1
|
Hafsi D, Sbartai I, Sbartai H. Stress biomarker response in Aporrectodea caliginosa earthworms exposed to single and combined pesticide treatments (Prosaro and Decis). ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:1180-1192. [PMID: 39379771 DOI: 10.1007/s10646-024-02811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
This study aims to assess the impact of two pesticides commonly used in Algeria (Prosaro XRT and Decis 25 EC), as well as their combinations at recommended doses, on a non-target species bioindicator of soil pollution, the earthworm Aporrectodea caliginosa, using physiological (mortality and growth) and biochemical parameters (proteins, glutathione, catalase activity and glutathione S-transferase, acetylcholine esterase, lipoxygenase). The recommended dose and its double were tested individually and in combination for this. It should be noted that the protocol used and the initial concentrations selected are the same as those used in the field. After 7 and 14 days (7D/14D) of exposure, all dosages were administered. Our findings show that the pesticides tested had no effect on earthworm survival. However, a significant decrease in their growth rates depending on the different concentrations was observed for the different treatments over the entire exposure period of 7 or 14 D. The greatest reductions (31.62%, 35.04%) are reported after 14D for the high concentrations of Decis alone (D2) as well as for the combined treatment Prosaro/Decis (P2/D2). At the same time, an increase in total protein contents (more than 50% after 14D) as well as a decrease in acetylcholine esterase activity were reported for all treatments. We were also able to identify the induction of oxidative stress after xenobiotic exposure, which is more pronounced at the end of the treatment (14D), resulting in the stimulation of the antioxidant system (gluthione, glutathione S-transférase, catalase) as well as the induction of lipoxygenase, which is responsible for the oxidation of polyunsaturated fatty acids as well as the generation of reactive oxygen species (ROS) involved in the inflammatory phenomenon. Finally, it turns out that the species Aporrectodea caliginosa is sensitive to the different concentrations applied, even those used in the open field, and that Decis (deltamethrin) seems to be more toxic than Prosaro and that the combinaison P2/D2 is as toxic as Decis alone (D2).
Collapse
Affiliation(s)
- Djamila Hafsi
- Laboratory of Cellular Toxicology, Department of Biology, Faculty of Science, Badji-Mokhtar University, Annaba, Algeria
| | - Ibtissem Sbartai
- Laboratory of Cellular Toxicology, Department of Biology, Faculty of Science, Badji-Mokhtar University, Annaba, Algeria.
| | - Hana Sbartai
- Laboratory of Cellular Toxicology, Department of Biology, Faculty of Science, Badji-Mokhtar University, Annaba, Algeria
| |
Collapse
|
2
|
de Lima E Silva C, Pelosi C. Effects of glyphosate on earthworms: From fears to facts. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1330-1336. [PMID: 38035873 DOI: 10.1002/ieam.4873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Glyphosate is the most widely applied herbicide worldwide, contaminating water, soils, and living organisms. Earthworms are emblematic soil organisms used as indicators of soil quality, but knowledge about the impacts of glyphosate and glyphosate-based herbicides (GBH) on these key soil organisms is scattered. Here, we examine this knowledge in detail to answer four questions: (1) Which endpoint is the most sensitive when assessing the effects of glyphosate or GBH in earthworms? (2) Which is most toxic to earthworms: glyphosate or GBH? (3) Are glyphosate and GBH harmful to earthworms when used at the recommended application dose? (4) What are the interactions between glyphosate or GBH and other chemicals in earthworms? The results indicate that a weak legislation led to improper assessment of the ecotoxicity of glyphosate during the last renewal in 2017. Our findings also highlighted that negative effects can occur in earthworms at the recommended application rate, although not after only a single application or when considering only the mortality of adult individuals. However, under more realistic conditions, that is, when assessing sensitive endpoints (e.g., reproduction, growth) and using species present in the field, after several applications per year, the negative effects of glyphosate or GBH on earthworms were observed at the subindividual, individual, population, and community levels, as well as on earthworm-mediated functions. Our recommendations are as follows: (i) competent agencies should collect more information on the toxicity of these compounds to earthworms before the next renewal deadline, with emphasis on the use of the updated legislation on the topic, and (ii) scientists should increase research on the effects of these herbicides on soil invertebrate species, with emphasis on earthworms, using guideline tests and obtain data from long-term field testing. Integr Environ Assess Manag 2024;20:1330-1336. © 2023 SETAC.
Collapse
Affiliation(s)
| | - Céline Pelosi
- INRAE, Avignon Université, UMR EMMAH, Avignon, France
| |
Collapse
|
3
|
Schleicherová D, Pastorino P, Pappalardo A, Nota A, Gendusa C, Mirone E, Prearo M, Santovito A. Genotoxicological and physiological effects of glyphosate and its metabolite, aminomethylphosphonic acid, on the freshwater invertebrate Lymnaea stagnalis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106940. [PMID: 38728927 DOI: 10.1016/j.aquatox.2024.106940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Aminomethylphosphonic acid (AMPA) is the main metabolite in the degradation of glyphosate, a broad-spectrum herbicide, and it is more toxic and persistent in the environment than the glyphosate itself. Owing to their extensive use, both chemicals pose a serious risk to aquatic ecosystems. Here, we explored the genotoxicological and physiological effects of glyphosate, AMPA, and the mixed solution in the proportion 1:1 in Lymnaea stagnalis, a freshwater gastropod snail. To do this, adult individuals were exposed to increasing nominal concentrations (0.0125, 0.025, 0.050, 0.100, 0.250, 0.500 µg/mL) in all three treatments once a week for four weeks. The genotoxicological effects were estimated as genomic damage, as defined by the number of micronuclei and nuclear buds observed in hemocytes, while the physiological effects were estimated as the effects on somatic growth and egg production. Exposure to glyphosate, AMPA, and the mixed solution caused genomic damage, as measured in increased frequency of micronuclei and nuclear buds and in adverse effects on somatic growth and egg production. Our findings suggest the need for more research into the harmful and synergistic effects of glyphosate and AMPA and of pesticides and their metabolites in general.
Collapse
Affiliation(s)
- Dáša Schleicherová
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10124, Torino; Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Torino.
| | - Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Torino.
| | - Alessia Pappalardo
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10124, Torino.
| | - Alessandro Nota
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10124, Torino.
| | - Claudio Gendusa
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10124, Torino.
| | - Enrico Mirone
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10124, Torino.
| | - Marino Prearo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Torino.
| | - Alfredo Santovito
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10124, Torino.
| |
Collapse
|
4
|
Yu S, Nie Y, Wang Z, Zhang L, Liu R, Liu Y, Zhang H, Zhu W, Zheng M, Diao J. Glyphosate-based herbicide (GBH) challenged thermoregulation in lizards (Eremias argus), compensatory warming could mitigate this effect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165287. [PMID: 37419359 DOI: 10.1016/j.scitotenv.2023.165287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/25/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Chemical pollution and global warming are two major threats to reptiles, and these two factors can interact with each other. Glyphosate have attracted worldwide attention due to their ubiquitous occurrence, yet their impact on reptiles remains unknown. We designed a crossover experiment with different external GBH exposures (control/GBH) x different environmental temperatures (current climate treatment/warmer climate treatment) over 60 days to simulate environmental exposure in the Mongolian Racerunner lizard (Eremias argus). Preferred body temperature and active body temperature data were collected to calculate the accuracy of thermoregulation, while liver detoxification metabolic enzymes, oxidative stress system function, and the non-targeted metabolome of the brain tissue were assessed. Warmer-treated lizards adjusted their physiological levels and behavioral strategies in response to increased ambient temperatures and maintained body temperature homeostasis at moderate thermal perturbations. GBH-treated lizards suffered from oxidative damage to the brain tissue and abnormal histidine metabolism, thus their thermoregulatory accuracy reduced. Interestingly, at elevated ambient temperatures, GBH treatment did not affect on their thermoregulatory, possibly through several temperature-dependent detoxification mechanisms. Importantly, this data suggested that the subtle toxicological effects of GBH may threaten increasingly thermoregulation behavior of E. argus with species-wide repercussions, as climate change and exposure time extension.
Collapse
Affiliation(s)
- Simin Yu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Yufan Nie
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Zikang Wang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Luyao Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Rui Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Yuping Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Hongjun Zhang
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs (ICAMA), Beijing 100125, China
| | - Wentao Zhu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Mingqi Zheng
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China.
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China.
| |
Collapse
|
5
|
Cullen MG, Bliss L, Stanley DA, Carolan JC. Investigating the effects of glyphosate on the bumblebee proteome and microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161074. [PMID: 36566850 DOI: 10.1016/j.scitotenv.2022.161074] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Glyphosate is one of the most widely used herbicides globally. It acts by inhibiting an enzyme in an aromatic amino acid synthesis pathway specific to plants and microbes, leading to the view that it poses no risk to other organisms. However, there is growing concern that glyphosate is associated with health effects in humans and an ever-increasing body of evidence that suggests potential deleterious effects on other animals including pollinating insects such as bees. Although pesticides have long been considered a factor in the decline of wild bee populations, most research on bees has focussed on demonstrating and understanding the effects of insecticides. To assess whether glyphosate poses a risk to bees, we characterised changes in survival, behaviour, sucrose solution consumption, the digestive tract proteome, and the microbiota in the bumblebee Bombus terrestris after chronic exposure to field relevant doses of technical grade glyphosate or the glyphosate-based formulation, RoundUp Optima+®. Regardless of source, there were changes in response to glyphosate exposure in important cellular and physiological processes in the digestive tract of B. terrestris, with proteins associated with oxidative stress regulation, metabolism, cellular adhesion, the extracellular matrix, and various signalling pathways altered. Interestingly, proteins associated with endocytosis, oxidative phosphorylation, the TCA cycle, and carbohydrate, lipid, and amino acid metabolism were differentially altered depending on whether the exposure source was glyphosate alone or RoundUp Optima+®. In addition, there were alterations to the digestive tract microbiota of bees depending on the glyphosate source No impacts on survival, behaviour, or food consumption were observed. Our research provides insights into the potential mode of action and consequences of glyphosate exposure at the molecular, cellular and organismal level in bumblebees and highlights issues with the current honeybee-centric risk assessment of pesticides and their formulations, where the impact of co-formulants on non-target organisms are generally overlooked.
Collapse
Affiliation(s)
- Merissa G Cullen
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| | - Liam Bliss
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Dara A Stanley
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 2, Ireland; Earth Institute, University College Dublin, Belfield, Dublin 2, Ireland
| | - James C Carolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
6
|
Soares C, Fernandes B, Paiva C, Nogueira V, Cachada A, Fidalgo F, Pereira R. Ecotoxicological relevance of glyphosate and flazasulfuron to soil habitat and retention functions - Single vs combined exposures. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130128. [PMID: 36303338 DOI: 10.1016/j.jhazmat.2022.130128] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/31/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Glyphosate (GLY) and flazasulfuron (FLA) are two non-selective herbicides commonly applied together. However, research focused on their single and combined ecotoxicological impacts towards non-target organisms is still inconclusive. Therefore, this study aimed to test their single effects on soil's habitat and retention functions, and to unravel their combined impacts to earthworms and terrestrial plants. For this, ecotoxicological assays were performed with plants (Medicago sativa), oligochaetes (Eisenia fetida) and collembola (Folsomia candida). Soil elutriates were also prepared and tested in macrophytes (Lemna minor) and microalgae (Raphidocelis subcapitata). FLA (82-413 µg kg-1) reduced earthworms' and collembola's reproduction and severely impaired M. sativa growth, being much more toxic than GLY (up to 30 mg kg-1). In fact, the latter only affected plant growth (≥ 9 mg kg-1) and earthworms (≥ 13 mg kg-1), especially at high concentrations, with no effects on collembola. Moreover, only elutriates from FLA-contaminated soils significantly impacted L. minor and R. sucapitata. The experiments revealed that the co-exposure to GLY and FLA enhanced the toxic effects of contaminated soils not only on plants but also on earthworms'. However, such increase in toxicity was dependent on GLY residual concentrations in soils. Overall, this work underpins that herbicides risk assessment should consider herbicides co-exposures, since the evaluation of single exposures is not representative of current phytosanitary practices and of the potential effects under field conditions, where residues of different compounds may persist in soils.
Collapse
Affiliation(s)
- Cristiano Soares
- GreenUPorto & INOV4AGRO - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Beatriz Fernandes
- GreenUPorto & INOV4AGRO - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; CIIMAR - Interdisciplinary Centre of Marine & Environmental Research, Rua dos Bragas, n. 289, 4050-123 Porto, Portugal
| | - Cristiana Paiva
- GreenUPorto & INOV4AGRO - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Verónica Nogueira
- CIIMAR - Interdisciplinary Centre of Marine & Environmental Research, Rua dos Bragas, n. 289, 4050-123 Porto, Portugal; Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Anabela Cachada
- CIIMAR - Interdisciplinary Centre of Marine & Environmental Research, Rua dos Bragas, n. 289, 4050-123 Porto, Portugal; Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fernanda Fidalgo
- GreenUPorto & INOV4AGRO - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Ruth Pereira
- GreenUPorto & INOV4AGRO - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
7
|
KARTLAŞMIŞ K, DİKMEN N. Evaluation of the effect of glyphosate on glucose-6-phosphate dehydrogenase enzyme activity in vitro conditions. CUKUROVA MEDICAL JOURNAL 2022. [DOI: 10.17826/cumj.996838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
8
|
Spinelli V, Ceci A, Dal Bosco C, Gentili A, Persiani AM. Glyphosate-Eating Fungi: Study on Fungal Saprotrophic Strains' Ability to Tolerate and Utilise Glyphosate as a Nutritional Source and on the Ability of Purpureocillium lilacinum to Degrade It. Microorganisms 2021; 9:2179. [PMID: 34835305 PMCID: PMC8623091 DOI: 10.3390/microorganisms9112179] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Glyphosate is the most commonly used herbicide worldwide. Its improper use during recent decades has resulted in glyphosate contamination of soils and waters. Fungal bioremediation is an environmentally friendly, cost effective, and feasible solution to glyphosate contamination in soils. In this study, several saprotrophic fungi isolated from agricultural environments were screened for their ability to tolerate and utilise Roundup in different cultural conditions as a nutritional source. Purpureocillium lilacinum was further screened to evaluate the ability to break down and utilise glyphosate as a P source in a liquid medium. The dose-response effect for Roundup, and the difference in toxicity between pure glyphosate and Roundup were also studied. This study reports the ability of several strains to tolerate 1 mM and 10 mM Roundup and to utilise it as nutritional source. P. lilacinum was reported for the first time for its ability to degrade glyphosate to a considerable extent (80%) and to utilise it as a P source, without showing dose-dependent negative effects on growth. Pure glyphosate was found to be more toxic than Roundup for P. lilacinum. Our results showed that pure glyphosate toxicity can be only partially addressed by the pH decrease determined in the culture medium. In conclusion, our study emphasises the noteworthy potential of P. lilacinum in glyphosate degradation.
Collapse
Affiliation(s)
- Veronica Spinelli
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Andrea Ceci
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Chiara Dal Bosco
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (C.D.B.); (A.G.)
| | - Alessandra Gentili
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (C.D.B.); (A.G.)
| | - Anna Maria Persiani
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
9
|
Azhar B, Tohiran KA, Nobilly F, Zulkifli R, Syakir MI, Ishak Z, Razi N, Oon A, Shahdan A, Maxwell TMR. Time to Revisit Oil Palm-Livestock Integration in the Wake of United Nations Sustainable Development Goals (SDGs). FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.640285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
To date, the idea of using livestock animals as biological tools to manage weeds, sequester carbon, and boost food security in oil palm plantations has not been seriously considered by industry stakeholders of major producing countries (e.g., Indonesia, Malaysia, Thailand, Colombia, and Nigeria). We revisit the integration of oil palm cultivation with livestock farming as a silvopastoral agroforestry practice in the wake of Sustainable Development Goals (SDGs). Oil palm-livestock integration has the potential to promote sustainable palm oil production because it can provide multiple environmental and socio-economic benefits, including carbon sequestration, restoring top soil, improving ecosystem biodiversity, reducing pesticide and fertilizer inputs, and boosting national food security. In contrast to monocultural outputs of most conventional plantations, an oil palm silvopastoral system is an ideal way to address the global food insecurity challenge as it produces bioenergy, vegetable oil/fat and animal-based protein sources (e.g., red meat). In addition, the potential of contract targeted grazing could be considered as a new type of business and income diversification for rural people. Oil palm-livestock integration is a strategy by the palm oil industry to achieve multiple SDGs. Out of the 17 SDGs, oil palm-livestock integration is likely to deliver nine SDGs. Palm oil certification bodies should recognize oil palm-livestock integration as a biological control method in weed management practices. We recommend that oil palm-livestock integration should be promoted to revitalize sustainable palm oil production and strategic biodiversity conservation policy. Policy makers should encourage major players in the palm oil industry to practice oil palm-livestock integration.
Collapse
|
10
|
Alcántara-de la Cruz R, Cruz-Hipolito HE, Domínguez-Valenzuela JA, De Prado R. Glyphosate ban in Mexico: potential impacts on agriculture and weed management. PEST MANAGEMENT SCIENCE 2021; 77:3820-3831. [PMID: 33723895 DOI: 10.1002/ps.6362] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Since glyphosate was classified as potentially carcinogenic by the International Agency for Research on Cancer, public debate regarding the environmental impact and health risks from its use has intensified. Almost all regulatory agencies throughout the world have concluded that the judicious use of glyphosate does not pose risks to the environment and human health. However, on the last day of 2020 the Mexican government decreed a ban of this herbicide beginning January, 2024. In current Mexican agriculture there are no safer chemical and/or other weed management technologies that allow for the economical substitution of glyphosate for weed control. Many Mexican weed scientists agree that glyphosate use should be reduced, but not banned outright. This decree could have more negative economic and social consequences as well as environmental and human health risks than benefits, which could compromise the country's food and public security. Crop yields are projected by some to decline by up to 40% with this ban, increasing food prices, making food less accessible to low-income consumers. In addition, a black market for the smuggling and illegal sale of glyphosate is possible. The possible environmental, economic and social impacts caused by the glyphosate ban in Mexico are discussed, emphasizing the impact on weed management. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ricardo Alcántara-de la Cruz
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, Brazil
- Departamento de Parasitología Agrícola, Universidad Autónoma Chapingo, Texcoco, Mexico
| | | | | | - Rafael De Prado
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Cordoba, Cordoba, Spain
| |
Collapse
|
11
|
Rodríguez-Miguel A, Hernández-Zamora M, Martínez-Jerónimo L, Martínez-Jerónimo F. Exposure to sublethal concentrations of the glyphosate-based herbicide Faena® increases sensitivity in the progeny of the American cladoceran Daphnia exilis (Herrick, 1895). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38094-38105. [PMID: 33725304 DOI: 10.1007/s11356-021-13259-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
The use of herbicides has increased over the last decades. Glyphosate is the most widely used herbicide commercialized in more than 750 formulations. While information about glyphosate's toxicity on different non-target aquatic organisms has been vastly documented, we know little about the transgenerational effects in aquatic biota. This study determined the cross-generation effects produced by the glyphosate-based herbicide Faena® on the American cladoceran Daphnia exilis. Measured endpoints were survival, reproductive responses, metabolic biomarkers, and the size of neonates. D. exilis was exposed to glyphosate concentrations of 2.09, 2.49, and 3.15 (mg L-1) (as content in Faena®) during 21 days starting from neonates, at 25°C, 16:8 photoperiod, fed with 8 × 105 cells mL-1 of Pseudokirchneriella subcapitata. The LC50 was 4.22 mg L-1. Survival, accumulated progeny, and the number of clutches in the parental generation (P1) were significantly higher than those observed in the first generation (F1). Exposure to the herbicide completely inhibited reproduction in the F1. The size of the neonates varied among treatments and broods in P1; nevertheless, neonate size (body and total lengths, as well as body width) was significantly affected in F1. Toxic effects on the survival and reproduction of D. exilis were significantly increased in the F1 exposed to Faena®. Results warn about the augmented effect on progeny where parents were exposed to this herbicide. Multigenerational adverse effects could be expected in freshwater zooplankton exposed to Faena®. The frequently claimed low toxicity of glyphosate must be revised to control the indiscriminate use of this herbicide.
Collapse
Affiliation(s)
- Alma Rodríguez-Miguel
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomás, 11340, Mexico City, CDMX, Mexico
| | - Miriam Hernández-Zamora
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomás, 11340, Mexico City, CDMX, Mexico
| | - Laura Martínez-Jerónimo
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomás, 11340, Mexico City, CDMX, Mexico
| | - Fernando Martínez-Jerónimo
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomás, 11340, Mexico City, CDMX, Mexico.
| |
Collapse
|
12
|
Bhatt P, Joshi T, Bhatt K, Zhang W, Huang Y, Chen S. Binding interaction of glyphosate with glyphosate oxidoreductase and C-P lyase: Molecular docking and molecular dynamics simulation studies. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124927. [PMID: 33450511 DOI: 10.1016/j.jhazmat.2020.124927] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/14/2020] [Accepted: 12/20/2020] [Indexed: 05/12/2023]
Abstract
Widespread application of glyphosate poses a threat to living organisms. Microbial strains are able to degrade glyphosate via contrasting metabolic pathways with the help of enzymes. Glyphosate oxidoreductase (GOX) and C-P lyase are the key enzymes for the biodegradation of glyphosate and its intermediate metabolite aminomethylphosphonic acid (AMPA) in microbes. The microbial degradation of glyphosate has been reported, but the underlying molecular mechanism is still unclear. Therefore, in this study, the interaction mechanism of GOX and C-P lyase with glyphosate and AMPA were investigated by using molecular docking and molecular dynamics (MD) simulations. The results indicate that glyphosate contacts with the active site of GOX and C-P lyase by hydrogen bonds as well as hydrophobic and van der Waals interactions in aqueous solution to maintain its stability. The presence of glyphosate and AMPA in the active site significantly changes the conformation of GOX and C-P lyase. The results of the MD simulations confirm that GOX and C-P lyase complexes are stable during the catalytic reaction. This study offers a molecular level of understanding of the expression and function of GOX and C-P lyase for the bioremediation of glyphosate.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Tushar Joshi
- Department of Biotechnology, Kumaun University, Bhimtal Campus, Bhimtal, Uttarakhand 263136, India
| | - Kalpana Bhatt
- Department of Botany and Microbiology, Gurukul Kangri University, Haridwar, Uttarakhand 249404, India
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
13
|
Smith DFQ, Camacho E, Thakur R, Barron AJ, Dong Y, Dimopoulos G, Broderick NA, Casadevall A. Glyphosate inhibits melanization and increases susceptibility to infection in insects. PLoS Biol 2021; 19:e3001182. [PMID: 33979323 PMCID: PMC8115815 DOI: 10.1371/journal.pbio.3001182] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 03/11/2021] [Indexed: 12/23/2022] Open
Abstract
Melanin, a black-brown pigment found throughout all kingdoms of life, has diverse biological functions including UV protection, thermoregulation, oxidant scavenging, arthropod immunity, and microbial virulence. Given melanin's broad roles in the biosphere, particularly in insect immune defenses, it is important to understand how exposure to ubiquitous environmental contaminants affects melanization. Glyphosate-the most widely used herbicide globally-inhibits melanin production, which could have wide-ranging implications in the health of many organisms, including insects. Here, we demonstrate that glyphosate has deleterious effects on insect health in 2 evolutionary distant species, Galleria mellonella (Lepidoptera: Pyralidae) and Anopheles gambiae (Diptera: Culicidae), suggesting a broad effect in insects. Glyphosate reduced survival of G. mellonella caterpillars following infection with the fungus Cryptococcus neoformans and decreased the size of melanized nodules formed in hemolymph, which normally help eliminate infection. Glyphosate also increased the burden of the malaria-causing parasite Plasmodium falciparum in A. gambiae mosquitoes, altered uninfected mosquito survival, and perturbed the microbial composition of adult mosquito midguts. Our results show that glyphosate's mechanism of melanin inhibition involves antioxidant synergy and disruption of the reaction oxidation-reduction balance. Overall, these findings suggest that glyphosate's environmental accumulation could render insects more susceptible to microbial pathogens due to melanin inhibition, immune impairment, and perturbations in microbiota composition, potentially contributing to declines in insect populations.
Collapse
Affiliation(s)
- Daniel F. Q. Smith
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Emma Camacho
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Raviraj Thakur
- Department of Otolaryngology, Head and Neck Surgery, Johns Hopkins Medicine, Baltimore, Maryland, United States of America
| | - Alexander J. Barron
- Department of Biology, Johns Hopkins University, Baltimore Maryland, United States of America
| | - Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Nichole A. Broderick
- Department of Biology, Johns Hopkins University, Baltimore Maryland, United States of America
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
14
|
Glyphosate Herbicide Induces Changes in the Growth Pattern and Somatic Indices of Crossbred Red Tilapia ( O. niloticus × O. mossambicus). Animals (Basel) 2021; 11:ani11051209. [PMID: 33922293 PMCID: PMC8146734 DOI: 10.3390/ani11051209] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary In this study, a chronic, seven-week study of the effect of technical grade glyphosate on the toxicity parameters of crossbred red tilapia (O. niloticus × O. mossambicus) was carried out. The results show that the bodyweight index was the most sensitive toxicity parameter wherein a reduction in body weight was observed at 25 mg/L of glyphosate. Negative correlations between the glyphosate concentration and toxicity parameters such as specific growth rate (SGR), hepato-somatic index (HIS), and gonado-somatic index (GSI) were observed. The fish condition factor and feed conversion ratio were found to be unaffected at the highest glyphosate concentration tested (150 mg/L). Abstract The development of glyphosate-resistant genetically modified organisms (GMO) has increased the use of herbicide glyphosate by several magnitudes in recent years. It is now the most commonly used pesticide globally that affects aquatic habitats, especially fish. This study aims to add new knowledge on the effect of technical grade glyphosate on several toxicity parameters and to identify the most effective parameter in predicting technical grade glyphosate chronic toxicity (seven weeks) to fish, especially Malaysia’s heavily farmed red tilapia. The results show that a relatively high concentration of technical grade glyphosate is needed to induce significant changes in all tested parameters. However, the results also indicate that the bodyweight index is the most sensitive toxicity parameter in that a reduction in body weight was observed at 25 mg/L of glyphosate. Negative correlations between the glyphosate concentration and toxicity parameters such as specific growth rate (SGR), hepato-somatic index (HIS), and gonado-somatic index (GSI) were observed. The fish condition factor and feed conversion ratio were found not to be affected at the highest glyphosate concentration tested (150 mg/L). To conclude, crossbred red tilapia (O. niloticus × O. mossambicus) is one potential species for evaluating the toxic effects of technical grade glyphosate on fish.
Collapse
|
15
|
Kanabar M, Bauer S, Ezedum ZM, Dwyer IP, Moore WS, Rodriguez G, Mall A, Littleton AT, Yudell M, Kanabar J, Tucker WJ, Daniels ER, Iqbal M, Khan H, Mirza A, Yu JC, O'Neal M, Volkenborn N, Pochron ST. Roundup negatively impacts the behavior and nerve function of the Madagascar hissing cockroach (Gromphadorhina portentosa). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-13021-6. [PMID: 33635453 DOI: 10.1007/s11356-021-13021-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Glyphosate is the active ingredient in Roundup formulations. Glyphosate-based herbicides are used globally in agriculture, forestry, horticulture, and in urban settings. Glyphosate can persist for years in our soil, potentially impacting the soil-dwelling arthropods that are primary drivers of a suite of ecosystem services. Furthermore, although glyphosate is not generally classified as neurotoxic to insects, evidence suggests that it may cause nerve damage in other organisms. In a series of experiments, we used food to deliver environmentally realistic amounts of Roundup ready-to-use III, a common 2% glyphosate-based herbicide formulation that lists isopropylamine salt as its active ingredient, to Madagascar hissing cockroaches. We then assessed the impact of contamination on body mass, nerve health, and behavior. Contaminated food contained both 30.6 mg glyphosate and so-called inert ingredients. Food was refreshed weekly for 26-60 days, depending on the experiment. We found that consumption of contaminated food did not impact adult and juvenile survivorship or body weight. However, consumption of contaminated food decreased ventral nerve cord action-potential velocity by 32%, caused a 29% increase in respiration rate, and caused a 74.4% decrease in time spent on a motorized exercise wheel. Such changes in behavior may make cockroaches less capable of fulfilling their ecological service, such as pollinating or decomposing litter. Furthermore, their lack of coordination may make them more susceptible to predation, putting their population at risk. Given the decline of terrestrial insect abundance, understanding common risks to terrestrial insect populations has never been more critical. Results from our experiments add to the growing body of literature suggesting that this popular herbicide can act as a neurotoxin.
Collapse
Affiliation(s)
- Megha Kanabar
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Samuel Bauer
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Zimuzo M Ezedum
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Ian P Dwyer
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - William S Moore
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Gabriella Rodriguez
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Aditya Mall
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Anne T Littleton
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Michael Yudell
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | | | - Wade J Tucker
- Miller Place High School, Miller Place, NY, 11764, USA
| | - Emily R Daniels
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Mohima Iqbal
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Hira Khan
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Ashra Mirza
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Joshua C Yu
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Marvin O'Neal
- Department of Biology, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Nils Volkenborn
- Marine Sciences Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Sharon T Pochron
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA.
| |
Collapse
|
16
|
Rodríguez-Gil JL, Prosser RS, Duke SO, Solomon KR. Ecotoxicology of Glyphosate, Its Formulants, and Environmental Degradation Products. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 255:129-205. [PMID: 34104986 DOI: 10.1007/398_2020_56] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The chemical and biological properties of glyphosate are key to understanding its fate in the environment and potential risks to non-target organisms. Glyphosate is polar and water soluble and therefore does not bioaccumulate, biomagnify, or accumulate to high levels in the environment. It sorbs strongly to particles in soil and sediments and this reduces bioavailability so that exposures to non-target organisms in the environment are acute and decrease with half-lives in the order of hours to a few days. The target site for glyphosate is not known to be expressed in animals, which reduces the probability of toxicity and small risks. Technical glyphosate (acid or salts) is of low to moderate toxicity; however, when mixed with some formulants such as polyoxyethylene amines (POEAs), toxicity to aquatic animals increases about 15-fold on average. However, glyphosate and the formulants have different fates in the environment and they do not necessarily co-occur. Therefore, toxicity tests on formulated products in scenarios where they would not be used are unrealistic and of limited use for assessment of risk. Concentrations of glyphosate in surface water are generally low with minimal risk to aquatic organisms, including plants. Toxicity and risks to non-target terrestrial organisms other than plants treated directly are low and risks to terrestrial invertebrates and microbial processes in soil are very small. Formulations containing POEAs are not labeled for use over water but, because POEA rapidly partitions into sediment, risks to aquatic organisms from accidental over-sprays are reduced in shallow water bodies. We conclude that use of formulations of glyphosate under good agricultural practices presents a de minimis risk of direct and indirect adverse effects in non-target organisms.
Collapse
Affiliation(s)
- Jose Luis Rodríguez-Gil
- IISD - Experimental Lakes Area, Winnipeg, MB, Canada.
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, Canada.
| | - Ryan S Prosser
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Stephen O Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS, USA
| | - Keith R Solomon
- Centre for Toxicology, School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
17
|
Singh S, Kumar V, Gill JPK, Datta S, Singh S, Dhaka V, Kapoor D, Wani AB, Dhanjal DS, Kumar M, Harikumar SL, Singh J. Herbicide Glyphosate: Toxicity and Microbial Degradation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7519. [PMID: 33076575 PMCID: PMC7602795 DOI: 10.3390/ijerph17207519] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 01/17/2023]
Abstract
Glyphosate is a non-specific organophosphate pesticide, which finds widespread application in shielding crops against the weeds. Its high solubility in hydrophilic solvents, especially water and high mobility allows the rapid leaching of the glyphosate into the soil leading to contamination of groundwater and accumulation into the plant tissues, therefore intricating the elimination of the herbicides. Despite the widespread application, only a few percentages of the total applied glyphosate serve the actual purpose, dispensing the rest in the environment, thus resulting in reduced crop yields, low quality agricultural products, deteriorating soil fertility, contributing to water pollution, and consequently threatening human and animal life. This review gives an insight into the toxicological effects of the herbicide glyphosate and current approaches to track and identify trace amounts of this agrochemical along with its biodegradability and possible remediating strategies. Efforts have also been made to summarize the biodegradation mechanisms and catabolic enzymes involved in glyphosate metabolism.
Collapse
Affiliation(s)
- Simranjeet Singh
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, India; (S.S.); (V.D.); (D.S.D.)
- Punjab Biotechnology Incubator (PBTI), Phase-V, S.A.S. Nagar, Punjab 160059, India
- Regional Advance Water Testing Laboratory, Department of Water Supply and Sanitation, Phase-II, S.A.S. Nagar 160054, India;
| | - Vijay Kumar
- Regional Ayurveda Research Institute for Drug Development, Gwalior 474009, India;
| | | | - Shivika Datta
- Department of Zoology, Doaba College Jalandhar, Jalandhar 144001, India;
| | - Satyender Singh
- Regional Advance Water Testing Laboratory, Department of Water Supply and Sanitation, Phase-II, S.A.S. Nagar 160054, India;
| | - Vaishali Dhaka
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, India; (S.S.); (V.D.); (D.S.D.)
| | - Dhriti Kapoor
- Department of Botany, Lovely Professional University, Phagwara 144411, India;
| | - Abdul Basit Wani
- Department of Chemistry, Lovely Professional University, Phagwara 144411, India;
| | - Daljeet Singh Dhanjal
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, India; (S.S.); (V.D.); (D.S.D.)
| | - Manoj Kumar
- Department of Life Sciences, Central University Jharkhand, Brambe, Ranchi 835205, India; (M.K.); (S.L.H.)
| | - S. L. Harikumar
- Department of Life Sciences, Central University Jharkhand, Brambe, Ranchi 835205, India; (M.K.); (S.L.H.)
| | - Joginder Singh
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, India; (S.S.); (V.D.); (D.S.D.)
| |
Collapse
|
18
|
Ecotoxicological Assessment of a Glyphosate-Based Herbicide in Cover Plants: Medicago sativa L. as a Model Species. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite the several innovations that have been incorporated in agriculture, the use of herbicides, especially glyphosate (GLY), is still the major tool for weed control. Although this herbicide has a notable worldwide representation, concerns about its environmental safety were recently raised, with a lot of divergence between studies on its non-target toxicity. Therefore, it is of utmost importance to understand the risks of this herbicide to non-target plants, including cover crop species, which have a crucial role in maintaining agroecosystems functions and in preventing soil erosion. Thus, this work aims to evaluate the growth and physiological responses of a cover plant species (Medicago sativa L.) exposed to increasing concentrations of a GLY-based herbicide (GBH), particularly focusing on the oxidative metabolism. The growth of roots and shoots was affected, being this effect accompanied by a rise of lipid peroxidation, suggesting the occurrence of oxidative stress, and by an activation of the antioxidant (AOX) system. Indeed, the results showed that adverse effects are visible at active ingredient concentrations of 8.0 mg kg−1, with the lowest EC50 being 12 mg kg−1, showing that GBH-contaminated soils may pose a risk to the survival of non-target plants in the most contaminated areas. Overall, these findings proved that GBH greatly impairs the growth of a non-target plant, strengthening the need of additional studies to unravel the real risks associated with the over usage of this pesticide, since there is an evident lack of studies performed with contaminated soils.
Collapse
|
19
|
Bataillard D, Christe P, Pigeault R. Impact of field-realistic doses of glyphosate and nutritional stress on mosquito life history traits and susceptibility to malaria parasite infection. Ecol Evol 2020; 10:5079-5088. [PMID: 32551083 PMCID: PMC7297737 DOI: 10.1002/ece3.6261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/02/2020] [Accepted: 03/18/2020] [Indexed: 01/15/2023] Open
Abstract
Glyphosate is the world's most widely used herbicide. The commercial success of this molecule is due to its nonselectivity and its action, which would supposedly target specific biosynthetic pathways found mainly in plants. Multiple studies have however provided evidence for high sensitivity of many nontarget species to glyphosate and/or to formulations (glyphosate mixed with surfactants). This herbicide, found at significant levels in aquatic systems through surface runoffs, impacts life history traits and immune parameters of several aquatic invertebrates' species, including disease-vector mosquitoes. Mosquitoes, from hatching to emergence, are exposed to aquatic chemical contaminants. In this study, we first compared the toxicity of pure glyphosate to the toxicity of glyphosate-based formulations for the main vector of avian malaria in Europe, Culex pipiens mosquito. Then we evaluated, for the first time, how field-realistic dose of glyphosate interacts with larval nutritional stress to alter mosquito life history traits and susceptibility to avian malaria parasite infection. Our results show that exposure of larvae to field-realistic doses of glyphosate, pure or in formulation, did not affect larval survival rate, adult size, and female fecundity. One of our two experimental blocks showed, however, that exposure to glyphosate decreased development time and reduced mosquito infection probability by malaria parasite. Interestingly, the effect on malaria infection was lost when the larvae were also subjected to a nutritional stress, probably due to a lower ingestion of glyphosate.
Collapse
Affiliation(s)
- Danaé Bataillard
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Philippe Christe
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Romain Pigeault
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| |
Collapse
|