1
|
Sun H, Qiu X, Li X, Wang H. Eco-friendly, pH-sensitive curcumin-loaded sodium alginate/hydroxyapatite/quaternary ammonium chitosan microspheres with enhanced antibacterial and antioxidant activities for fruit preservation. Int J Biol Macromol 2024; 279:135297. [PMID: 39233149 DOI: 10.1016/j.ijbiomac.2024.135297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
The development of intelligent responsive reactive packaging materials with natural polymers shows excellent potential in food preservation. In this study, eco-friendly, pH-sensitive sodium alginate (SA)/hydroxyapatite (HA)/quaternary ammonium chitosan (HACC) composite microspheres loading curcumin (CUR) with excellent antibacterial and antioxidant activities were successfully synthesized. Scanning electron microscopy (SEM) and nitrogen adsorption/desorption tests indicated that the doping of HA substantially increased the specific surface area and pore volume of the microspheres. The loading experiments showed that the efficiency of the microspheres was significantly increased by 49.47 % and 55.10 %, respectively, when HA and HACC were incorporated into the SA network. The release test results suggested that the release rate of SA/HA/HACC microspheres loading CUR (SA/HA/HACC@CUR) increased as the pH decreased, demonstrating notable pH-responsive release characteristics. DPPH free radical scavenging experiments demonstrated that the SA/HA/HACC@CUR had excellent and long-lasting antioxidant capacity. The antibacterial experiments revealed that the SA/HA/HACC@CUR had excellent antibacterial properties, with inhibition rates of 88.73 % and 92.52 % against E. coli and S. aureus, respectively. Making coatings out of microspheres could effectively slow down the rotting and deterioration of cherry tomatoes during storage, suggesting that microspheres with intelligent responses have a broad application prospect in fruit preservation.
Collapse
Affiliation(s)
- Haonan Sun
- Department of Packaging Engineering, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaolin Qiu
- Department of Packaging Engineering, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xiaoyi Li
- Department of Packaging Engineering, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hanyu Wang
- Department of Packaging Engineering, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
2
|
Tang YH, Ma TT, Ran XQ, Yang Y, Qian HL, Yan XP. Engineering of molecularly imprinted cavity within 3D covalent organic frameworks: An innovation for enhanced extraction and removal of microcystins. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134469. [PMID: 38691995 DOI: 10.1016/j.jhazmat.2024.134469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
The scarcity of selective adsorbents for efficient extraction and removal of microcystins (MCs) from complex samples greatly limits the precise detection and effective control of MCs. Three-dimensional covalent organic frameworks (3D COFs), characterized by their large specific surface areas and highly ordered rigid structure, are promising candidates, but suffer from lack of specific recognition. Herein, we design to engineer molecularly imprinted cavities within 3D COFs via molecularly imprinted technology, creating a novel adsorbent with exceptional selectivity, kinetics and capacity for the efficient extraction and removal of MCs. As proof-of-concept, a new CC bond-containing 3D COF, designated JNU-7, is designed and prepared for copolymerization with methacrylic acid, the pseudo template L-arginine and ethylene dimethacrylate to yield the JNU-7 based molecularly imprinted polymer (JNU-7-MIP). The JNU-7-MIP exhibits a great adsorption capacity (156 mg g-1) for L-arginine. Subsequently, the JNU-7-MIP based solid-phase extraction coupled with high performance liquid chromatography-mass spectrometry achieves low detection limit of 0.008 ng mL-1, wide linear range of 0.025-100 ng mL-1, high enrichment factor of 186, rapid extraction of 10 min, and good recoveries of 92.4%-106.5% for MC-LR. Moreover, the JNU-7-MIP can rapidly remove the MC-LR from 1 mg L-1 to levels (0.26-0.35 μg L-1) lower than the WHO recommended limit for drinking water (1 μg L-1). This work reveals the considerable potential of 3D COF based MIPs as promising adsorbents for the extraction and removal of contaminants in complex real samples.
Collapse
Affiliation(s)
- Yu-Hong Tang
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tian-Tian Ma
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xu-Qin Ran
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yukun Yang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Tang S, Zhang L, Zhu H, Jiang SC. Coupling physiochemical adsorption with biodegradation for enhanced removal of microcystin-LR in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173370. [PMID: 38772489 DOI: 10.1016/j.scitotenv.2024.173370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
To innovate the design of water treatment technology for algal toxin removal, this research investigated the mechanisms of cyanotoxin microcystin-LR (MC-LR) removal by a coupled adsorption-biodegradation. Eight types of woody carbonaceous adsorbents with and without Sphingopyxis sp. m6, a MC-LR degrading bacterium, were tested for MC-LR removal in water. All adsorbents showed good adsorption capability, removing 40 % to almost 100 % of the MC-LR (4.5 mg/L) within 48 h in batch experiments. Adding Sphingopyxis sp. m6 continuously promoted MC-LR biological removal, and successfully broke the barrier of adsorption capacity of tested adsorbents, removing >90 % of the MC-LR in most of the coupled adsorption-biodegradation tests, especially for those adsorbents had low physiochemical adsorption capacity. Variance partitioning analysis indicated that mesopore was the dominant contributor to adsorption capacity of MC-LR in pure adsorption treatments, which acted synergistically with electrical conductivity, polarity and total functional groups on the absorbent. Pore structure was the key factor beneficial for the growth of Sphingopyxis sp. m6 (51% contribution) and subsequent MC-LR biological removal rate (80 % contribution). Overall, pinewood-based carbonaceous adsorbents (especially pinewood activated carbon) exhibited the highest adsorption capacity towards MC-LR and provided the most favorable conditions for biological removal of MC-LR, largely because of their high mesopore volume, total functional groups and electric conductivity. The research outcomes not only deepened the quantitative understanding of mechanisms for MC-LR removal by the coupled process, but also provided theoretical basis for future materials' selection and modification during the practical application of coupled process.
Collapse
Affiliation(s)
- Shengyin Tang
- Department of Civil and Environmental Engineering, University of California, Irvine, 92697, United States; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Lixun Zhang
- Department of Civil and Environmental Engineering, University of California, Irvine, 92697, United States; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Haoxin Zhu
- Department of Civil and Environmental Engineering, University of California, Irvine, 92697, United States
| | - Sunny C Jiang
- Department of Civil and Environmental Engineering, University of California, Irvine, 92697, United States.
| |
Collapse
|
4
|
Wei J, Luo J, Peng T, Zhou P, Zhang J, Yang F. Comparative genomic analysis and functional investigations for MCs catabolism mechanisms and evolutionary dynamics of MCs-degrading bacteria in ecology. ENVIRONMENTAL RESEARCH 2024; 248:118336. [PMID: 38295970 DOI: 10.1016/j.envres.2024.118336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/06/2024] [Accepted: 01/27/2024] [Indexed: 02/07/2024]
Abstract
Microcystins (MCs) significantly threaten the ecosystem and public health. Biodegradation has emerged as a promising technology for removing MCs. Many MCs-degrading bacteria have been identified, including an indigenous bacterium Sphingopyxis sp. YF1 that could degrade MC-LR and Adda completely. Herein, we gained insight into the MCs biodegradation mechanisms and evolutionary dynamics of MCs-degrading bacteria, and revealed the toxic risks of the MCs degradation products. The biochemical characteristics and genetic repertoires of strain YF1 were explored. A comparative genomic analysis was performed on strain YF1 and six other MCs-degrading bacteria to investigate their functions. The degradation products were investigated, and the toxicity of the intermediates was analyzed through rigorous theoretical calculation. Strain YF1 might be a novel species that exhibited versatile substrate utilization capabilities. Many common genes and metabolic pathways were identified, shedding light on shared functions and catabolism in the MCs-degrading bacteria. The crucial genes involved in MCs catabolism mechanisms, including mlr and paa gene clusters, were identified successfully. These functional genes might experience horizontal gene transfer events, suggesting the evolutionary dynamics of these MCs-degrading bacteria in ecology. Moreover, the degradation products for MCs and Adda were summarized, and we found most of the intermediates exhibited lower toxicity to different organisms than the parent compound. These findings systematically revealed the MCs catabolism mechanisms and evolutionary dynamics of MCs-degrading bacteria. Consequently, this research contributed to the advancement of green biodegradation technology in aquatic ecology, which might protect human health from MCs.
Collapse
Affiliation(s)
- Jia Wei
- Xiangya School of Public Health, Central South University, Changsha, Hunan, 410078, China
| | - Jiayou Luo
- Xiangya School of Public Health, Central South University, Changsha, Hunan, 410078, China.
| | - Tangjian Peng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan, 421001, China
| | - Pengji Zhou
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan, 421001, China
| | - Jiajia Zhang
- Xiangya School of Public Health, Central South University, Changsha, Hunan, 410078, China
| | - Fei Yang
- Xiangya School of Public Health, Central South University, Changsha, Hunan, 410078, China; Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
5
|
Kulabhusan PK, Campbell K. Physico-chemical treatments for the removal of cyanotoxins from drinking water: Current challenges and future trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170078. [PMID: 38242472 DOI: 10.1016/j.scitotenv.2024.170078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
Cyanobacteria are highly prevalent blue-green algae that grow in stagnant and nutrient-rich water bodies. Environmental conditions, such as eutrophication and human activities, increased the cyanobacterial blooms in freshwater resources worldwide. The excessive bloom formation has also resulted in an alarming surge of cyanobacterial toxins. Prolonged exposure to cyanotoxins is a potential threat to natural ecosystems, animal and human health by the spoilage of the quality of bathing and drinking water. Various molecular and analytical methods have been proposed to monitor their occurrence and understand their global distribution. Moreover, different physical, chemical, and biological approaches have been employed to control cyanobacterial blooms and their toxins to mitigate their occurrence. Numerous strategies have been engaged in drinking water treatment plants (DWTPs). However, the degree of treatment varies greatly and is primarily determined by the source, water properties, and operating parameters such as temperature, pH, and cyanotoxin variants and levels. A comprehensive compilation of methods, from traditional approaches to more advanced oxidation processes (AOPs), are presented for the removal of intracellular and extracellular cyanotoxins. This review discusses the effectiveness of various physicochemical operations and their limitations in a DWTP, for the removal of various cyanotoxins. These operations span from simple to advanced treatment levels with varying degrees of effectiveness and differing costs of implementation. Furthermore, mitigation measures applied in other toxin systems have been considered as alternative strategies.
Collapse
Affiliation(s)
- Prabir Kumar Kulabhusan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, UK BT9 5DL; International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Katrina Campbell
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, UK BT9 5DL.
| |
Collapse
|
6
|
Yu H, Fu C, Li M, Zong W. Non-negligible inhibition effect of microcystin-LR biodegradation products target to protein phosphatase 2A. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123491. [PMID: 38346637 DOI: 10.1016/j.envpol.2024.123491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
Though biodegradation is an important regulation pathway for microcystins (MCs) pollution, more consideration needs to be given to the potential risk associated with related biodegradation products (MC-BDPs). In this work, typical MCLR-BDPs were prepared and their toxicity was evaluated by protein phosphatases (PPs) inhibition assay. Results showed the initial ring opening of MCLR played a crucial role in detoxification. However, partial MCLR-BDPs still retained the critical structures and thus exhibited certain toxicity (2.8-43.5% of MCLR). With the aid of molecular simulation, the mechanism for the potential toxicity of BDPs targeting PP2A was elucidated. The initial ring opening made the loss of hydrogen bond Leu2←Arg89, and pi-H bond Adda5-His191, which was responsible for the significant reduction in the toxicity of MCLR-BDP. However, the key hydrogen bonds MeAsp3←Arg89, Glu6←Arg89, Adda5←Asn117, Adda5←His118, Arg4→Pro213, Arg4←Arg214, Ala1←Arg268, and Mdha7←Arg268, metal bond Glu6-Mn12+, and ionic bonds Glu6-Arg89, and Glu6-Mn22+ were preserved in varying degrees. Above preserved interactions maintained the interactions between PP2A and Mn2+ ions (reducing the exposure of Mn2+ ions). Above preserved interactions also hindered the combination of phosphate groups to Arg214 residual and thus exhibited potential toxicity.
Collapse
Affiliation(s)
- Huiqun Yu
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, China.
| | - Chunyu Fu
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, China.
| | - Mengchen Li
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, China.
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, China.
| |
Collapse
|
7
|
Wei S, Kamali AR. Green conversion of waste PET into magnetic Ni 0·4Fe 2·6O 4/(Fe,Ni)@carbon nanostructure for adsorption and separation of dyes from aqueous media. CHEMOSPHERE 2023; 342:140172. [PMID: 37714476 DOI: 10.1016/j.chemosphere.2023.140172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/20/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
A nanostructured core-shell composite (Ni0·4Fe2·6O4/(Fe,Ni)@carbon, NFC) comprising magnetic nano-cores encapsulated with graphitic shells (≈80 wt%) is prepared by facile and clean mechanochemical-molten salt processing approach using waste PET; providing a specific surface area of 201.9 m2 g-1, well-developed mesopores, and ferromagnetic behavior characterized by the coercivity value of 149 Oe. NFC is utilized as a high-performance adsorbent for the removal of organic dyes from their aqueous solutions. Moreover, the magnetic performance of NFC enables the facile collection of the exhausted adsorbent out of the purified water. Performances of NFC for the removal of crystal violet dye (CV), methyl orange (MO) and rhodamine B (Rh B) from their aqueous solutions are systematically investigated under different environmental conditions including the adsorbent dosage and dye concentration, as well as the solution pH and temperature, where an impressive CV removal capacity of 201.6-243.8 mg g-1 is recorded for a wide pH range of 2-10. Mechanism and kinetics involved in the adsorption process are investigated by studying the adsorption isotherms and thermodynamics. The dye adsorption of the nanocomposite material is confirmed to follow the pseudo-second-order kinetic model combined with the Langmuir isotherm model, exhibiting an excellent spontaneous and exothermic monolayer adsorption capacity of around 153 mg g-1 (for MO) for the fresh adsorbent and around 89 mg g-1 after three adsorption-regeneration cycles.
Collapse
Affiliation(s)
- Shuhui Wei
- Energy and Environmental Materials Research Centre (E(2)MC), School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Ali Reza Kamali
- Energy and Environmental Materials Research Centre (E(2)MC), School of Metallurgy, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
8
|
Roberts JL, Zetterholm SG, Gurtowski L, Fernando PAI, Evans A, Puhnaty J, Wyss KM, Tour JM, Fernando B, Jenness G, Thompson A, Griggs C. Graphene as a rational interface for enhanced adsorption of microcystin-LR from water. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131737. [PMID: 37453354 DOI: 10.1016/j.jhazmat.2023.131737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 07/18/2023]
Abstract
Cyanotoxins such as microcystin-LR (MC-LR) represent a global environmental threat to ecosystems and drinking water supplies. The study investigated the direct use of graphene as a rational interface for removal of MC-LR via interactions with the aromatic ring of the ADDA1 chain of MC-LR and the sp2 hybridized carbon network of graphene. Intra-particle diffusion model fit indicated the high mesoporosity of graphene provided significant enhancements to both adsorption capacities and kinetics when benchmarked against microporous granular activated carbon (GAC). Graphene showed superior MC-LR adsorption capacity of 75.4 mg/g (Freundlich model) compared to 0.982 mg/g (Langmuir model) for GAC. Sorption kinetic studies showed graphene adsorbs 99% of MC-LR in 30 min, compared to zero removal for GAC after 24 hr using the same MC-LR concentration. Density functional theory (DFT), calculations showed that postulated π-based interactions align well with the NMR-based experimental work used to probe primary interactions between graphene and MC-LR adduct. This study proved that π-interactions between the aromatic ring on MC-LR and graphene sp2 orbitals are a dominant interaction. With rapid kinetics and adsorption capacities much higher than GAC, it is anticipated that graphene will offer a novel molecular approach for removal of toxins and emerging contaminants with aromatic systems.
Collapse
Affiliation(s)
- Jesse L Roberts
- US Army Engineer Research and Development Center (ERDC) Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA.
| | - Sarah Grace Zetterholm
- US Army Engineer Research and Development Center (ERDC) Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - Luke Gurtowski
- US Army Engineer Research and Development Center (ERDC) Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - Pu Ashvin I Fernando
- US Army Engineer Research and Development Center (ERDC) Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA; Bennett Aerospace, 1 Glenwood Avenue, Raleigh, NC 27603, USA; SIMETRI, Inc. 937 S Semoran Blvd Suite 100, Winter Park, FL 32792
| | - Angela Evans
- US Army Engineer Research and Development Center (ERDC) Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - Justin Puhnaty
- US Army Engineer Research and Development Center (ERDC) Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - Kevin M Wyss
- Department of Chemistry, NanoCarbon Center, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - James M Tour
- Department of Chemistry, NanoCarbon Center, Rice University, 6100 Main Street, Houston, TX 77005, USA; Rice Advanced Materials Institute, NanoCarbon Center, Rice University, 6100 Main Street, Houston, TX 77005, USA; Welch Institute for Advanced Materials, NanoCarbon Center, Rice University, 6100 Main Street, Houston, TX 77005, USA; Smalley-Curl Institute, NanoCarbon Center, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Brianna Fernando
- US Army Engineer Research and Development Center (ERDC) Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - Glen Jenness
- US Army Engineer Research and Development Center (ERDC) Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - Audie Thompson
- US Army Engineer Research and Development Center (ERDC) Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - Chris Griggs
- US Army Engineer Research and Development Center (ERDC) Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| |
Collapse
|
9
|
Verma S, Kumar P, Lavrenčič Štangar U. A Perspective on Removal of Cyanotoxins from Water Through Advanced Oxidation Processes. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300125. [PMID: 37745822 PMCID: PMC10517290 DOI: 10.1002/gch2.202300125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/07/2023] [Indexed: 09/26/2023]
Abstract
This perspective discusses the challenges associated with the removal of cyanotoxins from raw water sources for drinking water treatment and the emergence of sulfate radical-based advanced oxidation processes (SR-AOPs) as an effective treatment technique. The advantage of SR-AOPs is that they can be activated using a variety of methods, including heat, UV radiation, and transition metal catalysts, allowing for greater flexibility in treatment design and optimization. In addition, the byproducts of SR-AOPs are less harmful than those generated by •OH-AOPs, which reduces the risk of secondary contamination. SR-AOPs generate sulfate radicals (SO4 •-) that are highly selective to certain organic contaminants and have lower reactivity to background water constituents, resulting in higher efficiency and selectivity of the process. The presence of natural organic matter and transition metals in the natural water body increases the degradation efficiency of SR-AOPs for the cyanotoxins. The bromate formation is also suppressed when the water contaminated with cyanotoxins is treated with SR-AOPs.
Collapse
Affiliation(s)
- Shilpi Verma
- School of Energy & EnvironmentThapar Institute of Engineering & TechnologyPatialaPunjab147004India
| | - Praveen Kumar
- Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaLjubljana1000Slovenia
| | | |
Collapse
|
10
|
Koshigoe ASH, Diniz V, Rodrigues-Silva C, Cunha DGF. Effect of three commercial algaecides on cyanobacteria and microcystin-LR: implications for drinking water treatment using activated carbon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16003-16016. [PMID: 36178647 DOI: 10.1007/s11356-022-23281-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Toxic cyanobacterial blooms in aquatic ecosystems are associated to both public health and environmental concerns worldwide. Depending on the treatment technologies used, the removal capacity of cyanotoxins by drinking water treatment plants (DWTPs) is not sufficient to reach safe levels in drinking water. Likewise, controlling these blooms with algaecide may impair the efficiency of DWTPs due to the possible lysis of cyanobacterial cells and consequent release of cyanotoxins. We investigated the effects of three commercial algaecides (cationic polymer, copper sulfate, and hydrogen peroxide) on the growth parameters of the cyanobacterium Microcystis aeruginosa and the release of microcystin-LR (MC-LR). The potential interference of each algaecide on the MC-LR removal by adsorption on activated carbon (AC) was also tested through adsorption isotherms and kinetics experiments. Most algaecides significantly decreased the cell density and biovolume of M. aeruginosa, as well as increased the release of MC-LR. Interestingly, the presence of the algaecides in binary mixtures with MC-LR affected the adsorption of the cyanotoxin. Relevant adsorption parameters (e.g., maximum adsorption capacity, adsorption intensity, and affinity between MC-LR and AC) were altered when the algaecides were present, especially in the case of the cationic polymer. Also, the algaecides influenced the kinetics (e.g., by shifting the initial adsorption and the desorption constant), which may directly affect the design and operation of DWTPs. Our study indicated that algaecides can significantly impact the fate and the removal of MC-LR in DWTPs when the adsorption process is employed, with important implications for the management and performance of such facilities.
Collapse
Affiliation(s)
- Amanda Sati Hirooka Koshigoe
- Department of Hydraulics and Sanitary Engineering, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São-Carlense, 400, Centro, SP, São Carlos, 13566-590, Brazil
| | - Vinicíus Diniz
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, Josué de Castro Street, Cidade Universitária, SP, Campinas, 13083-970, Brazil.
| | - Caio Rodrigues-Silva
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, Josué de Castro Street, Cidade Universitária, SP, Campinas, 13083-970, Brazil
| | - Davi Gasparini Fernandes Cunha
- Department of Hydraulics and Sanitary Engineering, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São-Carlense, 400, Centro, SP, São Carlos, 13566-590, Brazil
| |
Collapse
|
11
|
Diniz V, Gasparini Fernandes Cunha D, Rath S. Adsorption of recalcitrant contaminants of emerging concern onto activated carbon: A laboratory and pilot-scale study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116489. [PMID: 36257229 DOI: 10.1016/j.jenvman.2022.116489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/22/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
According to the World Health Organization (WHO), the definition of water quality indicators, including contaminants of emerging concern (CECs), associated with the development of multi-barrier approaches for wastewater treatment, are crucial steps towards direct potable reuse of water. The aims of this study were 1) quantifying twelve CECs (including pharmaceutical, stimulant, and artificial sweetener compounds) in both untreated and treated wastewater samples in a Brazilian wastewater treatment plant (WWTP) using bidimensional liquid chromatography coupled with tandem mass spectrometry, allowing the selection of five marker (i.e., priority) CECs; 2) evaluating the adsorption potential of such selected CECs [caffeine, hydrochlorothiazide, saccharin, sucralose (SUC), and sulfamethoxazole (SMX)] onto coconut-shell granular activated carbon (GAC); and 3) investigating the removal of the same CECs by a multi-barrier system (pilot-scale, 350 L h-1) treating the effluent of the WWTP and composed of reverse osmosis (RO), photoperoxidation (UV/H2O2), and filtration with GAC. Such technologies were tested separately and in binary or ternary combinations. Eleven and eight CECs were detected and quantified on the untreated and treated wastewater samples of the Brazilian WWTP, respectively. For the treated wastewater, the concentrations ranged from 499 ng L-1 (SMX) to 87,831 ng L-1 (SUC). The adsorption onto AC data fitted the Sips isotherm model, indicating monolayer chemisorption, which was also suggested by the mean adsorption energy values (>16 kJ mol-1). SMX and SUC were the most and the least adsorbed CECs (4.33 and 1.21 mg g-1, respectively). Concerning the pilot-scale treatment plant, the ternary combination (RO + UV/H2O2+GAC) removed >99% of the five marker CECs and promoted reductions on water color, turbidity, as well as on nitrogen and phosphorus concentrations. Further studies on water reuse could prioritize the selected marker CECs as quality indicators. While the removal of marker CECs is one of the WHO performance requirements, the RO + UV/H2O2+GAC system showed promising results as a first approach to direct potable reuse of water.
Collapse
Affiliation(s)
- Vinicius Diniz
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, Rua Josué de Castro, Cidade Universitária, Campinas, SP, 13083-970, Brazil.
| | - Davi Gasparini Fernandes Cunha
- São Carlos School of Engineering, Department of Hydraulics and Sanitation, University of São Paulo, Avenida Trabalhador São-Carlense, Centro, São Carlos, SP, 13566-590, Brazil
| | - Susanne Rath
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, Rua Josué de Castro, Cidade Universitária, Campinas, SP, 13083-970, Brazil
| |
Collapse
|
12
|
Liu M, Zhang J, Wang L, Zhang H, Zhang W, Zhang X. Removal of Microcystis aeruginosa and microcystin-LR using chitosan (CTS)-modified cellulose fibers and ferric chloride. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Adsorbents Used for Microcystin Removal from Water Sources: Current Knowledge and Future Prospects. Processes (Basel) 2022. [DOI: 10.3390/pr10071235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The increasing occurrence of toxic cyanobacteria in water sources, driven by climate change and eutrophication, is of great concern worldwide today. Cyanobacterial blooms can negatively affect water bodies and generate harmful secondary metabolites, namely microcystins (MCs), which significantly impair water quality. Various adsorbents used for MC removal from water sources were assessed in this investigation. Activated carbon constitutes the most widely used adsorbent for treating contaminated waters due to its high affinity for adsorbing MCs. Alternative adsorbents have also been proposed and reported to provide higher efficiency, but the studies carried out so far in this regard are still insufficient. The mechanisms implicated in MC adsorption upon different adsorbents should be further detailed for a better optimization of the adsorption process. Certainly, adsorbent characteristics, water pH and temperature are the main factors influencing the adsorption of MCs. In this context, optimization studies must be performed considering the effectiveness, economic aspects associated with each adsorbent. This review provides guidelines for more practical field applications of the adsorption in the treatment of waters actually contaminated with MCs.
Collapse
|
14
|
Ding Q, Song X, Yuan M, Sun R, Zhang J, Yin L, Pu Y. Multiple pathways for the anaerobic biodegradation of microcystin-LR in the enriched microbial communities from Lake Taihu. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118787. [PMID: 34995687 DOI: 10.1016/j.envpol.2022.118787] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Anaerobic biodegradation is a non-negligible elimination approach for microcystin (MC) pollution and exhibits important bioremediation potential for environmental problems. However, the specific anaerobic MC-degrading mechanism remains unclear and few functional bacteria have been found. In this study, three microbial communities of sludges from different locations in Lake Taihu were collected and further enriched by microcystin-LR (MC-LR) under anaerobic conditions. MC-LR (1 mg/L) could be completely degraded by these enriched microbial communities under anaerobic conditions, but their degradation rates were significantly different. In addition, two different ring-opening sites of MC-LR in Ala-Leu and Arg-Adda were observed, and three new anaerobic degradation products were first identified, including two hexapeptides (MeAsp-Arg-Adda-Glu-Mdha-Ala and Adda-Glu-Mdha-Ala-Leu-MeAsp) and one end-product pentapeptide (Glu-Mdha-Ala-Leu-MeAsp). Based on the chemical structures and temporal trends of all detected degradation products, two novel anaerobic biodegradation pathways of MC-LR were proposed. Moreover, the MC-degrading genes mlrABC were not detected among all microbial communities, which suggested that some new MC-degrading mechanisms might exist under anaerobic conditions. Finally, through the comparison of microbial community structure, Gemmatimonas and Smithella were deduced as possible anaerobic MC-degrading bacteria. These findings strongly indicate that anaerobic biodegradation is an important method of self-repair in the natural environment and provides a potential removal strategy for MC pollution.
Collapse
Affiliation(s)
- Qin Ding
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xiaolei Song
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Mengxuan Yuan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
15
|
Malta JF, Nardocci AC, Razzolini MTP, Diniz V, Cunha DGF. Exposure to microcystin-LR in tropical reservoirs for water supply poses high risks for children and adults. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:253. [PMID: 35254523 DOI: 10.1007/s10661-022-09875-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
While the presence of microcystin-LR (MC-LR) in raw water from eutrophic reservoirs poses human health concerns, the risks associated with the ingestion of MC-LR in drinking water are not fully elucidated. We used a time series of MC-LR in raw water from tropical urban reservoirs in Brazil to estimate the hazard quotients (HQs) for non-carcinogenic health effects and the potential ingestion of MC-LR through drinking water. We considered scenarios of MC-LR removal in the drinking water treatment plants (DWTPs) of two supply systems (Cascata and Guarapiranga). The former uses coagulation/flocculation/sedimentation/filtration/disinfection, while the latter has an additional step of membrane ultrafiltration, with contrasting expected MC-LR removal efficiencies. We considered reference values for infants (0.30 μg L-1), children/adults (1.60 μg L-1), or the population in general (1.0 μg L-1). For most scenarios for Cascata, the 95% upper confidence level of the HQ indicated high risks of exposure for the population (HQ > 1), particularly for infants (HQ = 30.910). The water treatment in Cascata was associated to the potential exposure to MC-LR due to its limited removal capacity, with up to 263 days/year with MC-LR above threshold values. The Guarapiranga system had the lowest MC-LR in the raw water as well as higher expected removal efficiencies in the DWTP, resulting in negligible risks. We reinforce the importance of integrating raw water quality characteristics and treatment technologies to reduce the risks of exposure to MC-LR, especially for vulnerable population groups. Our results can serve as a starting point for risk management strategies to minimize cases of MC-LR intoxication in Brazil and other developing countries.
Collapse
Affiliation(s)
- Janaína Fagundes Malta
- Department of Hydraulic and Sanitary Engineering, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São-Carlense, 400, Sao Carlos, SP, 13566-590, Brazil
| | - Adelaide Cassia Nardocci
- Department of Environmental Health, School of Public Health, University of São Paulo, Av. Dr Arnaldo 715, 1º andar, Sao Paulo, SP, 01246-904, Brazil
- Center for Research, Environmental Risk Assessment (NARA), Av. Dr Arnaldo 715, 1° andar, Sao Paulo, SP, 01246-904, Brazil
| | - Maria Tereza Pepe Razzolini
- Department of Environmental Health, School of Public Health, University of São Paulo, Av. Dr Arnaldo 715, 1º andar, Sao Paulo, SP, 01246-904, Brazil
- Center for Research, Environmental Risk Assessment (NARA), Av. Dr Arnaldo 715, 1° andar, Sao Paulo, SP, 01246-904, Brazil
| | - Vinicíus Diniz
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, PO Box 6154, Campinas, SP, 13084-971, Brazil
| | - Davi Gasparini Fernandes Cunha
- Department of Hydraulic and Sanitary Engineering, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São-Carlense, 400, Sao Carlos, SP, 13566-590, Brazil.
| |
Collapse
|
16
|
Zeng S, Kan E. Thermally enhanced adsorption and persulfate oxidation-driven regeneration on FeCl 3-activated biochar for removal of microcystin-LR in water. CHEMOSPHERE 2022; 286:131950. [PMID: 34426274 DOI: 10.1016/j.chemosphere.2021.131950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/02/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
In this study, a cyclic process of adsorption and persulfate (PS) oxidation-driven regeneration using FeCl3-activated biochar (FA-BC) was suggested as a novel remediation process to remove microcystin-LR (MC-LR) from water. For enhancing overall treatment efficiency and cost effectiveness, the impacts of temperature on adsorption and PS oxidation-driven regeneration were investigated. The increase of temperature resulted in the increase of MC-LR adsorption rate on FA-BC due to the enhanced MC-LR diffusivity in water. Moreover, the MC-LR oxidation and PS reaction rates during the PS regeneration on FA-BC were remarkably improved by factors of 3.4 and 3.5 with increasing temperature from 20 °C to 50 °C. Both diffusion and desorption of MC-LR from FA-BC were thought to be the key factors for controlling the MC-LR oxidation rate during the PS regeneration of MC-LR. In addition, the decrease of pH (from 10 to 4) and increase of PS concentration (from 100 to 400 mg/L) enhanced the regeneration efficiency for MC-LR-spent FA-BC. The four cycles of adsorption-PS regeneration (200 mg/L PS, pH 6, and 50 °C) resulted in 92.81% regeneration efficiency in DI water and 82.89% in lake water. However, the four cycles of adsorption-PS regeneration led to the reduction of surface area (from 835 to 413 m2/g), oxidation of carbon surface and slight reduction of Fe0 on FA-BC. In overall, the cyclic adsorption-PS regeneration at higher temperature could provide practical reuse of FA-BC for cost-effective treatment of aqueous MC-LR.
Collapse
Affiliation(s)
- Shengquan Zeng
- Department of Biological and Agricultural Engineering & Texas A&M AgriLife Research Center, Texas A&M University, TX, 77843, USA
| | - Eunsung Kan
- Department of Biological and Agricultural Engineering & Texas A&M AgriLife Research Center, Texas A&M University, TX, 77843, USA; Department of Wildlife, Sustainability, and Ecosystem Sciences, Tarleton State University, TX, 76401, USA.
| |
Collapse
|
17
|
Pivokonsky M, Kopecka I, Cermakova L, Fialova K, Novotna K, Cajthaml T, Henderson RK, Pivokonska L. Current knowledge in the field of algal organic matter adsorption onto activated carbon in drinking water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149455. [PMID: 34364285 DOI: 10.1016/j.scitotenv.2021.149455] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
The increasing occurrence of algal and cyanobacterial blooms and the related formation of algal organic matter (AOM) is a worldwide issue that endangers the quality of freshwater sources and affects water treatment processes. The associated problems involve the production of toxins or taste and odor compounds, increasing coagulant demand, inhibition of removal of other polluting compounds, and in many cases, AOM acts as a precursor of disinfection by-products. Previous research has shown that for sufficient AOM removal, the conventional drinking water treatment based on coagulation/flocculation must be often accompanied by additional polishing technologies such as adsorption onto activated carbon (AC). This state-of-the-art review is intended to serve as a summary of the most current research on the adsorption of AOM onto AC concerning drinking water treatment. It summarizes emerging trends in this field with an emphasis on the type of AOM compounds removed and on the adsorption mechanisms and influencing factors involved. Additionally, also the principles of competitive adsorption of AOM and other organic pollutants are elaborated. Further, this paper also synthesizes previous knowledge on combining AC adsorption with other treatment techniques for enhanced AOM removal in order to provide a practical resource for researchers, water treatment plant operators and engineers. Finally, research gaps regarding the AOM adsorption onto AC are identified, including, e.g., adsorption of AOM residuals recalcitrant to coagulation/flocculation, suitability of pre-oxidation of AOM prior to the AC adsorption, relationships between the solution properties and AOM adsorption behaviour, or AOM as a cause of competitive adsorption. Also, focus should be laid on continuous flow column experiments using water with multi-component composition, because these would greatly contribute to transferring the theoretical knowledge to practice.
Collapse
Affiliation(s)
- Martin Pivokonsky
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, 166 12 Prague 6, Czech Republic.
| | - Ivana Kopecka
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, 166 12 Prague 6, Czech Republic
| | - Lenka Cermakova
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, 166 12 Prague 6, Czech Republic
| | - Katerina Fialova
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, 166 12 Prague 6, Czech Republic
| | - Katerina Novotna
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, 166 12 Prague 6, Czech Republic
| | - Tomas Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Rita K Henderson
- School of Chemical Engineering, The University of New South Wales, Sydney 2052, Australia
| | - Lenka Pivokonska
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, 166 12 Prague 6, Czech Republic
| |
Collapse
|
18
|
Synthesis of PNIPAM/magnetite/multiamine-functionalized mesoporous silica composite and investigation of temperature of its aggregation and adsorption. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
19
|
Liu Y, Wang J, Teng W, Hung CT, Zhai Y, Shen D, Li W. Ultrahigh Adsorption Capacity and Kinetics of Vertically Oriented Mesoporous Coatings for Removal of Organic Pollutants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101363. [PMID: 34216424 DOI: 10.1002/smll.202101363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/22/2021] [Indexed: 06/13/2023]
Abstract
Highly efficient removal of organic pollutants currently is a main worldwide concern in water treatment, and highly challenging. Here, vertically oriented mesoporous coatings (MCs) with tunable surface properties and pore sizes have been developed via the single-micelle directing assembly strategy, which show good adsorption performances toward a wide range of organic pollutants. The micelle size and structure can be precisely regulated by oil molecules based on their n-octanol/water partition coefficients (Log P) in the oil-water diphase assembly system, which are critical to the pore size and pore surface property of the MCs. The affinity and steric effects of the MCs can be on-demand adjusted, as a result, the MCs show a ultrahigh adsorption capacity (263 mg g-1 ), surface occupancy ratio (≈41.92%), and adsorption rate (≈10.85 mg g-1 min-1 ) for microcystin-LR, which is among the best performances up to date. The MCs also show an excellent universality to remove organic pollutants with different properties. Moreover, overcoming the challenges proposed by particulate absorbents, the MCs are stable and can be easily regenerated and reused without secondary contamination. This work paves a new route to the synthesis of high-quality MCs for water purification.
Collapse
Affiliation(s)
- Yupu Liu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Jinxiu Wang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Wei Teng
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Chin-Te Hung
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Yunpu Zhai
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Dengke Shen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Wei Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
20
|
Zeng S, Kan E. Adsorption and regeneration on iron-activated biochar for removal of microcystin-LR. CHEMOSPHERE 2021; 273:129649. [PMID: 33497982 DOI: 10.1016/j.chemosphere.2021.129649] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Novel iron activated biochars (FA-BCs) were prepared via simultaneous pyrolysis and activation of FeCl3-pretreated bermudagrass (BG) for removing microcystin-LR (MC-LR) in aqueous solution. Compared to the raw BC (without activation), the surface area and adsorption capacity of FA-BC at iron impregnation ratio of 2 (2 g FeCl3/g BG) were enhanced from 86 m2/g and 0.76 mg/g to 835 m2/g and 9.00 mg/g. Moreover, FA-BC possessed various iron oxides at its surface which provided the catalytic capacity for regeneration of MC-LR spent FA-BC and magnetic separation after the MC-LR adsorption. Possible mechanisms for the MC-LR adsorption onto FA-BC would include electrostatic attraction, π+-π, hydrogen bond, and hydrophobic interactions. The detailed adsorption studies indicated mainly chemisorption and intra-particle diffusion limitation would participate in the adsorption process. The thermal regeneration at 300 °C kept high regeneration efficiency (99-100%) for the MC-LR spent FA-BC during four cycles of adsorption-regeneration. In addition, the high regeneration efficiency (close to 100%) was also achieved by persulfate oxidation-driven regeneration. FA-BC also exhibited high adsorption capacity for the MC-LR from the real lake water to meet the MC-LR concentration below 1 μg/L as a safe guideline suggested by WHO.
Collapse
Affiliation(s)
- Shengquan Zeng
- Department of Biological and Agricultural Engineering & Texas A&M AgriLife Research Center, Texas A&M University, TX, 77843, USA
| | - Eunsung Kan
- Department of Biological and Agricultural Engineering & Texas A&M AgriLife Research Center, Texas A&M University, TX, 77843, USA; Department of Wildlife, Sustainability, and Ecosystem Sciences, Tarleton State University, TX, 76401, USA.
| |
Collapse
|
21
|
Gu S, Zhang D, Gao Y, Qi R, Chen W, Xu Z. Fabrication of porous carbon derived from cotton/polyester waste mixed with oyster shells: Pore-forming process and application for tetracycline removal. CHEMOSPHERE 2021; 270:129483. [PMID: 33418214 DOI: 10.1016/j.chemosphere.2020.129483] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/14/2020] [Accepted: 12/28/2020] [Indexed: 05/22/2023]
Abstract
Porous carbon was fabricated from cotton/polyester-based textile wastes as a carbon source coupled with oyster shells for tetracycline removal. The preparation conditions were optimized and detailed characterization was conducted to study the effects of oyster shells on cotton/polyester pyrolysis. The optimal pyrolysis temperature (900 °C), pyrolysis time (1 h) and mass ratio (OS/CPW of 1:1) were determined using the Box-Behnken experiment. The best porous carbon reached a surface area of 645.05 m2/g. Oyster shells acted as templates to produce cotton/polyester-based porous carbon and a possible pore-forming process was proposed. CaO was converted from CaCO3, which played the dominant role in developing the mesoporous structure. CO2 gas released from CaCO3 promoted the creation of micropore structure. In addition, the impurites of oyster shells acted as the dispersing agent inhibiting CaCO3 and CaO aggregation and growth. Fe2O3 and K2O from impurities reacted with the carbon skeleton to increase microporosity. Finally, the well-developed and uniform porous carbon was obtained. The first-pseudo order model and Langmuir isotherms were suitable. The maximum adsorption capacity of PC-OS-900 was 515.17 mg/g which competed with other waste-based adsorbents. The TET adsorption mechanism was related to pore distribution, hydrogen bonds, π-π EDA interactions and electrostatic interactions.
Collapse
Affiliation(s)
- Siyi Gu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai, 200093, PR China
| | - Daofang Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai, 200093, PR China
| | - Yuquan Gao
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai, 200093, PR China
| | - Renzhi Qi
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai, 200093, PR China
| | - Weifang Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai, 200093, PR China
| | - Zhihua Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai, 200093, PR China.
| |
Collapse
|
22
|
Recent Advancements in the Removal of Cyanotoxins from Water Using Conventional and Modified Adsorbents—A Contemporary Review. WATER 2020. [DOI: 10.3390/w12102756] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The prevalence of cyanobacteria is increasing in freshwaters due to climate change, eutrophication, and their ability to adapt and thrive in changing environmental conditions. In response to various environmental pressures, they produce toxins known as cyanotoxins, which impair water quality significantly. Prolonged human exposure to cyanotoxins, such as microcystins, cylindrospermopsin, saxitoxins, and anatoxin through drinking water can cause severe health effects. Conventional water treatment processes are not effective in removing these cyanotoxins in water and advanced water treatment processes are often used instead. Among the advanced water treatment methods, adsorption is advantageous compared to other methods because of its affordability and design simplicity for cyanotoxins removal. This article provides a current review of recent developments in cyanotoxin removal using both conventional and modified adsorbents. Given the different cyanotoxins removal capacities and cost of conventional and modified adsorbents, a future outlook, as well as suggestions are provided to achieve optimal cyanotoxin removal through adsorption.
Collapse
|
23
|
Yu W, Zhang H, A L, Yang S, Zhang J, Wang H, Zhou Z, Zhou Y, Zhao J, Jiang Z. Enhanced bioactivity and osteogenic property of carbon fiber reinforced polyetheretherketone composites modified with amino groups. Colloids Surf B Biointerfaces 2020; 193:111098. [PMID: 32498001 DOI: 10.1016/j.colsurfb.2020.111098] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 11/19/2022]
Abstract
Polyetheretherketone (PEEK) is considered as a potential dental and orthopedic implant material owing to its favorable thermal and chemical stability, biocompatibility and mechanical properties. However, the inherent bio-inert and inferior osseointegration of PEEK have hampered its clinical application. In addition, carbon fiber is widely used as a filler to reinforce polymers for sturdy composites owing to its high strength, modulus, etc. In the study, carbon fiber reinforced PEEK (CPEEK) composites were fabricated and modified with amino groups by plasma-enhanced chemical vapor deposition surface modification technique. The surface characterization of composites was evaluated by FE-SEM, EDS, AFM, Water contact angle, XPS and FTIR, which revealed that amino groups were successfully incorporated on the modified CPEEK surface and significantly increased the hydrophilicity. In vitro study, cell adhesion, proliferation, ALP activity, ECM mineralization, real-time PCR analysis, and ELISA analysis showed the adhesion, proliferation and osteogenic differentiation of MG-63 cells on the amino group-modified CPEEK surface were higher than the CPEEK, equal to or better than pure titanium. Hence, the results indicated that the amino group-modified CPEEK possessed enhanced bioactivity and osteogenic property, which may be a potential candidate material for dental implants.
Collapse
Affiliation(s)
- Wanqi Yu
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China
| | - Haibo Zhang
- Engineering Research Center of High Performance Plastic, Ministry of Education, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Lan A
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Shihui Yang
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Jingjie Zhang
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Hanchi Wang
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Zhe Zhou
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Yanmin Zhou
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Jinghui Zhao
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China.
| | - Zhenhua Jiang
- Engineering Research Center of High Performance Plastic, Ministry of Education, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|