1
|
Santos HDAGD, Kitamura RSA, Soares GDCB, Dos Santos MP, Miranda LPDS, Mela M, Vitule JRS, Grassi MT, Cestari MM, Padial AA, Silva de Assis HC. Assessing the water quality in a World Heritage Site using biomarkers in top fish predators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172072. [PMID: 38575033 DOI: 10.1016/j.scitotenv.2024.172072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/09/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
The use of biomarkers in fish for biomonitoring is a valuable approach to reveal effects of human impacts on biota health. Top predator fish are effective models for monitoring human activities' impacts on aquatic ecosystems. The Guaraguaçu River is the largest river-system on coastal region of South Brazil and a World Heritage site. The river receives contaminants from disorderly urban growth, including discharges of domestic sewage and small fishery boats, particularly during the tourist season. Our study aimed to assess impact of anthropogenic activities on water quality in the Guaraguaçu River by analyzing environmental contamination biomarkers in the top fish predator Hoplias malabaricus. Fish were collected using a fyke net trap across sectors representing a gradient of anthropic impact: sector 1 - pristine; sector 2 - impacted; and sector 3 - less impacted. Water samples were collected to analyze the presence of trace elements and pesticide. Biomarkers of the antioxidant system, histopathology, genotoxicity, neurotoxicity, and concentration of trace elements were analyzed in fish tissues. In water samples Al, Fe and Mn were detected, but no pesticides were found. In fish muscle, zinc and iron were detected. Brain acetylcholinesterase activity decreased in impacted sectors, indicating neurotoxic effects. The antioxidant system increased activity in gills and liver, and damage from lipoperoxidation was observed, particularly in sector 2 when compared to sector 1, suggesting oxidative stress. Histopathological biomarkers revealed lesions in the liver and gills of fish in impacted sectors. Micronuclei, a genotoxicity biomarker, were observed in organisms from all sectors. Our results demonstrate detrimental effects of poor water quality on biota health, even when contaminants are not detected in water.
Collapse
Affiliation(s)
| | - Rafael Shinji Akiyama Kitamura
- Ecology and Conservation Post-Graduate Program, Federal University of Paraná, PO Box 19031, 81530-980 Curitiba, PR, Brazil; Department of Genetics, Federal University of Paraná, PO Box 19071, 81530-980 Curitiba, PR, Brazil
| | | | | | | | - Maritana Mela
- Department of Cell Biology, Federal University of Paraná, PO Box 19031, 81537-990 Curitiba, PR, Brazil
| | - Jean Ricardo Simões Vitule
- Ecology and Conservation Post-Graduate Program, Federal University of Paraná, PO Box 19031, 81530-980 Curitiba, PR, Brazil; Department of Environmental Engineering, Federal University of Paraná, PO Box 19011, 81531-980 Curitiba, PR, Brazil
| | - Marco Tadeu Grassi
- Department of Chemistry, Federal University of Paraná, PO Box 19032, 81531-980 Curitiba, PR, Brazil
| | - Marta Margarete Cestari
- Ecology and Conservation Post-Graduate Program, Federal University of Paraná, PO Box 19031, 81530-980 Curitiba, PR, Brazil; Department of Genetics, Federal University of Paraná, PO Box 19071, 81530-980 Curitiba, PR, Brazil
| | - Andre Andrian Padial
- Ecology and Conservation Post-Graduate Program, Federal University of Paraná, PO Box 19031, 81530-980 Curitiba, PR, Brazil; Department of Botany, Federal University of Paraná, PO Box 19031, 81531-980 Curitiba, PR, Brazil
| | - Helena Cristina Silva de Assis
- Ecology and Conservation Post-Graduate Program, Federal University of Paraná, PO Box 19031, 81530-980 Curitiba, PR, Brazil; Department of Pharmacology, Federal University of Paraná, PO Box 19031, 81530-980 Curitiba, PR, Brazil.
| |
Collapse
|
2
|
Liu Y, Chen M, Mu X, Wang X, Zhang M, Yin Y, Wang K. Responses and detoxification mechanisms of earthworm Amynthas hupeiensis to metal contaminated soils of North China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121584. [PMID: 37037277 DOI: 10.1016/j.envpol.2023.121584] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/14/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Metal contamination is widespread, but only a few studies have evaluated the toxicological risks of metals (Cd, Cu, and Pb) in earthworms from farmlands in North China (Hebei province). Amynthas hupeiensis, the dominant species in the study area, was used to determine the responses and detoxification mechanisms of uncontaminated (CK), and low (LM)-, and high (HM)-metal-contaminated soils following 7-, 14-, and 28-days exposure. Metal toxicity in LM and HM soils inhibited the biomass of A. hupeiensis. The concentrations of Cd in A. hupeiensis bodies indicated accumulated Cd appeared to remain steady with prolonged exposure, while Cu/Pb increased significantly with soil levels. Bioaccumulation occurred in the order Cd > Pb > Cu in LM soil, and in the order Cd > Cu ≈ Pb in HM soil, which was attributed to differences in available fractions between LM and HM soils. Physiological levels of biomarkers in A. hupeiensis were determined, including total protein (TP), glutathione (GSH), glutathione peroxidase (GPx), acetylcholinesterase (AChE), and malondialdehyde (MDA). Deviations in GSH, GPx, and AChE were considered to denote sensitive biomarkers using the IBRv2 index. Metabolomics data (1H nuclear magnetic resonance-based) revealed changes in metabolites following 28-days exposure to LM and HM soils. Differences in metabolism in A. hupeiensis following exposure to LM and HM were related to energy metabolism, amino acid biosynthesis, glycerophospholipid metabolism, inositol phosphate metabolism, and glutathione metabolism. Metal stress from LM and HM soils disturbed osmoregulation, resulting in oxidative stress, destruction of cell membranes and inflammation, and altered levels of amino acids required for energy by A. hupeiensis. These findings provide biochemical insights into the physiological and metabolic mechanisms underlying the ability of A. hupeiensis to resist metal stress, and for assessing the environmental risks of metal-contaminated soils in farmland in North China.
Collapse
Affiliation(s)
- Yanan Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Science, Hebei Agricultural University, Baoding, 071001, China
| | - Miaomiao Chen
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Science, Hebei Agricultural University, Baoding, 071001, China
| | - Xiaoquan Mu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Science, Hebei Agricultural University, Baoding, 071001, China
| | - Xinru Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Science, Hebei Agricultural University, Baoding, 071001, China
| | - Menghan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Science, Hebei Agricultural University, Baoding, 071001, China
| | - Yue Yin
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Science, Hebei Agricultural University, Baoding, 071001, China
| | - Kun Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Science, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
3
|
Dos Santos ÍGS, Lira AS, da Silva Montes C, Point D, Médieu A, do Nascimento CWA, Lucena-Frédou F, da Rocha RM. Revealing the environmental pollution of two estuaries through histopathological biomarkers in five fishes from different trophic guilds of northeastern Brazil. MARINE POLLUTION BULLETIN 2023; 192:115095. [PMID: 37295256 DOI: 10.1016/j.marpolbul.2023.115095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023]
Abstract
Estuaries in Brazil are mostly anthropically affected due to the discharge of industrial and domestic effluents. In two of them, the Santa Cruz Channel Estuary (ITAP) and Sirinhaém River Estuary (SIR), historically affected by mercury pollution and sugarcane industry in Northeast Brazil, we assessed environmental pollution using liver and gill histopathological biomarkers in fish from different trophic levels. Liver samples exhibited serious damages such as hepatic steatosis, necrosis, and infiltration. The gills showed moderate to severe changes, such as lifting of epithelial cells, lamellar aneurysm, and rupture of lamellar epithelium. Most of the changes in the liver and gills were reported for species Centropomus undecimalis and the Gobionellus stomatus, which were considered as good sentinels of pollution. The combination of biomarker methodologies was efficient in diagnosing the serious damage to the species, reinforcing the need for monitoring the health of the ecosystems evaluated.
Collapse
Affiliation(s)
- Ítala Gabriela Sobral Dos Santos
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, s/n, Dois Irmãos, CEP: 52171-900 Recife, Pernambuco, Brazil.
| | - Alex Souza Lira
- Universidade Federal de Sergipe (UFS), Cidade Univ. Prof. José Aloísio de Campos Av. Marechal Rondon, s/n, Jd. Rosa Elze São Cristóvão/SE, CEP 49100-000, Brazil.
| | | | - David Point
- Observatoire Midi-Pyrénées, Géosciences Environnement Toulouse, UMR CNRS 5563/IRD 234/Université Paul Sabatier Toulouse 3, 14 avenue Edouard Belin, 31400 Toulouse, France.
| | - Anaïs Médieu
- Universite de Bretagne Occidentale (UBO), Institut de Recherche pour le Développement (IRD), Centre National de la Recherche Scientifique (CNRS), Institut Français de Recherche pour l'Exploitation de la Mer (Ifremer), LEMAR, Plouzane F-29280, France.
| | | | - Flávia Lucena-Frédou
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, s/n, Dois Irmãos, CEP: 52171-900 Recife, Pernambuco, Brazil
| | - Rossineide Martins da Rocha
- Laboratory of Cellular Ultrastructure and Immunohistochemistry, Institute of Biological Sciences, Federal University of Pará (UFPA), Rua Augusto Correa n° 01, Guamá, CEP 66075-110 Belém, Pará, Brazil
| |
Collapse
|
4
|
Soldi KC, Londero JEL, Schavinski CR, Schuch AP. Genotoxicity of surface waters in Brazil. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 888:503638. [PMID: 37188436 DOI: 10.1016/j.mrgentox.2023.503638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
Brazil has abundant surface water resources, huge aquatic biodiversity and is home to 213 million people. Genotoxicity assays are sensitive tools to detect the effects of contaminants in surface waters and wastewaters, as well as to determine potential risks of contaminated waters to aquatic organisms and human health. This work aimed to survey the articles published in 2000-2021 that evaluated the genotoxicity of surface waters within Brazilian territory to unveil the profile and trends of this topic over time. In our searches, we considered articles focused on assessing aquatic biota, articles that conducted experiments with caged organisms or standardized tests in the aquatic sites, as well as articles that transported water or sediment samples from aquatic sites to the laboratory, where exposures were performed with organisms or standardized tests. We retrieved geographical information on the aquatic sites evaluated, the genotoxicity assays used, the percentage of genotoxicity detected, and, when possible, the causative agent of aquatic pollution. A total of 248 articles were identified. There was a trend of increase in the number of publications and annual diversity of hydrographic regions evaluated over time. Most articles focused on rivers from large metropolises. A very low number of articles were conducted on coastal and marine ecosystems. Water genotoxicity was detected in most articles, regardless of methodological approach, even in little-studied hydrographic regions. The micronucleus test and the alkaline comet assay were widely applied with blood samples, mainly derived from fish. Allium and Salmonella tests were the most frequently used standard protocols. Despite most articles did not confirm polluting sources and genotoxic agents, the detection of genotoxicity provides useful information for the management of water pollution. We discuss key points to be assessed to reach a more complete picture of the genotoxicity of surface waters in Brazil.
Collapse
Affiliation(s)
- Karen Costa Soldi
- Post-Graduation Program in Animal Biodiversity, Department of Ecology and Evolution, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - James Eduardo Lago Londero
- Post-Graduation Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Cassiano Ricardo Schavinski
- Post-Graduation Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - André Passaglia Schuch
- Post-Graduation Program in Animal Biodiversity, Department of Ecology and Evolution, Federal University of Santa Maria, Santa Maria, RS, Brazil; Post-Graduation Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
5
|
Leão-Buchir J, de Souza TL, de Souza C, Fávaro LF, Brito PM, Carneiro MC, Marcon BH, Esquivel L, de Oliveira Ribeiro CA, Prodocimo MM. BDE-99 (2,2',4,4',5 - pentain polybrominated diphenyl ether) induces toxic effects in Oreochromis niloticus after sub-chronic and oral exposure. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 97:104034. [PMID: 36496183 DOI: 10.1016/j.etap.2022.104034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 10/27/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
PBDEs are toxic, lipophilic, hydrophobic, and persistent artificial chemicals, characterized by high physical and chemical stability. Although PBDEs are known to disturb hormone signaling, many effects of 2,2',4,4',5 - pentain polybrominated diphenyl ethers (BDE-99) in fish remain unclear. The current study investigates the effects of BDE-99 in Oreochromis niloticus where sixty-four juvenile fish were orally exposed to 0.294, 2.94, 29.4 ng g-1 of BDE-99, every 10 days, during 80 days. The results showed histopathological findings in liver and kidney, increasing acetylcholinesterase activity in muscle, disturbs in the antioxidant system in liver and brain and decreasing the plasmatic levels of vitellogenin in females. According to multivariate analysis (IBR), the higher doses are related to the interaction of oxidative and non-oxidative enzymes. The present study provided evidence of deleterious effects after sub-chronic exposure of BDE 99 to O. niloticus, increasing the knowledge about its risk of exposure in fish.
Collapse
Affiliation(s)
- Joelma Leão-Buchir
- Departamento de Biologia Celular, Universidade Federal do Paraná, Curitiba, Brazil; Departamento de Toxicologia Molecular e Ambiente, Centro de Biotecnologia, Universidade Eduardo Mondlane, Maputo, Mozambique
| | | | - Claudemir de Souza
- Departamento de Biologia Celular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Luís Fernando Fávaro
- Departamento de Biologia Celular, Universidade Federal do Paraná, Curitiba, Brazil
| | | | - Milena Carvalho Carneiro
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
6
|
Gusso-Choueri PK, Choueri RB, de Araújo GS, Cruz ACF, de Oliveira Stremel TR, de Campos SX, de Souza Abessa DM, de Oliveira Ribeiro CA. Univariate or multivariate approaches for histopathological biomarkers in the context of environmental quality assessments? MARINE POLLUTION BULLETIN 2022; 181:113828. [PMID: 35716493 DOI: 10.1016/j.marpolbul.2022.113828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/22/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Although the simplification of multivariate histopathological data into univariate indices can be useful for the assessment of environmental quality, this implies a great loss of information. The objective of the present study was to evaluate the effectiveness, in the context of environmental quality assessment, of an approach that integrates individual histopathological responses in a discriminated manner with the results of contaminants by means of multivariate analyses. This analysis was compared to the diagnosis of environmental quality provided by the use of the univariate Bernet histopathological index. Contaminant loads (sediments and fish) and the liver histopathology of Cathorops spixii were integrated through multivariate analysis. Integrated individual histopathological responses allowed classifying environmental quality from more to less impacted sites, while the univariate index showed some inconsistencies with chemical loads and allowed identifying only the most impacted site.
Collapse
Affiliation(s)
- Paloma Kachel Gusso-Choueri
- NEPEA, Campus do Litoral Paulista, Universidade Estadual Paulista Júlio de Mesquita Filho, Praça Infante Dom Henrique, s/n, CP 11330-900 São Vicente, SP, Brazil; Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CP19031, 81531-990 Curitiba, PR, Brazil; Laboratório de Ecotoxicologia - Unisanta, Universidade Santa Cecília, R. Oswaldo Cruz, 277, Boqueirão, CP 11045-907 Santos, SP, Brazil
| | - Rodrigo Brasil Choueri
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Campus Baixada Santista, Rua Maria Máximo, 168, Ponta da Praia, Santos, SP CEP: 11030-100, Brazil.
| | - Giuliana Seraphim de Araújo
- NEPEA, Campus do Litoral Paulista, Universidade Estadual Paulista Júlio de Mesquita Filho, Praça Infante Dom Henrique, s/n, CP 11330-900 São Vicente, SP, Brazil
| | - Ana Carolina Feitosa Cruz
- NEPEA, Campus do Litoral Paulista, Universidade Estadual Paulista Júlio de Mesquita Filho, Praça Infante Dom Henrique, s/n, CP 11330-900 São Vicente, SP, Brazil
| | - Tatiana Roselena de Oliveira Stremel
- Post-Graduation Program in Applied Chemistry, Universidade Estadual de Ponta Grossa, Av. General Carlos Cavalcanti, 4748, Uvaranas, CP 84030-900 Ponta Grossa, PR, Brazil
| | - Sandro Xavier de Campos
- Post-Graduation Program in Applied Chemistry, Universidade Estadual de Ponta Grossa, Av. General Carlos Cavalcanti, 4748, Uvaranas, CP 84030-900 Ponta Grossa, PR, Brazil
| | - Denis Moledo de Souza Abessa
- NEPEA, Campus do Litoral Paulista, Universidade Estadual Paulista Júlio de Mesquita Filho, Praça Infante Dom Henrique, s/n, CP 11330-900 São Vicente, SP, Brazil
| | - Ciro Alberto de Oliveira Ribeiro
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CP19031, 81531-990 Curitiba, PR, Brazil
| |
Collapse
|
7
|
Chahouri A, Yacoubi B, Moukrim A, Banaoui A. Integration assay of bacteriological risks in marine environment using salmonella spp and multimarker response in the bivalve Donax trunculus: Novel biomonitoring approach. CHEMOSPHERE 2022; 297:134149. [PMID: 35271906 DOI: 10.1016/j.chemosphere.2022.134149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/25/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Microbiological contamination is one of the riskiest forms of human contamination in seawater, which threaten the stability of ecosystems and human health. In this study, we study the accumulation of a pathogenic bacteria Salmonella spp; isolated from the marine environment, in the soft tissue of Donax trunculus (Mollusca, Bivalvia), a commonly used as a bioindicators species for aquatic ecosystems monitoring, under laboratory conditions during both exposure and recovery periods. These bacteria were added in seawater at three concentrations previously determined against sentinel specie at three exposure periods (24, 48 and 96 h). In a second series of experiments, exposed specimens were afterward transplanted to clean water to assess the recovery pattern. The mortality rate of bivalves was determined as biomarker of general stress. Our findings suggest that microbiological contamination by Salmonella spp was gradually incorporated into the body of D. trunculus causing a significant induction of enzymatic activity of acetylcholinesterase (AChE), Catalase (CAT), glutathione-S-transferase (GST) and malondialdehyde (MDA) levels, as a function of time and concentration. Exposure to a bacterial concentration of 5.104 bacteria/liter resulted in the mortality of more than 80% of the specimens. This study is to test the pathogenicity of Salmonella strains at concentrations close to those of the marine environment, and their effects on biomarkers, thus deducing the existence of an exponential relationship between bacterial concentrations and enzymatic response. The principal component analysis shows that the four biomarkers had similar variation with bacterial concentrations, while two groups were obtained to change following the exposure time (CAT-GST and AChE-MDA). This study provides new findings on the potential accumulation of pathogenic bacteria associated with neurotoxicity and oxidative stress in the wedge clam Donax trunculus.
Collapse
Affiliation(s)
- Abir Chahouri
- Aquatic System Laboratory: Marine and Continental Environment, Faculty of Sciences Agadir, Department of Biology, Ibn Zohr University, Agadir, Morocco.
| | - Bouchra Yacoubi
- Aquatic System Laboratory: Marine and Continental Environment, Faculty of Sciences Agadir, Department of Biology, Ibn Zohr University, Agadir, Morocco
| | | | - Ali Banaoui
- Aquatic System Laboratory: Marine and Continental Environment, Faculty of Sciences Agadir, Department of Biology, Ibn Zohr University, Agadir, Morocco
| |
Collapse
|
8
|
Gautam A, Mukherjee S, Manna S, Banerjee P, Manna S, Ghosh AR, Ray M, Ray S. Metal accumulation and morphofunctional damage in coelomocytes of earthworm collected from industrially contaminated soil of Kolkata, India. Comp Biochem Physiol C Toxicol Pharmacol 2022; 256:109299. [PMID: 35182717 DOI: 10.1016/j.cbpc.2022.109299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 11/26/2022]
Abstract
The current study is aimed to assess the ecotoxicological effects of toxic metals and seasonal shift of the physicochemical characteristics of soil in an endogeic earthworm Metaphire posthuma of industrially contaminated soil of Calcutta leather complex. The accumulation of cadmium, chromium, lead and mercury was quantitated in whole earthworms and coelomocytes. The accumulation of metals was derived to be high in the coelomocytes than whole earthworms. Morphofunctional shift in coelomocytes indicated a high level of metal toxicity in soil inhabitants. The shift in differential coelomocyte count and cellular damage including intense cytoplasmic vacuolation and membrane blebbing of coelomocytes of M. posthuma of contaminated soil were suggestive to a state of immunocompromisation in the same species. Shift in the generation of nitric oxide and activity of inducible nitric oxide synthase indicated a possible immunosuppression in earthworm. Depletion in the acetylcholinesterase activity of coelomocytes indicated neurotoxicity of metals leached from the dumped wastes in Calcutta leather complex. Integrated biomarker response based analysis was carried out to assess the biomarker potential of experimental endpoints of M. posthuma to monitor metal toxicity in soil.
Collapse
Affiliation(s)
- Arunodaya Gautam
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Soumalya Mukherjee
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India; Department of Zoology, Brahmananda Keshab Chandra College, 111/2, Barrackpore Trunk Road, Kolkata 700108, West Bengal, India
| | - Sumit Manna
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Pallab Banerjee
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Sourav Manna
- Semiochemicals and Lipid Laboratory, Department of Life Science, Presidency University, 86/1, College Street, Kolkata 700073, West Bengal, India
| | - Apurba Ratan Ghosh
- Department of Environmental Science, University of Burdwan, Golapbag, Bardhaman 713104, West Bengal, India
| | - Mitali Ray
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Sajal Ray
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| |
Collapse
|
9
|
Wang Y, Hong H, Qian L, Wang Q, Li J, Huang Q, Jiang Y, Lu H, Liu J, Dong Y, Li J, Yan C. Polycyclic aromatic hydrocarbons at subcritical levels as novel indicators of microbial adaptation in a pre-industrial river delta. CHEMOSPHERE 2022; 295:133858. [PMID: 35124082 DOI: 10.1016/j.chemosphere.2022.133858] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/21/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Marine sediment is considered a vast sink for organic pollutants including polycyclic aromatic hydrocarbons (PAHs). However, little is known about the relationship between subcritical PAH allocation and benthic microbial patterns. Thus, we carried out a field investigation at the abandoned Yellow River Delta (AYRD) to deepen the understanding of PAHs' horizontal distribution and ecological roles on the continental shelf. The PAH level in the AYRD is relatively low and distance-independent, indicating it resulted from long-term, chronic, anthropogenic input. The combined application of diagnostic molecular ratios reported inconsistent PAH sources, which might be due to the low PAH concentrations and the complexity of contributing sources. Positive Matrix Factorization provided a more robust source classification and identified three main PAH sources-coal combustion and vehicle emissions, petrogenic process, and fossil fuels. The benthic microbiome did not show a significant response to PAHs in terms of microbial assemblage or alpha-diversity. However, Operational Taxonomic Units in some specific phyla, like Thaumarchaeota, Proteobacteria, Acidobacteria, and Chytridiomycota, correlated with the PAH source indicators, supporting the notion that PAH source indicators can act as a novel environmental indicator for microbial adaption. What's more, Microbial Ecological Networks show more connection at sites identified as biomass combustion by both Fluoranthene/(Fluoranthene + Pyrene) and Indeno(1,2,3-cd)pyrene/(Indeno(1,2,3-cd)pyrene + Benzo(ghi)perylene) compared to the ones identified as biomass combustion by Fluoranthene/(Fluoranthene + Pyrene) and petroleum combustion by Indeno(1,2,3-cd)pyrene/(Indeno(1,2,3-cd)pyrene + Benzo(ghi)perylene). Herein, we demonstrate that the PAHs' source indicator can serve as a novel indicator of the interactions between microorganisms, and thus, should be applied to the sustainable management effort in the offshore area.
Collapse
Affiliation(s)
- Yazhi Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, Fujian, China; Academy of Environmental Planning and Design, Nanjing University, Nanjing, 210000, Jiangsu, China.
| | - Hualong Hong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Lu Qian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Qiang Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, Fujian, China; State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| | - Junwei Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, Fujian, China; Key Laboratory of the Ministry of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin, 541004, Guangxi, China.
| | - Qi Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Yongcan Jiang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Haoliang Lu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Jingchun Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Yunwei Dong
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, Fujian, China; The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, China.
| | - Jian Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, Fujian, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Chongling Yan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, Fujian, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
10
|
Montenegro D, González MT, Hickey T, Rahnama M, Green S, Lear G. Assessing integrated biomarkers of triplefin fish Forsterygion capito inhabiting contaminated marine water - A multivariate approach. CHEMOSPHERE 2022; 288:132590. [PMID: 34662640 DOI: 10.1016/j.chemosphere.2021.132590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/20/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
The presence of multiple chemicals in aquatic ecosystems makes evaluation of their real impact on the biota difficult. Integrated biomarkers are therefore needed to evaluate how these chemicals contribute to environmental degradation. The aims of the present study were to evaluate responses to and effects of marine pollution using a series of biomarkers through multivariate analyses. Transcriptional responses of cyp1a (cytochrome P450), mt (metallothionein), vtg (vitellogenin) and cyp19b (cytochrome P450 aromatase); branchial and hepatic histological alterations; and Fulton condition factors (CF) were evaluated, as well as the metals and polycyclic aromatic hydrocarbons present in Forsterygion capito in Auckland, New Zealand. Sites were selected along a contamination gradient: four highly contaminated sites and four less contaminated. Molecular responses with a higher relative expression of the mt and cyp1a genes were detected at a highly contaminated site (Panmure). Several histological lesion types were found in the livers of fish inhabiting both types of sites, but gill lesions were present primarily at highly contaminated sites. In terms of general health status, the lowest CF values were overwhelmingly found in fish from the same site (Panmure). The multivariate approach revealed that telangiectasia and hyperplasia were associated with the presence of chemicals, and these showed negative associations with the CF values, with fish from three highly contaminated sites being most affected. In conclusion, the multivariate approach helped to integrate these biological markers in this blennioid fish, thus providing a more holistic view of the complex chemical mixtures involved. Future studies should implement these analyses.
Collapse
Affiliation(s)
- Diana Montenegro
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand; Natural Science Institute Alexander von Humboldt, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile.
| | - M Teresa González
- Natural Science Institute Alexander von Humboldt, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
| | - Tony Hickey
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Mostafa Rahnama
- Department of Plant Pathology, University of Kentucky, Lexington, 40546, USA
| | - Saras Green
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Gavin Lear
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
11
|
Pan Y, Tian L, Zhao Q, Tao Z, Yang J, Zhou Y, Cao R, Zhang G, Wu W. Evaluation of the acute toxic effects of crude oil on intertidal mudskipper (Boleophthalmus pectinirostris) based on antioxidant enzyme activity and the integrated biomarker response. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118341. [PMID: 34637832 DOI: 10.1016/j.envpol.2021.118341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/17/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
With the development of marine oil industry, oil spill accidents will inevitably occur, further polluting the intertidal zone and causing biological poisoning. The muddy intertidal zone and Boleophthalmus pectinirostris were selected as the research objects to conduct indoor acute exposure experiments within 48 h of crude oil pollution. Statistical analysis was used to reveal the activity changes of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST) in the gills and liver of mudskipper. Then, integrated biomarker response (IBR) indicators were established to comprehensively evaluate the biological toxicity. The results showed that the activities of SOD, CAT and GST in livers were higher than those in gills, and the maximum induction multipliers of SOD, CAT and GPx in livers appeared earlier than those in gills. Both SOD and GPx activities were induced at low pollutant concentrations and inhibited at high pollutant concentrations. For the dose-effect, the change trends of CAT and SOD were roughly inversed. There was substrate competition between GPx and CAT, with opposite trends over time. The activating mechanism of GST was similar to that of GPx, and the activation time was earlier than that of GPx. In terms of dose-effect trends, the IBR showed that the antioxidant enzymes activities in biological tissues were induced by low and inhibited by high pollutant concentrations. Overall, SOD and GPx in gills and CAT and GST in livers of the mudskippers were suitable as representative markers to comprehensively analyze and evaluate the biotoxicity effects of oil pollution in the intertidal zone. The star plots and IBR values obtained after data standardization were consistent with the enzyme activity differences, which can be used as valid supplementary indexes for biotoxicity evaluation. These research findings provide theoretical support for early indicators of biological toxicity after crude oil pollution in intertidal zones.
Collapse
Affiliation(s)
- Yuying Pan
- School of Fishery, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| | - Lina Tian
- School of Fishery, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Qiaoling Zhao
- Zhoushan Institute for Food and Drug Control, Zhoushan, 316021, PR China
| | - Zhen Tao
- School of Fishery, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Jinsheng Yang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Youlin Zhou
- School of Fishery, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Rui Cao
- School of Fishery, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Guangxu Zhang
- School of Fishery, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Wenyu Wu
- School of Marine Sciences, University of Maine, Orono, 04469, USA
| |
Collapse
|
12
|
La Colla NS, Botté SE, Simonetti P, Negrin VL, Serra AV, Marcovecchio JE. Water, sediments and fishes: First multi compartment assessment of metal pollution in a coastal environment from the SW Atlantic. CHEMOSPHERE 2021; 282:131131. [PMID: 34470169 DOI: 10.1016/j.chemosphere.2021.131131] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
This is an integrated assessment of the distribution of Cd, Cr, Hg and Pb in dissolved water, sediments and muscle fish tissues (Cynoscion guatucupa, Micropogonias furnieri, Mustelus schmitti and Ramnogaster arcuata) from the Bahía Blanca estuary, Argentina. Within the water fraction (μg L-1), Hg and Pb concentrations ranged from below the limit of detection (<LOD) to 0.53 and 54, respectively. For Cd and Cr, values varied from 0.060 to 0.56 and from 1.6 to 18, respectively. In the sediment fraction (μg g-1) values ranged from <LOD to 0.21 and 0.47 for Cd and Hg, respectively, from 11 to 18 for Cr and from 5.1 to 10 for Pb. Metals in fish muscle tissues (μg g-1) ranged from <LOD to 2.8, 0.53 and 0.52 for Cr, Hg and Pb, respectively. All Cd values were <LOD. This marine environment is potentially vulnerable to anthropogenic pollution since dissolved Cr, Hg and Pb values exceeded established environmental quality guidelines. Moreover, the sediment pollution indices indicated a deterioration of the estuarine environment, with Cr and Pb associated to anthropogenic impacts, whereas Hg could be occasionally associated with adverse biological effects. The biota to water accumulation factor (BWAF) reflected that fish species showed potential to accumulate Cr (BWAF: 73-510) and, especially, Hg (BWAF: 1000-8000). The high biota to sediment accumulation factor found for Hg (up to 9.8) indicated that fish species behaved as macro or micro concentrators. These results highlights the importance of a multi compartment approach in pollution assessment, with implicances for future works.
Collapse
Affiliation(s)
- Noelia S La Colla
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Carrindanga km. 7.5, Bahía Blanca, 8000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina.
| | - Sandra E Botté
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Carrindanga km. 7.5, Bahía Blanca, 8000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, Bahía Blanca, 8000, Argentina
| | - Pia Simonetti
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Carrindanga km. 7.5, Bahía Blanca, 8000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina
| | - Vanesa L Negrin
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Carrindanga km. 7.5, Bahía Blanca, 8000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, Bahía Blanca, 8000, Argentina
| | - Analía V Serra
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Carrindanga km. 7.5, Bahía Blanca, 8000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina
| | - Jorge E Marcovecchio
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Carrindanga km. 7.5, Bahía Blanca, 8000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina; Universidad de la Fraternidad de Agrupaciones Santo Tomás de Aquino, Gascón 3145, Mar del Plata, 7600, Argentina; Universidad Tecnológica Nacional - FRBB, 11 de Abril 445, Bahía Blanca, 8000, Argentina; Academia Nacional de Ciencias Exactas, Físicas y Naturales (ANCEFN), Av. Alvear 1711, Ciudad Autónoma de Buenos Aires, 1014, Argentina
| |
Collapse
|
13
|
Gallego-Ríos SE, Peñuela GA, Martínez-López E. Updating the use of biochemical biomarkers in fish for the evaluation of alterations produced by pharmaceutical products. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 88:103756. [PMID: 34662733 DOI: 10.1016/j.etap.2021.103756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/09/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
The evaluation of toxic effects in stressful environmental conditions can be determined through the imbalance between exogenous factors (environmental contaminants) and enzymatic and non-enzymatic defenses in biological systems. The use of fish for the identification of alterations in biochemical biomarkers provides a comprehensive vision of the effects that pharmaceutical products cause in the aquatic ecosystem, as they are organisms with high sensitivity to contaminants, filtering capacity, and potential for environmental toxicology studies. A wide range of pharmaceuticals can stimulate or alter a variety of biochemical mechanisms, such as oxidative damage to membrane lipids, proteins, and changes in antioxidant enzymes. This review includes a summary of knowledge of the last 20 years, in the understanding of the different biochemical biomarkers generated by exposure to pharmaceuticals in fish, which include different categories of pharmaceutical products: NSAIDs, analgesics, antibiotics, anticonvulsants, antidepressants, hormones, lipid regulators and mixtures. This review serves as a tool in the design of studies for the evaluation of the effects of pharmaceutical products, taking into account the most useful biomarkers, type of matrix, enzyme alterations, all taking the pharmaceutical group of interest.
Collapse
Affiliation(s)
- Sara E Gallego-Ríos
- Pollution Diagnostics and Control Group (GDCON), School of the Environment, Faculty of Engineering, University Research Campus (SIU), University of Antioquia (U de A), Calle 70 No. 52-21, Medellin, Colombia.
| | - Gustavo A Peñuela
- Pollution Diagnostics and Control Group (GDCON), School of the Environment, Faculty of Engineering, University Research Campus (SIU), University of Antioquia (U de A), Calle 70 No. 52-21, Medellin, Colombia
| | - Emma Martínez-López
- Area of Toxicology, Veterinary Faculty, University of Murcia, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca), Spain
| |
Collapse
|
14
|
Leão-Buchir J, Folle NMT, Lima de Souza T, Brito PM, de Oliveira EC, de Almeida Roque A, Ramsdorf WA, Fávaro LF, Garcia JRE, Esquivel L, Filipak Neto F, de Oliveira Ribeiro CA, Mela Prodocimo M. Effects of trophic 2,2', 4,4'-tetrabromodiphenyl ether (BDE-47) exposure in Oreochromis niloticus: A multiple biomarkers analysis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103693. [PMID: 34166789 DOI: 10.1016/j.etap.2021.103693] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Polybrominated diphenyl esters are emerging environmental contaminants with few toxicological data, being a concern for the scientific community. This study evaluated the effects of BDE-47 on the health of Oreochromis niloticus fish. The animals were exposed to three doses of BDE-47 (0, 0.253, 2.53, 25.3 ng g-1) every 10 days, for 80 days. The BDE-47 affected the hepatosomatic and gonadosomatic index in female and the condition factor by intermediate dose in both sexes. The levels of estradiol decreased and the T4 are increased, but the vitellogenin production was not modulated in male individuals. Changes in AChE, GST, LPO and histopathology were observed while the integrated biomarker response index suggests that the lowest dose of BDE-47 compromised the activity of antioxidant enzymes. The oral exposure to BDE-47 in environmental concentrations is toxic to O. niloticus and the use of multiple biomarkers is an attribution in ecotoxicology studies and biomonitoring programs.
Collapse
Affiliation(s)
- Joelma Leão-Buchir
- Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil; Departamento de Toxicologia Molecular e Ambiente, Centro de Biotecnologia, Universidade Eduardo Mondlane (CB-UEM), Maputo, Mozambique
| | - Nilce Mary Turcatti Folle
- Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil
| | - Tugstênio Lima de Souza
- Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil
| | - Patricia Manuitt Brito
- Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil
| | - Elton Celton de Oliveira
- Programa de Pós-graduação em Agroecossistemas, Universidade Tecnológica Federal do Paraná, Campus Dois Vizinhos, CEP 82660-000, Dois Vizinhos, PR, Brazil
| | - Aliciane de Almeida Roque
- Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil
| | - Wanessa Algarte Ramsdorf
- Programa de Pós-graduação em Ecotoxicologia, Universidade Tecnológica Federal do Paraná, Campus Curitiba, CEP 81280-340, Curitiba, PR, Brazil
| | - Luis Fernando Fávaro
- Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil
| | | | - Luíse Esquivel
- Estação de Piscicultura Panamá, Est. Geral Bom Retiro, Paulo Lopes, SC, CEP 88490-000, Brazil
| | - Francisco Filipak Neto
- Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil
| | | | - Maritana Mela Prodocimo
- Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil.
| |
Collapse
|
15
|
Gallego-Ríos SE, Atencio-García VJ, Peñuela GA. Effect of ibuprofen in vivo and in vitro on the sperm quality of the striped catfish Pseudoplatystoma magdaleniatum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36133-36141. [PMID: 33683592 DOI: 10.1007/s11356-021-13245-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Because ibuprofen is a high consumption drug, which has the waters as its final destination, causing alterations in the aquatic environment, specifically in fish. However, there is not enough knowledge about the effect it can have on neotropical fish. This study aimed to evaluate the impact of different concentrations of ibuprofen on sperm quality, both in vivo and in vitro, of the striped catfish Pseudoplatystoma magdaleniatum, and analyze its effects on the reproduction of this critical extinction endangered species. For this purpose, three groups of fish, with a mean weight of 2.3 ± 0.6 kg and mean total length of 62.9 ± 6.1 cm, were placed in tanks (3 fish/tank) with water at concentrations of 0 (control), 25, and 50 μg/L of ibuprofen for 4 months. For the analysis of sperm quality for each treatment (in vivo), the males were selected in the spermiation phase. Also, the semen from the control group was used for in vitro tests and activated with type I water solutions containing 0, 25, and 50 μg/L of ibuprofen. In the in vivo and in vitro tests, when fish and semen were treated to 50 μg/l, the seminal quality of striped catfish was statistically different from the other treatments. For this study, it was shown that ibuprofen at concentrations of 50 μg/L can cause a significant reduction in sperm quality and, therefore, a threat to the reproduction of P. magdaleniatum.
Collapse
Affiliation(s)
- Sara E Gallego-Ríos
- Pollution Diagnostics and Control Group (GDCON), School of the Environment, Faculty of Engineering, University Research Campus (SIU), University of Antioquia (UdeA), Calle 70 No. 52-21, Medellin, Colombia.
| | - Víctor Julio Atencio-García
- Fishculture Research Institute (CINPIC)/FMVZ/DCA, University of Córdoba, Carrera 6 No. 77-305, Montería, Colombia
| | - Gustavo Antonio Peñuela
- Pollution Diagnostics and Control Group (GDCON), School of the Environment, Faculty of Engineering, University Research Campus (SIU), University of Antioquia (UdeA), Calle 70 No. 52-21, Medellin, Colombia
| |
Collapse
|
16
|
Salgado LD, Marques AEML, Kramer RD, Garrido de Oliveira F, Moretto SL, Alves de Lima B, Prodocimo MM, Cestari MM, Azevedo JCRD, Silva de Assis HC. Sediment contamination and toxic effects on Violet Goby fish (Gobioides broussonnetii - Gobiidae) from a marine protected area in South Atlantic. ENVIRONMENTAL RESEARCH 2021; 195:110308. [PMID: 33068573 DOI: 10.1016/j.envres.2020.110308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/15/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
The Estuarine-Lagoon Complex of Iguape-Cananéia (ELCIC), a Marine Protected Area (MPA) in Brazil, was the focus of this study that aimed to relate external levels of exposure to contaminants to toxic effects on Gobioides broussonnetii fish. Different anthropogenic contaminants such as metals, polycyclic aromatic hydrocarbons (PAHs) and pharmaceuticals and personal care products (PPCPs) were analyzed in the sediments; and biochemical, histopathological and genotoxicity biomarkers evaluated in fish; in two different seasons at three sites of the estuarine region. Higher contamination of the sediments was observed near the main urban center (Iguape city - IG). Metal concentrations were considered low to moderate, while PAHs concentrations were considered low. The concentrations of PPCPs increased due to the anthropogenic presence and were higher near IG and the Cananéia Island (CI). Contributions from historical mining, agriculture, nautical activities, oil, sewage and waste disposal, biomass and fossil fuels combustion were identified. Higher concentrations of metals and PPCPs were observed during the cold-dry season, suggesting influences of the lower hydrodynamics during the season of lower precipitation. Higher PAHs concentrations occurred in the hot-rainy season, indicating influences of greater human presence in summer. In fish, biological responses followed the same spatial and seasonal pattern. More pronounced changes in antioxidant, biotransformation, histopathological and genotoxic biomarkers were observed in IG and CI. The multivariate analysis and the integrated biomarkers response index (IBR) also evidenced worse environmental conditions in these sites. This result can indicate a negative influence of anthropogenic activities on the contamination of sediments and on the biological responses of fish. This study presented the first ecotoxicological data for the species and suggested that these chronic exposures can cause adverse effects on this fish population. The data contribute to the understanding of local environmental quality and can be applied in the future to the environmental and social management of marine protected areas.
Collapse
Affiliation(s)
- Lilian Dalago Salgado
- Ecology and Conservation Post-Graduation Program, Federal University of Paraná, P.O. Box 19031, 81530-980, Curitiba, Paraná, Brazil; Cananéia Research Institute, 11990-000, Cananéia, São Paulo, Brazil.
| | | | - Rafael Duarte Kramer
- Department of Chemistry and Biology, Federal Technological University of Paraná, 81280-340, Curitiba, Paraná, Brazil.
| | - Fernando Garrido de Oliveira
- Ecology and Conservation Post-Graduation Program, Federal University of Paraná, P.O. Box 19031, 81530-980, Curitiba, Paraná, Brazil.
| | - Sarah Lott Moretto
- Department of Genetics, Federal University of Paraná, P.O. Box 19031, 81530-980, Curitiba, Paraná, Brazil.
| | - Barbara Alves de Lima
- Department of Chemistry and Biology, Federal Technological University of Paraná, 81280-340, Curitiba, Paraná, Brazil.
| | - Maritana Mela Prodocimo
- Department of Cell Biology, Federal University of Paraná, P.O. Box 19031, 81530-980, Curitiba, Paraná, Brazil.
| | - Marta Margarete Cestari
- Department of Genetics, Federal University of Paraná, P.O. Box 19031, 81530-980, Curitiba, Paraná, Brazil.
| | | | | |
Collapse
|
17
|
Pinheiro-Sousa DB, da Costa Soares SH, Torres HS, de Jesus WB, de Oliveira SRS, Bastos WR, de Oliveira Ribeiro CA, Carvalho-Neta RNF. Sediment contaminant levels and multibiomarker approach to assess the health of catfish Sciades herzbergii in a harbor from the northern Brazilian Amazon. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111540. [PMID: 33157514 DOI: 10.1016/j.ecoenv.2020.111540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/14/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
The current study combined chemical data on trace elements and polycyclic aromatic hydrocarbons (PAH) from sediment and used a multibiomarker approach in the catfish Sciades herzbergii to evaluate two different sites in São Marcos Bay, Brazil. Higher diffuse contaminations by trace elements and PAH were detected in the sediment of Porto Grande (PG) harbor than in the Ilha dos Caranguejos (IC) reference area. A multibiomarker was used in catfish to evaluate the bioavailability of PAH in bile and the effects of pollutants in target tissues. The parameters considered were oxidative stress biomarkers (SOD, CAT, GSH, GST and LPO) and histopathological alterations and were compared between two seasons. The biological responses revealed adverse effects on the population, as indicated by the presence of trace elements and PAH as stressors. Principal component analysis (PCA) of the biomarkers corroborated these results and indicated that fish from the PG site during the rainy season in 2019 exhibited many biological effects compared to 2018. Overall, the present study showed that environmental contamination increased over the years and provides information on the contamination of sediments in the São Marcos Bay, Brazil. The results showed that the presence of contaminants was correlated with the health status of the catfish S. herzbergii.
Collapse
Affiliation(s)
- Débora Batista Pinheiro-Sousa
- Coordenação do Curso de Engenharia Ambiental, Universidade Federal do Maranhão, CEP 65800-000 Balsas, MA, Brazil; Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazônia Legal (REDE BIONORTE), Universidade Estadual do Maranhão, CEP 65055-310 São Luís, MA, Brazil.
| | - Sâmea Heloá da Costa Soares
- Programa de Pós-Graduação em Recursos Aquáticos e Pesca (PPGRAP). Universidade Estadual do Maranhão, CEP 65055-970 São Luís, MA, Brazil
| | - Hetty Salvino Torres
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazônia Legal (REDE BIONORTE), Universidade Estadual do Maranhão, CEP 65055-310 São Luís, MA, Brazil
| | - Wanda Batista de Jesus
- Programa de Pós-Graduação em Recursos Aquáticos e Pesca (PPGRAP). Universidade Estadual do Maranhão, CEP 65055-970 São Luís, MA, Brazil
| | - Suelen Rosana Sampaio de Oliveira
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazônia Legal (REDE BIONORTE), Universidade Estadual do Maranhão, CEP 65055-310 São Luís, MA, Brazil
| | - Wanderley Rodrigues Bastos
- Laboratório de Biogeoquímica Ambiental WCP, Fundação Universidade Federal de Rondônia, CEP 76801-059 Porto Velho, Rondônia, Brazil
| | - Ciro Alberto de Oliveira Ribeiro
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP 81531-990 Curitiba, PR, Brazil
| | | |
Collapse
|
18
|
Wang K, Qiao Y, Li H, Huang C. Use of integrated biomarker response for studying the resistance strategy of the earthworm Metaphire californica in Cd-contaminated field soils in Hunan Province, South China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114056. [PMID: 32041026 DOI: 10.1016/j.envpol.2020.114056] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/26/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Research was conducted to study the response and detoxification mechanisms of earthworms collected from Cd-contaminated areas in Hunan Province, South China. Metaphire californica, the dominant earthworm species in fields, referred as earthworm-A and -B that collected from low- (0.81 mg kg-1) and high-Cd soil (13.3 mg kg-1), respectively, for exchanging incubation in laboratory. The results showed that earthworm-A gradually accumulated higher Cd when exposed in the high-Cd soil, whereas Cd concentration of earthworm-B decreased after being transferred to low-Cd soil (albeit BAFCd >20). The integrated biomarker response index was calculated with the biomarkers of antioxidant systems (e.g., superoxide dismutase (SOD), peroxidase (POD), glutathione (GSH), glutathione peroxidase (GPx), glutathione-S transferase (GST), and malondialdehyde (MDA)) and energy index (e.g., protein and glycogen) in M. californica. GSH, GPx, and GST contributed the most to the integrated biomarker response (IBR) in earthworm-A when exposed in high-Cd soil for 14 d. Earthworm-B responded with higher GST and GPx activities and decreased protein content in low-Cd soil. For 28 d, the response of earthworm-A was not evident in either low- or high-Cd soil, and the inductive effect of metal stress on earthworm-B tended to be stable, except for the higher MDA content (p < 0.05) when exposed in low-Cd soil. The IBR index of earthworm-B (2.93 and 3.40) in low- and high-Cd soil, respectively, was higher than that of earthworm-A (0.89 and 1.0). Overall, earthworm-A exhibited a detoxification process to resist high-Cd toxicity from low-to high-Cd soil. Earthworm-B exhibited a physiological resilience once its habitat had changed to a normal or low-Cd soil environment, possibly owing to the cost of its resistance adaptation to the historical highly contaminated soil in fields.
Collapse
Affiliation(s)
- Kun Wang
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China; College of Resources and Environmental Science, Hebei Agricultural University, Baoding, 071001, China
| | - Yuhui Qiao
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China.
| | - Huafen Li
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Caide Huang
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
19
|
Marques JA, Abrantes DP, Marangoni LF, Bianchini A. Ecotoxicological responses of a reef calcifier exposed to copper, acidification and warming: A multiple biomarker approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113572. [PMID: 31753625 DOI: 10.1016/j.envpol.2019.113572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/25/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
Multiple global and local stressors threat coral reefs worldwide, and symbiont-bearing foraminifera are bioindicators of reef health. The aim of this study was to investigate single and combined effects of copper (Cu) and climate change related stressors (ocean acidification and warming) on a symbiont-bearing foraminifer by means of an integrated biomarker analysis. Using a mesocosm approach, Amphistegina gibbosa were exposed for 25 days to acidification, warming and/or Cu contamination on a full orthogonal design (two levels each factor). Cu was the main factor increasing bleaching and respiration rates. Warming was the main cause of mortality and reduced growth. Calcification related enzymes were inhibited in response to Cu exposure and, in general, the inhibition was stronger under climate change. Multiple biological endpoints responded to realistic exposure scenarios in different ways, but evidenced general stress posed by climate change combined with Cu. These biological responses drove the high values found for the 'stress index' IBR (Integrated Biomarker Response) - indicating general organismal health impairment under the multiple stressor scenario. Our results provide insights for coral reef management by detecting potential monitoring tools. The ecotoxicological responses indicated that Cu reduces the tolerance of foraminifera to climate change (acidification + warming). Once the endpoints analysed have a high ecological relevance, and that responses were evaluated on a classical reef bioindicator species, these results highlight the high risk of climate change and metal pollution co-exposure to coral reefs. Integrated responses allowed a better effects comprehension and are pointed as a promising tool to monitor pollution effects on a changing ocean.
Collapse
Affiliation(s)
- Joseane A Marques
- Programa de Pós-Graduação em Oceanografia Biológica, Universidade Federal do Rio Grande (IO/FURG), Rio Grande, RS, Brazil; Instituto Coral Vivo, Santa Cruz Cabralia, BA, Brazil.
| | - Douglas P Abrantes
- Programa de Pós-Graduação em Zoologia, Universidade Federal do Rio de Janeiro (MNRJ/UFRJ), Rio de Janeiro, RJ, Brazil
| | - Laura Fb Marangoni
- Programa de Pós-Graduação em Oceanografia Biológica, Universidade Federal do Rio Grande (IO/FURG), Rio Grande, RS, Brazil; Instituto Coral Vivo, Santa Cruz Cabralia, BA, Brazil
| | - Adalto Bianchini
- Instituto Coral Vivo, Santa Cruz Cabralia, BA, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (ICB/FURG), Rio Grande, RS, Brazil
| |
Collapse
|
20
|
Canedo-Lopez Y, Ruiz-Marin A, Rocio Barreto-Castro MD. Polycyclic Aromatic Hydrocarbons in Surface Sediments and Fish Tissues Collected from a Protected Lagoon Region. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:185-192. [PMID: 31912187 DOI: 10.1007/s00128-019-02775-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 12/14/2019] [Indexed: 06/10/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) were detected and quantified in sediment and edible fish (Megalops atlanticus) from Caleta lagoon (Lagoon of Terminos, Mexico) in order to assess their potential health impact on consumers. Sum PAH concentrations in sediment and fish muscle tissues were dominated by high molecular weight PAH compound (46.4%-93.1%) relative to low molecular weight compounds (6.9%-42.9%). Contamination was associated with local industrial activities and urbanization. The effective range low (ERL: 4022 ng g-1) value were lower suggested adverse biological effect would be rarely observed. While the analysis of PAHs in muscle of M. atlanticus suggests a minimum impact to consumers according to the permitted limits of dibenzo (a, h) anthracene (10 ng g-1) and benzo [a] pyrene (0.1-1.2 μg kg-1). It is advisable to propose environmental strategies to mitigate future environmental damage in the ecosystem.
Collapse
Affiliation(s)
- Yunuen Canedo-Lopez
- Centro de Investigación de Ciencias Ambientales (CICA), Universidad Autónoma del Carmen, Calle 56. No.4. Av. Concordia. Col. Benito Juárez,, C.P. 24180, Ciudad del Carmen, Campeche, Mexico
| | - Alejandro Ruiz-Marin
- Centro de Investigación de Ciencias Ambientales (CICA), Universidad Autónoma del Carmen, Calle 56. No.4. Av. Concordia. Col. Benito Juárez,, C.P. 24180, Ciudad del Carmen, Campeche, Mexico.
| | - Maria Del Rocio Barreto-Castro
- Centro de Investigación de Ciencias Ambientales (CICA), Universidad Autónoma del Carmen, Calle 56. No.4. Av. Concordia. Col. Benito Juárez,, C.P. 24180, Ciudad del Carmen, Campeche, Mexico
| |
Collapse
|
21
|
Calado SLDM, Santos GS, Vicentini M, Bozza DC, Prodocimo V, Magalhães VFD, Cestari MM, Silva de Assis HC. Multiple biomarkers response in a Neotropical fish exposed to paralytic shellfish toxins (PSTs). CHEMOSPHERE 2020; 238:124616. [PMID: 31466003 DOI: 10.1016/j.chemosphere.2019.124616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
The Alagados Reservoir (Southern Brazil) is used as water supply, and since 2002 there have been reports with a presence of cyanobacterial blooms and cyanotoxins. In order to assess the water quality and the ecological integrity of the reservoir, we evaluated biochemical, genotoxic and osmoregulatory biomarkers in the freshwater cichlid fish (Geophagus brasiliensis) that were exposed to PSTs. The fish were sampled in the Alagados Reservoir in February 2016 (Summer) and were divided in three groups: 1) Reservoir group (RES): fish were collected immediately after sampling; 2) Depuration group (DEP): fish were submitted to the depuration experiment for 90 days in the laboratory; and 3) Reproduction group (REP): fish were kept in the laboratory until the fertilization and the chemical analyses were performed on the offspring (F1 generation). In the RES and DEP the blood, brain, muscle, liver and gills were collected for biochemical, genotoxic and osmoregulatory biomarkers analysis. Our results showed that the fish from the Alagados Reservoir (RES) presented oxidative stress and DNA damage; and after 90 days (DEP), the antioxidant system and DNA damage were recovered. Although PSTs were considered a risk to the ecological integrity of this water body; PSTs concentrations were not found in the tissues of the F1 generation. In addition, the biomarkers used were useful tools to evaluate the effects of environment contamination. Therefore, it is necessary to develop new technologies and monitoring programs in order to reduce cyanobaterial blooms, cyanotoxins and human activities that cause the contamination in aquatic environments.
Collapse
Affiliation(s)
- Sabrina Loise de Morais Calado
- Ecology and Conservation Program Post-Graduation, Federal University of Paraná, Avenue Coronel Francisco Heráclito dos Santos, 100, Jardim das Américas, Curitiba, Paraná, 81531-980, Brazil
| | - Gustavo Souza Santos
- Department of Genetics, Federal University of Paraná, Avenue Coronel Francisco Heráclito dos Santos, 100, Jardim das Américas, Curitiba, Paraná, 81531-980, Brazil
| | - Maiara Vicentini
- Ecology and Conservation Program Post-Graduation, Federal University of Paraná, Avenue Coronel Francisco Heráclito dos Santos, 100, Jardim das Américas, Curitiba, Paraná, 81531-980, Brazil
| | - Deivyson Cattine Bozza
- Department of Physiology, Federal University of Paraná, Avenue Coronel Francisco Heráclito dos Santos, 100, Jardim das Américas, Curitiba, Paraná, 81531-980, Brazil
| | - Viviane Prodocimo
- Department of Physiology, Federal University of Paraná, Avenue Coronel Francisco Heráclito dos Santos, 100, Jardim das Américas, Curitiba, Paraná, 81531-980, Brazil
| | - Valéria Freitas de Magalhães
- Institute of Biophysics Carlos Chagas Filho, Avenue Carlos Chagas Filho, 373 Bloco G, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Marta Margarete Cestari
- Department of Genetics, Federal University of Paraná, Avenue Coronel Francisco Heráclito dos Santos, 100, Jardim das Américas, Curitiba, Paraná, 81531-980, Brazil
| | - Helena Cristina Silva de Assis
- Department of Pharmacology, Federal University of Paraná, Avenue Coronel Francisco Heráclito dos Santos, 100, Jardim das Américas, Curitiba, Paraná, 81531-980, Brazil.
| |
Collapse
|
22
|
Reichert G, Hilgert S, Fuchs S, Azevedo JCR. Emerging contaminants and antibiotic resistance in the different environmental matrices of Latin America. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113140. [PMID: 31541833 DOI: 10.1016/j.envpol.2019.113140] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/14/2019] [Accepted: 08/29/2019] [Indexed: 05/24/2023]
Abstract
This review aims to gather and summarize information about the occurrence of emerging contaminants and antibiotic resistance genes in environmental matrices in Latin America. We aim to contribute to future research by compiling a list of priority pollutants adjusted to the needs and characteristics of Latin America, according to the data presented in this study. In order to perform a comprehensive research and secure a representative and unbiased amount of quality data concerning emerging contaminants in Latin America, the research was performed within the Scopus® database in a time frame from 2000 to July 2019. The countries with higher numbers of published articles were Brazil and México, while most studies were performed in the surroundings of Mexico City and in Southern and Southeastern Brazil. The main investigated environmental matrices were drinking water and surface water. The presence of antibiotic resistance was frequently reported, mainly in Brazil. Monitoring efforts should be performed in other countries in Latin America, as well as in other regions of Brazil and México. The suggested priority list for monitoring of emerging contaminants in Latin America covers: di(2-ethylhexyl) phthalate (DEHP), bisphenol-A (BP-A), 4-nonylphenol (4-NP), triclosan (TCS), estrone (E1), estradiol (E2), ethinylestradiol (EE2), tetracycline (TC), amoxicillin (AMOX), norfloxacin (NOR), ampicillin (AMP) and imipenem (IMP). We hope this list serves as a basis for the orientation of the future research and monitoring projects to better understand the distribution and concentration of the listed emerging substances.
Collapse
Affiliation(s)
- Gabriela Reichert
- Department of Hydraulics and Sanitation, Federal University of Parana, Av. Coronel Francisco Heráclito dos Santos, 210, 81531-980, Curitiba PR, Brazil; Capes Foundation, Ministry of Education of Brazil, Brasilia, 70040-020, DF, Brazil.
| | - Stephan Hilgert
- Institute for Water and River Basin Management, Department of Aquatic Environmental Engineering, Karlsruhe Institute of Technology, Gotthard-Franz-Str. 3, Building 50.31, 3rd Floor, 76131 Karlsruhe, Germany
| | - Stephan Fuchs
- Institute for Water and River Basin Management, Department of Aquatic Environmental Engineering, Karlsruhe Institute of Technology, Gotthard-Franz-Str. 3, Building 50.31, 3rd Floor, 76131 Karlsruhe, Germany
| | - Júlio César Rodrigues Azevedo
- Department of Hydraulics and Sanitation, Federal University of Parana, Av. Coronel Francisco Heráclito dos Santos, 210, 81531-980, Curitiba PR, Brazil; Capes Foundation, Ministry of Education of Brazil, Brasilia, 70040-020, DF, Brazil; Department of Chemistry and Biology, Federal Technology University of Paraná, Rua Deputado Heitor Alencar Furtado, 5000, 81280-340, Curitiba PR, Brazil
| |
Collapse
|
23
|
Calado SLDM, Vicentini M, Santos GS, Pelanda A, Santos H, Coral LA, Magalhães VDF, Mela M, Cestari MM, Silva de Assis HC. Sublethal effects of microcystin-LR in the exposure and depuration time in a neotropical fish: Multibiomarker approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109527. [PMID: 31400723 DOI: 10.1016/j.ecoenv.2019.109527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
Eutrophication is an ecological process that results in cyanobacterial blooms. Microcystin-LR is the most toxic variant of microcystins and may cause toxic effects in the organisms, mainly in hepatic tissues. The aims of this study were to use multiple biomarkers in order to evaluate the sublethal effects of a low concentration of MC-LR (1 μg/L) in fish Geophagus brasiliensis by waterborne exposure; and evaluate the depuration of this toxin during 15 days. A group of 30 fish was exposed to 1 μg/L of MC-LR solution for 96 h in a static bioassay. After this time, blood, brain, muscle, liver, gonad and gills were collected from half of the exposed fish group in order to evaluate chemical, biochemical, histological and genotoxic biomarkers. The rest of the fish group was submitted to the depuration experiment with free MC-LR water for 15 days. After this time the same tissues were collected and evaluated using biomarkers analysis. Toxic effects were found mostly in the fish liver from depuration time as alterations on the antioxidant system and histopathologies. The results showed that even low concentrations can cause sublethal effects to aquatic organisms, and cyanotoxins monitoring and regulation tools are required.
Collapse
Affiliation(s)
- Sabrina Loise de Morais Calado
- Ecology and Conservation Program Post-Graduation, Federal University of Paraná, PO Box 19031, 81530-990, Curitiba-PR, Brazil.
| | - Maiara Vicentini
- Ecology and Conservation Program Post-Graduation, Federal University of Paraná, PO Box 19031, 81530-990, Curitiba-PR, Brazil.
| | - Gustavo Souza Santos
- Department of Genetics, Federal University of Paraná, PO Box 19031, 81530-990, Curitiba-PR, Brazil.
| | - Ana Pelanda
- Department of Pharmacology, Federal University of Paraná, PO Box 19031, 81530-990, Curitiba-PR, Brazil.
| | - Hayanna Santos
- Department of Pharmacology, Federal University of Paraná, PO Box 19031, 81530-990, Curitiba-PR, Brazil.
| | - Lucila Andriani Coral
- Department of Chemistry and Biology, Federal Technical University of Paraná, 81280-340, Curitiba-PR, Brazil.
| | | | - Maritana Mela
- Department of Cell Biology, Federal University of Paraná, PO Box 19031, 81530-990, Curitiba-PR, Brazil.
| | - Marta Margarete Cestari
- Department of Genetics, Federal University of Paraná, PO Box 19031, 81530-990, Curitiba-PR, Brazil.
| | | |
Collapse
|