li J, Xu H, Lu A. Exploring the mechanism of enhanced Cr(VI) removal by Lysinibacillus cavernae microcapsules loaded with synthetic nano-hydroxyapatite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106571-106584. [PMID: 37730979 DOI: 10.1007/s11356-023-29910-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
In this study, nano-scale hydroxyapatite (HAP) powder was successfully synthesized from waste eggshells and combined with Lysinibacillus cavernae CR-2 to form bio-microcapsules, which facilitated the enhanced removal of Cr(VI) from wastewater. The effects of various parameters, such as bio-microcapsule dosage, HAP dosage, and initial Cr(VI) concentration on Cr(VI) removal, were investigated. Under different treatment conditions, the Cr(VI) removal followed the order of LC@HAP (90.95%) > LC (78.15%) > Free-LC (75.61%) > HAP (6.56%) > NM (0.23%) at the Cr(VI) initial concentration of 50 mg L-1. Relative to other reaction systems, the LC@HAP treatment exhibited a considerable decrease in total Cr content in the solution, with removal rates surpassing 70%. Additionally, the bio-microcapsules maintained significant biological activity after reacting with Cr(VI). Further characterization using SEM, FTIR, XPS, and XRD revealed that the Cr(VI) removal mechanisms by bio-microcapsules primarily involved biological reduction and HAP adsorption. The adsorption of Cr(III) by HAP predominantly occurred through electrostatic interactions and surface complexation, accompanied by an ion exchange process between Cr(III) and Ca(II). Hence, bio-microcapsules, created by combining L. cavernae with HAP, represent a promising emerging material for the enhanced removal of Cr(VI) pollutants from wastewater.
Collapse
Affiliation(s)
- Bing Shan
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Ruixia Hao
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China.
| | - Junman Zhang
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Yubo Ye
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Jiani Li
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Hui Xu
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Anhuai Lu
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
7
|
Nguyen THA, Quang DT, Tan LV, Vo TK. Ultrasonic spray pyrolysis synthesis of TiO 2/Al 2O 3 microspheres with enhanced removal efficiency towards toxic industrial dyes. RSC Adv 2023; 13:5859-5868. [PMID: 36816090 PMCID: PMC9932635 DOI: 10.1039/d3ra00024a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Developing low-cost and highly effective adsorbent materials to decolorate wastewater is still challenging in the industry. In this study, TiO2-modified Al2O3 microspheres with different TiO2 contents were produced by spray pyrolysis, which is rapid and easy to scale up. Results reveal that the modification of γ-Al2O3 with TiO2 reduced the crystallite size of Al2O3 and generated more active sites in the composite sample. The as-synthesized Al2O3-TiO2 microspheres were applied to remove anionic methyl orange (MO) and cationic rhodamine B (RB) dyes in an aqueous solution using batch and continuous flow column sorption processes. Results show that the Al2O3 microspheres modified with 15 wt% of TiO2 exhibited the maximum adsorbing capacity of ∼41.15 mg g-1 and ∼32.28 mg g-1 for MO and RB, respectively, exceeding the bare γ-Al2O3 and TiO2. The impact of environmental complexities on the material's reactivity for the organic pollutants was further delineated by adjusting the pH and adding coexisting ions. At pH ∼5.5, the TiO2/Al2O3 microspheres showed higher sorption selectivity towards MO. In the continuous flow column removal, the TiO2/Al2O3 microspheres achieved sorption capacities of ∼31 mg g-1 and ∼19 mg g-1 until the breakthrough point for MO and RB, respectively. The findings reveal that TiO2-modified Al2O3 microspheres were rapidly prepared by spray pyrolysis, and they effectively treated organic dyes in water in batch and continuous flow removal processes.
Collapse
Affiliation(s)
- Thi Hong Anh Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Food Industry140 Le Trong Tan, Tan PhuHo Chi Minh CityVietnam
| | - Duong Tuan Quang
- University of Education, Hue University34 Le Loi, Phu HoiHue City530000Vietnam
| | - Le Van Tan
- Department of Chemical Engineering, Industrial University of Ho Chi Minh City 12 Nguyen Van Bao, Go Vap Ho Chi Minh City Vietnam
| | - The Ky Vo
- Department of Chemical Engineering, Industrial University of Ho Chi Minh City 12 Nguyen Van Bao, Go Vap Ho Chi Minh City Vietnam
| |
Collapse
|
8
|
Tan X, Zhang Y, Liu M, Cao J, Duan G, Cui J, Lin A. Ultrasonic-assisted preparation of interlaced layered hydrotalcite (U-Fe/Al-LDH) for high-efficiency removal of Cr(VI): Enhancing adsorption-coupled reduction capacity and stability. CHEMOSPHERE 2022; 308:136472. [PMID: 36122742 DOI: 10.1016/j.chemosphere.2022.136472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Cr(VI) contamination in aquatic systems has been a challenge for environmental science researchers. To environmental-friendly, stable, and efficiently remove Cr (VI), a novel layered double hydroxide was prepared through the ultrasonic-assisted co-precipitation method. The ultrasonic-assisted step prevented the Fe2+ oxidation, improved the morphology and performance, and finally, the adsorption-coupled reduction capacity and stability were enhanced. By adding U-Fe/Al-LDH (1.0 g/L) for Cr(VI) (100 mg/L), the removal rate reached 82.24%. The removal data were well fitted by the pseudo-second-order kinetic and Langmuir isotherm model. Using U-Fe/Al-LDH can be performed over a wide pH range (2-10), with a theoretical maximum removal capacity of 118.65 mg/g. The Cr(VI) with high toxicity was adsorbed and reduced to low-toxicity Cr(III). In the final phase, stable Cr(III) complex precipitates were generated. After 30 days, the dynamic leaching amounts of total Cr in used U-Fe/Al-LDH-2 were 0.1052 mg/L. Combined with the results of the influence experiment of coexisting anions and oxidants and the SO42- release experiment, the stability of the removal effect and the safety of U-Fe/Al-LDH were proved. In conclusion, U-Fe/Al-LDH-2 is a promising remediation agent and a feasible Cr(VI) removal method for the practical remediation.
Collapse
Affiliation(s)
- Xiao Tan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yinjie Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Meng Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jinman Cao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Guilan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
| | - Jun Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
9
|
Zhang P, Zou K, Yuan L, Liu J, Liu B, Qing TP, Feng B. A biomass resource strategy for alginate-polyvinyl alcohol double network hydrogels and their adsorption to heavy metals. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Eltaweil AS, Hashem OA, Abdel-Hamid H, Abd El-Monaem EM, Ayoup MS. Synthesis of a new magnetic Sulfacetamide-Ethylacetoacetate hydrazone-chitosan Schiff-base for Cr(VI) removal. Int J Biol Macromol 2022; 222:1465-1475. [PMID: 36113599 DOI: 10.1016/j.ijbiomac.2022.09.081] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 01/13/2023]
Abstract
In this study, a novel magnetic organic-inorganic composite was fabricated. Where, Chitosan, sulfacetamide and ethylacetoacetae were used to prepare a new Sulfacetamide-Ethylacetoacetate hydrazone-chitosan Schiff-base (SEH-CSB) with a variety of active sites that capable of forming coordinate covalent bonds with Cr(VI). This was followed by modification of the formed SHE-CSB with NiFe2O4 to obtain the magnetic Chitosan-Schiff-base (NiFe2O4@SEH-CSB). NiFe2O4@SEH-CSB was characterized using FTIR, zeta potential, SEM, VSM and XPS. Results clarified that SHE played a crucial role in the removal of Cr(VI). The removal of Cr(VI) on NiFe2O4@SEH-CSB was found to be more fitted to pseudo-2nd order kinetics model and Freundlich isotherm. Besides, the maximum adsorption capacity of NiFe2O4@SEH-CSB for Cr(VI) was found to be 373.61 mg/g. The plausible mechanism for the removal of Cr(VI) on NiFe2O4@SEH-CSB composite suggested coulombic interaction, outer-sphere complexation, ion-exchange, surface complexation and coordinate-covalent bond pathways. The magnetic property enabled easy recycling of NiFe2O4@SEH-CSB composite.
Collapse
Affiliation(s)
| | - Omar A Hashem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Hamida Abdel-Hamid
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohammed Salah Ayoup
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
11
|
Osotsi MI, Xiong Y, Fu S, Zhang W, Di Z. Bioinspired hierarchical 3D flower-in-ridge hybrid structure for the photodegradation of persistent organic pollutants. NANOSCALE 2022; 14:8130-8144. [PMID: 35615970 DOI: 10.1039/d2nr01424f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of next-generation photocatalysts has consistently gained inspiration from the evolution of natural nanostructures regarding their fabrication and application for the elimination of persistent organic pollutants (POPs). Herein, we synthesized blue-colored oxygen-vacant Bi2WO6-x inside butterfly wing architectures (BW-Bi2WO6-x) via modified functionalization and solvothermal techniques. Given that the (WO4)2- layer in Bi2WO6 structurally resembles the structure of WO3, the introduction of oxygen vacancies (OVs) boosts the solar light absorption in comparison to the short visible light absorption range (<450 nm) in pristine Bi2WO6 (P-Bi2WO6). Hence, the fabricated BW-Bi2WO6-x sample exhibited broadened photo-absorption over the visible to NIR wavelength range, improved semiconductor attachment on the wing architecture and heightened surface area with numerous active sites for the adsorption of POP molecules. The performance of the BW-Bi2WO6-x photocatalyst was monitored for the elimination of methylene blue (MB), rhodamine B (RhB) and 4-chlorophenol (4-CP) under UV light exposure, yielding 91%, 92% and 94% degradation, respectively, in 60 min. Similarly, the degradation efficiencies of 94%, 98% and 98% for the photodegradation of MB, RhB and 4-CP under visible light for 60 min, respectively, were observed. Under NIR light, 80%, 79% and 85% degradation efficiencies were observed for MB, RhB and 4-CP, respectively, after 60 min. Therefore, the proposed BW-Bi2WO6-x sample can provide insights and inspire the development of photo-responsive materials for applications in energy, defense and water treatment.
Collapse
Affiliation(s)
- Maurice I Osotsi
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yuqin Xiong
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Siqi Fu
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wang Zhang
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhang Di
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
12
|
A novel enrichment and sensitive method for simultaneous determination of 15 phthalate esters in milk powder samples. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Zhao C, Hu L, Zhang C, Wang S, Wang X, Huo Z. Preparation of biochar-interpenetrated iron-alginate hydrogel as a pH-independent sorbent for removal of Cr(VI) and Pb(II). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117303. [PMID: 34010759 DOI: 10.1016/j.envpol.2021.117303] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/10/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Herein, a pH-independent interpenetrating polymeric networks (Fe-SA-C) were fabricated from graphitic biochar (BC) and iron-alginate hydrogel (Fe-SA) for removal of Cr(VI) and Pb(II) in aqueous solution. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and scanning electron microscope (SEM) results demonstrated that graphitic BC interpenetration increased surface porosity and distorted surfaces of Fe-SA, which boosted availability of hydroxyl (-OH) group. Fe3+ as a cross-linking agent of the alginate endowed Fe-SA-C with positive surfaces (positive zeta potential) and excellent pH buffering capacity, while excessive Fe3+ was soldered on Fe-SA-C matrix as FeO(OH) and Fe2O3. Cr(VI) removal at pH of 3 by Fe-SA-C (20.3 mg g-1) were 30.3% and 410.6% greater than that by Fe-SA and BC, respectively. Fe-SA-C exhibited minor pH dependence over pH range of 2-7 towards Cr(VI) retention. Greater zeta potential of Fe-SA-C over Fe-SA conferred a better electrostatic attraction with Cr(VI). FTIR and XPS of spent sorbents confirmed the reduction accounted for 98.5% for Cr(VI) removal mainly due to participation of -OH. Cr(VI) reduction was further favored by conductive carbon matrix in Fe-SA-C, as evidenced by more negative Tafel corrosion potential. Reductively formed Cr(III) was subsequently complexed with carboxylic groups originating from oxidation of -OH. Thus, Cr(VI) removal invoked electrostatic attraction, reduction, and surface complexation mechanisms. Pb(II) removal with excellent pH independence was mainly ascribed to surface complexation and possible precipitation. Thus, the functionalized, conductive, and positively-charged Fe-SA-C extended its applicability for Cr(VI) and Pb(II) removal from aqueous solutions in a wide pH range. This research could expand the application of hydrogel materials for removal of both cationic and anionic heavy metals in solutions over an extended pH range.
Collapse
Affiliation(s)
- Chenhao Zhao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, PR China; Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Agricultural College, Yangzhou University, Yangzhou, 225009, PR China
| | - Linlin Hu
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Taian, 271018, PR China
| | - Changai Zhang
- School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, 310023, PR China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, PR China; College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Taian, 271018, PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, PR China.
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, PR China; College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Taian, 271018, PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, PR China
| | - Zhongyang Huo
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Agricultural College, Yangzhou University, Yangzhou, 225009, PR China
| |
Collapse
|
14
|
Jana S, Ray J, Mondal B, Samanta SK, Tripathy T. Equilibrium and kinetics study of methyl violet adsorption by pineapple leaf fibers‐
cl‐poly
(acrylic acid‐
co‐
2‐dimethyl amino ethyl acrylate) hydrogel. J Appl Polym Sci 2021. [DOI: 10.1002/app.50882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Subinoy Jana
- Postgraduate Division of Chemistry Midnapore College (Autonomous) Midnapore West Bengal India
| | - Jagabandhu Ray
- Postgraduate Division of Chemistry Midnapore College (Autonomous) Midnapore West Bengal India
| | - Barun Mondal
- Postgraduate Division of Chemistry Midnapore College (Autonomous) Midnapore West Bengal India
| | - Santu Kumar Samanta
- Postgraduate Division of Chemistry Midnapore College (Autonomous) Midnapore West Bengal India
| | - Tridib Tripathy
- Postgraduate Division of Chemistry Midnapore College (Autonomous) Midnapore West Bengal India
| |
Collapse
|
15
|
Zhang W, Ou J, Wang B, Wang H, He Q, Song J, Zhang H, Tang M, Zhou L, Gao Y, Sun S. Efficient heavy metal removal from water by alginate-based porous nanocomposite hydrogels: The enhanced removal mechanism and influencing factor insight. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126358. [PMID: 34130162 DOI: 10.1016/j.jhazmat.2021.126358] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/17/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
Novel porous alginate-based nanocomposite hydrogels were prepared by incorporating polyaniline-polypyrrole modified graphene oxide (GO@PAN-PPy) as reinforcing fillers into the alginate matrix (GO@PAN-PPy/SA) for Cr(VI) and Cu(II) removal from water. Different in-situ co-polymerization functionalized GO with Py-to-An mass ratios of monomers (from nil to 1:1) and contents of GO@PAN-PPy (from nil to 2.0%(w/v)) were embedded into the alginate backbone to improve the sorption performance. Key factors, such as pH, coexisting metal ions, and swelling states were investigated in batch adsorption modes. The synergistic effect combined from polymer backbone and fillers could lower the impact of the pH-dependent adsorption reaction. With an adsorption ability superior to that of plain SA and GO/SA, the optimized GO@PAN-PPy-2(1)/SA exhibited good experimental maximum adsorption capacities for Cr(VI) (~133.7 mg/g) and Cu(II) (~87.2 mg/g) at pH 3.0, which were better than those of many other similar sorbents. The sorbents possessed excellent adaptability for 0.2 M salt for Cr(VI) removal but poor for Cu(II) removal. Pre-swelling treatment and co-adsorption could enhance the adsorption performance. The excellent reusability of hydrogel was demonstrated after five cycles in single/binary system. Overall, this work reveals that the resultant hydrogel holds potential as candidate sorbent to remove anionic-cationic heavy metal ions from water.
Collapse
Affiliation(s)
- Wei Zhang
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Ji Ou
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Bin Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| | - Qiulai He
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Jianyang Song
- School of Civil Engineering, Nanyang Institute of Technology, Nanyang 473004, China
| | - Huining Zhang
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Meiyi Tang
- China West Construction Hunan Group Co. Ltd., Changsha 410114, China
| | - Lean Zhou
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Yang Gao
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Shiquan Sun
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China.
| |
Collapse
|
16
|
Zhang Y, Zhao M, Cheng Q, Wang C, Li H, Han X, Fan Z, Su G, Pan D, Li Z. Research progress of adsorption and removal of heavy metals by chitosan and its derivatives: A review. CHEMOSPHERE 2021; 279:130927. [PMID: 34134444 DOI: 10.1016/j.chemosphere.2021.130927] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Chitosan has received widespread attention as an adsorbent for pollutants because of its low cost and great adsorption potentials. Chitosan has abundant hydroxyl and amino groups that can bind heavy metal ions. However, it has defects such as sensitivity to pH, low thermal stability, and low mechanical strength, which limit the application of chitosan in wastewater treatment. The functional groups of chitosan can be modified to improve its performance via crosslinking and graft modification. The porosity and specific surface area of chitosan in powder form are not ideal, therefore, physical modification has been attempted to generate chitosan nanoparticles and hydrogel. Chitosan has also been integrated with other materials (e.g. graphene, zeolite) resulting in composite materials with improved adsorption performance. This review mainly focuses on reports about the application of chitosan and its derivatives to remove different heavy metals. The preparation strategy, adsorption mechanism, and factors affecting the adsorption performance of adsorbents for each type of heavy metal are discussed in detail. Recent reports on important organic pollutants (dyes and phenol) removal by chitosan and its derivatives are also briefly discussed.
Collapse
Affiliation(s)
- Yuzhe Zhang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Meiwen Zhao
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Qian Cheng
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Chao Wang
- Jiangsu Longhuan Environmental Science Co. LTD, Changzhou, 213164, China
| | - Hongjian Li
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Xiaogang Han
- Changzhou Qingliu Environmental Protection Technology Co. LTD, Changzhou, 213000, China
| | - Zhenhao Fan
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Gaoyuan Su
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Deng Pan
- School of Global Affairs, King's College London, WC2R 2LS, London, United Kingdom.
| | - Zhongyu Li
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China; Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China; Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
17
|
Palansooriya KN, Kim S, Igalavithana AD, Hashimoto Y, Choi YE, Mukhopadhyay R, Sarkar B, Ok YS. Fe(III) loaded chitosan-biochar composite fibers for the removal of phosphate from water. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125464. [PMID: 33730647 DOI: 10.1016/j.jhazmat.2021.125464] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Excess phosphorous (P) in aquatic systems causes adverse environmental impacts including eutrophication. This study fabricated Fe(III) loaded chitosan-biochar composite fibers (FBC-N and FBC-C) from paper mill sludge biochar produced under N2 (BC-N) and CO2 (BC-C) conditions at 600 °C for adsorptive removal of phosphate from water. Investigations using SEM/EDX, XPS, Raman spectroscopy, and specific surface area measurement revealed the morphological and physico-chemical characteristics of the adsorbent. The Freundlich isotherm model well described the phosphate adsorption on BC-N, while the Redlich-Peterson model best fitted the data of three other adsorbents. The maximum adsorption capacities were 9.63, 8.56, 16.43, and 19.24 mg P g-1 for BC-N, BC-C, FBC-N, and FBC-C, respectively, indicating better adsorption by Fe(III) loaded chitosan-biochar composite fibers (FBCs) than pristine biochars. The pseudo-first-order kinetic model suitably explained the phosphate adsorption on BC-C and BC-N, while data of FBC-N and FBC-C followed the pseudo-second-order and Elovich model, respectively. Molecular level observations of the P K-edge XANES spectra confirmed that phosphate associated with iron (Fe) minerals (Fe-P) were the primary species in all the adsorbents. This study suggests that FBCs hold high potential as inexpensive and green adsorbents for remediating phosphate in contaminated water, and encourage resource recovery via bio-based management of hazardous waste.
Collapse
Affiliation(s)
- Kumuduni Niroshika Palansooriya
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sok Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Avanthi Deshani Igalavithana
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea; Department of Soil Science, Faculty of Agriculture, University of Peradeniya, 20400, Peradeniya, Sri Lanka
| | - Yohey Hashimoto
- Department of Bioapplications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Yoon-E Choi
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Raj Mukhopadhyay
- Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal 132001, Haryana, India
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
18
|
Determination of benzene, toluene, ethylbenzene, and p-xylene with headspace-hollow fiber solid-phase microextraction-gas chromatography in wastewater and Buxus leaves, employing a chemometric approach. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01663-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Highly efficient and rapid adsorption of methylene blue dye onto vinyl hybrid silica nano-cross-linked nanocomposite hydrogel. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126050] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
20
|
Han X, Zhang Y, Zheng C, Yu X, Li S, Wei W. Enhanced Cr(VI) removal from water using a green synthesized nanocrystalline chlorapatite: Physicochemical interpretations and fixed-bed column mathematical model study. CHEMOSPHERE 2021; 264:128421. [PMID: 33011481 DOI: 10.1016/j.chemosphere.2020.128421] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/10/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Apatite-based minerals have attracted much attention in the remediation of heavy metal-contaminated environment. However, exploring apatite with efficient adsorption performance for inorganic oxyanions such as Cr(VI) remains a challenge. Herein, a novel nanocrystalline chlorapatite (ClAP) was promptly prepared by a green method using eggshell wastes as calcium source with the purpose to enhance Cr(VI) adsorption capability. The generated ClAP was characterized by XRD, SEM-EPMA, TEM, FTIR, and BET analyses. Batch and column experiments were subsequently carried out to explore the influencing factors, adsorption capacity and removal mechanism. Results showed that ClAP exhibited excellent stability and adsorption performance for Cr(VI) (63.47 mg g-1), which was much greater than that of hydroxyapatite and most reported materials. The adsorption process was fitted well by the pseudo-second-order model and the Langmuir model. In fixed bed column experiments, a novel time-fractional derivative model exhibited much better suitability in interpreting the observed breakthrough curves of Cr(VI) than traditional models. Furthermore, the reusability of ClAP in column was evaluated. Results showed that the adsorption capacity maintained well after consecutively reused for five cycles. Studies of the effect of pH, as well as FTIR and XPS investigations indicated that Cr(VI) adsorption was mainly ascribed to electrostatic interactions and surface complexation, while the reduction of Cr(VI) to the low-toxicity Cr(III) also existed in the adsorption process. The ClAP adsorbent was also successfully used for Cr(VI) remediation from real wastewater. Hence, nanocrystalline ClAP can be a promising material for enhancing the elimination of oxyanion contaminants such as Cr(VI) from water.
Collapse
Affiliation(s)
- Xuan Han
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
| | - Yong Zhang
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Chunmiao Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Shenzhen, 518055, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiangnan Yu
- College of Mechanics and Materials, Hohai University, Nanjing, 210098, China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Wei Wei
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Shenzhen, 518055, China.
| |
Collapse
|
21
|
Mallakpour S, Sirous F, Hussain CM. Green synthesis of nano-Al 2O 3, recent functionalization, and fabrication of synthetic or natural polymer nanocomposites: various technological applications. NEW J CHEM 2021. [DOI: 10.1039/d0nj05578f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Environmentally friendly fabrication of nano-Al2O3, recent functionalization, and preparation of polymer nanocomposites including natural and man-made polymers with various industrial applications are reviewed.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | - Fariba Sirous
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | | |
Collapse
|
22
|
Wang F, Zhang Y, Fang Q, Li Z, Lai Y, Yang H. Prepared PANI@nano hollow carbon sphere adsorbents with lappaceum shell like structure for high efficiency removal of hexavalent chromium. CHEMOSPHERE 2021; 263:128109. [PMID: 33297102 DOI: 10.1016/j.chemosphere.2020.128109] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/27/2020] [Accepted: 08/21/2020] [Indexed: 06/12/2023]
Abstract
Herein, the novel polyaniline@nano hollow carbon sphere (PANI@NHCS) adsorbents with different mass of NHCS were prepared by in-situ polymerization method. The microstructure of obtained PANI@NHCS-10, PANI@NHCS-20, PANI@NHCS-30 and PANI@NHCS-40 samples were observed through both scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which showed that the PANI@NHCS-30 possessed hollow structure like lappaceum shell. Then, the performance of obtained PANI@NHCS-30 was studied for removing hexavalent chromium (Cr(VI)) from waste water. With the help of unique hollow structure and reduction ability of PANI@NHCS-30, the Cr(VI) was fleetly adsorbed and then reduced to less toxic Cr(III). The maximum adsorption capacity was 250.0 mg/g for PANI@NHCS-30 under the optimal condition. Moreover, the effects of initial Cr(VI) concentration, solution pH and different ions on the adsorption performance were investigated in detail. Importantly, the PANI@NHCS-30 still shows superb adsorption ability after five cycles, which suggests its satisfactory reusability ability. The accumulated data revealed the crucial role of PANI and hollow structure co-promoting effect on Cr(VI) reduction reactions over PANI@NHCS-30, which could be applied to the practical use.
Collapse
Affiliation(s)
- Fei Wang
- Laboratory of Environment Remediation and Function Material, Suzhou Research Institute of North China Electric Power University, Suzhou, Jiangsu, 215213, China; Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yimei Zhang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; Laboratory of Environment Remediation and Function Material, Suzhou Research Institute of North China Electric Power University, Suzhou, Jiangsu, 215213, China.
| | - Qinglu Fang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Zhiying Li
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yuxian Lai
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Hangsheng Yang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
23
|
Ahmed A, Mohamed F, Elzanaty AM, Abdel-Gawad OF. Synthesis and characterization of diphenylamine grafted onto sodium alginate for metal removal. Int J Biol Macromol 2020; 167:766-776. [PMID: 33249151 DOI: 10.1016/j.ijbiomac.2020.11.159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 11/26/2022]
Abstract
A novel grafting polymer was synthesized via grafting of diphenylamine (DPA) onto sodium alginate (NaAlg) as a new adsorbent for Cobalt (Co2+) from aqueous solutions. Optimization of sodium alginate grafted by diphenylamine (NaAlg-g-DPA) was addressed in the current study by several parameters including; initiator and monomer concentrations, contact time of polymerization, as well as polymerization temperature. In addition, the structural and chemical characteristics of NaAlg-g-DPA were explored using different modalities later. The results showed that sodium alginate grafted by diphenylamine (NaAlg-g-DPA) is suitable for adsorbent to removal Co2+ ion. The parameters for the adsorption of Co(II) ions by NaAlg-g-DPA were also determined. It was shown that the samples of NaAlg-g-DPA had given good correlation with Temkins isotherm model and their kinetics followed pseudo-second-order model. It was also observed that the adsorption capacity seemed to be dependent on pH value in solution which showed better results at basic pH. The findings from this research show that NaAlg-g-DPA has capability to remove Co (II) from aqueous solutions.
Collapse
Affiliation(s)
- Asmaa Ahmed
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Fatma Mohamed
- Nanophotonics and Applications (NPA) Lab, Polymer Research Laboratory, Beni-Suef University, Beni-Suef 62514, Egypt; Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ali M Elzanaty
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Omayma F Abdel-Gawad
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
24
|
Li Z, Zou P, Yang J, Huang M, Zhang L, Huang C, Yang F, Huang R, Lv S, Wei G. A functionalized tannin-chitosan bentonite composite with superior adsorption capacity for Cr(VI). JOURNAL OF POLYMER ENGINEERING 2020. [DOI: 10.1515/polyeng-2020-0133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A novel functionalized tannin-chitosan bentonite composite (TCBC) was successfully synthesized. The formation of the composite was confirmed by the X-ray diffraction (XRD) patterns and Fourier transform infrared spectroscopy (FT-IR) analysis. The pHpzc of TCBC was 3.38. The influences such as pH, dosage of TCBC, temperature and initial Cr(VI) concentration on adsorption capacity were investigated. The experimental data indicated that the almost saturated adsorption of the TCBC towards Cr(VI) in 100 min. The maximum adsorption capacity was 262.08 mg/g at 333 K with initial pH = 2.5. The adsorption kinetics of Cr(VI) on TCBC followed the pseudo-second-order kinetics model. The isothermal data were well described by the models of Langmuir, Freundlich and Temkin. The results revealed that the adsorption of Cr(VI) on TCBC existed comprehensive effects and mainly belong to the chemisorption. The TCBC could keep good performances (q
e = 192.17 mg/g) in five runs, 1 M NaOH was used as eluent for desorption, which showed a high desorption efficiency. Studies showed TCBC prepared with low cost and green raw materials, and simple green preparation technology had high adsorption capacity, good reusability and acidic tolerance. By exploring the Cr(VI)-Cr(III) hybrid system, part of Cr(VI) was reduced to Cr(III) and adsorbed by TCBC. The optimal adsorption pH of Cr(III) was 5.0.
Collapse
Affiliation(s)
- Zhongmin Li
- School of Chemistry and Chemical Engineering , Guangxi University , Nanning 530004 , China
| | - Peng Zou
- School of Chemistry and Chemical Engineering , Guangxi University , Nanning 530004 , China
| | - Junzhou Yang
- School of Chemistry and Chemical Engineering , Guangxi University , Nanning 530004 , China
| | - Miaoyang Huang
- School of Chemistry and Chemical Engineering , Guangxi University , Nanning 530004 , China
| | - Linye Zhang
- School of Chemistry and Chemical Engineering , Guangxi University , Nanning 530004 , China
- Guangxi Key Laboratory of Processing for Non-Ferrous Metallic and Featured Materials , Guangxi Zhuang Autonomous Region , Nanning 530004 , China
| | - Chuanzhou Huang
- School of Chemistry and Chemical Engineering , Guangxi University , Nanning 530004 , China
| | - Funeng Yang
- School of Chemistry and Chemical Engineering , Guangxi University , Nanning 530004 , China
| | - Renyu Huang
- School of Chemistry and Chemical Engineering , Guangxi University , Nanning 530004 , China
| | - Songyi Lv
- School of Chemistry and Chemical Engineering , Guangxi University , Nanning 530004 , China
| | - Guangtao Wei
- School of Chemistry and Chemical Engineering , Guangxi University , Nanning 530004 , China
- Guangxi Key Laboratory of Biorefinery , Naning 530007 , China
| |
Collapse
|
25
|
Kong F, Zhang Y, Wang H, Tang J, Li Y, Wang S. Removal of Cr(VI) from wastewater by artificial zeolite spheres loaded with nano Fe-Al bimetallic oxide in constructed wetland. CHEMOSPHERE 2020; 257:127224. [PMID: 32526469 DOI: 10.1016/j.chemosphere.2020.127224] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 05/26/2023]
Abstract
In order to solve the problems of poor adsorption capacity and low stability in treating heavy metal wastewater with traditional constructed wetland (CW) fillers, a new type of filler, artificial zeolite spheres loaded with nano Fe-Al bimetallic oxide (hereinafter referred to as composite zeolite spheres), was prepared for Cr(VI) removal from wastewater. The results indicated that nano Fe-Al bimetallic oxide was an effective material for Cr(VI) removal with the maximal removal efficiency of 84.9% at initial Cr(VI) concentration of 20 mg/L (pH = 3). The micro-reactor experiment further verified that composite zeolite spheres had better removal performance on Cr(VI) than traditional filler. Fourier-transform infrared (FT-IR), X-ray diffractometry (XRD) and X-Ray photoemission spectroscopy (XPS) results demonstrated that -OH groups reduced Cr(VI) to Cr(III), and then the Cr(III) was removed by forming CrxFe1-x(OH)3 precipitation with Fe(III) or formed Cr(OH)3 precipitation with Al-OH through the ion exchange. This study provided an effective approach for treating Cr(VI) wastewater by using a new composite zeolite in constructed wetlands (CWs).
Collapse
Affiliation(s)
- Fanlong Kong
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yu Zhang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Hongsheng Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Jianguo Tang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yue Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Sen Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
26
|
Lv Q, Hu X, Shen Y, Sun G. Polymer hydrogel cross‐linked by inorganic nanoparticles for removing trace metal ions. J Appl Polym Sci 2020. [DOI: 10.1002/app.49004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qingyun Lv
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials EngineeringUniversity of Macau Avenida da Universidade Taipa Macau SAR China
| | - Xiaosai Hu
- College of FashionShanghai University of Engineering Science Shanghai 201620 PR China
| | - Yong Shen
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials EngineeringUniversity of Macau Avenida da Universidade Taipa Macau SAR China
| | - Guoxing Sun
- College of FashionShanghai University of Engineering Science Shanghai 201620 PR China
| |
Collapse
|
27
|
Cai W, Dionysiou DD, Fu F, Tang B. CTAB-intercalated molybdenum disulfide nanosheets for enhanced simultaneous removal of Cr(VI) and Ni(II) from aqueous solutions. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122728. [PMID: 32361299 DOI: 10.1016/j.jhazmat.2020.122728] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/11/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
The treatment of heavy metal pollution in aquatic environment, especially the pollution caused by multiple heavy metal ions, has been a growing global concern for decades. To address this problem, it is urgent to explore effective and low cost adsorbents which can remove multiple heavy metal ions simultaneously. Herein, Cr(VI) and Ni(II) removal from water by MoS2 with widened interlayer spacing was systematically investigated in comparison with pure MoS2. A series of techniques, including X-ray powder diffraction (XRD), Transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) surface area and porosimetry analysis were applied to characterize the nanocomposites. The XRD results confirmed the enlarged interlayer spacing of MoS2 by intercalating cetyl trimethyl ammonium bromide (CTAB) into the interlamination. The maximum adsorption capacities of Cr(VI) and Ni(II) for MoS2/CTAB were 79.4 mg g-1 and 88.3 mg g-1, respectively. Moreover, a synergistic effect in the simultaneous removal of Cr(VI) and Ni(II) was observed. A new Cr(VI) removal mechanism involving redox reaction between Cr(VI) and Mo(IV) in MoS2/CTAB was verified. The removal efficiencies of Cr(VI) and Ni(II) still remained high at the end of fifth cycle, indicating that MoS2/CTAB has a great potential to remove heavy metals from wastewater.
Collapse
Affiliation(s)
- Weitian Cai
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Fenglian Fu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
28
|
Zhang R, Tian Y. Characteristics of natural biopolymers and their derivative as sorbents for chromium adsorption: a review. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2020. [DOI: 10.1186/s42825-020-00038-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
Chromium is widely used in industry, and improper disposal of wastewater and industrial residues containing excessive chromium can contaminate water and soil, endangering both environmental and human health. Natural biopolymers and their derivatives have been investigated for removal of chromium (Cr) from wastewater. Cellulose, lignin, tannin, chitin, chitosan, and polypeptides are abundant in nature, and have high potential as adsorbents due to their easy access, low cost, and the recyclability of the captured heavy metals. In order to improve their mechanical strength, recyclability, specific surface area, binding site number, and adsorption rate as adsorbents, native materials have also been modified. This review discusses the source of chromium contamination and the main species of interest, as well as their toxicity. The structures of the aforementioned biopolymers were analyzed, and the adsorption mechanism of chromium and the main influencing factors on this process are discussed. The modification methods of various adsorbents and their adsorption effects on chromium are also detailed, and the developmental direction of research on the use of biopolymer adsorption remediation to control chromium contamination is discussed.
Graphical abstract
Collapse
|
29
|
Du L, Gao P, Liu Y, Minami T, Yu C. Removal of Cr(VI) from Aqueous Solution by Polypyrrole/Hollow Mesoporous Silica Particles. NANOMATERIALS 2020; 10:nano10040686. [PMID: 32260580 PMCID: PMC7221785 DOI: 10.3390/nano10040686] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 11/16/2022]
Abstract
The removal of Cr(VI) in wastewater plays an important role in human health and environment. In this work, polypyrrole/hollow mesoporous silica particle (PPy/HMSNs) adsorbents have been newly synthesized by in-situ polymerization, which prevent the aggregation of pyrrole in the process of polymerization and exhibit highly selective and powerful adsorption ability for Cr(VI). The adsorption process was in good agreement with the quasi-second-order kinetic model and the Langmuir isotherm model. And the maximum adsorption capacity of Cr(VI) was 322 mg/g at 25 °C. Moreover, the removal rate of Cr(VI) by PPy/HMSNs was ~100% in a number of binary systems, such as Cl−/Cr(VI), NO3−/Cr(VI), SO42−/Cr(VI), Zn2+/Cr(VI), Fe3+/Cr(VI), Sn4+/Cr(VI), and Cu2+/Cr(VI). Thus, the PPy/HMSNs adsorbents have great potential for the removal of Cr(VI) in wastewater.
Collapse
Affiliation(s)
- Linlin Du
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China; (L.D.); (P.G.)
| | - Peng Gao
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China; (L.D.); (P.G.)
| | - Yuanli Liu
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China; (L.D.); (P.G.)
- Correspondence: (Y.L.); (C.Y.)
| | - Tsuyoshi Minami
- Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku 153-8505, Tokyo, Japan;
| | - Chuanbai Yu
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China; (L.D.); (P.G.)
- Correspondence: (Y.L.); (C.Y.)
| |
Collapse
|
30
|
Liu W, Zhang M, Liu X, Zhang H, Jiao J, Zhu H, Zhou Z, Ren Z. Preparation of Surface Ion-Imprinted Materials Based on Modified Chitosan for Highly Selective Recognition and Adsorption of Nickel Ions in Aqueous Solutions. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b04755] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Wei Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Minghui Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Xueting Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Hewei Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Jian Jiao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Huiying Zhu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Zhiyong Zhou
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Zhongqi Ren
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
31
|
Zhang W, Song J, He Q, Wang H, Lyu W, Feng H, Xiong W, Guo W, Wu J, Chen L. Novel pectin based composite hydrogel derived from grapefruit peel for enhanced Cu(II) removal. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121445. [PMID: 31668843 DOI: 10.1016/j.jhazmat.2019.121445] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Novel biochar/pectin/alginate hydrogel beads (BPA) derived from grapefruit peel were synthesized and used for Cu(II) removal from aqueous solution. FTIR, SEM-EDS, XRD, TGA and XPS, etc. were applied for characterization analysis. The synergistic reinforcing effect of polymer matrix and biochar fillers improved the adsorptive, mechanical and thermostabilized performance of BPA. Factors like component contents of biochar and pectin, pH, contact time, Cu(II) concentration and coexisting inorganic salts or organic ligands were systematically investigated in batch mode. The adsorption isotherms were fitted well by the Freundlich model and the experimental maximum adsorption capacity of optimized BPA-9 beads (mass ratio of pectin to alginate = 10:1) with 0.25% biochar, was ∼80.6 mg/g at pH 6. Kinetic process was well described by the pseudo-second-order model and film diffusion primarily governed the overall adsorption rate, followed by intraparticle diffusion. Thermodynamics analysis suggested spontaneous feasibility and endothermic nature of adsorption behavior. Moreover, BPA also showed better environmental adaptability in the presence of NaCl, MgCl2, CaCl2, EDTA-2Na and CA as well as good adsorption potential for other heavy metal [e.g. Pb(III)]. Crucially, the BPA beads showed good regeneration ability after five cycles. All these results indicated the potential of BPA for removing heavy metal from water.
Collapse
Affiliation(s)
- Wei Zhang
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Jianyang Song
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Qiulai He
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China.
| | - Wanlin Lyu
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Huijuan Feng
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Wenqi Xiong
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Wenbin Guo
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Jing Wu
- School of Urban Design, Wuhan University, Wuhan, 430072, China
| | - Ling Chen
- Department of Internal Medicine & Geriatrics, Zhongnan Hospital of Wuhan University, China.
| |
Collapse
|
32
|
Preparation and Characterization of Fe-Mn Binary Oxide/Mulberry Stem Biochar Composite Adsorbent and Adsorption of Cr(VI) from Aqueous Solution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17030676. [PMID: 31972981 PMCID: PMC7036895 DOI: 10.3390/ijerph17030676] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/12/2020] [Accepted: 01/17/2020] [Indexed: 11/17/2022]
Abstract
This study details the preparation of Fe-Mn binary oxide/mulberry stem biochar composite adsorbent (FM-MBC) from mulberry stems via the multiple activation by potassium permanganate, ferrous chloride, triethylenetetramine, and epichlorohydrin. The characteristics of FM-MBC had been characterized by SEM-EDS, BET, FT-IR, XRD, and XPS, and static adsorption batch experiments such as pH, adsorption time, were carried out to study the mechanism of Cr(VI) adsorption on FM-MBC and the impact factors. The results indicated that in contrast with the mulberry stem biochar (MBC), the FM-MBC has more porous on surface with a BET surface area of 74.73 m2/g, and the surface loaded with α-Fe2O3 and amorphization of MnO2 particles. Besides, carboxylic acid, hydroxyl, and carbonyls functional groups were also formed on the FM-MBC surface. At the optimal pH 2.0, the maximum adsorption capacity for Cr(VI) was calculated from the Langmuir model of 28.31, 31.02, and 37.14 mg/g at 25, 35, and 45 °C, respectively. The aromatic groups, carboxyls, and the hydroxyl groups were the mainly functional groups in the adsorption of Cr(VI). The mechanism of the adsorption process of FM-MBC for Cr(VI) mainly involves electrostatic interaction, surface adsorption of Cr(VI) on FM-MBC, and ion exchange.
Collapse
|
33
|
Jabeen S, Lone MS, Afzal S, Kour P, Shaheen A, Ahanger FA, Rather GM, Dar AA. Effect of single and binary mixed surfactant impregnation on the adsorption capabilities of chitosan hydrogel beads toward rhodamine B. NEW J CHEM 2020. [DOI: 10.1039/d0nj02496a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The adsorption of cationic xanthene dye rhodamine B (RhB) on pure chitosan (CS), single surfactant (SDS, Brij30 and DTAB) and binary surfactant (SDS-Brij30 and DTAB-Brij30) modified chitosan beads has been investigated.
Collapse
Affiliation(s)
- Suraya Jabeen
- Soft Matter Research Group
- Department of Chemistry
- University of Kashmir
- Srinagar 190006
- India
| | - Mohd Sajid Lone
- Soft Matter Research Group
- Department of Chemistry
- University of Kashmir
- Srinagar 190006
- India
| | - Saima Afzal
- Soft Matter Research Group
- Department of Chemistry
- University of Kashmir
- Srinagar 190006
- India
| | - Pawandeep Kour
- Soft Matter Research Group
- Department of Chemistry
- University of Kashmir
- Srinagar 190006
- India
| | - Arjumund Shaheen
- Soft Matter Research Group
- Department of Chemistry
- University of Kashmir
- Srinagar 190006
- India
| | - Firdaus Ahmad Ahanger
- Soft Matter Research Group
- Department of Chemistry
- University of Kashmir
- Srinagar 190006
- India
| | - Ghulam Mohammad Rather
- Soft Matter Research Group
- Department of Chemistry
- University of Kashmir
- Srinagar 190006
- India
| | - Aijaz Ahmad Dar
- Soft Matter Research Group
- Department of Chemistry
- University of Kashmir
- Srinagar 190006
- India
| |
Collapse
|
34
|
Barik B, Nayak PS, Achary LSK, Kumar A, Dash P. Synthesis of alumina-based cross-linked chitosan–HPMC biocomposite film: an efficient and user-friendly adsorbent for multipurpose water purification. NEW J CHEM 2020. [DOI: 10.1039/c9nj03945g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Novel alumina-based cross-linked chitosan–HPMC biocomposite is synthesized and its detailed characteristics with potential applications in water purification from both organic and inorganic contaminants elucidated.
Collapse
Affiliation(s)
| | | | | | - Aniket Kumar
- School of Materials Science and Engineering
- Chonnam National University
- Gwang-Ju
- Republic of Korea
| | | |
Collapse
|
35
|
Hu X, Song J, Wang H, Zhang W, Wang B, Lyu W, Wang Q, Liu P, Chen L, Xing J. Adsorption of Cr(VI) and Cu(II) from aqueous solutions by biochar derived from Chaenomeles sinensis seed. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:2260-2272. [PMID: 32245918 DOI: 10.2166/wst.2020.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In order to utilize the discarded Chaenomeles sinensis seed (CSS) and develop low-cost biochar for heavy metal pollution control, this study pyrolyzed CSS to prepare biochar at three different temperatures (300, 450 and 600 °C). The physicochemical properties of CSS biochar such as elemental composition, surface area, surface morphology and surface functional groups were characterized. Its adsorption properties including kinetics, isotherms and thermodynamics were studied. The results showed that the adsorption equilibrium was reached at 5 h, which was relatively fast. CSS biochar prepared at 450 °C (CSS450) had the maximum adsorption capacity for Cr(VI) and Cu(II), which was 93.19 mg/g and 105.12 mg/g, respectively. The thermodynamic parameter ΔG0 < 0 and the isotherm parameter RL between 0 and 1 all revealed the feasibility and spontaneity of the adsorption process. The removal of Cr(VI) exhibited high efficiency in a wide pH range (1-10), while the removal of Cu(II) was pH-dependent and optimal at pH = 6. The coexisting ions in the solution showed slight inhibition of the adsorption of Cr(VI) and Cu(II). Additionally, Cu(II) exhibited better affinity for CSS450 than Cr(VI) in dynamic adsorption. This is the first study to prepare biochar from CSS and confirms its potential application for heavy metal remediation.
Collapse
Affiliation(s)
- Xiaoling Hu
- School of Civil Engineering, Wuhan University, Wuhan 430072, China E-mail:
| | - Jianyang Song
- School of Civil Engineering, Wuhan University, Wuhan 430072, China E-mail:
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China E-mail:
| | - Wei Zhang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China E-mail:
| | - Bin Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China E-mail:
| | - Wanlin Lyu
- School of Civil Engineering, Wuhan University, Wuhan 430072, China E-mail:
| | - Qilong Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China E-mail:
| | - Pei Liu
- School of Civil Engineering, Wuhan University, Wuhan 430072, China E-mail:
| | - Ling Chen
- Department of Internal Medicine & Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Jie Xing
- Hei Longjiang Provincial Research Academy of Environmental Sciences, Harbin 150056, China
| |
Collapse
|
36
|
Fabrication of nanofibers using sodium alginate and Poly(Vinyl alcohol) for the removal of Cd 2+ ions from aqueous solutions: adsorption mechanism, kinetics and thermodynamics. Heliyon 2019; 5:e02941. [PMID: 31844778 PMCID: PMC6895574 DOI: 10.1016/j.heliyon.2019.e02941] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 09/19/2019] [Accepted: 11/25/2019] [Indexed: 11/23/2022] Open
Abstract
Nowadays, separation of heavy metals from polluted wastewater is one of the most important environmental issues, and various methods have been investigated for treating polluted water and industrial wastewater. Surface adsorption using an inexpensive, biodegradable and environmentally consistent adsorbent can be considered an efficient and cost-effective method. One of these adsorbents is sodium alginate (SA). The purpose of this study was to fabricate composite nanofibers using poly (vinyl alcohol) (PVA) and sodium alginate to remove cadmium metal ion from aqueous solutions. For this purpose, polymer solutions consisting of poly (vinyl alcohol) (10% wt)/sodium alginate (2% wt) with three volume ratios of 0/100, 20/80 and 40/60 were first made, and then nanofibers were produced from the resulting solutions by electro-spinning process. The prepared nanofibers were examined by scanning electron microscopy (SEM) and the synthetic poly (vinyl alcohol)/sodium alginate nanofibers at a ratio of 40/60 were selected as adsorbent. The obtained nanofibers were characterized by Fourier-transform infrared spectroscopy (FTIR). The synthesized adsorbent was used to remove the aqueous solution of cadmium metal; the effect of various parameters such as changes in initial metal ion concentration, pH, temperature, contact time and stirring speed on the adsorption process were investigated, and optimum values of the parameters were obtained. The maximum amount of equilibrium adsorption under optimum experimental conditions was 67.05 mg/gr. The Taguchi experiment design method was used to optimize the three effective factors in the cadmium ion adsorption process. The results of the adsorption process were adapted to different adsorption isotherms such as Langmuir and Freundlich isotherms. The fit of the laboratory data to the Langmuir model was better, and the maximum adsorption capacity through this model was obtained equal to 93.163 mg/g of the adsorbent. Since the performance of an adsorbent depends on the duration of the adsorption process, the kinetics of the adsorption process were investigated by pseudo-first-order equation and pseudo-second-order equation. Moreover, the results indicated that the laboratory data showed a better fit to the pseudo-second-order model. Finally, the thermodynamic perspective was examined, and the process was found to be endothermic and spontaneous. The results showed the optimum values for maximum cadmium uptake.
Collapse
|
37
|
Adsorption Characteristics and Transport Behavior of Cr(VI) in Shallow Aquifers Surrounding a Chromium Ore Processing Residue (COPR) Dumpsite. J CHEM-NY 2019. [DOI: 10.1155/2019/4932837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study explored the stratigraphic distribution and soil/shallow aquifer characteristics surrounding a chromium ore processing residue (COPR) dumpsite at a former chemical factory in China. Total Cr levels in top soils (5–10 cm) nearby the COPR dumpsite were in the range of 8571.4–10711.4 mg/kg. Shallow aquifers (1–6 m) nearby the COPR dumpsite showed a maximum total Cr level of 9756.7 mg/kg. The concentrations of Cr(VI) in groundwater nearby the COPR dumpsite were 766.9–1347.5 mg/L. These results display that the top soils, shallow aquifers, and groundwater of the study site are severely polluted by Cr(VI). Then, three aquifers (silt, clay, and silty clay), respectively, collected from the depth of 1.4–2.4 m, 2.4–4.8 m, and 4.8–11.00 m were first used to evaluate the adsorption characteristics and transport behavior of Cr(VI) in shallow aquifers by both batch and column experiments. The adsorption of Cr(VI) on tested aquifers was well described by pseudo-second-order equation and Freundlich model. The adsorption capacities of Cr(VI) on three aquifers followed the order: clay > silty clay > silt. The kinetics proved that Cr(VI) is not easily adsorbed by the aquifer mediums but transports with groundwater. Thermodynamics indicated that Cr(VI) adsorption on tested aquifers was feasible, spontaneous, and endothermic. Cr(VI) adsorption on tested aquifers decreased with increasing pH. Furthermore, the transport of Cr(VI) in adsorption columns followed the sequence of clay < silty clay < silt. Desorption column experiments infer that the Cr(VI) adsorbed on aquifers will desorb and release into groundwater in the case of rainwater leaching. Therefore, a proper treatment of the COPR and a comprehensive management of soils are vital to prevent groundwater pollution.
Collapse
|
38
|
Li N, Li W, Fu F. Removal of chromium(VI) by MnFe 2O 4 and ferrous ion: synergetic effects and reaction mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:30498-30507. [PMID: 31444724 DOI: 10.1007/s11356-019-06261-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
MnFe2O4 was a magnetic material that can be used to adsorb contaminants in the wastewater. Fe(II) could act as a reductant to transfer Cr(VI) into Cr(III). In this paper, mesoporous MnFe2O4 prepared by the coprecipitation method was incorporated with Fe(II) to remove Cr(VI). The samples before and after reaction were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. A total of 98~100% of Cr(VI) in solution was removed by MnFe2O4/Fe(II) hybrid system within a wide pH range (pH 3.0-9.0), which is due to the synergetic effects of adsorption from MnFe2O4 and reduction from Fe(II). Cr(VI) was reduced to Cr(III) by ≡Mn(II) on MnFe2O4 and Fe(II). Cr(III) and Fe(III) produced during reaction formed Cr(III)-Fe(III) hydroxides/oxyhydroxides and deposited on MnFe2O4. The inhibiting action of phosphate on the removal of Cr(VI) was greater than that of sulfate. Cr(VI) removal rate retained 94.5% at the fourth recycle test, which showed excellent re-usability of MnFe2O4.
Collapse
Affiliation(s)
- Na Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Weibin Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Fenglian Fu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
39
|
Dandil S, Akin Sahbaz D, Acikgoz C. Adsorption of Cu(II) ions onto crosslinked chitosan/Waste Active Sludge Char (WASC) beads: Kinetic, equilibrium, and thermodynamic study. Int J Biol Macromol 2019; 136:668-675. [DOI: 10.1016/j.ijbiomac.2019.06.063] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/27/2019] [Accepted: 06/10/2019] [Indexed: 01/11/2023]
|
40
|
Song J, He Q, Hu X, Zhang W, Wang C, Chen R, Wang H, Mosa A. Highly efficient removal of Cr(VI) and Cu(II) by biochar derived from Artemisia argyi stem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:13221-13234. [PMID: 30903476 DOI: 10.1007/s11356-019-04863-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
In this work, a novel biochar was prepared from the Artemisia argyi stem at 300 °C (AS300), 450 °C (AS450), and 600 °C (AS600). The structural properties of these biochars were characterized with various tools. The sorption kinetic processes of Cr(VI) and Cu(II) onto these biochars were better described by the pseudo-second order. The sorption isotherm processes of Cr(VI) onto these biochars were better described by the Freundlich model while the adsorption processes of Cu(II) were consistent with the Langmuir model. Batch sorption experiments showed that AS600 had the maximum adsorption capacity to Cr(VI) and Cu(II) with 161.92 and 155.96 mg/g, respectively. AS600 was selected for the follow-up batch and dynamic adsorption experiments. Results showed that AS600 had larger adsorption capacity for Cr(VI) at lower pH while the larger adsorption capacity for Cu(II) was found at higher pH. The effect of ionic strength on the adsorption of Cu(II) by AS600 was greater than that on the adsorption of Cr(VI). Dynamic adsorption experiments showed that Cu(II) had a higher affinity for the adsorption sites on the AS600 compared with Cr(VI). The adsorption mechanisms mainly involved electrostatic attraction, ion exchange, pore filling, and chemical bonding effect. Graphical abstract.
Collapse
Affiliation(s)
- Jianyang Song
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Qiulai He
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Xiaoling Hu
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Wei Zhang
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Chunyan Wang
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Rongfan Chen
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China.
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
41
|
Zhang W, Qian L, Ouyang D, Chen Y, Han L, Chen M. Effective removal of Cr(VI) by attapulgite-supported nanoscale zero-valent iron from aqueous solution: Enhanced adsorption and crystallization. CHEMOSPHERE 2019; 221:683-692. [PMID: 30669110 DOI: 10.1016/j.chemosphere.2019.01.070] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
The attapulgite supported nanoscale zero-valent iron composite (AT-nZVI) was synthesized and used for Cr(VI) removal. X-ray diffraction (XRD) and transmission electron microscope (TEM) indicated that nZVI particles were well distributed and immobilized on the attapulgite surface. Batch experiments of Cr(VI) removal were conducted at varying mass ratios, initial Cr(VI) concentrations and kinetics. The results indicated that the removal efficiency of Cr(VI) by AT-nZVI approaches 90.6%, being greater than that by non-supported nZVI (62.9%). The removal kinetics could be more accurately explained using pseudo second order kinetics model. The composite exhibited a synergistic interaction instead of simple mixture of AT and nZVI. Reduction was the dominant mechanism at low concentrations as opposed to adsorption at high concentrations. FeCr2O4 was the main reduction product by AT-nZVI, which was attributed to the reduction of Cr(VI) by nZVI and co-precipitation of CrFe oxides on the surface of AT. In the meantime, Fe(II) ion contributed to 64% for the Cr(VI) removal, which resulted from the dissolution of nZVI during the removal process. From the analysis of XRD and XPS results, the crystallization of FeCr2O4 is believed to be formed easily after the reaction of the AT-nZVI composite with Cr(VI) which is more stable and greatly reduce the risk of secondary pollution compared with nZVI. The introduction of AT enhanced adsorption of Cr(VI) and crystallization of the products. The above results suggested that AT-nZVI could be a promising remediation material for Cr(VI)-contaminated groundwater.
Collapse
Affiliation(s)
- Wenying Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linbo Qian
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Da Ouyang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Han
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mengfang Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
42
|
Xu Z, Yuan Z, Zhang D, Huang Y, Chen W, Sun Z, Zhou Y. Cr(VI) removal with rapid and superior performance utilizing cost-efficient waste-polyester-textile-based mesoporous carbon: Behavior and mechanism. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
43
|
Marques Neto JDO, Bellato CR, Silva DDC. Iron oxide/carbon nanotubes/chitosan magnetic composite film for chromium species removal. CHEMOSPHERE 2019; 218:391-401. [PMID: 30476771 DOI: 10.1016/j.chemosphere.2018.11.080] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
An adsorbent in the form of a CLCh/MWCNT/Fe film was prepared using multiple walled carbon nanotubes (MWCNT) doped with magnetic iron oxide and deposited in crosslinked chitosan (CLCh). The CLCh/MWCNT/Fe was characterized by Inductively Coupled Plasma Mass Spectrometry (ICP-MS), nitrogen (N2) adsorption/desorption, X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectrometry (EDS), Infrared Spectroscopy (IR) and Raman Spectroscopy. The CLCh/MWCNT/Fe film presented a maximum adsorption capacity for Cr(III) of 66.25 mg/g (150 min) and for Cr(VI) of 449.30 mg/g (60 min) at 25 °C. The CLCh/MWCNT/Fe can be easily removed from the aqueous solution by a mechanical separation or by magnetization due to its magnetic properties. In ten consecutive reutilization adsorption cycles the CLCh/MWCNT/Fe film presented efficiency losses of only 12% and 6% for the removal of Cr(III) and Cr(VI), respectively.
Collapse
Affiliation(s)
| | - Carlos Roberto Bellato
- Departamento de Química, Universidade Federal de Viçosa, Av. PH Holfs, s/n, 36571-000 Viçosa, Minas Gerais, Brazil.
| | - Danilo de Castro Silva
- Departamento de Química, Universidade Federal de Viçosa, Av. PH Holfs, s/n, 36571-000 Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
44
|
Abebe B, Murthy HCA, Amare E. Summary on Adsorption and Photocatalysis for Pollutant Remediation: Mini Review. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/jeas.2018.84012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|