1
|
Tanui IC, Kandie F, Krauss M, Piotrowska A, Finckh S, Kiprop A, Hollert H, Shahid N, Liess M, Brack W. Occurrence and potential risk of steroid hormones in selected surface water and wastewater treatment plants in western Kenya. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 367:125623. [PMID: 39746642 DOI: 10.1016/j.envpol.2024.125623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/21/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Steroid hormones are significant contributors to endocrine disruption, affecting the hormonal functions of both humans and aquatic organisms. However, data on their occurrence and risks in fresh water systems particularly in low- and middle-income countries, is scarce. In this regard, a comprehensive investigation of 58 steroid hormones in rivers and wastewater treatment plants (WWTPs) was conducted in western Kenya. Grab water samples were extracted by solid phase extraction, and analysed using liquid chromatography tandem mass spectrometry (LC-MS/MS) and liquid chromatography high-resolution mass spectrometry (LC-HRMS). Forty-three steroids were identified with 24 of them being found in both rivers and WWTPs. The median concentrations of detected steroids ranged from 0.06 ng/L to 9 ng/L in rivers, 1.9 ng/L to 670 ng/L in the influents and 0.61 ng/L to 270 ng/L at the effluents. The most frequently detected compound in the rivers was 17β-estradiol occurring in 64% of the samples. Although 23 compounds were reduced to undetectable levels in WWTPs, 90% of the effluents exceeded tentative risk thresholds for estrogenicity. In rivers, concentrations of estrogenic and glucocorticoid effects were in the range of risk thresholds, while androgenic and progestagenic concentrations were below risk thresholds. This study contributes to the occurrence of steroid hormones and an understanding of their potential impacts on freshwater ecosystem and human health. The data generated from the study provides crucial information for the formulation of environmental policies in Kenya.
Collapse
Affiliation(s)
- Isaac Cheruiyot Tanui
- Department of Exposure Science, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318, Leipzig, Germany; Department Evolutionary Ecology & Environmental Toxicology, Institute of Ecology, Evolution and Diversity-Goethe University, Max-von-Laue-Straße 13, Frankfurt Am Main, Germany; Department of Chemistry and Biochemistry, Moi University, 3900-30100, Eldoret, Kenya
| | - Faith Kandie
- Department of Biological Sciences, Moi University, 3900-30100, Eldoret, Kenya
| | - Martin Krauss
- Department of Exposure Science, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318, Leipzig, Germany
| | - Aleksandra Piotrowska
- Department of Exposure Science, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318, Leipzig, Germany
| | - Saskia Finckh
- Department of Exposure Science, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318, Leipzig, Germany; Department Evolutionary Ecology & Environmental Toxicology, Institute of Ecology, Evolution and Diversity-Goethe University, Max-von-Laue-Straße 13, Frankfurt Am Main, Germany
| | - Ambrose Kiprop
- Department of Chemistry and Biochemistry, Moi University, 3900-30100, Eldoret, Kenya
| | - Henner Hollert
- Department Evolutionary Ecology & Environmental Toxicology, Institute of Ecology, Evolution and Diversity-Goethe University, Max-von-Laue-Straße 13, Frankfurt Am Main, Germany
| | - Naeem Shahid
- Department Evolutionary Ecology & Environmental Toxicology, Institute of Ecology, Evolution and Diversity-Goethe University, Max-von-Laue-Straße 13, Frankfurt Am Main, Germany; System Ecotoxicology, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318, Leipzig, Germany
| | - Matthias Liess
- System Ecotoxicology, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318, Leipzig, Germany
| | - Werner Brack
- Department of Exposure Science, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318, Leipzig, Germany; Department Evolutionary Ecology & Environmental Toxicology, Institute of Ecology, Evolution and Diversity-Goethe University, Max-von-Laue-Straße 13, Frankfurt Am Main, Germany.
| |
Collapse
|
2
|
Xu R, Liu S, Chen H, Hao QW, Hu YX, Li HX, Lin L, Hou R, Hong B, Yu S, Xu XR. An effective tool for tracking steroids and their metabolites at the watershed level: Combining fugacity modeling and a chemical indicator. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121499. [PMID: 36972813 DOI: 10.1016/j.envpol.2023.121499] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/25/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
Steroids have attracted concern worldwide because of their potential carcinogenicity and severe adverse effects on aquatic organisms. However, the contamination status of various steroids, particularly their metabolites, at the watershed level remains unknown. This was the first study to employ field investigations to elucidate the spatiotemporal patterns, riverine fluxes, and mass inventories, and conduct a risk assessment of 22 steroids and their metabolites. This study also developed an effective tool for predicting the target steroids and their metabolites in a typical watershed based on the fugacity model combined with a chemical indicator. Thirteen steroids in the river water and seven steroids in sediments were identified with total concentrations of 1.0-76 ng/L and <LOQ-121 ng/g, respectively. In water, the levels of steroids were higher in the dry season, but the opposite trend was observed in sediments. Approximately 89 kg/a flux of steroids were transported from the river to the estuary. Mass inventories indicated that sediments acted as crucial sinks for steroids. Steroids in rivers might pose low to medium risks to aquatic organisms. Importantly, the fugacity model combined with a chemical indicator effectively simulated the steroid monitoring results within an order of magnitude at the watershed level, and various key sensitivity parameter settings provided reliable steroid concentration predictions under different circumstances. Our results should benefit environmental management and pollution control of steroids and their metabolites at the watershed level.
Collapse
Affiliation(s)
- Ru Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Hui Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Qin-Wei Hao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yong-Xia Hu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Heng-Xiang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Lang Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Rui Hou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Bing Hong
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Shen Yu
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Xiang-Rong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| |
Collapse
|
3
|
Shehu Z, Nyakairu GWA, Tebandeke E, Odume ON. Overview of African water resources contamination by contaminants of emerging concern. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158303. [PMID: 36030854 DOI: 10.1016/j.scitotenv.2022.158303] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
This review look at several classes of contaminants of emerging concern (CECs) in conventional and non-conventional water resources across the African continent's five regions. According to the review, pharmaceuticals, endocrine-disrupting chemicals, personal care products, pesticides, per- and polyfluoroalkyl compounds, and microplastics were found in conventional and non-conventional water resources. Most conventional water resources, such as rivers, streams, lakes, wells, and boreholes, are used as drinking water sources. Non-conventional water sources, such as treated wastewater (effluents), are used for domestic and agricultural purposes. However, CECs remain part of the treated wastewater, which is being discharged to surface water or used for agriculture. Thus, wastewater (effluent) is the main contributor to the pollution of other water resources. For African countries, the prevalence of rising emerging pollutants in water poses a severe environmental threat. There are different adverse effects of CECs, including the development of antibiotic-resistant bacteria, ecotoxicological effects, and several endocrine disorders. Therefore, this needs the urgent attention of the African Union, policymakers, Non-Governmental Organizations, and researchers to come together and tackle the problem.
Collapse
Affiliation(s)
- Zaccheus Shehu
- Department of Chemistry, Makerere University, P.O. Box 7062, Kampala, Uganda; Department of Chemistry, Gombe State University, P.M. B. 127, Gombe, Nigeria
| | | | - Emmanuel Tebandeke
- Department of Chemistry, Makerere University, P.O. Box 7062, Kampala, Uganda
| | | |
Collapse
|
4
|
Huanyu T, Jianghong S, Wei G, Jiawei Z, Hui G, Yunhe W. Environmental fate and toxicity of androgens: A critical review. ENVIRONMENTAL RESEARCH 2022; 214:113849. [PMID: 35843282 DOI: 10.1016/j.envres.2022.113849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/23/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Androgens are released by humans and livestock into the environment and which cause potent endocrine disruptions even at nanogram per liter levels. In this article, we reviewed updated research results on the structure, source, distribution characteristics and the fate of androgens in ecological systems; and emphasized the potential risk of androgens in aquatic organism. Androgens have moderately solubility in water (23.6-58.4 mg/L) and moderately hydrophobic (log Kow 2.75-4.40). The concentration of androgens in surface waters were mostly in ng/L ranges. The removal efficiencies of main wastewater treatment processes were about 70-100%, except oxidation ditch and stabilization ponds. Sludge adsorption and microbial degradation play important role in the androgens remove. The conjugated androgens were transformed into free androgens in environmental matrices. Global efforts to provide more toxicity data and establish standard monitoring methods need a revisit. Of the day available, there is an urgent need for comprehensive consideration of the impact of androgens on the environment and ecology.
Collapse
Affiliation(s)
- Tao Huanyu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, China
| | - Shi Jianghong
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Guo Wei
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Zhang Jiawei
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, China
| | - Ge Hui
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wang Yunhe
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
5
|
Chen Y, Yang J, Yao B, Zhi D, Luo L, Zhou Y. Endocrine disrupting chemicals in the environment: Environmental sources, biological effects, remediation techniques, and perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119918. [PMID: 35952990 DOI: 10.1016/j.envpol.2022.119918] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/06/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Endocrine disrupting chemicals (EDCs) have been identified as emerging contaminants, which poses a great threat to human health and ecosystem. Pesticides, polycyclic aromatic hydrocarbons, dioxins, brominated flame retardants, steroid hormones and alkylphenols are representative of this type of contaminant, which are closely related to daily life. Unfortunately, many wastewater treatment plants (WWTPs) do not treat EDCs as targets in the normal treatment process, resulting in EDCs entering the environment. Few studies have systematically reviewed the related content of EDCs in terms of occurrence, harm and remediation. For this reason, in this article, the sources and exposure routes of common EDCs are systematically described. The existence of EDCs in the environment is mainly related to human activities (Wastewater discharges and industrial activities). The common hazards of these EDCs are clarified based on available toxicological data. At the same time, the mechanism and effect of some mainstream EDCs remediation technologies (such as adsorption, advanced oxidation, membrane bioreactor, constructed wetland, etc.) are separately mentioned. Moreover, our perspectives are provided for further research of EDCs.
Collapse
Affiliation(s)
- Yuxin Chen
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Jian Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Bin Yao
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Dan Zhi
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Lin Luo
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
6
|
Gudda FO, Ateia M, Waigi MG, Wang J, Gao Y. Ecological and human health risks of manure-borne steroid estrogens: A 20-year global synthesis study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113708. [PMID: 34619591 DOI: 10.1016/j.jenvman.2021.113708] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/17/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Estrone (E1), 17α-estradiol (17α-E2), 17β-estradiol (17β-E2), and estriol (E3) are persistent in livestock manure and present serious pollution concerns because they can trigger endocrine disruption at part-per-trillion levels. This study conducted a global analysis of estrogen occurrence in manure using all literature data over the past 20 years. Besides, predicted environmental concentration (PEC) in soil and water was estimated using fate models, and risk/harm quotient (RQ/HQ) methods were applied to screen risks on children as well as on sensitive aquatic and soil species. The estradiol equivalent values ranged from 6.6 to 4.78 × 104 ng/g and 12.4 to 9.46 × 104 ng/L in the solid and liquid fraction. The estrogenic potency ranking in both fractions were 17β-E2> E1>17α-E2>E3. RQs of measured environmental concentration in the liquid fraction pose medium (E3) to high risk (E1, 17α-E2 & 17β-E2) to fish but are lower than risks posed by xenoestrogens. However, the RQ of PECs on both soil organisms and aquatic species were insignificant (RQ < 0.01), and HQs of contaminated water and soil ingestion were within acceptable limits. Nevertheless, meticulous toxicity studies are still required to confirm (or deny) the findings because endocrine disruption potency from mixtures of these classes of compounds cannot be ignored.
Collapse
Affiliation(s)
- Fredrick Owino Gudda
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Faculty of Environment and Resource Development, Department of Environmental Sciences, Egerton University, Box 536, Egerton, 20115, Kenya
| | - Mohamed Ateia
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, United States
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
7
|
Collivignarelli MC, Abbà A, Caccamo FM, Calatroni S, Torretta V, Katsoyiannis IA, Carnevale Miino M, Rada EC. Applications of Up-Flow Anaerobic Sludge Blanket (UASB) and Characteristics of Its Microbial Community: A Review of Bibliometric Trend and Recent Findings. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10326. [PMID: 34639629 PMCID: PMC8508386 DOI: 10.3390/ijerph181910326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/21/2022]
Abstract
The interest in research on up-flow anaerobic sludge blanket (UASB) reactors is growing. The meta-analysis of bibliometric data highlighted the growing interest in four diverse topics: (i) energy recovery production; (ii) combination with other treatments; (iii) the study of processes for the removal of specific pollutants and, (iv) characterization of microbial community and granular sludge composition. In particular, the papers published in the first 6 months of 2021 on this process were selected and critically reviewed to highlight and discuss the results, the gaps in the literature and possible ideas for future research. Although the state of research on UASB is to be considered advanced, there are still several points that will be developed in future research such as the consolidation of the results obtained on a semi-industrial or real scale, the use of real matrices instead of synthetic ones and a more in-depth study of the effect of substances such as antibiotics on the microbiota and microbiome of UASB granular biomass. To date, few and conflicting data about the environmental footprint of UASB are available and therefore other studies on this topic are strongly suggested.
Collapse
Affiliation(s)
- Maria Cristina Collivignarelli
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy; (M.C.C.); (F.M.C.); (S.C.); (M.C.M.)
- Interdepartmental Centre for Water Research, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy
| | - Alessandro Abbà
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123 Brescia, Italy;
| | - Francesca Maria Caccamo
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy; (M.C.C.); (F.M.C.); (S.C.); (M.C.M.)
| | - Silvia Calatroni
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy; (M.C.C.); (F.M.C.); (S.C.); (M.C.M.)
| | - Vincenzo Torretta
- Department of Theoretical and Applied Sciences, Insubria University of Varese, Via G.B. Vico 46, 21100 Varese, Italy;
| | - Ioannis A. Katsoyiannis
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Marco Carnevale Miino
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy; (M.C.C.); (F.M.C.); (S.C.); (M.C.M.)
| | - Elena Cristina Rada
- Department of Theoretical and Applied Sciences, Insubria University of Varese, Via G.B. Vico 46, 21100 Varese, Italy;
| |
Collapse
|
8
|
Emerging Contaminants: Analysis, Aquatic Compartments and Water Pollution. EMERGING CONTAMINANTS VOL. 1 2021. [DOI: 10.1007/978-3-030-69079-3_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Čelić M, Škrbić BD, Insa S, Živančev J, Gros M, Petrović M. Occurrence and assessment of environmental risks of endocrine disrupting compounds in drinking, surface and wastewaters in Serbia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114344. [PMID: 32443213 DOI: 10.1016/j.envpol.2020.114344] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 06/11/2023]
Abstract
The present study is the first comprehensive monitoring of 13 selected endocrine disrupting compounds (EDCs) in untreated urban and industrial wastewater in Serbia to assess their impact on the Danube River basin and associated freshwaters used as sources for drinking water production in the area. Results showed that natural and synthetic estrogens were present in surface and wastewater at concentrations ranging from 0.1 to 64.8 ng L-1. Nevertheless, they were not detected in drinking water. For alkylphenols concentrations ranged from 1.1 to 78.3 ng L-1 in wastewater and from 0.1 to 37.2 ng L-1 in surface water, while in drinking water concentrations varied from 0.4 to 7.9 ng L-1. Bisphenol A (BPA) was the most abundant compound in all water types, with frequencies of detection ranging from 57% in drinking water, to 70% in surface and 84% in wastewater. Potential environmental risks were characterized by calculating the risk quotients (RQs) and the estrogenic activity of EDCs in waste, surface and drinking water samples, as an indicator of their potential detrimental effects. RQ values of estrone (E1) and estradiol (E2) were the highest, exceeding the threshold value of 1 in 60% of wastewater samples, while in surface water E1 displayed potential risks in only two samples. Total estrogenic activity (EEQt) surpassed the threshold of 1 ng E2 L-1 in about 67% of wastewater samples, and in 3 surface water samples. In drinking water, EEQt was below 1 ng L-1 in all samples.
Collapse
Affiliation(s)
- Mira Čelić
- Catalan Institute for Water Research (ICRA), C/Emili Grahit 101, 17003, Girona, Spain; University of Girona, Girona, Spain
| | - Biljana D Škrbić
- University of Novi Sad, Faculty of Technology Novi Sad, Laboratory for Chemical Contaminants and Sustainable Development, Serbia.
| | - Sara Insa
- Catalan Institute for Water Research (ICRA), C/Emili Grahit 101, 17003, Girona, Spain; University of Girona, Girona, Spain
| | - Jelena Živančev
- University of Novi Sad, Faculty of Technology Novi Sad, Laboratory for Chemical Contaminants and Sustainable Development, Serbia
| | - Meritxell Gros
- Catalan Institute for Water Research (ICRA), C/Emili Grahit 101, 17003, Girona, Spain; University of Girona, Girona, Spain
| | - Mira Petrović
- Catalan Institute for Water Research (ICRA), C/Emili Grahit 101, 17003, Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
10
|
Lu J, Wu J, Zhang C, Zhang Y. Possible effect of submarine groundwater discharge on the pollution of coastal water: Occurrence, source, and risks of endocrine disrupting chemicals in coastal groundwater and adjacent seawater influenced by reclaimed water irrigation. CHEMOSPHERE 2020; 250:126323. [PMID: 32126332 DOI: 10.1016/j.chemosphere.2020.126323] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/12/2019] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
This study investigated occurrence, source, and risks of endocrine disrupting chemicals (EDCs) in coastal groundwater and adjacent seawater influenced by reclaimed water irrigation in a typical coastal region of China. All target EDCs were detected in coastal groundwater and reclaimed water while only estrone, bisphenol A (BPA), and nonylphenol were detected in seawater. Concentrations of BPA that was the predominant EDC in coastal groundwater ranged from 35.9 to 52.9 ng/L and estradiol was easy to accumulate in groundwater under reclaimed water irrigation. Concentrations of all target EDCs in seawater ranged from 18.9 to 30.9 ng/L, much lower than those in groundwater. Ecological risks posed by EDCs in groundwater and seawater were very high. Estrone contributed to 51.3%-62.9% of total acute risk quotients for seawater while detected 17-α-ethynylestradiol contributed to 41.1%-56.2% of total acute risk quotients for groundwater. Estradiol equivalent concentrations of target EDCs in groundwater/seawater were in the range of (3.5-7.6)/(1.4-2.3) ng/L while non-cancer risks posed by EDCs in groundwater/seawater were acceptable. Dual-isotope analysis illustrated that reclaimed water was the main source of EDCs in coastal groundwater. About 82% of EDCs was discharged into the Laizhou Bay through the submarine groundwater discharge based on the flux analysis. The pollution of the coastal groundwater through reclaimed water irrigation subsequently led to EDCs pollution of the adjacent seawater through the submarine groundwater discharge. Therefore, effective control of EDCs in reclaimed water for irrigation will be beneficial to control EDCs in groundwater and seawater of the coastal regions.
Collapse
Affiliation(s)
- Jian Lu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, 264003, PR China
| | - Jun Wu
- School of Resources and Environmental Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, 264025, PR China.
| | - Cui Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, 264003, PR China
| | - Yuxuan Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, 264003, PR China
| |
Collapse
|
11
|
Guedes-Alonso R, Montesdeoca-Esponda S, Herrera-Melián JA, Rodríguez-Rodríguez R, Ojeda-González Z, Landívar-Andrade V, Sosa-Ferrera Z, Santana-Rodríguez JJ. Pharmaceutical and personal care product residues in a macrophyte pond-constructed wetland treating wastewater from a university campus: Presence, removal and ecological risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135596. [PMID: 31767305 DOI: 10.1016/j.scitotenv.2019.135596] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/12/2019] [Accepted: 11/16/2019] [Indexed: 05/28/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) constitute a group of chemicals of concern because of their potential toxicity when reaching aquatic environments. Wastewaters are one of the main pathways of introduction into the environment of the chemical compounds used in PPCPs because, in most cases, wastewater treatment facilities are not 100% efficient in their removal. This problem is accentuated in rural zones and isolated communities where conventional treatment systems are too expensive to build and operate. Waste-stabilization ponds and constructed wetlands (CWs) are natural wastewater treatment systems which are used to improve the quality of sewage from small communities because of their low cost and easy maintenance. There is growing interest in combining the two technologies to make a more robust system, taking into account their respective strengths and weaknesses. In this work, a combined macrophyte pond-CW system was evaluated for the presence at three sampling points (influent, pond effluent and CW effluent) of fifteen steroid hormones and six benzotriazole ultraviolet stabilizers (BUVSs). None of the targeted BUVS compounds were detected in either the influent or effluent, probably because of the particular characteristics of the population served by the wastewater system. In contrast, eight different steroid hormone compounds were detected at concentrations ranging from 17.3 to 247.7 ng·L-1 in influent samples and from 8.1 to 22.1 ng·L-1 in final effluent samples. The pond-CW system showed high elimination rates of steroid hormone residues with average removal efficiencies of over 77%. This efficacy was confirmed in the ecological risk assessment evaluation that was performed. Final effluents showed a low ecological risk associated with steroid hormones in contrast to the medium-high ecological risks found in the influent samples.
Collapse
Affiliation(s)
- Rayco Guedes-Alonso
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain.
| | - Sarah Montesdeoca-Esponda
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| | - José A Herrera-Melián
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| | - Raquel Rodríguez-Rodríguez
- Escuela de Ingeniería Industriales y Civiles, Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| | - Zeneida Ojeda-González
- Escuela de Ingeniería Industriales y Civiles, Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| | | | - Zoraida Sosa-Ferrera
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| | - José J Santana-Rodríguez
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
12
|
Madikizela LM, Ncube S, Chimuka L. Analysis, occurrence and removal of pharmaceuticals in African water resources: A current status. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 253:109741. [PMID: 31665691 DOI: 10.1016/j.jenvman.2019.109741] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/08/2019] [Accepted: 10/19/2019] [Indexed: 05/27/2023]
Abstract
Pharmaceuticals are organic compounds used in medicines for alleviation of pain. Since 2017, there has been a steady increase on the availability of information on contamination of water resources caused by pharmaceuticals in some African countries. Thus far, most environmental monitoring studies of pharmaceuticals are conducted in South Africa while there is still no available data in majority of the African countries. Therefore, the knowledge on the presence of pharmaceuticals in African water resources is still lacking. In an attempt to provide more information in this aspect, this review article seeks to critically evaluate the progress made thus far by the African scientists in the environmental monitoring and assessment of pharmaceuticals. The most studied groups of pharmaceuticals in Africa are non-steroidal anti-inflammatory drugs, antibiotics, antiretroviral drugs and steroid hormones. Various remediation studies for selected pharmaceuticals in Africa are documented in literature. In the present review, the challenges facing the African researchers or countries on providing more scientific data on the occurrence of pharmaceuticals in water are discussed. Furthermore, the gaps and recommendations for future work are given.
Collapse
Affiliation(s)
| | - Somandla Ncube
- Department of Chemistry, University of South Africa, Private Bag X6, Florida, 1710, South Africa
| | - Luke Chimuka
- Molecular Sciences Institute, School of Chemistry, University of Witwatersrand, Private Bag X3, Johannesburg, 2050, South Africa
| |
Collapse
|
13
|
Yu Q, Geng J, Ren H. Occurrence and fate of androgens in municipal wastewater treatment plants in China. CHEMOSPHERE 2019; 237:124371. [PMID: 31369902 DOI: 10.1016/j.chemosphere.2019.124371] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/08/2019] [Accepted: 07/13/2019] [Indexed: 05/04/2023]
Abstract
Public concerns about potential ecological risks of androgens discharged to the environment through wastewater treatment plants (WWTPs) has resulted in an increased interest regarding the occurrence and fate of androgens in WWTPs. In this study, the occurrence and removal of eight androgens from 12 municipal WWTPs distributed in eleven cities in China were investigated. The composition profiles of eight androgens in influent, effluent, and excess sludge were studied. Multiple factor analyses were performed to reveal the factors affecting the distribution of androgens in WWTP influent. Results showed similar composition profiles of androgens in the studied WWTPs, with androsterone and dehydroepiandrosterone confirmed as the dominant androgens. The distributions of androgens in WWTP influent were related to the chemical oxygen demand in influent and the gross domestic product (GDP) of WWTP-associated cities. The target androgens have high aqueous removal rates, with a mean removal rate of >90%. Additionally, the behaviors of androgens were evaluated by mass balance along anaerobic-anoxic-oxic (AAO) processes in a WWTP, in which many of the androgens were eliminated mainly in the anaerobic tank. Further, 15 biotransformation products of testosterone were identified under anaerobic, anoxic, and aerobic sludge, respectively. Based on these metabolites, a general biotransformation pathway of testosterone under anaerobic, anoxic, and aerobic sludge is presented.
Collapse
Affiliation(s)
- Qingmiao Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
14
|
Ng A, Weerakoon D, Lim E, Padhye LP. Fate of environmental pollutants. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1294-1325. [PMID: 31502369 DOI: 10.1002/wer.1225] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/11/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
This annual review covers the literature published in 2018 on topics related to the occurrence and fate of environmental pollutants in wastewater. Due to the vast amount of literature published on this topic, we have discussed only a portion of the quality research publications, due to the limitation of space. The abstract search was carried out using Web of Science, and the abstracts were selected based on their relevance. In a few cases, full-text articles were referred to understand new findings better. This review is divided into the following sections: antibiotic-resistant bacteria (ARBs) and antibiotic-resistant genes (ARGs), disinfection by-products (DBPs), drugs of abuse (DoAs), estrogens, heavy metals, microplastics, per- and polyfluoroalkyl compounds (PFAS), pesticides, and pharmaceuticals and personal care products (PPCPs), with the addition of two new classes of pollutants to previous years (DoAs and PFAS).
Collapse
Affiliation(s)
- Archie Ng
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland, New Zealand
| | - Dilieka Weerakoon
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland, New Zealand
| | - Erin Lim
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland, New Zealand
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland, New Zealand
| |
Collapse
|