1
|
Li M, Gao M, Huang J, Jin S, Lv Y, Wang L, Huang T, Wu F, Xu Z, Pan Y, Liu Z, Zhang C, Liang Y, Meng L, Xu J. QTL mapping and candidate gene analysis of element accumulation in rice grains via genome-wide association study and population genetic analysis. BMC PLANT BIOLOGY 2025; 25:93. [PMID: 39844034 PMCID: PMC11755871 DOI: 10.1186/s12870-025-06087-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/08/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND Toxic heavy metal elements in soils are major global environmental issues and easily migrate to crop grains to cause severe problems in human health, whereas moderately essential elements such as selenium are beneficial for human health. The accumulation of heavy metals and essential elements in rice grains and their genetic mechanisms are still poorly understood. RESULTS We conducted genetic dissection of four toxic heavy metal elements (lead, cadmium, mercury, and chromium), one quasi metallic element (arsenic), and one essential element (selenium) in grains of 290 Xian and 308 Geng rice accessions through a genome-wide association study (GWAS) based on three statistical models and assays of element concentrations from three environments. A total of 99 quantitative trait loci (QTLs) were identified. Among these QTLs, 18.2% overlapped between/among two or more elements, indicating that some QTLs related to the accumulation of certain elements may depend on other heavy metal elements or be involved in the collaborative transport of other elements. Moreover, at least 14 QTLs/regions were identified in the same regions, containing 12 cloned genes reported to be associated with element accumulation or tolerance-related traits, while the remaining 85 were new QTLs. A total of 62 promising candidate genes were identified from 50 major QTLs, of which 25 genes were newly discovered in this study. More importantly, population genetic analysis revealed 26 and 15 intraspecies divergent regions affecting element concentrations in the Xian and Geng subspecies, respectively, including 25 QTLs identified in this study and 13 previously reported and cloned genes. CONCLUSIONS Our findings will facilitate further gene cloning and dissection of the genetic mechanisms of element accumulation in rice grains to improve grain quality.
Collapse
Affiliation(s)
- Min Li
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Mengxue Gao
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Jinmei Huang
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Shaojuan Jin
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Yamei Lv
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Lin Wang
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Tao Huang
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Fengcai Wu
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Zhijian Xu
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Yinghua Pan
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zhixia Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Chaopu Zhang
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
| | - Yuntao Liang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
| | - Lijun Meng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Jianlong Xu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 230041, China
| |
Collapse
|
2
|
Zheng S, Xu C, Zhu H, Huang D, Wang H, Zhang Q, Li X, Zhu Q. Foliar application of zinc and selenium regulates cell wall fixation, physiological and gene expression to reduce cadmium accumulation in rice grains. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136302. [PMID: 39471621 DOI: 10.1016/j.jhazmat.2024.136302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/08/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
Zinc (Zn) and selenium (Se) are beneficial elements for crops, enhancing crop quality and alleviating heavy metal toxicity. However, there is limited research on the role of foliar Zn and Se in the mechanism of reducing cadmium (Cd) uptake in crops. A field experiment was conducted to investigate the effect on subcellular distribution, leaf antioxidant enzyme activities, and the transcriptional regulation in the process of Cd accumulation of rice grains after foliar applications of Zn, Se, and their mixed solutions (ZnSe). The results show that Zn and ZnSe reduced Cd content in the grains of three different rice (13.9 %-21.8 %/11.9 %-29.5 %) by enhancing the fixation capacity of Cd in the flag leaf by improving the binding efficiency between pectin and Cd in the cell wall. Increased flag leaf antioxidant enzyme activities further mitigated the toxic effects of Cd on rice, while Zn and ZnSe treatments upregulated genes related to metal-binding proteins and antioxidant enzymes and downregulated metal transport genes. This study systematically elucidates the mechanisms by which foliar application of ZnSe alleviates Cd toxicity through the regulation of gene expression and physiological functions, providing a theoretical basis for reducing Cd accumulation in rice and ensuring the safe production of food.
Collapse
Affiliation(s)
- Shen Zheng
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Research Institute, Huazhong Agricultural Unifversity, Wuhan 430070, China
| | - Chao Xu
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| | - Hanhua Zhu
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Daoyou Huang
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Huajing Wang
- The Faculty Geography Resource Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Quan Zhang
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Xiaoxue Li
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; The Faculty Geography Resource Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Qihong Zhu
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
3
|
Li D, Li C, Yang S, Lu Y, Tang Y, Xu Z, Peng S, Yang G. The correlation between heavy metal chelation and transcriptional potential of GRAS genes in Broussonetia papyrifera. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117342. [PMID: 39549572 DOI: 10.1016/j.ecoenv.2024.117342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
In order to understand the adaptation mechanism of Broussonetia papyrifera to heavy metal stress and then promote its remediation and utilization, in this study, a total of 24 GRAS transcription factors were identified from B. papyrifera transcriptomes. Their complete ORFs were 597-2250 bp in length with encoding proteins 22.40-84.13 kDa. The 24 BpGRASs were distributed across nine chromosomes and two scaffolds. Their promoters contained numerous cis-acting elements involving in plant development, environmental stimuli, and hormonal regulation. These BpGRAS genes were predominantly transcribed in flowers and fruits. The most prominent genes were BpSCL21b and BpDELLA1, whose expression levels in flowers were 4.11- and 4.56-fold higher than the minimal one in leaves. All BpGRASs were apparently induced by ABA and at least one treatment of Cd, Cu, Mn, and Zn. The expression of some BpGRAS genes (including BpSCL1d, BpSCL7, BpSCL27, BpSCL34, etc.) was significantly correlated with HM chelation and the non-protein thiols (NPT) accumulation, which was regarded as barriers to resist HM stress, under Cd, Cu, Mn, and Zn stress. Moreover, BpSCL15 and BpSCL21b transgenic yeast displayed significantly enhanced growth and viability (1.23--2.71-fold, 1.30--1.96-fold of control OD600, accordingly) and metal accumulation (1.81--3.58-fold, 1.91--3.17-fold of control, accordingly). These results suggested that BpGRASs, especial BpSCL15, BpSCL21b, and BpSCL34, are essential for B. papyrifera response to HM stress depending on ABA signaling. It's the first time to investigate the correlation of BpGRASs' expression with HM and NPT accumulation, which may benefit for revealing the HM adaptation mechanism of B. papyrifera and provide candidate genes for HM resistance breeding in woody plants.
Collapse
Affiliation(s)
- Dapei Li
- Shaanxi Engineering Research Center of Walnut, College of Forestry, Northwest A & F University, Yangling, Shanxi 712100, China; Key Laboratory of National Forestry and Grassland Administration on Forest Cultivation on the Loess Plateau, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Chenhao Li
- Key Laboratory of National Forestry and Grassland Administration on Forest Cultivation on the Loess Plateau, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Shen Yang
- Shaanxi Engineering Research Center of Walnut, College of Forestry, Northwest A & F University, Yangling, Shanxi 712100, China
| | - Ying Lu
- Shaanxi Engineering Research Center of Walnut, College of Forestry, Northwest A & F University, Yangling, Shanxi 712100, China; Key Laboratory of National Forestry and Grassland Administration on Forest Cultivation on the Loess Plateau, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yan Tang
- Shaanxi Engineering Research Center of Walnut, College of Forestry, Northwest A & F University, Yangling, Shanxi 712100, China; Key Laboratory of National Forestry and Grassland Administration on Forest Cultivation on the Loess Plateau, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Zhenggang Xu
- Key Laboratory of National Forestry and Grassland Administration on Forest Cultivation on the Loess Plateau, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Shaobing Peng
- Shaanxi Engineering Research Center of Walnut, College of Forestry, Northwest A & F University, Yangling, Shanxi 712100, China; Key Laboratory of National Forestry and Grassland Administration on Forest Cultivation on the Loess Plateau, Northwest A & F University, Yangling, Shaanxi 712100, China.
| | - Guiyan Yang
- Shaanxi Engineering Research Center of Walnut, College of Forestry, Northwest A & F University, Yangling, Shanxi 712100, China; Key Laboratory of National Forestry and Grassland Administration on Forest Cultivation on the Loess Plateau, Northwest A & F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Chaudhary D, Jeena AS, Rohit, Gaur S, Raj R, Mishra S, Kajal, Gupta OP, Meena MR. Advances in RNA Interference for Plant Functional Genomics: Unveiling Traits, Mechanisms, and Future Directions. Appl Biochem Biotechnol 2024; 196:5681-5710. [PMID: 38175411 DOI: 10.1007/s12010-023-04850-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
RNA interference (RNAi) is a conserved molecular mechanism that plays a critical role in post-transcriptional gene silencing across diverse organisms. This review delves into the role of RNAi in plant functional genomics and its applications in crop improvement, highlighting its mechanistic insights and practical implications. The review begins with the foundational discovery of RNAi's mechanism, tracing its origins from petunias to its widespread presence in various organisms. Various classes of regulatory non-coding small RNAs, including siRNAs, miRNAs, and phasiRNAs, have been uncovered, expanding the scope of RNAi-mediated gene regulation beyond conventional understanding. These RNA classes participate in intricate post-transcriptional and epigenetic processes that influence gene expression. In the context of crop enhancement, RNAi has emerged as a powerful tool for understanding gene functions. It has proven effective in deciphering gene roles related to stress resistance, metabolic pathways, and more. Additionally, RNAi-based approaches hold promise for integrated pest management and sustainable agriculture, contributing to global efforts in food security. This review discusses RNAi's diverse applications, such as modifying plant architecture, extending shelf life, and enhancing nutritional content in crops. The challenges and future prospects of RNAi technology, including delivery methods and biosafety concerns, are also explored. The global landscape of RNAi research is highlighted, with significant contributions from regions such as China, Europe, and North America. In conclusion, RNAi remains a versatile and pivotal tool in modern plant research, offering novel avenues for understanding gene functions and improving crop traits. Its integration with other biotechnological approaches such as gene editing holds the potential to shape the future of agriculture and sustainable food production.
Collapse
Affiliation(s)
- Divya Chaudhary
- Department of Genetics and Plant Breeding, College of Agriculture, G B Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Anand Singh Jeena
- Department of Genetics and Plant Breeding, College of Agriculture, G B Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India.
| | - Rohit
- Department of Genetics and Plant Breeding, College of Agriculture, G B Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Sonali Gaur
- Department of Genetics and Plant Breeding, College of Agriculture, G B Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Rishi Raj
- ICAR- Sugarcane Breeding Institute-Regional Centre, Karnal, 132001, Haryana, India
| | | | - Kajal
- Department of Biotechnology, Chandigarh University, Chandigarh, 140143, India
| | - Om Prakash Gupta
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, Haryana, India.
| | | |
Collapse
|
5
|
Long HY, Feng GF, Fang J. In-situ remediation of cadmium contamination in paddy fields: from rhizosphere soil to rice kernel. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:404. [PMID: 39207539 DOI: 10.1007/s10653-024-02099-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024]
Abstract
Cadmium (Cd) has become an important heavy metal pollutant because of its strong migration and high toxicity. The industrial production process aggravated the Cd pollution in rice fields. Human exposure to Cd through rice can cause kidney damage, emphysema, and various cardiovascular and metabolic diseases, posing a grave threat to health. As modern technology develops, the Cd accumulation model in rice and in-situ remediation of Cd pollution in cornfields have been extensively studied and applied, so it is necessary to sort out and summarize them systematically. Therefore, this paper reviewed the primary in-situ methods for addressing heavy metal contamination in rice paddies, including chemical remediation (inorganic-organic fertilizer remediation, nanomaterials, and composite remediation), biological remediation (phytoremediation and microbial remediation), and crop management remediation technologies. The factors that affect Cd transformation in soil and Cd migration in crops, the advantages and disadvantages of remediation techniques, remediation mechanisms, and the long-term stability of remediation were discussed. The shortcomings and future research directions of in situ remediation strategies for heavily polluted paddy fields and genetic improvement strategies for low-cadmium rice varieties were critically proposed. To sum up, this review aims to enhance understanding and serve as a reference for the appropriate selection and advancement of remediation technologies for rice fields contaminated with heavy metals.
Collapse
Affiliation(s)
- Hai Yan Long
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Guang Fu Feng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
6
|
Hu Y, Li P, Yao X, He Y, Tang H, Zhao Q, Lu L. Zinc Treatment of Tea Plants Improves the Synthesis of Trihydroxylated Catechins via Regulation of the Zinc-Sensitive Protein CsHIPP3. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14887-14898. [PMID: 38886187 DOI: 10.1021/acs.jafc.4c02114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The tea plant (Camellia sinensis [L.] O. Kussntze) is a global economic crop. Zinc treatment of tea plants can enhance catechin biosynthesis. However, the underlying molecular mechanism behind catechin formation through zinc regulation remains unclear. This study identified a zinc-responsive protein, C. sinensis heavy metal-associated isoprenylated plant protein 3 (CsHIPP3), from zinc-treated tea seedlings. CsHIPP3 expression was positively correlated with trihydroxylated catechin (TRIC) content. CsF3'5'H1 is a crucial regulator of the TRIC synthesis pathway. The interaction between CsHIPP3 and CsF3'5'H1 was assessed using bimolecular fluorescence complementation, firefly luciferase complementation imaging, and pulldown experiments. CsHIPP3 knockdown using virus-induced gene silencing technology decreased the content of each component of TRICs. Compared with the control, the relative catechin content was reduced by 40.12-55.39%. Co-overexpression of CsHIPP3 and CsF3'5'H1 significantly elevated the TRIC content in tea leaves and calli. Moreover, the TRIC content in transient co-overexpression leaves was 1.44-fold higher than that of the control group, and tea callus was 50.83% higher in transient co-overexpression than in the wild type. Thus, zinc-regulated TRIC synthesis in a zinc-rich environment was mediated by binding CsHIPP3 with CsF3'5'H1 to promote TRIC synthesis and accumulation.
Collapse
Affiliation(s)
- Yilan Hu
- College of Life Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Pingping Li
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Xinzhuan Yao
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Yumei He
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Hu Tang
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Qi Zhao
- College of Life Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Litang Lu
- College of Life Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| |
Collapse
|
7
|
Xu Z, Yang S, Li C, Xie M, He Y, Chen S, Tang Y, Li D, Wang T, Yang G. Characterization of metallothionein genes from Broussonetia papyrifera: metal binding and heavy metal tolerance mechanisms. BMC Genomics 2024; 25:563. [PMID: 38840042 PMCID: PMC11151532 DOI: 10.1186/s12864-024-10477-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Broussonetia papyrifera is an economically significant tree with high utilization value, yet its cultivation is often constrained by soil contamination with heavy metals (HMs). Effective scientific cultivation management, which enhances the yield and quality of B. papyrifera, necessitates an understanding of its regulatory mechanisms in response to HM stress. RESULTS Twelve Metallothionein (MT) genes were identified in B. papyrifera. Their open reading frames ranged from 186 to 372 bp, encoding proteins of 61 to 123 amino acids with molecular weights between 15,473.77 and 29,546.96 Da, and theoretical isoelectric points from 5.24 to 5.32. Phylogenetic analysis classified these BpMTs into three subclasses: MT1, MT2, and MT3, with MT2 containing seven members and MT3 only one. The expression of most BpMT genes was inducible by Cd, Mn, Cu, Zn, and abscisic acid (ABA) treatments, particularly BpMT2e, BpMT2d, BpMT2c, and BpMT1c, which showed significant responses and warrant further study. Yeast cells expressing these BpMT genes exhibited enhanced tolerance to Cd, Mn, Cu, and Zn stresses compared to control cells. Yeasts harboring BpMT1c, BpMT2e, and BpMT2d demonstrated higher accumulation of Cd, Cu, Mn, and Zn, suggesting a chelation and binding capacity of BpMTs towards HMs. Site-directed mutagenesis of cysteine (Cys) residues indicated that mutations in the C domain of type 1 BpMT led to increased sensitivity to HMs and reduced HM accumulation in yeast cells; While in type 2 BpMTs, the contribution of N and C domain to HMs' chelation possibly corelated to the quantity of Cys residues. CONCLUSION The BpMT genes are crucial in responding to diverse HM stresses and are involved in ABA signaling. The Cys-rich domains of BpMTs are pivotal for HM tolerance and chelation. This study offers new insights into the structure-function relationships and metal-binding capabilities of type-1 and - 2 plant MTs, enhancing our understanding of their roles in plant adaptation to HM stresses.
Collapse
Affiliation(s)
- Zhenggang Xu
- College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Shen Yang
- College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Chenhao Li
- College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Muhong Xie
- College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yi He
- College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Sisi Chen
- College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yan Tang
- College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Dapei Li
- College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Tianyu Wang
- College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Guiyan Yang
- College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China.
- Labortory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
8
|
Rajput P, Singh A, Agrawal S, Ghazaryan K, Rajput VD, Movsesyan H, Mandzhieva S, Minkina T, Alexiou A. Effects of environmental metal and metalloid pollutants on plants and human health: exploring nano-remediation approach. STRESS BIOLOGY 2024; 4:27. [PMID: 38777953 PMCID: PMC11111642 DOI: 10.1007/s44154-024-00156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/26/2024] [Indexed: 05/25/2024]
Abstract
Metal and metalloid pollutants severely threatens environmental ecosystems and human health, necessitating effective remediation strategies. Nanoparticle (NPs)-based approaches have gained significant attention as promising solutions for efficient removing heavy metals from various environmental matrices. The present review is focused on green synthesized NPs-mediated remediation such as the implementation of iron, carbon-based nanomaterials, metal oxides, and bio-based NPs. The review also explores the mechanisms of NPs interactions with heavy metals, including adsorption, precipitation, and redox reactions. Critical factors influencing the remediation efficiency, such as NPs size, surface charge, and composition, are systematically examined. Furthermore, the environmental fate, transport, and potential risks associated with the application of NPs are critically evaluated. The review also highlights various sources of metal and metalloid pollutants and their impact on human health and translocation in plant tissues. Prospects and challenges in translating NPs-based remediation from laboratory research to real-world applications are proposed. The current work will be helpful to direct future research endeavors and promote the sustainable implementation of metal and metalloid elimination.
Collapse
Affiliation(s)
- Priyadarshani Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Abhishek Singh
- Faculty of Biology, Yerevan State University, 0025, Yerevan, Armenia.
| | - Shreni Agrawal
- Department of Biotechnology, Parul Institute of Applied Science, Parul University, Vadodara, Gujarat, India
| | - Karen Ghazaryan
- Faculty of Biology, Yerevan State University, 0025, Yerevan, Armenia
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Hasmik Movsesyan
- Faculty of Biology, Yerevan State University, 0025, Yerevan, Armenia
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Vienna, Austria
| |
Collapse
|
9
|
Huang G, Hu Y, Li F, Zuo X, Wang X, Li F, Li R. Genome-wide characterization of heavy metal-associated isoprenylated plant protein gene family from Citrus sinensis in response to huanglongbing. FRONTIERS IN PLANT SCIENCE 2024; 15:1369883. [PMID: 38601304 PMCID: PMC11004388 DOI: 10.3389/fpls.2024.1369883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024]
Abstract
Introduction Heavy metal-associated isoprenylated plant proteins (HIPPs) play vital roles in maintaining heavy metal balance and responding to both biotic and abiotic stresses in vascular plants. However, the role of HIPPs in the response to Huanglongbing (HLB), a harmful disease of citrus caused by the phloem-colonizing bacterium Candidatus Liberibacter asiaticus (CLas), has not been examined. Methods and results In this study, a total of 26 HIPP genes were identified in Citrus sinensis, and they were grouped into 5 clades. The CsHIPP genes are distributed on 8 chromosomes and exhibited considerable synteny with HIPPs found in Arabidopsis thaliana. Additionally, we analyzed the gene structure, conserved motifs and domains of the CsHIPPs. Various cis-acting elements related to plant hormones and stress responses were identified in the promoters of CsHIPPs. Public transcriptome data and RT-qPCR analysis showed that the expression level of CsHIPP03 was significantly reduced in samples infected by CLas and Xanthomonas citri ssp. citri (Xcc). Furthermore, silencing the homologous gene of CsHIPP03 in Nicotiana benthamiana increased the disease resistance of plants to bacteria. Discussion Our results provide a basis for functional studies of HIPP gene family in C. sinensis, highlighting their functions in bacterial resistance, and improve our understanding to the susceptibility mechanism of HLB.
Collapse
Affiliation(s)
- Guiyan Huang
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Yanan Hu
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Fuxuan Li
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Xiru Zuo
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Xinyou Wang
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Fengyao Li
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Ruimin Li
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| |
Collapse
|
10
|
Yu Y, Zhang L, Wu Y, He L. Genome-wide identification of ETHYLENE INSENSITIVE 2 in Triticeae species reveals that TaEIN2-4D.1 regulates cadmium tolerance in Triticum aestivum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108009. [PMID: 37696193 DOI: 10.1016/j.plaphy.2023.108009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/16/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
ETHYLENE INSENSITIVE 2 (EIN2), as the core component of the ethylene signaling pathway, can widely regulate plant growth, development, and stress responses. However, the comprehensive study and function of EIN2 in wheat Cadmium (Cd) stress remain largely unexplored. Here, we identified 33 EIN2 genes and designated as TaEIN2-2B to TaEIN2-Un.3 in Triticum aestivum. The analysis of cis-regulatory elements in promoter regions and RNA-Seq showed that TaEIN2s were functionally related to plant growth and development, as well as the response to biotic and abiotic stress. qRT-PCR analysis of TaEIN2s indicated their sensitivity to Cd stress. Compared with WT plants, TaEIN2-4D.1-RNAi transgenic wheat lines showed enhanced shoot and root elongation, dry weight and chlorophyll accumulation, together with a reduced accumulation of Cd in wheat grain. In addition, TaEIN2-4D.1-RNAi transgenic wheat lines showed enhanced Reactive Oxygen Species (ROS) scavenging capacity compared with WT plants. In conclusion, our research indicates that TaEIN2 plays a key role in response to cadmium stress in wheat, which provides valuable information for crop improvement.
Collapse
Affiliation(s)
- Yongang Yu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Lei Zhang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yanxia Wu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Lingyun He
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| |
Collapse
|
11
|
Gautam N, Tiwari M, Kidwai M, Dutta P, Chakrabarty D. Functional characterization of rice metallothionein OsMT-I-Id: Insights into metal binding and heavy metal tolerance mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131815. [DOI: https:/doi.org/10.1016/j.jhazmat.2023.131815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
|
12
|
Shi Y, Jiang N, Wang M, Du Z, Chen J, Huang Y, Li M, Jin Y, Li J, Wan J, Jin X, Zhang L, Huang J. OsHIPP17 is involved in regulating the tolerance of rice to copper stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1183445. [PMID: 37484470 PMCID: PMC10359898 DOI: 10.3389/fpls.2023.1183445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/17/2023] [Indexed: 07/25/2023]
Abstract
Introduction Heavy metal-associated isoprenylated plant proteins (HIPPs) play vital roles in metal absorption, transport and accumulation in plants. However, so far, only several plant HIPPs have been functionally analyzed. In this study, a novel HIPP member OsHIPP17, which was involved in the tolerance to copper (Cu) was functionally characterized. Methods In this study, qRT-PCR, Yeast transgenic technology, Plant transgenic technology, ICP-MS and so on were used for research. Results OsHIPP17 protein was targeted to the nucleus. The Cu concentration reached 0.45 mg/g dry weight due to the overexpression of OsHIPP17 in yeast cells. Meanwhile, the overexpression of OsHIPP17 resulted in the compromised growth of Arabidopsis thaliana (Arabidopsis) under Cu stress. The root length of Oshipp17 mutant lines was also significantly reduced by 16.74- 24.36% under 25 mM Cu stress. The roots of Oshipp17 rice mutant showed increased Cu concentration by 7.25%-23.32%. Meanwhile, knockout of OsHIPP17 decreased the expression levels of OsATX1, OsZIP1, OsCOPT5 or OsHMA5, and increased the expression levels of OsCOPT1 or OsHMA4. Antioxidant enzyme activity was also reduced in rice due to the knockout of OsHIPP17. Moreover, the expression levels of cytokinin-related genes in plants under Cu stress were also affected by overexpression or knockout of OsHIPP17. Discussion These results implied that OsHIPP17 might play a role in plant Cu toxic response by affecting the expression of Cu transport genes or cytokinin-related genes. Simultaneously, our work may shed light on the underlying mechanism of how heavy metals affect the plant growth and provide a novel rice genetic source for phytoremediation of heavy metal-contaminated soil.
Collapse
Affiliation(s)
- Yang Shi
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan, China
| | - Nan Jiang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan, China
| | - Mengting Wang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan, China
| | - Zhiye Du
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan, China
| | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yanyan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingyu Li
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan, China
| | - Yufan Jin
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan, China
| | - Jiahao Li
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan, China
| | - Jian Wan
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaowan Jin
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lang Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jin Huang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Shi Y, Jiang W, Li M, Jiang N, Huang Y, Wang M, Du Z, Chen J, Li J, Wu L, Zhong M, Yang J, Huang J. Metallochaperone protein OsHIPP17 regulates the absorption and translocation of cadmium in rice (Oryza sativa L.). Int J Biol Macromol 2023; 245:125607. [PMID: 37390996 DOI: 10.1016/j.ijbiomac.2023.125607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/03/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Heavy metal-associated isoprenylated plant proteins (HIPPs) play vital roles in regulating heavy metal responding activities in plants. Yet only a handful of studies have characterized the functions of HIPPs. In this study, a novel HIPP member OsHIPP17 was functionally characterized, which was involved in the tolerance of yeast and plants to cadmium (Cd). The Cd accumulation in yeast cells was increased due to the overexpression of OsHIPP17. Nevertheless, the overexpression of OsHIPP17 in Arabidopsis thaliana resulted in compromised growth under Cd stress. Meanwhile, the mutation of OsHIPP17 resulted in 38.9-40.9 % increase of Cd concentration in rice roots as well as 14.3-20.0 % decrease of Cd translocation factor. Further investigation of the genes responsible for Cd absorption and transporter indicated that the expression levels of these genes were also perturbed. In addition, two OsHIPP17-interacting proteins, OsHIPP24 and OsLOL3 were identified in a yeast two hybrid assay. Further analysis of their functions revealed that OsHIPP24 or OsLOL3 may be involved in the regulation of Cd tolerance by OsHIPP17 in rice. All above results implied that OsHIPP17 may affect Cd resistance by regulating the absorption and translocation of Cd in rice.
Collapse
Affiliation(s)
- Yang Shi
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Wenjun Jiang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Mingyu Li
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Nan Jiang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Yanyan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Sichuan 611130, China
| | - Mengting Wang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Zhiye Du
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Sichuan 611130, China
| | - Jiahao Li
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Longying Wu
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Min Zhong
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Ju Yang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Jin Huang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China.
| |
Collapse
|
14
|
Gautam N, Tiwari M, Kidwai M, Dutta P, Chakrabarty D. Functional characterization of rice metallothionein OsMT-I-Id: Insights into metal binding and heavy metal tolerance mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131815. [PMID: 37336105 DOI: 10.1016/j.jhazmat.2023.131815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Metallothioneins (MTs) are cysteine-rich proteins known for their strong metal-binding capabilities, making them effective in detoxifying heavy metals (HMs). This study focuses on characterizing the functional properties of OsMT-I-Id, a type-I Metallothionein found in rice. Using a HM-responsive yeast cup1Δ (DTY4), ycf1∆ (for cadmium), and acr3∆ mutants (for trivalent arsenic), we assessed the impact of OsMT-I-Id on metal accumulation and cellular resilience. Our results demonstrated that yeast cells expressing OsMT-I-Id showed increased tolerance and accumulated higher levels of copper (Cu), arsenic (As), and cadmium (Cd), compared to control cells. This can be attributed to the protein's ability to chelate and bind HMs. Site-directed mutagenesis was employed to investigate the specific contributions of cysteine residues. The study revealed that yeast cells with a mutated C-domain displayed heightened HM sensitivity, while cells with a mutated N-domain exhibited reduced sensitivity. This underscores the critical role of C-cysteine-rich domains in metal binding and tolerance of type-I rice MTs. Furthermore, the study identified the significance of the 12th cysteine position at the N-domain and the 68th and 72nd cysteine positions at the C-domain in influencing OsMT-I-Id metal-binding capacity. This research provides novel insights into the structure-function relationship and metal binding properties of type-I plant MTs.
Collapse
Affiliation(s)
- Neelam Gautam
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Madhu Tiwari
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Maria Kidwai
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Prasanna Dutta
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debasis Chakrabarty
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
15
|
Xiong S, Kong X, Chen G, Tian L, Qian D, Zhu Z, Qu LQ. Metallochaperone OsHIPP9 is involved in the retention of cadmium and copper in rice. PLANT, CELL & ENVIRONMENT 2023; 46:1946-1961. [PMID: 36850039 DOI: 10.1111/pce.14576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 02/03/2023] [Accepted: 02/24/2023] [Indexed: 05/04/2023]
Abstract
Metallochaperones are a unique class of proteins that play crucial roles in metal homoeostasis and detoxification. However, few metallochaperones have been functionally characterised in rice. Heterologous expression of Heavy metal-associated Isoprenylated Plant Protein 9 (OsHIPP9), a metallochaperone, altered yeast tolerance to cadmium (Cd) and copper (Cu). We investigated the physiological role of OsHIPP9 in rice. OsHIPP9 was primarily expressed in the root exodermis and xylem region of enlarged vascular bundles (EVB) at nodes. KO of OsHIPP9 increased the Cd concentrations of the upper nodes and panicle, but decreased Cd in expanded leaves. KO of OsHIPP9 decreased Cu uptake and accumulation in rice. Constitutive OX of OsHIPP9 increased Cd and Cu accumulation in aboveground tissues and brown rice. OsHIPP9 showed binding capacity for Cd and Cu. We propose that OsHIPP9 has dual metallochaperone roles, chelating Cd in the xylem region of EVB for Cd retention in the nodes and chelating Cu in rice roots to aid Cu uptake.
Collapse
Affiliation(s)
- Shuo Xiong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaohang Kong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of the Chinese Academy of Sciences, Beijing, China
| | - Guoqiang Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Lihong Tian
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Dandan Qian
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhen Zhu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Le Qing Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Li Y, Rahman SU, Qiu Z, Shahzad SM, Nawaz MF, Huang J, Naveed S, Li L, Wang X, Cheng H. Toxic effects of cadmium on the physiological and biochemical attributes of plants, and phytoremediation strategies: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121433. [PMID: 36907241 DOI: 10.1016/j.envpol.2023.121433] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/20/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Anthropogenic activities pose a more significant threat to the environment than natural phenomena by contaminating the environment with heavy metals. Cadmium (Cd), a highly poisonous heavy metal, has a protracted biological half-life and threatens food safety. Plant roots absorb Cd due to its high bioavailability through apoplastic and symplastic pathways and translocate it to shoots through the xylem with the help of transporters and then to the edible parts via the phloem. The uptake and accumulation of Cd in plants pose deleterious effects on plant physiological and biochemical processes, which alter the morphology of vegetative and reproductive parts. In vegetative parts, Cd stunts root and shoot growth, photosynthetic activities, stomatal conductance, and overall plant biomass. Plants' male reproductive parts are more prone to Cd toxicity than female reproductive parts, ultimately affecting their grain/fruit production and survival. To alleviate/avoid/tolerate Cd toxicity, plants activate several defense mechanisms, including enzymatic and non-enzymatic antioxidants, Cd-tolerant gene up-regulations, and phytohormonal secretion. Additionally, plants tolerate Cd through chelating and sequestering as part of the intracellular defensive mechanism with the help of phytochelatins and metallothionein proteins, which help mitigate the harmful effects of Cd. The knowledge on the impact of Cd on plant vegetative and reproductive parts and the plants' physiological and biochemical responses can help selection of the most effective Cd-mitigating/avoiding/tolerating strategy to manage Cd toxicity in plants.
Collapse
Affiliation(s)
- Yanliang Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; Dongguan Key Laboratory of Water Pollution Control and Ecological Safety Regulation, Dongguan, Guangdong, 523808, China
| | - Shafeeq Ur Rahman
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Zhixin Qiu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; Dongguan Key Laboratory of Water Pollution Control and Ecological Safety Regulation, Dongguan, Guangdong, 523808, China
| | - Sher Muhammad Shahzad
- Department of Soil and Environmental Sciences, College of Agriculture, University of Sargodha, Sargodha, Punjab, Pakistan
| | | | - Jianzhi Huang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; Dongguan Key Laboratory of Water Pollution Control and Ecological Safety Regulation, Dongguan, Guangdong, 523808, China
| | - Sadiq Naveed
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Lei Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; Dongguan Key Laboratory of Water Pollution Control and Ecological Safety Regulation, Dongguan, Guangdong, 523808, China
| | - Xiaojie Wang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
17
|
Khan IU, Qi SS, Gul F, Manan S, Rono JK, Naz M, Shi XN, Zhang H, Dai ZC, Du DL. A Green Approach Used for Heavy Metals 'Phytoremediation' Via Invasive Plant Species to Mitigate Environmental Pollution: A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040725. [PMID: 36840073 PMCID: PMC9964337 DOI: 10.3390/plants12040725] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 05/27/2023]
Abstract
Heavy metals (HMs) normally occur in nature and are rapidly released into ecosystems by anthropogenic activities, leading to a series of threats to plant productivity as well as human health. Phytoremediation is a clean, eco-friendly, and cost-effective method for reducing soil toxicity, particularly in weedy plants (invasive plant species (IPS)). This method provides a favorable tool for HM hyperaccumulation using invasive plants. Improving the phytoremediation strategy requires a profound knowledge of HM uptake and translocation as well as the development of resistance or tolerance to HMs. This review describes a comprehensive mechanism of uptake and translocation of HMs and their subsequent detoxification with the IPS via phytoremediation. Additionally, the improvement of phytoremediation through advanced biotechnological strategies, including genetic engineering, nanoparticles, microorganisms, CRISPR-Cas9, and protein basis, is discussed. In summary, this appraisal will provide a new platform for the uptake, translocation, and detoxification of HMs via the phytoremediation process of the IPS.
Collapse
Affiliation(s)
- Irfan Ullah Khan
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shan-Shan Qi
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Farrukh Gul
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sehrish Manan
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Justice Kipkorir Rono
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Misbah Naz
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xin-Ning Shi
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haiyan Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Inspection and Testing Certificate, Changzhou Vocational Institute Engineering, Changzhou 213164, China
| | - Zhi-Cong Dai
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Dao-Lin Du
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
18
|
Barman F, Kundu R. Foliar application of selenium affecting pollen viability, grain chalkiness, and transporter genes in cadmium accumulating rice cultivar: A pot study. CHEMOSPHERE 2023; 313:137538. [PMID: 36521741 DOI: 10.1016/j.chemosphere.2022.137538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Under Cadmium (Cd) stress, rice grain quality and quantity are compromised, affecting human health. Application of Selenium (Se) mitigating Cd stress in rice was already reported, but its role in rescuing Cd induced damage in the reproductive parts in rice plants has not been studied before. To investigate the underlying mechanism, Se mediated alleviation of Cd-stress induced damage to pollen viability, germination rate, and grain chalkiness were studied. A grain Cd accumulating rice genotype was selected and treated with 10 μM Cd and sprayed with 5 μM Se during tillering, elongating and heading stages. A significant reduction in pollen viability, germination percentage, and accumulation of higher amount of ROS in the reproductive parts were observed in Cd treated plants. However, Se supplementation (i.e. Cd + Se), decreased the ROS accumulation in anther, pistil, pollen and enhanced the pollen viability and germination percentage. Cd translocation was prevented from flag leaf to grains, under Se treatment. As a result, a significantly higher seed setting rate, and yield were observed. Additionally, Se improved grain nutrient content and grain quality. Therefore, the recent study suggests that the use of foliar spray of Se could be a cost-effective strategy to prevent Cd-induced yield loss and quality in rice.
Collapse
Affiliation(s)
- Falguni Barman
- Department of Botany, Centre of Advanced Studies, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Rita Kundu
- Department of Botany, Centre of Advanced Studies, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
19
|
Wu C, Xiao S, Zuo D, Cheng H, Zhang Y, Wang Q, Lv L, Song G. Genome-wide analysis elucidates the roles of GhHMA genes in different abiotic stresses and fiber development in upland cotton. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:281-301. [PMID: 36442360 DOI: 10.1016/j.plaphy.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/12/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The heavy metal-binding domain is involved in heavy metal transporting and plays a significant role in plant detoxification. However, the functions of HMAs are less well known in cotton. In this study, a total of 143 GhHMAs (heavy metal-binding domain) were detected by genome-wide identification in G. hirsutum L. All the GhHMAs were classified into four groups via phylogenetic analysis. The exon/intron structure and protein motifs indicated that each branch of the GhHMA genes was highly conserved. 212 paralogous GhHMA gene pairs were identified, and the segmental duplications were the main role to the expansion of GhHMAs. The Ka/Ks values suggested that the GhHMA gene family has undergone purifying selection during the long-term evolutionary process. GhHMA3 and GhHMA75 were located in the plasma membrane, while GhHMA26, GhHMA117 and GhHMA121 were located in the nucleus, respectively. Transcriptomic data and qRT-PCR showed that GhHMA26 exhibited different expression patterns in each tissue and during fiber development or under different abiotic stresses. Overexpressing GhHMA26 significantly promoted the elongation of leaf trichomes and also improved the tolerance to salt stress. Therefore, GhHMA26 may positively regulate fiber elongation and abiotic stress. Yeast two-hybrid assays indicated that GhHMA26 and GhHMA75 participated in multiple biological functions. Our results suggest some genes in the GhHMAs might be associated with fiber development and the abiotic stress response, which could promote further research involving functional analysis of GhHMA genes in cotton.
Collapse
Affiliation(s)
- Cuicui Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Cotton Research Institute of Shanxi Agricultural University, Yuncheng, 044000, China
| | - Shuiping Xiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Cotton Research Institute of Jiangxi Province, Jiujiang, 332105, China
| | - Dongyun Zuo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Hailiang Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Youping Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Qiaolian Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Limin Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Guoli Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
20
|
Physio-Biochemical and Transcriptomic Features of Arbuscular Mycorrhizal Fungi Relieving Cadmium Stress in Wheat. Antioxidants (Basel) 2022; 11:antiox11122390. [PMID: 36552597 PMCID: PMC9774571 DOI: 10.3390/antiox11122390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) can improve plant cadmium (Cd) tolerance, but the tolerance mechanism in wheat is not fully understood. This study aimed to examine the physiological properties and transcriptome changes in wheat inoculated with or without Glomus mosseae (GM) under Cd stress (0, 5, and 10 mg·kg-1 CdCl2) to understand its role in wheat Cd tolerance. The results showed that the Cd content in shoots decreased while the Cd accumulation in roots increased under AMF symbiosis compared to the non-inoculation group and that AMF significantly promoted the growth of wheat seedlings and reduced Cd-induced oxidative damage. This alleviative effect of AMF on wheat under Cd stress was mainly attributed to the fact that AMF accelerated the ascorbate-glutathione (AsA-GSH) cycle, promoted the production of GSH and metallothionein (MTs), improved the degradation of methylglyoxal (MG), and induced GRSP (glomalin-related soil protein) secretion. Furthermore, a comparative analysis of the transcriptomes of the symbiotic group and the non-symbiotic group revealed multiple differentially expressed genes (DEGs) in the 'metal ion transport', 'glutathione metabolism', 'cysteine and methionine metabolism', and 'plant hormone signal transduction' terms. The expression changes of these DEGs were basically consistent with the changes in physio-biochemical characteristics. Overall, AMF alleviated Cd stress in wheat mainly by promoting immobilization and sequestration of Cd, reducing ROS production and accelerating their scavenging, in which the rapid metabolism of GSH may play an important role.
Collapse
|
21
|
Xu M, Yang L, Chen Y, Jing H, Wu P, Yang W. Selection of rice and maize varieties with low cadmium accumulation and derivation of soil environmental thresholds in karst. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114244. [PMID: 36326557 DOI: 10.1016/j.ecoenv.2022.114244] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) is considered the primary dietary toxic element. Previous studies have demonstrated significant differences in heavy metal accumulation among crop species. However, this information in karst areas with low heavy metal activity is missing. In this study, the uptake and accumulation characteristics of cadmium in soil-crop samples of group 504 in the core karst region of East Asia were analyzed. Cadmium low-accumulating maize and rice were screened using cluster and Pareto analytic methods. In addition, a new method, the species-sensitive distribution model (SSD), was proposed, which could be used to estimate the environmental threshold for cadmium in regional cropland. The results showed that both maize and rice soils in the research area were contaminated with varying degrees of cadmium. The total concentrations of cadmium ω(T-Cd) in maize and rice fields are 0.18-1.32 and 0.20-4.42 mg kg-1, respectively. The ω(T-Cd) of heavy metals in maize kernels and rice grains is 0.002-0.429 and 0.003-0.393 mg kg-1, respectively. The bioaccumulation factor (BCF) of cadmium in maize ranged from 0.0079 to 0.9701, with a coefficient of variation of 1.71; the BCF of cadmium in rice ranged from 0.0074 to 0.1345, with a coefficient of variation of 0.99. According to cluster and Pareto analyses, the maize crop varieties with low cadmium accumulation suitable for local cultivation were screened as JHY809, JDY808, AD778, SN3H and SY13, and the rice varieties were DMY6188, GY725, NY6368, SY451 and DX4103. In addition, the environmental cadmium threshold ranges of 0.30-10.05 mg kg-1 and 0.89-24.39 mg kg-1 for maize and rice soils, respectively, were deduced in this study. This threshold will ensure that 5-95% of maize and rice will not be contaminated with cadmium in the soil.
Collapse
Affiliation(s)
- Mengqi Xu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 500025, China.
| | - Liyu Yang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 500025, China.
| | - Yonglin Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 500025, China.
| | - Haonan Jing
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 500025, China.
| | - Pan Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 500025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China.
| | - Wentao Yang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 500025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China.
| |
Collapse
|
22
|
Parasyri A, Barth O, Zschiesche W, Humbeck K. The Barley Heavy Metal Associated Isoprenylated Plant Protein HvFP1 Is Involved in a Crosstalk between the Leaf Development and Abscisic Acid-Related Drought Stress Responses. PLANTS (BASEL, SWITZERLAND) 2022; 11:2851. [PMID: 36365303 PMCID: PMC9657915 DOI: 10.3390/plants11212851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The heavy metal associated isoprenylated plant proteins (HIPPs) are characterized by at least one heavy metal associated (HMA) domain and a C-terminal isoprenylation motif. Hordeum vulgare farnesylated protein 1 (HvFP1), a barley HIPP, is upregulated during drought stress, in response to abscisic acid (ABA) and during leaf senescence. To investigate the role of HvFP1, two independent gain-of-function lines were generated. In a physiological level, the overexpression of HvFP1 results in the delay of normal leaf senescence, but not in the delay of rapid, drought-induced leaf senescence. In addition, the overexpression of HvFP1 suppresses the induction of the ABA-related genes during drought and senescence, e.g., HvNCED, HvS40, HvDhn1. Even though HvFP1 is induced during drought, senescence and the ABA treatment, its overexpression suppresses the ABA regulated genes. This indicates that HvFP1 is acting in a negative feedback loop connected to the ABA signaling. The genome-wide transcriptomic analysis via RNA sequencing revealed that the gain-of-function of HvFP1 positively alters the expression of the genes related to leaf development, photomorphogenesis, photosynthesis and chlorophyll biosynthesis. Interestingly, many of those genes encode proteins with zinc binding domains, implying that HvFP1 may act as zinc supplier via its HMA domain. The results show that HvFP1 is involved in a crosstalk between stress responses and growth control pathways.
Collapse
|
23
|
Cao HW, Zhao YN, Liu XS, Rono JK, Yang ZM. A metal chaperone OsHIPP16 detoxifies cadmium by repressing its accumulation in rice crops. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:120058. [PMID: 36041567 DOI: 10.1016/j.envpol.2022.120058] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/09/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) is an environmentally polluted toxic heavy metal and seriously risks food safety and human health through food chain. Mining genetic potentials of plants is a crucial step for limiting Cd accumulation in rice crops and improving environmental quality. This study characterized a novel locus in rice genome encoding a Cd-binding protein named OsHIPP16, which resides in the nucleus and near plasma membrane. OsHIPP16 was strongly induced by Cd stress. Histochemical analysis with pHIPP16::GUS reveals that OsHIPP16 is primarily expressed in root and leaf vascular tissues. Expression of OsHIPP16 in the yeast mutant strain ycf1 sensitive to Cd conferred cellular tolerance. Transgenic rice overexpressing OsHIPP16 (OE) improved rice growth with increased plant height, biomass, and chlorophyll content but with a lower degree of oxidative injury and Cd accumulation, whereas knocking out OsHIPP16 by CRISPR-Cas9 compromised the growth and physiological response. A lifelong trial with Cd-polluted soil shows that the OE plants accumulated much less Cd, particularly in brown rice where the Cd concentrations declined by 11.76-34.64%. Conversely, the knockout oshipp16 mutants had higher levels of Cd with the concentration in leaves being increased by 26.36-35.23% over the wild-type. These results suggest that adequate expression of OsHIPP16 would profoundly contribute to Cd detoxification by regulating Cd accumulation in rice, suggesting that both OE and oshipp16 mutant plants have great potentials for restricting Cd acquisition in the rice crop and phytoremediation of Cd-contaminated wetland soils.
Collapse
Affiliation(s)
- Hong Wei Cao
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ya Ning Zhao
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xue Song Liu
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Justice Kipkorir Rono
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
24
|
Zhao YN, Li C, Li H, Liu XS, Yang ZM. OsZIP11 is a trans-Golgi-residing transporter required for rice iron accumulation and development. Gene X 2022; 836:146678. [PMID: 35714805 DOI: 10.1016/j.gene.2022.146678] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/19/2022] [Accepted: 06/10/2022] [Indexed: 11/04/2022] Open
Abstract
Iron (Fe) is a mineral nutrient necessary for plant growth and development. Whether the rice ZRT/IRT-like protein family metal transporter OsZIP11 is involved in Fe transport has not been functionally defined. The objective of the study is to figure out the essential role of the uncharacterized OsZIP11 played in rice growth, development, and iron accumulation, particularly in seeds. Transient subcellular location assays show that OsZIP11 was targeted to the trans-Golgi network. OsZIP11 was preferentially expressed in the rice tissues (or organs) at later flowering and seed development stages. Transcripts of OsZIP11 were significantly induced under Fe but not under zinc (Zn), copper (Cu) or manganese (Mn) deficiency. Yeast (Saccharomyces cerevisiae) transformed with OsZIP11 sequences displayed an active iron input which turned out that excessive iron accumulated in the cells. Knocking out OsZIP11 by CRISPR-Cas9 approach led to the attenuated rice growth and physiological phenotypes, depicting shorter plant height, reduced biomass, chlorosis (a symptom of lower chlorophyll concentration), and over-accumulation of malondialdehyde (complex representing the peroxidation of membrane lipids) in rice plantlets. The field trials demonstrated that OsZIP11 mutation impaired the capacity of seed development, with shortened panicle and seed length, compromised spikelet fertility, and reduced grain per plant or 1000-grain weight. Knocking out OsZIP11 also lowered the accumulation of iron in the brown rice by 48-51% compared to the wild-type. Our work pointed out that OsZIP11 is required for iron acquisition for rice growth and development.
Collapse
Affiliation(s)
- Ya Ning Zhao
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Li
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - He Li
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xue Song Liu
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
25
|
Hu J, Chen G, Xu K, Wang J. Cadmium in Cereal Crops: Uptake and Transport Mechanisms and Minimizing Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5961-5974. [PMID: 35576456 DOI: 10.1021/acs.jafc.1c07896] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) contamination in soils and accumulation in cereal grains have posed food security risks and serious health concerns worldwide. Understanding the Cd transport process and its management for minimizing Cd accumulation in cereals may help to improve crop growth and grain quality. In this review, we summarize Cd uptake, translocation, and accumulation mechanisms in cereal crops and discuss efficient measures to reduce Cd uptake as well as potential remediation strategies, including the applications of plant growth regulators, microbes, nanoparticles, and cropping systems and developing low-Cd grain cultivars by CRISPR/Cas9. In addition, miRNAs modulate Cd translocation, and accumulation in crops through the regulation of their target genes was revealed. Combined use of multiple remediation methods may successfully decrease Cd concentrations in cereals. The findings in this review provide some insights into innovative and applicable approaches for reducing Cd accumulation in cereal grains and sustainable management of Cd-contaminated paddy fields.
Collapse
Affiliation(s)
- Jihong Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Guanglong Chen
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Kui Xu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, and Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510006, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510006, China
| |
Collapse
|
26
|
Rono JK, Sun D, Yang ZM. Metallochaperones: A critical regulator of metal homeostasis and beyond. Gene 2022; 822:146352. [PMID: 35183685 DOI: 10.1016/j.gene.2022.146352] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/03/2022] [Accepted: 02/15/2022] [Indexed: 12/11/2022]
Abstract
Metallochaperones are a class of unique protein families that was originally found to interact with cellular metal ions by metal delivery to specific target proteins such as metal enzymes. Recently, some members of metallochaperones receive much attention owning to their multi-biological functions in mediating plant growth, development and biotic or abiotic stress responses, particularly in the aspects of metal transport and accumulation in plants. For example, some non-essential toxic heavy metals (e.g. cadmium and mercury) accumulating in farmland due to the industrial and agronomic activities, are a constant threat to crop production, food safety and human health. Digging genetic resources and functional genes like metallochaperones is critical for understanding the metal detoxification in plants, and may help develop cleaner crops with minimal toxic metals in leafy vegetables and grains, or plants for metal-polluted soil phytoremediation. In this review, we highlight the current advancement of the research on functions of metallochaperones in metal accumulation, detoxification and homeostasis. We also summarize the recent progress of the research on the critical roles of the metal-binding proteins in regulating plant responses to some other biological processes including plant growth, development, pathogen stresses, and abiotic stresses such salt, drought, cold and light. Finally, an additional capacity of some members of metallochaperones involved in the resistance to the pathogen attack and possibly regulatory roles was reviewed.
Collapse
Affiliation(s)
- Justice Kipkorir Rono
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Di Sun
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
27
|
Wu L, Yu Y, Hu H, Tao Y, Song P, Li D, Guan Y, Gao H, Sui X, Volodymyr T, Volodymyr V, Zhatova H, Li C. New SFT2-like Vesicle Transport Protein (SFT2L) Enhances Cadmium Tolerance and Reduces Cadmium Accumulation in Common Wheat Grains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5526-5540. [PMID: 35484643 DOI: 10.1021/acs.jafc.1c08021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) is one of the most toxic heavy metal elements to the environment, which seriously threatens the safe production of food crops. In this study, we identified a novel function of the cytomembrane TaSFT2L protein in wheat (Triticum aestivum). Expression of the TaSFT2L gene in yeast showed no transport activities for Cd, which could explain the role of TaSFT2L in metal tolerance. It was observed that increased autophagic activity in roots caused by silencing of TaSFT2L enhanced Cd tolerance. Transgenic wheat revealed that RNA interference (RNAi) lines enhanced the wheat growth concerning the increased shoot or root elongation, dry weight, and chlorophyll accumulation. Furthermore, RNAi lines decreased root-to-grain Cd translocation in wheat by nearly 68% and Cd accumulation in wheat grains by 53%. Meanwhile, the overexpression lines displayed a compromised growth response and increased Cd accumulation in wheat tissues, compared to wild type. These findings show that TaSFT2L is a key gene involved in regulation of Cd translocation in wheat, and its silencing to form transgenic wheat can inhibit Cd accumulation. This has the ability to alleviate the food chain-associated impact of environmental pollution on human health.
Collapse
Affiliation(s)
- Liuliu Wu
- College of Life Science and Technology/Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation/Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China
- Sumy National Agrarian University, Sumy 40021, Ukraine
| | - Yongang Yu
- College of Life Science and Technology/Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation/Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Haiyan Hu
- College of Life Science and Technology/Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation/Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Ye Tao
- College of Life Science and Technology/Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation/Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China
- Sumy National Agrarian University, Sumy 40021, Ukraine
| | - Puwen Song
- College of Life Science and Technology/Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation/Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Dongxiao Li
- College of Life Science and Technology/Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation/Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yuanyuan Guan
- College of Life Science and Technology/Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation/Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Huanting Gao
- College of Life Science and Technology/Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation/Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaotian Sui
- College of Life Science and Technology/Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation/Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China
| | | | | | | | - Chengwei Li
- College of Life Science and Technology/Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation/Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450000, China
| |
Collapse
|
28
|
Zhao X, Zhang X, Li Q, Song Y, Zhang J, Yang Y, Xia X, Han Q. Rapid determination of cadmium in Panax notoginseng using NCDs quantum carbon dots-aptamer fluorescence sensor. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01356-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Tao Q, Li M, Xu Q, Kováč J, Yuan S, Li B, Li Q, Huang R, Gao X, Wang C. Radial transport difference mediated by root endodermal barriers contributes to differential cadmium accumulation between japonica and indica subspecies of rice (Oryza sativa L.). JOURNAL OF HAZARDOUS MATERIALS 2022; 425:128008. [PMID: 34986570 DOI: 10.1016/j.jhazmat.2021.128008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/22/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Although Cd concentration of grains is generally lower in japonica than in indica subspecies, the effects of root endodermal barriers on the subspecific differences in Cd accumulation in rice (Oryza sativa L.) are poorly understood. Here, we characterized the differences in endodermal differentiation between japonica and indica subspecies and their effects on Cd radial transport. Casparian strips (CSs) and suberin lamellae (SL) in japonica subspecies were initiated at the 6%- 7% and 21%- 27% position from the root tip, respectively, which were 65% and 26% earlier than in indica subspecies, respectively. The lignin/suberin content in japonica subspecies was 47%/42% greater than that in indica subspecies because of the higher expression of lignin/suberin biosynthesis-related genes (OsCASP1, OsPAL, OsCYP86A1 and OsKCS20). Cd exposure induced endodermal plasticity in both subspecies, but the changes in japonica were greater than in indica subspecies. The earlier formation of CSs/SL in japonica subspecies significantly restricted the flow of radial transport tracer to reach the xylem and decreased Cd influx into roots, that is, endodermal barriers inhibited Cd radial transport via both apoplastic and cell-to-cell pathways, thus decreasing the root-to-shoot transport of Cd in japonica subspecies. Our findings are beneficial for the genetic modification of rice with low-Cd-accumulating ability.
Collapse
Affiliation(s)
- Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| | - Meng Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiang Xu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Ján Kováč
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, T.G. Masaryka 24, Zvolen, Slovakia; Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina B2, 842 15 Bratislava, Slovakia
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiquan Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Rong Huang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuesong Gao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
30
|
Yin Z, Sheng H, Xiao H, Xue Y, Man Z, Huang D, Zhou Q. Inter-annual reduction in rice Cd and its eco-environmental controls in 6-year biannual mineral amendment in subtropical double-rice cropping ecosystems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118566. [PMID: 34822944 DOI: 10.1016/j.envpol.2021.118566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/31/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
The alkaline mineral amendment is a practical means of alleviating Cd concentration in rice grain (CdR) in the short-term; however, the long-term remediation effect of mineral amendment on the CdR and the eco-environmental controls remains unknown. Here a mineral (Si-Ca-Mg) amendment, calcined primarily from molybdenum tailings and dolomite, was applied biannually over 6 years (12 seasons) to acidic and moderately Cd-contaminated double-rice cropping ecosystems. This study investigated the inter-annual variation of Cd in the rice-soil ecosystem and the eco-environmental controls in subtropical rice ecosystems. CdR was reduced by 50%-86% following mineral amendment. The within-year reduction in CdR was similar between early rice (50%-86%, mean of 68%) and late rice (68%-85%, mean of 74%), leading to CdR in all early rice and in 83% of late rice samples below the upper limit (0.2 mg kg-1) of the China National Food Safety Standards. In contrast, the inter-annual reduction in CdR was moderately variable, showing a greater CdR reduction in the later 3 years (73%-86%) than in the former 3 years (54%-79%). Three years continuous mineral amendment was required to guarantee the safety rice production. The concentrations of DTPA-extractable and exchangeable Cd fractions in soil were reduced, while the concentration of oxides-bound Cd was increased. In addition, the soil pH, concentrations of Olsen-P and exchangeable Ca and Mg were elevated. These imply a lower apparent phytoavailability of Cd in the soil following mineral amendment. An empirical model of the 3-variable using soil DTPA-Cd, soil Olsen-P, and a climatic factor (precipitation) effectively predicted temporal changes in CdR. Our study demonstrates that Cd phytoavailability in soil (indexed by DTPA-extractable Cd) and climatic factors (e.g., temperature and precipitation) may directly/indirectly control the inter-annual reduction in CdR following mineral amendment in slightly and moderately Cd-contaminated paddy ecosystems.
Collapse
Affiliation(s)
- Zerun Yin
- College of Resources & Environment, Hunan Agricultural University, Changsha 410128, China
| | - Hao Sheng
- College of Resources & Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Huacui Xiao
- College of Resources & Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yi Xue
- College of Resources & Environment, Hunan Agricultural University, Changsha 410128, China
| | - Zhiyong Man
- College of Resources & Environment, Hunan Agricultural University, Changsha 410128, China
| | - Dezhi Huang
- College of Resources & Environment, Hunan Agricultural University, Changsha 410128, China
| | - Qing Zhou
- College of Resources & Environment, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
31
|
Niu M, Bao C, Zhan J, Yue X, Zou J, Su N, Cui J. Plasma membrane-localized protein BcHIPP16 promotes the uptake of copper and cadmium in planta. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112920. [PMID: 34678630 DOI: 10.1016/j.ecoenv.2021.112920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is one of the toxic heavy metals in soil, which not only suppresses crop production but also threatens human health. In this study, we aim to clarify the biological function of Cd-related gene BcHIPP16, so as to provide potential genetic solutions to decrease the Cd levels of pak choi. Tissue expression analysis showed that BcHIPP16 expressed in almost all the plant bodies. The transcriptional level of BcHIPP16 in roots was higher than that in shoots, which was significantly induced by copper (Cu) deficiency and Cd exposure conditions. Subcellular localization revealed that BcHIPP16 localized in plasma membrane. Expressing BcHIPP16 in yeast cells improved the sensitivity to Cu and Cd and improved their accumulation in yeast. Furthermore, the Cu and Cd content of Arabidopsis seedlings were increased and complemented, respectively when expressing BcHIPP16 in wild type (WT) and hip16 mutants. Non-invasive Micro-test Technology (NMT) was used to measure the real-time Cd2+ influx from the root surface of BcHIPP16 transgenic Arabidopsis lines, and the result demonstrated that BcHIPP16 promoted Cd2+ influx into Arabidopsis root cells. Taken together, our study showed that BcHIPP16 contributed to absorbing nutrient metal Cu and heavy metal Cd in planta.
Collapse
Affiliation(s)
- Mengyang Niu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Changjian Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Junyi Zhan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiaomeng Yue
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jianwen Zou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Nana Su
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jin Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
32
|
Feng S, Shen Y, Xu H, Dong J, Chen K, Xiang Y, Jiang X, Yao C, Lu T, Huan W, Wang H. RNA-Seq Identification of Cd Responsive Transporters Provides Insights into the Association of Oxidation Resistance and Cd Accumulation in Cucumis sativus L. Antioxidants (Basel) 2021; 10:antiox10121973. [PMID: 34943077 PMCID: PMC8750378 DOI: 10.3390/antiox10121973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/15/2021] [Accepted: 12/02/2021] [Indexed: 11/26/2022] Open
Abstract
Greenhouse vegetable production (GVP) has grown rapidly and has become a major force for cucumber production in China. In highly intensive GVP systems, excessive fertilization results in soil acidification, increasing Cd accumulation and oxidative stress damage in vegetables as well as increasing health risk of vegetable consumers. Therefore, enhancing antioxidant capacity and activating the expression level of Cd transporter genes seem to be feasible solutions to promote plant resistance to Cd stress and to reduce accumulated Cd concentration. Here, we used transcriptomics to identify five cucumber transporter genes (CsNRAMP1, CsNRAMP4, CsHMA1, CsZIP1, and CsZIP8) in response to cadmium stress, which were involved in Cd transport activity in yeast. Ionomics, gene expression, and REDOX reaction level association analyses have shown that the transcript of CsNRAMP4 was positively correlated with Cd accumulation and antioxidant capacity of cucumber roots. The expression level of CsHMA1 was negatively correlated with Cd-induced antioxidant capacity. The overexpression of CsHMA1 significantly relieved Cd stress-induced antioxidant activities. In addition, shoots with high CsHMA2 expression remarkably presented Cd bioaccumulation. Grafting experiments confirmed that CsHMA1 contributed to the high antioxidant capacity of cucumber, while CsHMA2 was responsible for the transport of Cd from the roots to the shoots. Our study elucidated a novel regulatory mechanism for Cd transport and oxidative damage removal in horticultural melons and provided a perspective to regulate Cd transport artificially by modulating Cd accumulation and resistance in plants.
Collapse
Affiliation(s)
- Shengjun Feng
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (S.F.); (H.X.); (J.D.); (K.C.); (Y.X.); (X.J.); (C.Y.)
| | - Yanghui Shen
- State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China;
| | - Huinan Xu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (S.F.); (H.X.); (J.D.); (K.C.); (Y.X.); (X.J.); (C.Y.)
| | - Junyang Dong
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (S.F.); (H.X.); (J.D.); (K.C.); (Y.X.); (X.J.); (C.Y.)
| | - Kexin Chen
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (S.F.); (H.X.); (J.D.); (K.C.); (Y.X.); (X.J.); (C.Y.)
| | - Yu Xiang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (S.F.); (H.X.); (J.D.); (K.C.); (Y.X.); (X.J.); (C.Y.)
| | - Xianda Jiang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (S.F.); (H.X.); (J.D.); (K.C.); (Y.X.); (X.J.); (C.Y.)
| | - Chenjie Yao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (S.F.); (H.X.); (J.D.); (K.C.); (Y.X.); (X.J.); (C.Y.)
| | - Tao Lu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Weiwei Huan
- College of Chemistry and Materials Engineering, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China;
| | - Huasen Wang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (S.F.); (H.X.); (J.D.); (K.C.); (Y.X.); (X.J.); (C.Y.)
- Correspondence: ; Tel.: +86-0571-63740028
| |
Collapse
|
33
|
Feng SJ, Liu XS, Cao HW, Yang ZM. Identification of a rice metallochaperone for cadmium tolerance by an epigenetic mechanism and potential use for clean up in wetland. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117837. [PMID: 34329044 DOI: 10.1016/j.envpol.2021.117837] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/09/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal that initiates diverse chronic diseases through food chains. Developing a biotechnology for manipulating Cd uptake in plants is beneficial to reduce environmental and health risks. Here, we identified a novel epigenetic mechanism underlying Cd accumulation regulated by an uncharacterized metallochaperone namely Heavy Metal Responsive Protein (HMP) in rice plants. OsHMP resides in cytoplasm and nucleus, dominantly induced by Cd stress and binds directly to Cd ions. OsHMP overexpression enhanced the rice growth under Cd stress but accumulated more Cd, whereas knockout or knockdown of OsHMP showed a contrasting effect. The enhanced Cd accumulation in the transgenic lines was confirmed by a long-term experiment with rice growing at the environmentally realistic Cd concentration in soil. The bisulfite sequencing and chromatin immunoprecipitation assessments revealed that Cd stress reduced significantly the DNA methylation at CpG (Cytosine-Guanine) and histone H3K9me2 marks in the upstream of OsHMP. By identifying a couple of mutants defective in DNA methylation and histone modification (H3K9me2) such as Osmet1 (methylatransfease1) and Ossdg714 (kryptonite), we found that the Cd-induced epigenetic hypomethylation at the region was associated with OsHMP overexpression, which consequently led to Cd detoxification in rice. The causal relationship was confirmed by the GUS reporter gene coupled with OsHMP and OsMET1 whereby OsMET1 repressed directly the OsHMP expression. Our work signifies that expression of OsHMP is required for Cd detoxification in rice plants, and the Cd-induced hypomethylation in the specific region is responsible for the enhanced OsHMP expression. In summary, this study gained an insight into the epigenetic mechanism for additional OsHMP expression which consequently ensures rice adaptation to the Cd-contaminated environment.
Collapse
Affiliation(s)
- Sheng Jun Feng
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China; The State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xue Song Liu
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong Wei Cao
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
34
|
Wu D, He G, Tian W, Saleem M, Li D, Huang Y, Meng L, He Y, Liu Y, He T. OPT gene family analysis of potato (Solanum tuberosum) responding to heavy metal stress: Comparative omics and co-expression networks revealed the underlying core templates and specific response patterns. Int J Biol Macromol 2021; 188:892-903. [PMID: 34352321 DOI: 10.1016/j.ijbiomac.2021.07.183] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/02/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
Oligopeptides transporter (OPT) can maintain intracellular metal homeostat, however, their evolutionary characteristics, as well as their expression patterns in heavy metal exposure, remain unclear. Compared with previous OPT family identification, we identified 94 OPT genes (including 21 in potato) in potato and 4 other plants by HMMER program based on OPT domain (PF03169) for the first time. Secondly, conserved and special OPTs were found through comprehensive analysis. Thirdly, spatio-temporal tissue specific expression patterns and co-expression frameworks of potato OPT genes under different heavy metal stress were constructed. These data can provide excellent gene resources for food security and soil remediation.
Collapse
Affiliation(s)
- Danxia Wu
- College of Agricultural, Guizhou University, Guiyang 550025, China.
| | - Guandi He
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering and College of Life Sciences Guizhou University, Guiyang 550025, China
| | - Weijun Tian
- College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Muhammad Saleem
- Jinnah Burn and Reconstructive Surgery Center, Allama Iqbal Medical College, Lahore, Pakistan
| | - Dandan Li
- College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Yun Huang
- College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Lulu Meng
- College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Yeqing He
- College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Yao Liu
- College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Tengbing He
- College of Agricultural, Guizhou University, Guiyang 550025, China; Institute of New Rural Development of Guizhou University, Guiyang 550025, China
| |
Collapse
|
35
|
Luo JS, Zhang Z. Mechanisms of cadmium phytoremediation and detoxification in plants. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.cj.2021.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Rono JK, Le Wang L, Wu XC, Cao HW, Zhao YN, Khan IU, Yang ZM. Identification of a new function of metallothionein-like gene OsMT1e for cadmium detoxification and potential phytoremediation. CHEMOSPHERE 2021; 265:129136. [PMID: 33276998 DOI: 10.1016/j.chemosphere.2020.129136] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/07/2020] [Accepted: 11/25/2020] [Indexed: 05/27/2023]
Abstract
Cadmium (Cd) is a biologically non-essential and toxic heavy metal leaking to the environment via natural emission or anthropogenic activities, thereby contaminating crops and threatening human health. Metallothioneins (MTs) are a group of metal-binding proteins playing critical roles in metal allocation and homeostasis. In this study, we identified a novel function of OsMT1e from rice plants. OsMT1e was dominantly expressed in roots at all developmental stages and, to less extent, expressed in leaves at vegetative and seed filling stages. OsMT1e was mainly targeted to the nucleus and substantially induced by Cd exposure. Expression of OsMT1e in a yeast Cd-sensitive strain ycf1 conferred cellular tolerance to Cd, even though the ycf1 + OsMT1e cells accumulated more Cd than the control cells (ycf1 + pYES2). Both transgenic rice overexpressing (OX) and repressing OsMT1e by RNA interference (RNAi) were developed. Phenotypic analysis revealed that OsMT1e overexpression enhanced the rice growth concerning the increased shoot or root elongation, dry weight and chlorophyll contents, whereas the RNAi lines displayed a sensitive growth phenotype compared to wild-type. Assessment with 0.5, 2 and 10 μM Cd for two weeks revealed that the RNAi lines accumulated less Cd, while the OX lines had an increased Cd accumulation in root and shoot tissues. The contrasting Cd accumulation phenotypes between the OX and RNAi lines were further confirmed by a long-term study with 0.5 μM Cd for one month. Overall, the study unveiled a new function of OsMT1e in rice, which can be potentially used for engineering genotypes for phytoremediation or minimizing Cd in rice crops.
Collapse
Affiliation(s)
- Justice Kipkorir Rono
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Le Le Wang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xue Chun Wu
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong Wei Cao
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ya Ning Zhao
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Irfan Ullah Khan
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
37
|
Hussain B, Ashraf MN, Abbas A, Li J, Farooq M. Cadmium stress in paddy fields: Effects of soil conditions and remediation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142188. [PMID: 33254942 DOI: 10.1016/j.scitotenv.2020.142188] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/09/2020] [Accepted: 09/02/2020] [Indexed: 05/08/2023]
Abstract
Cadmium (Cd) toxicity in paddy soil and accumulation in rice plants and grains have got global concern due to its health effects. This review highlights the effects of soil factors including soil organic matter, soil pH, redox potential, and soil microbes which influencing Cd uptake by rice plant. Therefore, a comprehensive review of innovative and environmentally friendly management practices for managing Cd stress in rice is lacking. Thus, this review discusses the effect of Cd toxicity in rice and describes management strategies to offset its effects. Moreover, future research thrusts to reduce its uptake by rice has also been highlighted. Through phytoremediation, Cd may be extracted and stabilized in the soil while through microbes Cd can be sequestrated inside the microbial bodies. Increased Cd uptake in hyperaccumulator plants to remediate and convert the toxic form of Cd into non-toxic forms. While in chemical remediation, Cd can be washed out, immobilized and stabilized in the soil through chemical amendments. The organic amendments may help through an increase in soil pH, adsorption in its functional groups, the formation of complexations, and the conversion of exchangeable to residual forms. Developing rice genotypes with restricted Cd uptake and reduced accumulation in grain through conventional and marker-assisted breeding are fundamental keys for safe rice production. In this regard, the use of molecular techniques including identification of QTLs, CRISPR/Cas9, and functional genomics may be quite helpful.
Collapse
Affiliation(s)
- Babar Hussain
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Muhammad Nadeem Ashraf
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Aqleem Abbas
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jumei Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Muhammad Farooq
- Department of Plant Sciences, College of Agricultural, Marine Sciences Sultan Qaboos University, Al-Khoud 123, Oman.
| |
Collapse
|
38
|
Zhang H, Zhang X, Liu J, Niu Y, Chen Y, Hao Y, Zhao J, Sun L, Wang H, Xiao J, Wang X. Characterization of the Heavy-Metal-Associated Isoprenylated Plant Protein ( HIPP) Gene Family from Triticeae Species. Int J Mol Sci 2020; 21:E6191. [PMID: 32867204 PMCID: PMC7504674 DOI: 10.3390/ijms21176191] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Heavy-metal-associated (HMA) isoprenylated plant proteins (HIPPs) only exist in vascular plants. They play important roles in responses to biotic/abiotic stresses, heavy-metal homeostasis, and detoxification. However, research on the distribution, diversification, and function of HIPPs in Triticeae species is limited. In this study, a total of 278 HIPPs were identified from a database from five Triticeae species, and 13 were cloned from Haynaldia villosa. These genes were classified into five groups by phylogenetic analysis. Most HIPPs had one HMA domain, while 51 from Clade I had two, and all HIPPs had good collinear relationships between species or subgenomes. In silico expression profiling revealed that 44 of the 114 wheat HIPPs were dominantly expressed in roots, 43 were upregulated under biotic stresses, and 29 were upregulated upon drought or heat treatment. Subcellular localization analysis of the cloned HIPPs from H. villosa showed that they were expressed on the plasma membrane. HIPP1-V was upregulated in H. villosa after Cd treatment, and transgenic wheat plants overexpressing HIPP1-V showed enhanced Cd tolerance, as shown by the recovery of seed-germination and root-growth inhibition by supplementary Cd. This research provides a genome-wide overview of the Triticeae HIPP genes and proved that HIPP1-V positively regulates Cd tolerance in common wheat.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Xu Zhang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Jia Liu
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Ying Niu
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Yiming Chen
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Yongli Hao
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Jia Zhao
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
- College of Agriculture, South China Agriculture University, Guangzhou 510642, China
| | - Li Sun
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Haiyan Wang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Jin Xiao
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Xiue Wang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| |
Collapse
|