1
|
Vieira Sanches M, Pretti C, Mezzetta A, Guazzelli L, Cuccaro A, De Marchi L, Freitas R, Oliva M. Subcellular effects of imidazolium-based ionic liquids with varying anions on the marine bivalve Mytilus galloprovincialis. Heliyon 2024; 10:e36242. [PMID: 39224242 PMCID: PMC11367460 DOI: 10.1016/j.heliyon.2024.e36242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Green Chemistry involves applying a set of principles aimed at minimizing the use of hazardous substances in the design, production, and application of chemical products. In recent decades, Ionic Liquids (ILs) have emerged as more environmentally friendly substitutes for traditional organic solvents. This preference is primarily due to their low vapor pressure, which results in minimal atmospheric pollution and enhanced industrial safety. However, existing literature highlights the toxicity of ILs towards aquatic invertebrates. Consequently, this study points to assess the biochemical effects of a selection of ILs through an in vitro approach. Specifically, digestive gland and gill cellular fractions (S9) of the marine bivalve Mytilus galloprovincialis were exposed to varying concentrations (0.05-2 μM) of three ILs featuring identical cations but different anions. The ILs tested were 1-ethyl-3-methylimidazolium octanoate ([EMIM][Oct]), 1-ethyl-3-methylimidazolium acetate ([EMIM][OAc]), and 1-ethyl-3-methylimidazolium ethyl sulfate ([EMIM][EtSO4]). The results indicate that [EMIM][Oct] induces higher toxicity in both S9 tissues, highlighting a strong effect of the anion. Overall, antioxidant and biotransformation defenses were significantly altered for all three ILs assessed. While acetylcholinesterase activity was significantly inhibited of about half of control activity, indicating neurotoxic damage as part of the toxicity mode of action of these ILs, neither lipid peroxidation nor alterations to DNA integrity were observed (≥100 %). This study supports the use of in vitro techniques as important tools capable of generating reliable ecotoxicological data, which can be further considered as a screening before in vivo testing and used for in silico modeling.
Collapse
Affiliation(s)
- Matilde Vieira Sanches
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Livorno, Italy
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, (PI), Italy
| | - Andrea Mezzetta
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126, Pisa, Italy
| | - Lorenzo Guazzelli
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126, Pisa, Italy
| | - Alessia Cuccaro
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Lucia De Marchi
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, (PI), Italy
| | - Rosa Freitas
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Matteo Oliva
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Livorno, Italy
| |
Collapse
|
2
|
Zhang Y, Cai L, Chen L, Zhang H, Li G, Wang G, Cui J, Filatova I, Liu Y. Effect of micro-nano bubbles on the remediation of saline-alkali soil with microbial agent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168940. [PMID: 38042196 DOI: 10.1016/j.scitotenv.2023.168940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/25/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
The widespread distribution of saline-alkali soil around the world affects the health of ecological systems and the development of the national economy by limiting the growth of plants. However, the commonly used remediation technologies have the drawbacks of low efficiency, high cost, and secondary pollution. This study investigated the feasibility and efficacy of novel combined micro-nanobubbles (MNBs) and microbial agent (MA) technology for the remediation of saline-alkali soil. The results demonstrated that the combined MA-MNBs method greatly renovated the properties of saline-alkali soil compared with the technologies of single utilization of MA or MNBs process in the laboratory. The method resulted in a reduction of soil electrical conductivity and pH levels, an improvement in soil fertility, and the formation of soil aggregates. Moreover, the method significantly impacted the growth of plants, particularly in plant length, dry weight, and rhizome elongation. Further high-throughput sequencing and gene expression analysis revealed that the MA-MNBs method enhanced the abundance of soil microbial community compared with single MA and MNBs treatment. Gene enrichment analysis revealed that the MA-MNBs method could compensate for the shortcomings of single MA treatment and enhance the expression of energy metabolism and salt stress-related genes attributed to MNBs treatment, thereby significantly improving the growth and development of plants. Consistently, 6115 kg/ha of rice was yielded in the field for the saline-alkali soils using this MA-MNBs method, with zero crops before remediation. This study provided a novel, efficient, and green strategy for the remediation of saline-alkali soil without adding any chemicals.
Collapse
Affiliation(s)
- Yinyin Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Li Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Luhai Chen
- Nanobubble Technology (Shanghai) Co., Ltd, Shanghai 201709, China
| | - Han Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Guoqing Li
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Guoxiang Wang
- Nanobubble Technology (Shanghai) Co., Ltd, Shanghai 201709, China
| | - Jie Cui
- Beijing Enterprises Water Group Ltd, Beijing 100102, China
| | - Irina Filatova
- Department of Physics, Mathematics and Informatics, NAS of Belarus Nezavisimosti Ave, Minsk 220072, Belarus
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
3
|
Resende AC, Pereira DMC. IBRtools: An R package for calculating integrated biomarker indexes. Ecol Evol 2024; 14:e10864. [PMID: 38304267 PMCID: PMC10834099 DOI: 10.1002/ece3.10864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/14/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
Multibiomarker studies are useful to evaluate the early warning signs of environmental degradation, and their unified responses are often assessed through two common indexes, Integrated Biomarker Response (IBR) and Integrated Biological Responses version 2 (IBRv2). The R package IBRtools allows users to calculate both IBR and IBRv2 while simultaneously incorporating all the biomarkers under evaluation. The package includes functions for calculating the indexes IBR and IBRv2 and obtaining their standardized values, as well a function for radar chart creation and three example datasets. Here we describe the main algorithms involved in IBR and IBRv2 calculations, a description of the novel package and illustrate a workflow using data examples available on the package to guide the user on how to accurately acquire the values for either the IBR index or the IBRv2 index. The IBRtools package provides a user-friendly platform for R users to obtain IBR index and IBRv2 values, making it straightforward even for large datasets.
Collapse
Affiliation(s)
- Anna Carolina Resende
- Marine Ecology and Ecosystem Modelling Lab, School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| | - Diego Mauro Carneiro Pereira
- Carl Peter von Dietrich Glycobiology Laboratory, Biochemistry DepartmentFederal University of São PauloSão PauloBrazil
| |
Collapse
|
4
|
Wang L, Deng XQ, Cai JY, Liang WW, Du YQ, Hu XL. Chronic and intergenerational toxic effects of 1-decyl-3-methylimidazolium hexafluorophosphate on the water flea, Moina macrocopa. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:699-710. [PMID: 37378816 DOI: 10.1007/s10646-023-02674-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/29/2023]
Abstract
With the increasing use and production of "green solvents" ionic liquids (ILs) and their known stability in the environment, the potential adverse effects of ILs have become a focus of research. In the present study, acute, chronic, and intergenerational toxic effects of an imidazolium-based ionic liquid, 1-decyl-3-methylimidazolium hexafluorophosphate ([Demim]PF6), on Moina macrocopa were investigated following the parental exposure. The results showed that [Demim]PF6 exhibited high toxicity to M. macrocopa, and the long-term exposure significantly inhibited the survivorship, development, and reproduction of the water flea. Furthermore, it is also observed that [Demim]PF6 induced toxic effects in the following generation of M. macrocopa, resulting in the complete cessation of reproduction in the first offspring generation, and the growth of the organisms was also significantly affected. These findings provided a novel insight into the intergenerational toxicity induced by ILs to crustaceans and suggested that these compounds pose potential risks to the aquatic ecosystem.
Collapse
Affiliation(s)
- Lu Wang
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Xiao Quan Deng
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Jin Yu Cai
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Wen Wang Liang
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Ying Qi Du
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Xue Lei Hu
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China.
| |
Collapse
|
5
|
Rasool MH, Ahmad M. Epsom Salt-Based Natural Deep Eutectic Solvent as a Drilling Fluid Additive: A Game-Changer for Shale Swelling Inhibition. Molecules 2023; 28:5784. [PMID: 37570754 PMCID: PMC10420845 DOI: 10.3390/molecules28155784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Shale rock swelling poses a significant challenge during drilling a well, leading to issues related to wellbore instability. Water-based mud with specific shale inhibitors is preferred over oil-based drilling mud due to its lower environmental impact. Recently, ionic liquids (ILs) have emerged as potential shale inhibitors due to their adjustable properties and strong electrostatic attraction. However, research has shown that the most commonly used class of ILs (imidazolium) in drilling mud are toxic, non-biodegradable, and expensive. Deep Eutectic Solvents (DESs), the fourth generation of ionic liquids, have been proposed as a cheaper and non-toxic alternative to ILs. However, ammonium salt-based DESs are not truly environmentally friendly. This research explores the utilization of Natural Deep Eutectic Solvent (NADES) based on Epsom salt (a naturally occurring salt) and glycerine as a drilling fluid additive. The drilling mud is prepared according to API 13B-1 standards. Various concentrations of NADES-based mud are tested for yield point, plastic viscosity, and filtration properties for both aged and non-aged samples. The linear swell meter is used to determine the percentage swelling of the NADES-based mud, and the results are compared with the swelling caused by KCl- and EMIM-Cl-based mud. FTIR analysis is conducted to understand the interaction between NADES and clay, while surface tension, d-spacing (XRD), and zeta potential are measured to comprehend the mechanism of swelling inhibition by NADES. The findings reveal that NADES improves the yield point and plastic viscosity of the mud, resulting in a 26% reduction in mudcake thickness and a 30.1% decrease in filtrate volume at a concentration of 1%. NADES achieves a significant 49.14% inhibition of swelling at the optimal concentration of 1%, attributed to its ability to modify surface activity, zeta potential of clay surfaces, and d-spacing of clay layers. Consequently, NADES emerges as a non-toxic, cost-effective, and efficient shale inhibitor that can replace ILs and DESs.
Collapse
Affiliation(s)
- Muhammad Hammad Rasool
- Department of Petroleum Geosciences, Universiti Teknologi Petronas, Seri Iskander 31750, Malaysia
| | - Maqsood Ahmad
- Department of Petroleum Geosciences, Universiti Teknologi Petronas, Seri Iskander 31750, Malaysia
| |
Collapse
|
6
|
Chu L, Hou X, Song X, Zhao X, Hu S, Shen G. Toxicity of ionic liquids against earthworms (Eisenia fetida). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162411. [PMID: 36870498 DOI: 10.1016/j.scitotenv.2023.162411] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/18/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Ionic liquids (ILs) are widely used in frontier fields because of their highly tunable properties. Although ILs may have adverse effects on organisms, few studies have focused on their effect on earthworm gene expression. Herein we investigated the toxicity mechanism of different ILs towards Eisenia fetida using transcriptomics. Earthworms were exposed to soil containing different concentrations and types of ILs, and behavior, weight, enzymatic activity and transcriptome were analyzed. Earthworms exhibited avoidance behavior towards ILs and growth was inhibited. ILs also affected antioxidant and detoxifying enzymatic activity. These effects were concentration and alkyl chain length-dependent. Analysis of intrasample expression levels and differences in transcriptome expression levels showed good parallelism within groups and large differences between groups. Based on functional classification analysis, we speculate that toxicity mainly occurs through translation and modification of proteins and intracellular transport functions, which affect protein-related binding functions and catalytic activity. KEGG pathway analysis revealed that ILs may damage the digestive system of earthworms, among other possible pathological effects. Transcriptome analysis reveals mechanisms that cannot be observed by conventional toxicity endpoints. This is useful to evaluate the potential environmental adverse effects of the industrial use of ILs.
Collapse
Affiliation(s)
- Linglong Chu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoxiao Hou
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xinshan Song
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoxiang Zhao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Shuangqing Hu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Genxiang Shen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| |
Collapse
|
7
|
Zhu X, Min X, Zhu Y, Ma X, Meng X, Xu C. Effects of [C npy]Br (n=3,5) on the growth and physiology of rape seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34741-34749. [PMID: 36520292 DOI: 10.1007/s11356-022-24759-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
1-Alkylpyridinium bromide [Cnpy]Br is a common intermediate in chemical synthesis. With the discharge of industrial wastewater, it enters the environment and is toxic to plants. In this study, the impacts of two pyridine-based ionic liquids (ILs), [C3py]Br and [C5py]Br, on the growth and physiology of rape seedlings were investigated at concentrations of 10, 50, 100, 200, 300, and 400 mg/L. Within the concentration range (10-400 mg/L) of [C3py]Br and [C5py]Br treatment, the root length, plant height, activities of antioxidant enzymes (SOD, POD, and CAT), and the contents of Chla and Chlb showed an increase at low concentrations and a decrease at high concentrations. [C3py]Br and [C5py]Br increased MDA content in rape seedlings leaves in a concentration-dependent manner. It was also found that [C5py]Br was more toxic to rape seedlings than [C3py]Br. The toxicity of pyridine ILs such as [C3py]Br and [C5py]Br to plants should be highly concerned.
Collapse
Affiliation(s)
- Xiaohui Zhu
- School of Environmental Science, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Xingyue Min
- School of Environmental Science, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Yutong Zhu
- School of Environmental Science, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Xiping Ma
- School of Environmental Science, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Xuelian Meng
- School of Pharmaceutical Science, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Chengbin Xu
- School of Environmental Science, Liaoning University, Shenyang, 110036, People's Republic of China.
| |
Collapse
|
8
|
Advances of Imidazolium Ionic Liquids for the Extraction of Phytochemicals from Plants. SEPARATIONS 2023. [DOI: 10.3390/separations10030151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
In this review, we present the research from 2013 to 2022 about the character of ionic liquids, the categories of phytochemicals, and the reasons for selecting imidazolium ionic liquids for phytochemical extraction. Then we introduce the structural formulae of the imidazolium ionic liquids commonly used in the extraction of phytochemicals, the methods used to prepare imidazolium ionic liquids, and a comprehensive introduction of how imidazolium ionic liquids are applied to extract phytochemicals from plants. Importantly, we discuss the strategies for studying the extraction mechanisms of imidazolium ionic liquids to extract phytochemicals, and the recovery methods regarding imidazolium ionic liquids and their recyclability are analyzed. Then the toxicity in imidazolium ionic liquids is pointed out. Finally, the challenges and prospects of extracting phytochemicals by imidazolium ionic liquids are summarized, and they are expected to provide some references for researchers.
Collapse
|
9
|
Chen D, Lin Z, Ai F, Xia Y, Du W, Yin Y, Guo H. Divergent responses and ecological risks of wheat (Triticum aestivum L.) to cerium oxide nanoparticles in different soil types. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160429. [PMID: 36435252 DOI: 10.1016/j.scitotenv.2022.160429] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/08/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Cerium oxide nanoparticles (nCeO2), as a common component for sustainable agriculture, have been broadly investigated due to their potential threat to the soil biodiversity and health. However, few studies considered the impacts of soil types on response of ecotoxicity of nCeO2 to plants. This study aimed to explore the effects of soil properties on ecological response of nCeO2 to wheat (Triticum aestivum L.) and assess the ecological risks of nCeO2 (0-1000 mg/kg) in red soil, yellow-brown soil, and brown soil by applying a multi-biomarker approach. The results showed that the clay content had the extremely significant correlation with acid solute fraction Ce in soil. Ce accumulation in wheat largely depended on acid-soluble fraction Ce, but not the total Ce. Both urease and invertase activities were highest in brown soil among the three soils, after exposure to diverse concentration nCeO2. Although wheat has a stronger antioxidant capacity in red soil, integrated biomarker response index proved that nCeO2 showed least toxicity to wheat in brown soil (IBRv2 = 34.3) among the three soils. These results indicated that the toxicity level of nCeO2 to wheat was not only related to contaminated concentration, but also greatly depended on soil properties. The soil types are important factors governing ecological risk of nCeO2 in soil, which needs to be adequately assessed and properly controlled.
Collapse
Affiliation(s)
- Dun Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zihan Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Fuxun Ai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yan Xia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Ningxia Hui Autonomous Region Coal Geology Bureau, Yinchuan 750004, China
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China
| |
Collapse
|
10
|
Han M, Zhang Z, Liu S, Sheng Y, Waigi MG, Hu X, Qin C, Ling W. Genotoxicity of organic contaminants in the soil: A review based on bibliometric analysis and methodological progress. CHEMOSPHERE 2023; 313:137318. [PMID: 36410525 DOI: 10.1016/j.chemosphere.2022.137318] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/26/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Organic contaminants (OCs) are ubiquitous in the environment, posing severe threats to human health and ecological balance. In particular, OCs and their metabolites could interact with genetic materials to induce genotoxicity, which has attracted considerable attention. In this review, bibliometric analysis was executed to analyze the publications on the genotoxicity of OCs in soil from 1992 to 2021. The result indicated that significant contributions were made by China and the United States in this field and the research hotspots were biological risks, damage mechanisms, and testing methods. Based on this, in this review, we summarized the manifestations and influencing factors of genotoxicity of OCs to soil organisms, the main damage mechanisms, and the most commonly utilized testing methods. OCs can induce genotoxicity and the hierarchical response of soil organisms, which could be influenced by the physicochemical properties of OCs and the properties of soil. Specific mechanisms of genotoxicity can be classified into DNA damage, epigenetic toxicity, and chromosomal aberrations. OCs with different molecular weights lead to genetic material damage by inducing the generation of ROS or forming adducts with DNA, respectively. The micronucleus test and the comet test are the most commonly used testing methods. Moreover, this review also pointed out that future studies should focus on the relationships between bioaccessibilities and genotoxicities, transcriptional regulatory factors, and potential metabolites of OCs to elaborate on the biological risks and mechanisms of genotoxicity from an overall perspective.
Collapse
Affiliation(s)
- Miao Han
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zaifeng Zhang
- Jiangsu Province Nantong Environmental Monitoring Center, Nantong 226006, PR China
| | - Si Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Youying Sheng
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
11
|
Jin MK, Yang YT, Zhao CX, Huang XR, Chen HM, Zhao WL, Yang XR, Zhu YG, Liu HJ. ROS as a key player in quinolone antibiotic stress on Arabidopsis thaliana: From the perspective of photosystem function, oxidative stress and phyllosphere microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157821. [PMID: 35931174 DOI: 10.1016/j.scitotenv.2022.157821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/31/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
With the increasing use of antibiotics, their ecological impacts have received widespread attention. However, research on the toxicity of quinolone antibiotics is still limited, especially regarding the oxidative stress and phyllosphere of plants. In this study, the toxic effects of enrofloxacin, norfloxacin, and levofloxacin on Arabidopsis thaliana and their underlying mechanisms were investigated. The toxicity of the three quinolone antibiotics decreased in the following order: enrofloxacin > norfloxacin > levofloxacin. Physiological cellular changes, such as plasmolysis and chloroplast swelling, were observed using electron microscopy. Photosynthetic efficiency was inhibited with a decline in the effective photochemical quantum yield of photosystem II (Y(II)) and non-photochemical quenching (NPQ), indicating that quinolone antibiotics might reduce light energy conversion efficiency and excess light energy dissipation. Oxidative stress occurred in A. thaliana after quinolone antibiotic treatment, with an increase in reactive oxygen species (ROS) levels and malondialdehyde (MDA) content. High ROS levels stimulated the over-expression of superoxide-responsive genes for self-protection. Structural equation modeling (SEM) analysis showed that photosynthesis inhibition and cellular damage caused by oxidative stress were critical factors for growth inhibition, suggesting that the antioxidant response activated by ROS might be a potential mechanism. Furthermore, the diversity of the phyllospheric microbial communities decreased after enrofloxacin exposure. Additionally, specific microbes were preferentially recruited to the phyllosphere because of the higher ROS levels.
Collapse
Affiliation(s)
- Ming-Kang Jin
- School of Environmental Science and Engineering, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou 310018, PR China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Yu-Tian Yang
- Centre for Environmental Policy, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Cai-Xia Zhao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Xin-Rong Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Han-Mei Chen
- School of Environmental Science and Engineering, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Wen-Lu Zhao
- School of Environmental Science and Engineering, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Hui-Jun Liu
- School of Environmental Science and Engineering, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou 310018, PR China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, PR China.
| |
Collapse
|
12
|
Zhang J, Shi Y, Yu Z. Balances among reproduction, antioxidant responses and lipid metabolism underlying the multi-generational effects of N-butylpyridinium bromide on Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157468. [PMID: 35868368 DOI: 10.1016/j.scitotenv.2022.157468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Ionic liquids (ILs) are difficult to degrade and even accumulate in the environment. Accordingly, their long-term toxicities are particularly important to demonstrate their accurate risk assessment. However, their long-term toxicities over generations and the toxicity mechanisms lacked thorough investigation. Presently, N-butylpyridinium bromide ([bpyr]Br), a representative IL, was chosen to measure its long-term effects on Caenorhabditis elegans for seven consecutive generations at 0.0225 and 22.5 mg/L. Toxicity mechanisms were explored in F1, F3, F5 and F7 by combining both antioxidant responses and lipid metabolism. Results showed that [bpyr]Br at low concentration provoked oscillatory effects on the reproduction over 7 generations, with inhibition in F1 and F7 and stimulation in F2, F4 and F5. At high concentration, [bpyr]Br showed similar multi-generational oscillation with greater inhibition in F1 and greater stimulation in F5. The effects of [bpyr]Br on the antioxidant responses to oxidative stress also showed oscillation over generations. The integrated biomarker response (IBR) values showed that [bpyr]Br at low concentration did not provoke significant influences on the overall antioxidant homeostasis in F1 and F3, but significantly stimulated it in F5 and F7. Meanwhile, [bpyr]Br at high concentration stimulated the antioxidant homeostasis in F1 and F7 with non-significant influences in F3 and F5. The IBR values regarding indicators in lipid metabolism showed that [bpyr]Br significantly and commonly stimulated the overall metabolism without concentration-dependent differences. Further analysis implied that [bpyr]Br provoked different mechanisms underlying the responses at low and high concentrations.
Collapse
Affiliation(s)
- Jing Zhang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China.
| | - Yang Shi
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Zhenyang Yu
- Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang Province 3014051, PR China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
13
|
Chu L, Hou X, Song X, Zhao X. Toxicological effects of different ionic liquids on growth, photosynthetic pigments, oxidative stress, and ultrastructure of Nostoc punctiforme and the combined toxicity with heavy metals. CHEMOSPHERE 2022; 298:134273. [PMID: 35276117 DOI: 10.1016/j.chemosphere.2022.134273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Ionic liquids (ILs1) are used widely because of their excellent properties. However, their ecotoxicity for environment has aroused great concern. Here we studied, the toxicity of three ILs with different numbers of methyl substituents and anions as well as the combined effect of heavy metals to edible algae Nostoc punctiforme. The results show that fresh weight and chlorophyll content decreased, indicating that the growth and photosynthesis were adversely affected. Polysaccharides and soluble protein contents decreased, resulting in a reduced nutritional value of Nostoc punctiforme. ILs can produce many reactive oxygen species (ROS), which lead to increased the malondialdehyde (MDA) content. In order to remove excessive ROS, antioxidant enzymes activity is increased, but decreases under high IL concentration, because the structure and function of the enzymes became damaged. ILs cause stress to algae, as the cell ultrastructure is indicating by increased amounts of starch and osmiophilic globules. The combined action of heavy metals with ILs decreases the antioxidant enzymes activity and chlorophyll content, and increases the MDA content. The results show that the order of toxicity is [C8MIM]Cl >[C8MIM]Br> [C8DMIM]Br. The combination of heavy metals and ILs cause an increase of the toxicity to Nostoc punctiforme.
Collapse
Affiliation(s)
- Linglong Chu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Xiaoxiao Hou
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Xinshan Song
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Xiaoxiang Zhao
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
14
|
Ma P, Tian T, Dai Z, Shao T, Zhang W, Liu M. Assessment of Cd bioavailability using chemical extraction methods, DGT, and biological indicators in soils with different aging times. CHEMOSPHERE 2022; 296:133931. [PMID: 35181428 DOI: 10.1016/j.chemosphere.2022.133931] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/27/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Total cadmium (Cd) cannot be used to accurately assess the ecological risk of Cd pollution in soil. Currently there is no universally recognized method to evaluate Cd bioavailability in soil. In this study, chemical extraction methods, diffusive gradients in thin films (DGT) and bioindicator methods were used to evaluate Cd bioavailability in soils with the same properties but different aging times. Results indicate that aging decreased the Cd bioavailability in soil and its toxicity to barley. This was primarily due to a decrease in the proportion of ion-exchangeable Cd. Correlation analyses were conducted on the Cd bioavailable content obtained via the soil extraction methods and the toxicity effect of barley. Results showed that the order of the minimum value of the linear regression determination coefficient (R2) of chemical extraction methods and DGT was as follows: DGT-Cd (0.7385, p < 0.05) > total Cd (0.6931, p < 0.05) > acetic acid-Cd (0.6078) > ion-exchangeable Cd (0.5933) > DTPA-Cd (0.5842) > CaCl2-Cd (0.4980) > water-soluble Cd (0.4602). The order of minimum value of R2 of biological indicators of barley was integrated biomarker response (IBR) (0.8501, p < 0.01) > length (0.6492) > dry weight (0.6320) > fresh weight (0.4980) > Cd concentration (0.4602). The root is more suitable for indicating the plant uptake and accumulation of Cd in soil. Meanwhile, the shoot can effectively evaluate the toxic effect of Cd stress on plants. DGT is more suitable to reflect Cd bioavailability to barley compared to chemical extraction methods, Furthermore, it can be used to evaluate stable polluted soil with longer aging time. In the study of the bioavailability of heavy metals in soil, IBR can be used as a reliable reference index to contribute to the comprehensive evaluation of metal bioavailability in addition to considering plant uptake.
Collapse
Affiliation(s)
- Pan Ma
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| | - Tian Tian
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| | - Zhaoyi Dai
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| | - Tingyu Shao
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| | - Wei Zhang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| | - Mingda Liu
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| |
Collapse
|
15
|
Li F, Liu Z, Yao L, Jiang Y, Qu M, Yu Y, Gong X, Tan Z, Li Z. Immunotoxicity of Perfluorooctanoic Acid to the Marine Bivalve Species Ruditapes philippinarum. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:426-436. [PMID: 34888925 DOI: 10.1002/etc.5263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
Polyfluorinated alkylated substances are recognized as an important class of pollutants in marine environments. Bivalves are good model organisms for evaluating the toxicity of pollutants and monitoring marine environments. In the present study, immunotoxicity of perfluorooctanoic acid (PFOA) was investigated by measuring biomarkers of the immune profile of Ruditapes philippinarum. In bivalves, hemocytes are an important component of the immune system. Thus, hemocyte proliferation, phagocytosis, cell viability, and immune enzyme activities, which have been applied as marine pollution bioindicators, were identified and observed for changes after exposure to PFOA in R. philippinarum. Based on the integrated biomarker responses method, we selected five biomarkers to evaluate PFOA risk at the multibiomarker level. In addition, the histopathological alterations of hemocytes in bivalves were used as indexes of the response to environmental stress. The subcellular structure of the hemocytes in R. philippinarum changed significantly with PFOA exposure, including hemocyte and nucleus morphological changes, organelle dissolution, cytomembrane and karyotheca swelling, and cytoplasm vacuolization. The present study verifies PFOA immunotoxicity to R. philippinarum at different levels and the integrated assessment of stress levels caused by PFOA in marine environment. Our results will provide new insights into evaluating adverse effects of PFOA and monitoring marine ecosystem. Environ Toxicol Chem 2022;41:426-436. © 2021 SETAC.
Collapse
Affiliation(s)
- Fengling Li
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China
| | - Zhiyu Liu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China
| | - Lin Yao
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China
| | - Yanhua Jiang
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China
| | - Meng Qu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China
| | - Yongxing Yu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China
- College of Marine Life Sciences, Ocean University of China, Qingdao, People's Republic of China
| | - Xiuqiong Gong
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China
- College of Marine Sciences, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China
- Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, People's Republic of China
| | - Zhaojie Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People's Republic of China
| |
Collapse
|
16
|
Chu L, Kang X, Li D, Song X, Zhao X. Physiological responses of Pichia stipitis to imidazolium chloride ionic liquids with different carbon chain length. CHEMOSPHERE 2022; 286:131578. [PMID: 34303052 DOI: 10.1016/j.chemosphere.2021.131578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Ionic liquids (ILs) are used as detoxication agents for fermentation of lignin into ethanol because of their good applicability. However, the residual ILs may be toxic to the yeast. In order to improve the use of ILs for fermentation and protected environment, the toxicity of ILs with different carbon chain length to Pichia stipitis was studied in this paper. Four kinds of common imidazolium chloride ILs ([C4mim]Cl, [C6mim]Cl, [C8mim]Cl and [C10mim]Cl) were selected. ILs can inhibit the proliferation of Pichia stipitis and increase their mortality. Oxidative stress reaction occurred in the cells, and the activities of antioxidant enzymes are affected. Comparing with the integrated biomarker response (IBR) index, it was found that the toxicity increases with increasing chain length. ILs may enter cells by damaging cell membranes and reduce ethanol production by damaging organelles such as mitochondria. ILs caused wrinkles and dents on the surface of cells up to cell deformation and even rupture. The toxicity sequence was as follows: [C10mim]Cl> [C8mim]Cl>[C6mim]Cl>[C4mim]Cl. Due to this toxicity to Pichia stipitis, these compounds should be used carefully in the fermentation process and also to avoid toxic effects on other organisms in the environment.
Collapse
Affiliation(s)
- Linglong Chu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xin Kang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Dongpeng Li
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xinshan Song
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaoxiang Zhao
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
17
|
Yilimulati M, Du H, Wu W, Habibul N. Phytoextraction, accumulation, and toxicological effects of 1-tetradecyl-3-methylimidazolium ionic liquid in ryegrass (Lolium perenne L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:7652-7660. [PMID: 34480310 DOI: 10.1007/s11356-021-16140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Ionic liquids are widely used in many fields due to their extremely tunable nature and exceptional properties. The extensive application of ionic liquids raises great concerns regarding their bioaccumulation potential and adverse effects on organisms. Green plants have a great potential for uptake of persistent xenobiotics from aquatic and terrestrial environment. However, the assimilation and bioaccumulation of 1-tetradecyl-3-methylimidazolium bromide ([C14mim]Br) have not been studied in plants yet. In order to explore the phytoaccumulation of [C14mim]+, ryegrass were exposed to [C14mim]Br with hydroponic experiment. The effects of [C14mim]Br dosages on growth index, chlorophyll content, malondialdehyde (MDA) content, and antioxidant enzyme activity of ryegrass were investigated. The toxic effects of [C14mim]Br on ryegrass growth increased with increasing initial concentration. The high initial concentration treatment resulted in rapid changes in physiological characteristics in ryegrass tissue. [C14mim]+ ions were mainly accumulated in root tissue and partly translocated to the above ground part of ryegrass. [C14mim]+ was observed in the highest concentration (314.35 μg/g in root and 101.42 μg/g in aboveground parts of ryegrass) with 10 mg/L of [C14mim]Br. Our results demonstrated that ryegrass can uptake and accumulate [C14mim]+ and is therefore a suitable species for phytoremediation of trace amount of [C14mim]+ and possibly other ionic liquids.
Collapse
Affiliation(s)
- Mihebai Yilimulati
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Hong Du
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, Urumqi, 830054, China
| | - Wei Wu
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, Urumqi, 830054, China
| | - Nuzahat Habibul
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China.
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, Urumqi, 830054, China.
| |
Collapse
|
18
|
Wei P, Pan X, Chen CY, Li HY, Yan X, Li C, Chu YH, Yan B. Emerging impacts of ionic liquids on eco-environmental safety and human health. Chem Soc Rev 2021; 50:13609-13627. [PMID: 34812453 DOI: 10.1039/d1cs00946j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Owing to their unique physicochemical properties, ionic liquids (ILs) have been rapidly applied in diverse areas, such as organic synthesis, electrochemistry, analytical chemistry, functional materials, pharmaceutics, and biomedicine. The increase in the production and application of ILs has resulted in their release into aquatic and terrestrial environments. Because of their low vapor pressure, ILs cause very little pollution in the atmosphere compared to organic solvents. However, ILs are highly persistent in aquatic and terrestrial environments due to their stability, and therefore, potentially threaten the safety of eco-environments and human health. Specifically, the environmental translocation and retention of ILs, or their accumulation in organisms, are all related to their physiochemical properties, such as hydrophobicity. Based on results of ecotoxicity, cytotoxicity, and toxicity in mammalian models, the mechanisms involved in IL-induced toxicity include damage of cell membranes and induction of oxidative stress. Recently, artificial intelligence and machine learning techniques have been used in mining and modeling toxicity data to make meaningful predictions. Major future challenges are also discussed. This review will accelerate our understanding of the safety issues of ILs and serve as a guideline for the design of the next generation of ILs.
Collapse
Affiliation(s)
- Penghao Wei
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Xiujiao Pan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Chien-Yuan Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan, Republic of China.
| | - Hsin-Yi Li
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan, Republic of China.
| | - Xiliang Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Chengjun Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yen-Ho Chu
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan, Republic of China.
| | - Bing Yan
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China. .,Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
19
|
Guo X, Cai Y, Ma C, Han L, Yang Z. Combined toxicity of micro/nano scale polystyrene plastics and ciprofloxacin to Corbicula fluminea in freshwater sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147887. [PMID: 34051493 DOI: 10.1016/j.scitotenv.2021.147887] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 05/06/2023]
Abstract
Plastic pollution has become a global environmental threat, and its potential to affect the bioavailability and toxicity of pharmaceuticals to aquatic organism are of growing concern. However, little is known regarding the combined toxicity of micro/nano-plastics and pharmaceuticals to benthic organisms in sediments. Thus, we employed a freshwater benthic bivalve, Corbicula fluminea (C. fluminea), to investigate the individual and co-toxicity of model plastics, microscopic fluorescent polystyrene (PS) (PS nano-plastic (PS-NP) and PS micro-plastic (PS-MP), 80 nm and 6 μm, respectively) and the common antibiotic ciprofloxacin (CIP) in formulated sediments. Our results suggest that oxidative damage and neurotoxicity were confirmed to occur in C. fluminea in all the treatments. The oxidative damage in the digestive glands reduced the clam ability to scavenge free radicals, causing severe tissue damage to the digestive glands of C. fluminea. Filtration rates of C. fluminea were significantly decreased in a concentration-dependent manner across all the treatments, which might be due to the inhibition of acetylcholinesterase activities. Interactions between CIP and micro/nano-plastic were observed, whereby the presence of PS decreased the toxicity of CIP in the digestive glands but aggravated the C. fluminea siphoning inhibition rate in the nano-plastic co-treatments group; in addition, the CIP toxicity to C. fluminea decreased because that the concentration of free dissolved CIP was lowered by micro/nano-PS. Taken together, the current study could contribute greatly to evaluating the ecological risk of CIP and PS in aquatic environments and sheds light on potential issues of food safety caused by both emerging pollutants.
Collapse
Affiliation(s)
- Xiaoyu Guo
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Chuanxin Ma
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Lanfang Han
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Zhifeng Yang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| |
Collapse
|
20
|
Cho CW, Pham TPT, Zhao Y, Stolte S, Yun YS. Review of the toxic effects of ionic liquids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147309. [PMID: 33975102 DOI: 10.1016/j.scitotenv.2021.147309] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 05/11/2023]
Abstract
Interest in ionic liquids (ILs), called green or designer solvents, has been increasing because of their excellent properties such as thermal stability and low vapor pressure; thus, they can replace harmful organic chemicals and help several industrial fields e.g., energy-storage materials production and biomaterial pretreatment. However, the claim that ILs are green solvents should be carefully considered from an environmental perspective. ILs, given their minimal vapor pressure, may not directly cause atmospheric pollution. However, they have the potential to cause adverse effects if leaked into the environment, for instance if they are spilled due to human mistakes or technical errors. To estimate the risks of ILs, numerous ILs have had their toxicity assessed toward several micro- and macro-organisms over the past few decades. Since the toxic effects of ILs depend on the method of estimating toxicity, it is necessary to briefly summarize and comprehensively discuss the biological effects of ILs according to their structure and toxicity testing levels. This can help simplify our understanding of the toxicity of ILs. Therefore, in this review, we discuss the key findings of toxicological information of ILs, collect some toxicity data of ILs to different species, and explain the influence of IL structure on their toxic properties. In the discussion, we estimated two different sensitivity values of toxicity testing levels depending on the experiment condition, which are theoretical magnitudes of the inherent sensitivity of toxicity testing levels in various conditions and their changes in biological response according to the change in IL structure. Finally, some perspectives, future research directions, and limitations to toxicological research of ILs, presented so far, are discussed.
Collapse
Affiliation(s)
- Chul-Woong Cho
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea.
| | - Thi Phuong Thuy Pham
- Faculty of Biotechnology, HoChiMihn University of Food Industry, Ho Chi Minh City, Viet Nam
| | - Yufeng Zhao
- College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan 430074, Hubei Province, China
| | - Stefan Stolte
- Technische Universität Dresden, Faculty of Environmental Sciences, Department of Hydrosciences, Institute of Water Chemistry, Bergstraße 66, 01062 Dresden, Germany
| | - Yeoung-Sang Yun
- School of Chemical Engineering, Chonbuk National University, 567 Beakje-dearo, Deokjin-gu, Jeonju, Jeonbuk 561-756, South Korea.
| |
Collapse
|
21
|
Shi Y, Meng X, Zhang J. Multi- and trans-generational effects of N-butylpyridium chloride on reproduction, lifespan, and pro/antioxidant status in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146371. [PMID: 34030357 DOI: 10.1016/j.scitotenv.2021.146371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/16/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Ionic liquids (ILs) became emerging pollutants. Their poor degradation and accumulation in organisms urged studies on the long-term effects and also the underlying mechanisms. Currently, 1-butylpyrinium chloride ([bpyr]Cl) was chosen to represent the pyridine-based ILs. Its multi-generational effects were measured on C. elegans for 14 consecutive generations (F1 to F14), and the trans-generational effects were also measured in the great-grand-children (T3 and T3') of F1 and F14. The multi-generational results from F1 to F14 showed that the effects of [bpyr]Cl on the initial and total reproduction and lifespan showed oscillation between inhibition and stimulation. Notably, hormetic effects on reproduction were observed in F7 to F10. The trans-generational effects in T3 and T3' showed different residual consequences between one generational exposure (F1) and multiple generational exposure (F14). Further biochemical analysis showed that the pro/antioxidant status also showed oscillation between inhibition and stimulation. The oscillation levels were greater in superoxide dismutase (SOD), catalase (CAT) and protein carbonyl content (PC) than those in glutathione peroxidase (GSH-Px), reactive oxygen species (ROS) and hydroxyl radical (OH). The pro/antioxidant status contributed to both multi- and trans-generational effects of [bpyr]Cl. Future studies should pay attentions to the long-term influence of ILs and also epigenetic explanations.
Collapse
Affiliation(s)
- Yang Shi
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China; Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang 314051, PR China
| | - Xiangzhou Meng
- Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang 314051, PR China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jing Zhang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China.
| |
Collapse
|
22
|
Chu L, Kang X, Li D, Song X, Zhao X. The toxicological mechanism of two typical imidazole ionic liquids in textile industry on Isatis tinctoria. CHEMOSPHERE 2021; 275:130042. [PMID: 33647681 DOI: 10.1016/j.chemosphere.2021.130042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Ionic liquids (ILs1) which are called "green solvents", are used widely in the textile industry as adjuvants due to their many advantages. However, their persistent residues may cause ecotoxicity. The aim of the study is to explore the toxicity of different anions on imidazole ILs and their toxicological mechanism. For the experiments 1-butyl-3-methylimidazole tetrafloroborate ([C4mim]BF4) and 1- butyl -3-methylimidazolium chloride ([C4mim]Cl) were selected to study their toxic effects on Isatis tinctoria. ILs may affect the germination rate. Fresh weight, dry weight and Hill reaction activity decreased continuously with increasing of IL concentrations, showing an effect-dose relationship. Transmission electron microscopy (TEM) revealed that cell walls were fuzzy, starch granules had accumulated and the chloroplast structure was damaged. These changes will affected the function and electron transport efficiency of photosystemⅡ. Superoxide anion accumulation stimulated the activity of antioxidant enzymes (SOD, POD, CAT) and caused lipid peroxidation as well as an increased malondialdehyde content. ILs also reduced indirubin and total flavonoids contents, which reduced the pharmacological efficacy of Isatis tinctoria. This is demonstrated by three-dimensional fluorescence chromatogram. [C4mim]Cl was more toxic than [C4mim]BF4. ILs caused toxic effects to Isatis tinctoria. The ecological toxicity of ILs should be considered when using them as additives in the textile industry.
Collapse
Affiliation(s)
- Linglong Chu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Xin Kang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Dongpeng Li
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Xinshan Song
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Xiaoxiang Zhao
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
23
|
Magina S, Barros-Timmons A, Ventura SPM, Evtuguin DV. Evaluating the hazardous impact of ionic liquids - Challenges and opportunities. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125215. [PMID: 33951860 DOI: 10.1016/j.jhazmat.2021.125215] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Ionic liquids (ILs), being related to the design of new environmentally friendly solvents, are widely considered for applications within the "green chemistry" concept. Due to their unique properties and wide diversity, ILs allow tailoring new separation procedures and producing new materials for advanced applications. However, despite the promising technical performance, environmental concerns highlighted in recent studies focused on the toxicity and biodegradability of ILs and their metabolites have revealed that ILs safety labels are not as benign as previously claimed. This review refers to the fundamentals about the properties and applications of ILs also in the context of their potential environmental effect. Toxicological issues and harmful effects related to the use of ILs are discussed, including the evaluation of their biodegradability and ecological impact on diverse organisms and ecosystems, also with respect to bacteria, fungi, and cell cultures. In addition, this review covers the tools used to assess the toxicity of ILs, including the predictive computational models and the results of studies involving cell membrane models and molecular simulations. Summing up the knowledge available so far, there are still no reliable criteria for unequivocal attribution of toxicity and environmental impact credentials for ILs, which is a challenging research task.
Collapse
Affiliation(s)
- Sandra Magina
- CICECO-Institute of Materials and Chemistry Department, University of Aveiro, Campus de Santiago, Aveiro P-3810-193, Portugal
| | - Ana Barros-Timmons
- CICECO-Institute of Materials and Chemistry Department, University of Aveiro, Campus de Santiago, Aveiro P-3810-193, Portugal
| | - Sónia P M Ventura
- CICECO-Institute of Materials and Chemistry Department, University of Aveiro, Campus de Santiago, Aveiro P-3810-193, Portugal
| | - Dmitry V Evtuguin
- CICECO-Institute of Materials and Chemistry Department, University of Aveiro, Campus de Santiago, Aveiro P-3810-193, Portugal.
| |
Collapse
|
24
|
Gonçalves AR, Paredes X, Cristino AF, Santos FJ, Queirós CS. Ionic Liquids-A Review of Their Toxicity to Living Organisms. Int J Mol Sci 2021; 22:5612. [PMID: 34070636 PMCID: PMC8198260 DOI: 10.3390/ijms22115612] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 12/19/2022] Open
Abstract
Ionic liquids (ILs) were initially hailed as a green alternative to traditional solvents because of their almost non-existent vapor pressure as ecological replacement of most common volatile solvents in industrial processes for their damaging effects on the environment. It is common knowledge that they are not as green as desired, and more thought must be put into the biological consequences of their industrial use. Still, compared to the amount of research studying their physicochemical properties and potential applications in different areas, there is a scarcity of scientific papers regarding how these substances interact with different organisms. The intent of this review was to compile the information published in this area since 2015 to allow the reader to better understand how, for example, bacteria, plants, fish, etc., react to the presence of this family of liquids. In general, lipophilicity is one of the main drivers of toxicity and thus the type of cation. The anion tends to play a minor (but not negligible) role, but more research is needed since, owing to the very nature of ILs, except for the most common ones (imidazolium and ammonium-based), many of them are subject to only one or two articles.
Collapse
Affiliation(s)
| | | | | | | | - Carla S.G.P. Queirós
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (A.R.P.G.); (X.P.); (A.F.C.); (F.J.V.S.)
| |
Collapse
|
25
|
Zhang W, Xia X, Wang J, Zhu L, Wang J, Wang G, Chen Y, Kim YM. Oxidative stress and genotoxicity of nitenpyram to earthworms (Eisenia foetida). CHEMOSPHERE 2021; 264:128493. [PMID: 33039690 DOI: 10.1016/j.chemosphere.2020.128493] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
In this study, the artificial soil poisoning method was used to explore the antioxidative stress mechanism and gene changes of earthworms (Eisenia foetida) after application of nitenpyram. The toxic effects of nitenpyram on earthworms were combined with the method called the second-generation integrated biomarker response index method (IBRv2) to be comprehensively analyzed by studying the reactive oxygen species (ROS) content, superoxide dismutase (SOD) activity, catalase (CAT) activity, glutathione S-transferase (GST) activity, malondialdehyde (MDA) content and DNA damage degree in earthworms. The results showed that the ROS content in the high-concentration (2.5 mg/kg) nitenpyram treatment group changed significantly. The changes of antioxidant enzymes in earthworms were also obvious. In terms of SOD enzyme activity, under the induction of nitenpyram, SOD activity in the 1 mg/kg and 2.5 mg/kg treatment groups was significantly enhanced. The concentration-treated group could all affect the activity of earthworm detoxifying enzyme GST. Earthworm DNA olive tail in the nitenpyram treatment group with different concentrations was mainly concentrated at low and medium levels at 21d, and the proportion was the largest during the whole exposure period, showing a significant dose-effect relationship. This study confirms that nitenpyram not only has a toxic effect on the physiological and biochemical indicators of earthworms, but also cannot be underestimated on its genetic level.
Collapse
Affiliation(s)
- Wenjie Zhang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, PR China.
| | - Xiaoming Xia
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, China.
| | - Jinhua Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, PR China.
| | - Lusheng Zhu
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, PR China.
| | - Jun Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, PR China.
| | - Guangchi Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, PR China.
| | - Yangyang Chen
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, PR China.
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
26
|
Bardsley TA, Evans CL, Greene JR, Audet R, Harrison MJ, Zimmerman M, Nieto NC, Del Sesto RE, Koppisch AT, Kellar RS. Integration of choline geranate into electrospun protein scaffolds affords antimicrobial activity to biomaterials used for cutaneous wound healing. J Biomed Mater Res B Appl Biomater 2020; 109:1271-1282. [PMID: 33373104 DOI: 10.1002/jbm.b.34788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/12/2020] [Accepted: 12/08/2020] [Indexed: 01/15/2023]
Abstract
Wound healing attempts to maintain homeostasis in the wound while minimizing the risk of infection to the tissue by foreign agents, such as opportunistic bacterial pathogens. Biofilms established by these pathogens are a common cause of chronic infections that slow the healing process. Preparation of skin wound healing devices comprised of electrospun proteins associated with skin have been shown to accelerate the healing process relative to conventional wound dressings. In this work, we have developed electrospinning methods to incorporate the antimicrobial ionic liquid/deep eutectic solvent choline geranate (CAGE) into these devices. Integration of CAGE into the dressing material was verified via 1 H nuclear magnetic resonance spectrometry, and the effect on the material property of the resultant devices were assessed using scanning electron microscopy. CAGE-containing devices demonstrate a concentration-dependent inactivation of exogenously applied solutions of both gram-positive and gram-negative pathogens (Enterococcus sp and Pseudomonas aeruginosa, respectively), but maintain their ability to serve as a compatible platform for proliferation of human dermal neonatal fibroblasts.
Collapse
Affiliation(s)
- Tatum A Bardsley
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA.,Center for Materials Interfaces in Research and Applications, Northern Arizona University, Flagstaff, Arizona, USA
| | - Charlotte L Evans
- Center for Materials Interfaces in Research and Applications, Northern Arizona University, Flagstaff, Arizona, USA.,Department of Chemistry, Northern Arizona University, Flagstaff, Arizona, USA
| | - Joshua R Greene
- Center for Materials Interfaces in Research and Applications, Northern Arizona University, Flagstaff, Arizona, USA.,Department of Chemistry, Northern Arizona University, Flagstaff, Arizona, USA
| | - Robert Audet
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA.,Center for Materials Interfaces in Research and Applications, Northern Arizona University, Flagstaff, Arizona, USA
| | - Mackenzie J Harrison
- Center for Materials Interfaces in Research and Applications, Northern Arizona University, Flagstaff, Arizona, USA.,Department of Chemistry, Northern Arizona University, Flagstaff, Arizona, USA
| | - Maxwell Zimmerman
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA.,Center for Materials Interfaces in Research and Applications, Northern Arizona University, Flagstaff, Arizona, USA
| | - Nathan C Nieto
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Rico E Del Sesto
- Department of Chemistry, Dixie State University, St. George, Utah, USA
| | - Andrew T Koppisch
- Center for Materials Interfaces in Research and Applications, Northern Arizona University, Flagstaff, Arizona, USA.,Department of Chemistry, Northern Arizona University, Flagstaff, Arizona, USA
| | - Robert S Kellar
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA.,Center for Materials Interfaces in Research and Applications, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
27
|
Wang H, Fan H, Liu H, Jin M, Du S, Li D, Zhang P, Ruan S, Qiu J. Oxidative stress response mechanism of Scenedesmus obliquus to ionic liquids with different number of methyl-substituents. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122847. [PMID: 32531673 DOI: 10.1016/j.jhazmat.2020.122847] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/23/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
Ionic liquids (ILs) have become persistent contaminants in water because of their good solubility and low biodegradability. The oxidative stress responses of Scenedesmus obliquus to three imidazole ILs with different number of methyl-substituents, i.e., 1-decyl-imidazolium chloride ([C10IM]Cl), 1-decyl-3-methylimidazolium chloride ([C10MIM]Cl), and 1-decyl-2,3-dimethylimidazolium chloride ([C10DMIM]Cl), were studied. There was a positive correlation between ROS level and IL concentration. The activities of antioxidant enzymes, i.e., superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, and glutathione peroxidase, and the content of antioxidants, i.e., ascorbic acid and glutathione, changed in IL treatment with a concentration-dependent effect. Proline accumulation increased with increasing IL concentration. Integrated biomarker response (IBR) index analysis, based on the eight oxidative stress response indicators, revealed that the toxicity order was: [C10IM]Cl < [C10DMIM]Cl < [C10MIM]Cl. Proteomic analysis showed that IL affect the type and distribution of proteins in S. obliquus. Chloroplast and photosystem II were affected as cellular component, and the proteins related to oxidative stress are annotated in GO categories. IBR index and proteomic analysis indicate that oxidative stress response is one of the main biomarkers of IL stress.
Collapse
Affiliation(s)
- Huan Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Huiyang Fan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China.
| | - Mingkang Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Shaoting Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Dexiao Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Ping Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Songlin Ruan
- Laboratory of Plant Molecular Biology & Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Jieren Qiu
- Laboratory of Plant Molecular Biology & Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| |
Collapse
|
28
|
Kumari P, Pillai VVS, Benedetto A. Mechanisms of action of ionic liquids on living cells: the state of the art. Biophys Rev 2020; 12:1187-1215. [PMID: 32936423 PMCID: PMC7575683 DOI: 10.1007/s12551-020-00754-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Ionic liquids (ILs) are a relatively new class of organic electrolytes composed of an organic cation and either an organic or inorganic anion, whose melting temperature falls around room-temperature. In the last 20 years, the toxicity of ILs towards cells and micro-organisms has been heavily investigated with the main aim to assess the risks associated with their potential use in (industrial) applications, and to develop strategies to design greener ILs. Toxicity, however, is synonym with affinity, and this has stimulated, in turn, a series of biophysical and chemical-physical investigations as well as few biochemical studies focused on the mechanisms of action (MoAs) of ILs, key step in the development of applications in bio-nanomedicine and bio-nanotechnology. This review has the intent to present an overview of the state of the art of the MoAs of ILs, which have been the focus of a limited number of studies but still sufficient enough to provide a first glimpse on the subject. The overall picture that emerges is quite intriguing and shows that ILs interact with cells in a variety of different mechanisms, including alteration of lipid distribution and cell membrane viscoelasticity, disruption of cell and nuclear membranes, mitochondrial permeabilization and dysfunction, generation of reactive oxygen species, chloroplast damage (in plants), alteration of transmembrane and cytoplasmatic proteins/enzyme functions, alteration of signaling pathways, and DNA fragmentation. Together with our earlier review work on the biophysics and chemical-physics of IL-cell membrane interactions (Biophys. Rev. 9:309, 2017), we hope that the present review, focused instead on the biochemical aspects, will stimulate a series of new investigations and discoveries in the still new and interdisciplinary field of "ILs, biomolecules, and cells."
Collapse
Affiliation(s)
- Pallavi Kumari
- Department of Sciences, University of Roma Tre, 00146, Rome, Italy
- School of Physics, University College Dublin, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Visakh V S Pillai
- Department of Sciences, University of Roma Tre, 00146, Rome, Italy
- School of Physics, University College Dublin, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Antonio Benedetto
- Department of Sciences, University of Roma Tre, 00146, Rome, Italy.
- School of Physics, University College Dublin, Dublin 4, Ireland.
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland.
- Laboratory for Neutron Scattering, Paul Scherrer Institute, 5232, Villigen, Switzerland.
| |
Collapse
|
29
|
Liu H, Mo L, Hou M, Zhang J. Life stage-dependent toxicities of 1-ethyl-3-methylimidazolium bromide on Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114848. [PMID: 32497946 DOI: 10.1016/j.envpol.2020.114848] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/01/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Ionic liquids (ILs) are considered as extracting solvents in soil remediation. However, they can be pollutants themselves, and their own toxicities are of concerns. Notably, organisms were exposed to pollutants at random life stages in actual environmental exposure scenario, which is different from the set-up of one uniform life stage in usual experiment designs. The influence of life stages on ILs toxicities will provide essential information on their actual environmental risks. In the present study, effects of 1-ethyl-3-methylimidazolium bromide ([C2mim]Br) were measured on C. elegans with egg exposure and adult exposure. In egg exposure, [C2mim]Br increased the lifespan, stimulated initial reproduction and inhibited the total reproduction. Biochemical indices including oxidative stress, antioxidant responses and oxidative damage were further measured to explore the toxicity mechanisms. Results showed that [C2mim]Br significantly stimulated O2-· as the oxidative stress and superoxide dismutase (SOD) as the antioxidant defense. In adult exposure, [C2mim]Br inhibited initial reproduction, total reproduction and lifespan. Biochemical results showed that [C2mim]Br significantly stimulated H2O2 and oxidized glutathione (GSSG). The overall findings demonstrated that [C2mim]Br caused life stage-dependent toxicities on C. elegans. Future studies are still needed for the detailed mechanisms.
Collapse
Affiliation(s)
- Hong Liu
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China
| | - Lingyun Mo
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, PR China
| | - Meifang Hou
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China
| | - Jing Zhang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China.
| |
Collapse
|
30
|
Phytotoxicity and Effect of Ionic Liquids on Antioxidant Parameters in Spring Barley Seedlings: The Impact of Exposure Time. Processes (Basel) 2020. [DOI: 10.3390/pr8091175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The influence of the ionic liquids (ILs) tetrabutylammonium bromide [TBA][Br], 1-butyl-3-methylimidazole bromide [BMIM][Br], and tetrabutylphosphonium bromide [TBP][Br] added at different concentrations to the soil were studied for the growth and development of spring barley seedlings. Samples were harvested at three different time points: day 7, 14, and 21 after addition of ILs. The results show that [TBP][Br] was the most toxic. The introduction of this IL at the dose of 100 mg kg−1 of soil DM decreased the growth of seedlings at all test dates. The addition of the studied ILs to the soil in higher doses resulted in an increase in peroxidase and catalase activity, which may indicate the occurrence of oxidative stress in plants. An increase in the content of plant dry matter weight, contents of H2O2 and proline and a decrease in the content of photosynthetic pigments in barley seedlings were also observed. The malondialdehyde content and superoxide dismutase activity fluctuated randomly during the experiment. As a result, it was found that the phytotoxicity of ILs and the magnitude of oxidative stress in seedlings depended more on the added doses of these compounds than on the measurement date.
Collapse
|
31
|
Biczak R, Pawłowska B, Podsiadło C, Śnioszek M, Telesiński A. The reaction of cucumber to the introduction of ionic liquids into the soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:34182-34198. [PMID: 32557039 PMCID: PMC7423810 DOI: 10.1007/s11356-020-09686-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/10/2020] [Indexed: 05/03/2023]
Abstract
This paper presents the influence of two bromides, tetrabutylammonium and tetrabutylphosphonium, on the growth and development of cucumber seedlings. The tests were performed at two dates, i.e. 10 and 20 days, after the introduction of increasing amounts of ionic liquids (ILs) into the soil. The applied ILs showed phytotoxicity dependent mainly on the concentration of the substance, which is proved by the inhibition of the length of aboveground parts and their roots and the yield of cucumber fresh mass, from which EC50 values were calculated. The phytotoxicity symptoms were the result of oxidative stress, one of the manifestations of which was a decrease in assimilative pigments, linearly correlated with an increase in bromide concentration in the medium. The stress is also proven by the large increase in hydrogen peroxide, malondialdehyde and free proline in cucumber leaves. The reaction of this plant to oxidative stress was an increase in the activity of antioxidative enzymes such as catalase and peroxidase. As a result of statistical analysis, it was proved that all changes of biomarkers of phytotoxicity of examined ILs and oxidative stress indicators in cucumber seedlings depended more on the applied concentration of these salts than on the date of the study.
Collapse
Affiliation(s)
- Robert Biczak
- The Faculty of Science and Technology, Jan Długosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200, Częstochowa, Poland.
| | - Barbara Pawłowska
- The Faculty of Science and Technology, Jan Długosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200, Częstochowa, Poland
| | - Cezary Podsiadło
- The Faculty of Environmental, Management and Agriculture, West Pomeranian University of Technology in Szczecin, Juliusza Słowackiego St. 17, 71-434, Szczecin, Poland
| | - Martyna Śnioszek
- The Faculty of Environmental, Management and Agriculture, West Pomeranian University of Technology in Szczecin, Juliusza Słowackiego St. 17, 71-434, Szczecin, Poland
| | - Arkadiusz Telesiński
- The Faculty of Environmental, Management and Agriculture, West Pomeranian University of Technology in Szczecin, Juliusza Słowackiego St. 17, 71-434, Szczecin, Poland
| |
Collapse
|
32
|
Wang H, Jin M, Xu L, Xi H, Wang B, Du S, Liu H, Wen Y. Effects of ketoprofen on rice seedlings: Insights from photosynthesis, antioxidative stress, gene expression patterns, and integrated biomarker response analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114533. [PMID: 33618485 DOI: 10.1016/j.envpol.2020.114533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 06/12/2023]
Abstract
Pharmacologically active compounds found in reclaimed wastewater irrigation or animal manure fertilizers pose potential risks for agriculture. The mechanism underlying the effects of ketoprofen on rice (Oryza sativa L.) seedlings was investigated. The results showed that low concentrations (0.5 mg L-1) of ketoprofen slightly stimulate growth of rice seedlings, while high concentrations can significantly inhibit growth by reducing biomass and causing damage to roots. Ketoprofen affects photosynthetic pigment content (Chla, Chlb, and carotenoids) and chlorophyll synthesis gene (HEMA, HEMG, CHLD, CHLG, CHLM, and CAO) expression. Fluorescence parameters such as minimum fluorescence (F0), maximum fluorescence (Fm), variable fluorescence (Fv), potential photosynthetic capacity (Fv/F0), maximum quantum efficiency of PSII photochemistry (Fv/Fm), electron transfer rate (ETR), and Y(II), Y(NPQ), Y(NO) values were affected, showing photosynthetic electron transfer was blocked. Active oxygen radical (O2•-and H2O2), malondialdehyde and proline content increased. Superoxide dismutase, catalase and ascorbate peroxidase activities, glutathione content and antioxidant-related gene (FSD1, MSD1, CSD1, CSD2, CAT1, CAT2, CAT3, APX1, APX2) expression were induced. Higher integrated biomarker response values of eight oxidative stress response indexes were obtained at higher ketoprofen concentrations. Ultrastructure observation showed that ketoprofen causes cell structure damage, chloroplast swelling, increase in starch granules, and reduction in organelles. This study provides some suggested toxicological mechanisms and biological response indicators in rice due to stress from pharmacologically active compounds.
Collapse
Affiliation(s)
- Huan Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Mingkang Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Linglin Xu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Hao Xi
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Binhui Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Shaoting Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China.
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| |
Collapse
|
33
|
Li W, Zhu L, Du Z, Li B, Wang J, Wang J, Zhang C, Zhu L. Acute toxicity, oxidative stress and DNA damage of three task-specific ionic liquids ([C 2NH 2MIm]BF 4, [MOEMIm]BF 4, and [HOEMIm]BF 4) to zebrafish (Danio rerio). CHEMOSPHERE 2020; 249:126119. [PMID: 32044610 DOI: 10.1016/j.chemosphere.2020.126119] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
The addition of different functional groups to ionic liquid anions or cations to synthesize task-specific ionic liquids (TSILs) according to specific needs has become a research hotspot. However, there are few studies on the toxicity of TSILs. We selected zebrafish (Danio rerio) to assess the toxicity of three TSILs 1-aminoethyl-3-methylimidazolium tetrafluoroborate ([C2NH2MIm]BF4), 1-methoxyethyl-3-methylimidazolium tetrafluoroborate ([MOEMIm]BF4) and 1-hydroxyethyl-3-methylimidazolium tetrafluoroborate ([HOEMIm]BF4). The 96 h median lethal concentration (96 h LC50) of the three TSILs [C2NH2MIm]BF4, [MOEMIm]BF4 and [HOEMIm]BF4 on zebrafish determined by an acute toxicity test were 143.8 mg/L, 2492.5 mg/L and 3086.7 mg/L, respectively. In the oxidative damage and DNA damage research experiments, zebrafish were exposed to [C2NH2MIm]BF4 (0, 5, 10, 20 and 40 mg/L), [MOEMIm]BF4 and [HOEMIm]BF4 (0, 1, 10, 50 and 100 mg/L) for 28 days, and levels of reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), malondialdehyde (MDA) and olive tail moment (OTM) in zebrafish liver were tested on days 7, 14, 21 and 28 after the exposure test. During the experiment, increased contents of ROS and MDA were detected; enzymatic activities especially SOD were inhibited; and DNA damage occurred in zebrafish. The toxicity of the three TSILs was compared by the integrated biomarker response (IBR). The toxicity order of three TSILs was: [MOEMIm]BF4 > [HOEMIm]BF4 > [C2NH2MIm]BF4. In addition, this study can provide a toxicological basis for application research and the evaluation of functionalized ionic liquids with low toxicity in the future.
Collapse
Affiliation(s)
- Wenxiu Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian, 271018, PR China.
| | - Lei Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian, 271018, PR China.
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian, 271018, PR China.
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian, 271018, PR China.
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian, 271018, PR China.
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian, 271018, PR China.
| | - Cheng Zhang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian, 271018, PR China.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian, 271018, PR China.
| |
Collapse
|