1
|
Xin Q, Saborimanesh N, Ridenour C, Farooqi H. Fate, behaviour and microbial response of diluted bitumen and conventional crude spills in a simulated warm freshwater environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123224. [PMID: 38159633 DOI: 10.1016/j.envpol.2023.123224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Diluted bitumen (DB), one of the most transported unconventional crude oils in Canada's pipelines, raises public concerns due to its potential spillage into freshwater environments. This study aimed to compare the fate and behaviour of DB versus conventional crude (CC) in a simulated warm freshwater environment. An equivalent of 10 L of either DB or CC was spilled into 1200 L of North Saskatchewan River (NSR) water containing natural NSR sediment (2.4 kg) in a mesoscale spill tank and its fate and behaviour at air/water temperatures of 18 °C/24 °C were monitored for 56 days. Oil mass distribution analysis showed that 42.3 wt % of CC and 63.6 wt% of DB resided in the oil slicks at the end of 56-day tests, consisting mainly high molecular weight (HMW) compounds (i.e., resins and asphaltenes). The lost oil contained mainly low molecular weight (LMW) compounds (i.e., light saturates and some aromatics) into the atmosphere, water column, and sediment through collective weathering processes. Notably, weathered CC emulsified with water and remained floating until the end, while the weathered DB mat started to lose its buoyancy after 24 days under quiescent conditions and resurfaced once waves were applied. Analysis of the microbial communities of water pre- and post-spills revealed the replacement of indigenous microbial communities with hydrocarbon-degrading species. Exposure to CC reduced the microbial diversity by 12%, while exposure to DB increased the diversity by 10%. During the early stages of the spill (up to Day 21), most dominant species were positively correlated with the benzene, toluene, ethylbenzene, and xylenes (BTEX) content or polycyclic aromatic hydrocarbon (PAH) content of the water column, while the dominant species at the later stages (Days 21-56) of the spill were negatively correlated with BTEX or PAH content and positively correlated with the total organic carbon (TOC) content in waters.
Collapse
Affiliation(s)
- Qin Xin
- Natural Resources Canada, CanmetENERGY, 1 Oil Patch Drive, Devon, Alberta, T9G 1A8, Canada.
| | - Nayereh Saborimanesh
- Natural Resources Canada, CanmetENERGY, 1 Oil Patch Drive, Devon, Alberta, T9G 1A8, Canada
| | - Christine Ridenour
- Natural Resources Canada, CanmetENERGY, 1 Oil Patch Drive, Devon, Alberta, T9G 1A8, Canada
| | - Hena Farooqi
- Natural Resources Canada, CanmetENERGY, 1 Oil Patch Drive, Devon, Alberta, T9G 1A8, Canada
| |
Collapse
|
2
|
Hounjet LJ, Stoyanov SR, Chao D, Hristova E. Evaluating crude oil distribution tendencies in a multi-phase aquatic system: Effects of oil type, water chemistry, and mineral sediment. MARINE POLLUTION BULLETIN 2023; 196:115607. [PMID: 37826907 DOI: 10.1016/j.marpolbul.2023.115607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/05/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Planning for effective response to crude oil spills into water depends on evidence of oil behavior, including its tendency to become distributed throughout an aquatic system. An improved laboratory method is employed to quantitatively assess crude oil distribution among different layers that form after mixing within a multi-phase system of water and sediment. Mixtures of conventional crude oil or diluted bitumen with different water types in the presence or absence of mineral sediment are first mixed by a standard end-over-end rotary agitation protocol. After a settling period, each mixture's visibly distinct floating, surface oil (e.g., slick or emulsion), subsurface bulk water, and bottom layers are then separated. Finally, the masses of oil, water, and sediment constituting each layer are isolated, quantified, and compared. The novel results reveal how component properties affect oil distribution among layers to inform spill behavior models, risk assessments, and response plans, including applications of spill-treating agents.
Collapse
Affiliation(s)
- Lindsay J Hounjet
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, Alberta T9G 1A8, Canada.
| | - Stanislav R Stoyanov
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, Alberta T9G 1A8, Canada
| | - Derek Chao
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, Alberta T9G 1A8, Canada
| | - Evgeniya Hristova
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, Alberta T9G 1A8, Canada
| |
Collapse
|
3
|
Crawford AC, Kriech DM, Smith LA, Osborn LV, Kriech AJ. Assessing the effects of sunlight and water on asphalt binder and pavement leachability related to the environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118638. [PMID: 37506446 DOI: 10.1016/j.jenvman.2023.118638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/03/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023]
Abstract
Extensive global research conducted over 30 years explores asphalt leachability and stormwater runoff. Asphalt's widespread usage in construction materials underscores the importance of understanding its environmental consequences. This study aims to assess the influence of sunlight exposure on water quality, particularly regarding the release of hazardous organic compounds such as polycyclic aromatic compounds. We investigated the effect of concurrent versus sequential exposure to water and sunlight, and dark versus light trials utilizing thin films of asphalt binder as well as old and freshly prepared pavement cores for analysis. Initial laboratory experiments reveal significant water-soluble species when thin asphalt films are exposed to solar simulation while underwater. However, simulating environmental conditions found in roadways by exposing the asphalt binder to solar simulation followed by water immersion leads to a substantial decrease in compound formation. Leachate water from 17-year-old asphalt and 15-year-old concrete pavements exhibits complex compound compositions associated with atmospheric and/or vehicular deposition, posing challenges in deconvoluting their origins. Light and dark trials conducted on freshly prepared asphalt pavement under environmental conditions of sunlight and rain demonstrate minimal runoff variation, with semi-volatile organic compound levels resembling the background. Future investigations will focus on applying insights gained from this study to analyze larger sample sets, with an emphasis on inherent hazardous compound variations.
Collapse
|
4
|
Mane JY, Stoyanov SR. Molecular dynamics investigation of the asphaltene-kaolinite interactions in water, toluene, and water-toluene mixtures. Phys Chem Chem Phys 2023; 25:5638-5647. [PMID: 36728353 DOI: 10.1039/d1cp04060j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Understanding the interactions of petroleum asphaltenes with mineral surfaces is important for diluted bitumen spill response and modeling. In this study, molecular dynamics and umbrella sampling simulations are performed using interfacially active and non-interfacially active asphaltene model compounds individually positioned near each of the surfaces of kaolinite in the presence of explicit solvent environments containing water, toluene, and mixtures of toluene and water in varying proportions. The interfacially active asphaltene bonds the strongest to the silicon oxide surface of kaolinite in pure water and the bonding weakens to nearly zero in toluene-water mixtures. The non-interfacially active asphaltenes bond to kaolinites silicon oxide surface in water about half as strongly as the interfacially active one in water and the bonding weakens in the presence of toluene. The number of non-hydrogen bonded contacts between the interfacially active asphaltene and the aluminum hydroxide surface of kaolinite increases as the proportion of toluene is increased and the contacts with water are decreased. In these conditions, the non-interfacially active asphaltenes do not form non-hydrogen bonded contacts with kaolinite. On the silicon oxide surface, the number of non-hydrogen bonded contacts of all asphaltenes with kaolinite tends to decrease as the proportion of toluene is increased and the contacts with water are decreased. The number of hydrogen bonds of the interfacially active asphaltene with water decreases as the proportion of toluene is increased. The radii of gyration indicate that the interfacially active asphaltene is extended in water and when adsorbed on kaolinite, and becomes compact as the proportion of toluene is increased. The simulation results highlight the competitive interfacial interactions in the complex scenario of diluted bitumen spills in the presence of water and clay minerals.
Collapse
Affiliation(s)
- Jonathan Y Mane
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, Alberta T9G 1A8, Canada.
| | - Stanislav R Stoyanov
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, Alberta T9G 1A8, Canada.
| |
Collapse
|
5
|
Xin Q, Saborimanesh N, Greer CW, Farooqi H, Dettman HD. The effect of temperature on hydrocarbon profiles and the microbial community composition in North Saskatchewan River water during mesoscale tank tests of diluted bitumen spills. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160161. [PMID: 36379338 DOI: 10.1016/j.scitotenv.2022.160161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/21/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Despite many studies of diluted bitumen (DB) behavior during spills in saltwater, limited information is available on DB behavior in fresh water. This study examined the collective weathering processes on changes of fresh DB spilled in the North Saskatchewan River water and sediment mixture in a mesoscale spill tank under average air/water temperatures of 14 °C/15 °C and 6 °C/2 °C. Temporal changes of the hydrocarbon and microbial community compositions in the water column were assessed during the two 35-day tests under intermittent wave action. The contents of total organic carbon (TOC), benzene/toluene/ethylbenzene/xylenes (BTEX) and polycyclic aromatic hydrocarbons (PAHs) in water decreased with time during both tests. The final contents remained at higher values in warm water (15 °C) than in cold water (2 °C) after the collective weathering processes. A quick response of the main phyla, Proteobacteria and Actinobacteria, was observed, where the members of Proteobacteria enriched during both DB spills. In contrast, the members of Actinobacteria reduced with time. The microbial shifts coincided with the changes of PAHs in the waters at both temperatures. A comparison of the physical properties and chemical compositions of fresh and weathered DBs at both temperatures showed that the oil had undergone weathering that increased oil density and viscosity due to losing the light oil fraction with boiling points < 204 °C and emulsifying with water. This corresponded to losses of 19.0 wt% and 17.2 wt% of the fresh DB at 15 °C and 2 °C tests, respectively. For organic compounds in the DB with boiling points > 204 °C, there were small losses of saturates and 2- & 3-ring PAH aromatics (more during the 15 °C test than the 2 °C test), and negligible losses in the subfractions of resins and asphaltenes by the ends of the tests. <1.0 wt% of the DB was recovered from the bottom sediment, regardless of the temperature.
Collapse
Affiliation(s)
- Qin Xin
- Natural Resources Canada (NRCan), CanmetENERGY, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada.
| | - Nayereh Saborimanesh
- Natural Resources Canada (NRCan), CanmetENERGY, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada
| | - Charles W Greer
- National Research Council Canada, Energy, Mining and Environment Research Centre, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada; McGill University, Natural Resource Sciences, 21111 Lakeshore, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Hena Farooqi
- Natural Resources Canada (NRCan), CanmetENERGY, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada
| | - Heather D Dettman
- Natural Resources Canada (NRCan), CanmetENERGY, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada
| |
Collapse
|
6
|
Monaghan J, Xin Q, Aplin R, Jaeger A, Heshka NE, Hounjet LJ, Gill CG, Krogh ET. Aqueous naphthenic acids and polycyclic aromatic hydrocarbons in a meso-scale spill tank affected by diluted bitumen analyzed directly by membrane introduction mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129798. [PMID: 36027751 DOI: 10.1016/j.jhazmat.2022.129798] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/25/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
With the increasing use of unconventional, heavy crude oils there is growing interest in potential impacts of a diluted bitumen (DB) spill in marine and freshwater environments. DB has the potential to release several toxic, trace organic contaminants to the water column. Here, the aqueous concentrations and compositions of two classes of organic contaminants, naphthenic acids (NAs) and polycyclic aromatic hydrocarbons (PAHs), are followed over 8 weeks after a simulated spill of DB (10 L) into a freshwater mesocosm (1200 L) with river sediment (2.4 kg). These complex samples contain biogenic dissolved organic matter, inorganic ions, petroleum contaminants, suspended sediments, and oil droplets. We report the first use of condensed phase membrane introduction mass spectrometry (CP-MIMS) as a direct sampling platform in a complex multi-phase mesocosm spill tank study to measure trace aqueous phase contaminants with little to no sample preparation (dilution and/or pH adjustment). CP-MIMS provides complementary strengths to conventional analytical approaches (e.g., gas- or liquid chromatography mass spectrometry) by allowing the entire sample series to be screened quickly. Trace NAs are measured as carboxylates ([M-H]-) using electrospray ionization and PAHs are detected as radical cations (M+•) using liquid electron ionization coupled to a triple quadrupole mass spectrometer. The DB-affected mesocosm exhibits NA concentrations from 0.3 to 1.2 mg/L, which rise quickly over the first 2 - 5 days , then decrease slowly over the remainder of the study period. The NA profile (measured as the full scan in negative-electrospray ionization at nominal mass resolution) shifts to lower m/z with weathering, a process followed by principal component analysis of the normalized mass spectra. We couple CP-MIMS with high-resolution mass spectrometry to follow changes in molecular speciation over time, which reveals a concomitant shift from classical 'O2' naphthenic acids to more oxidized analogues. Concentrations of PAHs and alkylated analogues (C1 - C4) in the DB-affected water range from 0 to 5 μg/L. Changes in PAH concentrations depend on ring number and degree of alkylation, with small and/or lightly alkylated (C0 - C2) PAH concentrations rising to a maximum in the first 4 - 8 days (100 - 200 h) before slowly decaying over the remainder of the study period. Larger and heavily alkylated (C3 - C4) PAH concentrations generally rise slower, with some species remaining below the detection limit throughout the study period (e.g., C20H12 class including benzo[a]pyrene). In contrast, a control mesocosm (without oil) exhibited NA concentrations below 0.05 mg/L and PAHs were below detection limit. Capitalizing on the rapid analytical workflow of CP-MIMS, we also investigate the impacts of sample filtration at the time of sampling (on NA and PAH data) and sample storage time (on NA data only).
Collapse
Affiliation(s)
- Joseph Monaghan
- Applied Environmental Research Laboratories, Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, BC V9R 5S5, Canada; Department of Chemistry, University of Victoria, PO Box 3055, Victoria, BC V8P 5C2, Canada
| | - Qin Xin
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada.
| | - Rebekah Aplin
- Applied Environmental Research Laboratories, Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, BC V9R 5S5, Canada
| | - Angelina Jaeger
- Applied Environmental Research Laboratories, Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, BC V9R 5S5, Canada
| | - Nicole E Heshka
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada
| | - Lindsay J Hounjet
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada
| | - Chris G Gill
- Applied Environmental Research Laboratories, Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, BC V9R 5S5, Canada; Department of Chemistry, University of Victoria, PO Box 3055, Victoria, BC V8P 5C2, Canada; Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195-1618, USA
| | - Erik T Krogh
- Applied Environmental Research Laboratories, Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, BC V9R 5S5, Canada; Department of Chemistry, University of Victoria, PO Box 3055, Victoria, BC V8P 5C2, Canada.
| |
Collapse
|
7
|
Monaghan J, Richards LC, Vandergrift GW, Hounjet LJ, Stoyanov SR, Gill CG, Krogh ET. Direct mass spectrometric analysis of naphthenic acids and polycyclic aromatic hydrocarbons in waters impacted by diluted bitumen and conventional crude oil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:144206. [PMID: 33418326 DOI: 10.1016/j.scitotenv.2020.144206] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Crude oil spills have well-documented, deleterious impacts on the hydrosphere. In addition to macroscopic effects on wildlife and waterscapes, several classes of petroleum derived compounds, such as naphthenic acids (NAs) and polycyclic aromatic hydrocarbons (PAHs), may be released into the water and present aquatic contamination hazards. The concentrations of these contaminants may be affected by both oil type and water chemistry. We characterize the concentrations of NAs and PAHs in natural and constructed waters, spanning a range of pH and salinity, and directly compare the influence of diluted bitumen (DB) and conventional crude (CC) oil, using condensed-phase membrane introduction mass spectrometry (CP-MIMS) as a direct sampling, on-line technique. The concentration and isomer class profiles of classical NAs in the aqueous phase were assessed using electrospray ionization in negative-ion mode as [M-H]- whereas PAH concentrations were monitored using liquid electron ionization (LEI) in positive-ion mode as [M+•]. NA concentrations (0.03-25 ppm) were highly pH-dependent, and an order of magnitude greater in water samples contaminated with DB than CC. Conversely, concentrations of naphthalene (10-130 ppb) and alkyl-naphthalenes (10-90 ppb) were three to four-fold higher in water samples exposed to CC. We demonstrate that naturally occurring dissolved organic matter does not bias results from the membrane sampling approach employed, and that DB and CC contaminated waters can be differentiated using principal component analysis of the NA isomer class distribution in both constructed and natural waters. Finally, we describe the first demonstration of the concurrent analysis of trace NAs and PAHs in the same water sample by controlling perm-selectivity at the membrane and the ionization mode of the mass spectrometer. The techniques employed here for trace analysis of petroleum derived compounds in water can be applied to rapid screening and real-time monitoring of contamination and remediation processes.
Collapse
Affiliation(s)
- Joseph Monaghan
- Applied Environmental Research Laboratories, Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia V9R 5S5, Canada; Department of Chemistry, University of Victoria, PO Box 1700 Stn CSC, Victoria, British Columbia V8W 2Y2, Canada
| | - Larissa C Richards
- Applied Environmental Research Laboratories, Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia V9R 5S5, Canada; Department of Chemistry, University of Victoria, PO Box 1700 Stn CSC, Victoria, British Columbia V8W 2Y2, Canada
| | - Gregory W Vandergrift
- Applied Environmental Research Laboratories, Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia V9R 5S5, Canada; Department of Chemistry, University of Victoria, PO Box 1700 Stn CSC, Victoria, British Columbia V8W 2Y2, Canada
| | - Lindsay J Hounjet
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, Alberta T9G 1A8, Canada.
| | - Stanislav R Stoyanov
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, Alberta T9G 1A8, Canada
| | - Chris G Gill
- Applied Environmental Research Laboratories, Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia V9R 5S5, Canada; Department of Chemistry, University of Victoria, PO Box 1700 Stn CSC, Victoria, British Columbia V8W 2Y2, Canada; Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Erik T Krogh
- Applied Environmental Research Laboratories, Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia V9R 5S5, Canada; Department of Chemistry, University of Victoria, PO Box 1700 Stn CSC, Victoria, British Columbia V8W 2Y2, Canada.
| |
Collapse
|
8
|
Motta FL, Stoyanov SR, Soares JBP. Development and application of an amylopectin-graft-poly(methyl acrylate) solidifier for rapid and efficient containment and recovery of heavy oil spills in aqueous environments. CHEMOSPHERE 2019; 236:124352. [PMID: 31325825 DOI: 10.1016/j.chemosphere.2019.124352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
Effective oil spill preparedness and response are crucial to ensure environmental protection and promote the responsible development of the petroleum industry. Hence, interest in developing new approaches and/or improving existing oil spill response measures has increased greatly in the past decade. Solidifiers are an attractive and underutilized option to mitigate the effects of oil spills, as they interact with oil to contain the spill, prevent it from spreading, and facilitate its removal from the environment. In this work, we have synthesized an inexpensive and easy-to-make natural-based sorbent, a subclass of solidifiers. Our amylopectin-graft-poly(methyl acrylate) (AP-g-PMA) sorbent is highly oleophilic and hydrophobic, and selectively solidifies diluted bitumen and conventional crude oil from biphasic mixtures of oil and water. The complete solidification of conventional crude oil and diluted bitumen by the AP-g-PMA sorbent occurs within 8 and 32 min, respectively, and even a low solidifier-to-oil ratio of 4% w/w is sufficient to enable complete recovery of diluted bitumen. This innovative natural-based polymeric sorbent may be applied as a key component of oil spill response procedures, especially for heavy oils. The AP-g-PMA sorbent combines the biodegradability and non-toxicity of the amylopectin with the hydrophobicity and oleophilicity of the synthetic polymer poly(methyl acrylate).
Collapse
Affiliation(s)
- Fernanda Lopes Motta
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, Alberta, T9G 1A8, Canada.
| | - Stanislav R Stoyanov
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, Alberta, T9G 1A8, Canada.
| | - João B P Soares
- Department of Chemical and Materials Engineering, University of Alberta, 9211 116 St, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|