1
|
Luo C, Zhang Q, Zheng S, Wang D, Huang W, Huang Y, Shi X, Xie H, Wu K. Visual toxicity in zebrafish larvae following exposure to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), triphenyl phosphate (TPhP), and isopropyl phenyl diphenyl phosphate (IPPP). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175131. [PMID: 39127212 DOI: 10.1016/j.scitotenv.2024.175131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
TPhP and IPPP, alternatives to PBDEs as flame retardants, have been studied for their developmental toxicity, but their visual toxicities are less understood. In this study, zebrafish larvae were exploited to evaluate the potential ocular impairments following exposure to BDE-47, TPhP, and IPPP. The results revealed a range of ocular abnormalities, including malformation, vascular issues within the eyes, and histopathological changes in the retina. Notably, the visually mediated behavioral changes were primarily observed in IPPP and TPhP, indicating that they caused more severe eye malformations and vision impairment than BDE-47. Molecular docking and MD simulations showed stronger binding affinity of TPhP and IPPP to RAR and RBP receptors. Elevated ROS and T3 levels induced by these compounds led to apoptosis in larvae eyes, and increased GABA levels induced by TPhP and IPPP hindered retinal repair. In summary, our results indicate TPhP and IPPP exhibit severer visual toxicity than BDE-47, affecting eye development and visually guided behaviors. The underlying mechanism involves disruptions in RA signaling, retinal neurotransmitters imbalance, thyroid hormones up-regulation, and apoptosis in larvae eyes. This work highlights novel insights into the need for cautious use of these flame retardants due to their potential biological hazards, thereby offering valuable guidance for their safer applications.
Collapse
Affiliation(s)
- Congying Luo
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qiong Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Shukai Zheng
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Dinghui Wang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yanhong Huang
- Mental Health Center of Shantou University, Shantou, Guangdong, China
| | - Xiaoling Shi
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Han Xie
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
2
|
Papas W, Aranda-Rodriguez R, Fan X, Kubwabo C, Lee JSL, Fantin E, Zheng ED, Keir JLA, Matschke D, Blais JM, White PA. Occupational Exposure of On-Shift Ottawa Firefighters to Flame Retardants and Polycyclic Aromatic Hydrocarbons. TOXICS 2024; 12:677. [PMID: 39330605 PMCID: PMC11435908 DOI: 10.3390/toxics12090677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024]
Abstract
Firefighters can be exposed to complex mixtures of airborne substances, including hazardous substances released during structural fires. This study employed silicone wristbands (SWBs) as passive samplers to investigate potential exposure to polycyclic aromatic hydrocarbons (PAHs) and flame retardants (FRs). SWBs were deployed at different areas of four fire stations, in four truck cabins, and at an office control location; they were also donned outside the jackets of 18 firefighters who responded to fire calls. Overall, office areas had significantly lower PAHs than fire station areas. Vehicle bays and truck cabins had significantly higher concentrations of low molecular weight (LMW) PAHs than sleeping and living room areas. For organophosphate ester flame retardants (OPFRs), tri-n-butyl phosphate (TnBP) and tris(1-chloro-2-propyl) phosphate (TCPP) were detected in all the samples; 2-ethylhexyl diphenyl phosphate (EHDPP) was more frequently detected in the fire station areas. Triphenyl phosphate (TPP) concentrations were highest in the truck cabin and office areas, and tris(1,3-dichloro-2-propyl)phosphate (TDCPP) was highest in truck cabins. Thirteen of 16 PAHs and nine of 36 OPFRs were detected in all the SWBs worn by firefighters, and tris (2-butoxyethyl) phosphate (TBEP) was the predominant OPFR. Levels of LMW PAHs were significantly lower when firefighters did not enter the fire. LMW PAHs, HMW (high molecular weight) PAHs, and EHDPP were significantly elevated when heavy smoke was reported. This work highlights the potential for occupational exposure to PAHs and flame retardants in some fire station areas; moreover, factors that may influence exposure during fire suppression. Whilst firefighters' occupational exposure to PAHs is likely related to fire suppression and exposure to contaminated gear and trucks, exposure to OPFRs may be more related to their presence in truck interiors and electronics.
Collapse
Affiliation(s)
- William Papas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A0K9, Canada
| | - Rocio Aranda-Rodriguez
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A0K9, Canada
| | - Xinghua Fan
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A0K9, Canada
| | - Cariton Kubwabo
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A0K9, Canada
| | - Janet S L Lee
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A0K9, Canada
| | - Emma Fantin
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A0K9, Canada
| | - Elita D Zheng
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A0K9, Canada
| | - Jennifer L A Keir
- Department of Biology, University of Ottawa. Ottawa, ON, K1N 6N5, Canada
| | | | - Jules M Blais
- Department of Biology, University of Ottawa. Ottawa, ON, K1N 6N5, Canada
| | - Paul A White
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A0K9, Canada
- Department of Biology, University of Ottawa. Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
3
|
Bakali U, Baum JLR, Louzado-Feliciano P, Killawala C, Santiago KM, Pauley JL, Dikici E, Schaefer Solle N, Kobetz EN, Bachas LG, Deo SK, Caban-Martinez AJ, Daunert S. Characterization of fire investigators' polyaromatic hydrocarbon exposures using silicone wristbands. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116349. [PMID: 38714081 PMCID: PMC11215797 DOI: 10.1016/j.ecoenv.2024.116349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/31/2024] [Accepted: 04/16/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND Exposures to polyaromatic hydrocarbons (PAHs) contribute to cancer in the fire service. Fire investigators are involved in evaluations of post-fire scenes. In the US, it is estimated that there are up to 9000 fire investigators, compared to approximately 1.1 million total firefighting personnel. This exploratory study contributes initial evidence of PAH exposures sustained by this understudied group using worn silicone passive samplers. OBJECTIVES Evaluate PAH exposures sustained by fire investigators at post-fire scenes using worn silicone passive samplers. Assess explanatory factors and health risks of PAH exposure at post-fire scenes. METHODS As part of a cross-sectional study design, silicone wristbands were distributed to 16 North Carolina fire investigators, including eight public, seven private, and one public and private. Wristbands were worn during 46 post-fire scene investigations. Fire investigators completed pre- and post-surveys providing sociodemographic, occupational, and post-fire scene characteristics. Solvent extracts from wristbands were analyzed via gas chromatography-mass spectrometry (GC-MS). Results were used to estimate vapor-phase PAH concentration in the air at post-fire scenes. RESULTS Fire investigations lasted an average of 148 minutes, standard deviation ± 93 minutes. A significant positive correlation (r=0.455, p<.001) was found between investigation duration and PAH concentrations on wristbands. Significantly greater time-normalized PAH exposures (p=0.039) were observed for investigations of newer post-fire scenes compared to older post-fire scenes. Regulatory airborne PAH exposure limits were exceeded in six investigations, based on exposure to estimated vapor-phase PAH concentrations in the air at post-fire scenes. DISCUSSION Higher levels of off-gassing and suspended particulates at younger post-fire scenes may explain greater PAH exposure. Weaker correlations are found between wristband PAH concentration and investigation duration at older post-fire scenes, suggesting reduction of off-gassing PAHs over time. Exceedances of regulatory PAH limits indicate a need for protection against vapor-phase contaminants, especially at more recent post-fire scenes.
Collapse
Affiliation(s)
- Umer Bakali
- Department of Biochemistry and Molecular Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jeramy L R Baum
- Department of Biochemistry and Molecular Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Chemistry, College of Arts and Sciences, University of Miami, Coral Gables, FL, USA
| | - Paola Louzado-Feliciano
- Department of Public Health Sciences, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Chitvan Killawala
- Department of Biochemistry and Molecular Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Biomedical Engineering, College of Engineering, University of Miami, Coral Gables, FL, USA
| | - Katerina M Santiago
- Department of Public Health Sciences, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jeffrey L Pauley
- International Association of Arson Investigators, Bowie, MD, USA
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami (BioNIUM), Miami, FL, USA
| | - Natasha Schaefer Solle
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA; Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Erin N Kobetz
- Department of Public Health Sciences, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA; Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Leonidas G Bachas
- Department of Chemistry, College of Arts and Sciences, University of Miami, Coral Gables, FL, USA
| | - Sapna K Deo
- Department of Biochemistry and Molecular Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA; Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami (BioNIUM), Miami, FL, USA
| | - Alberto J Caban-Martinez
- Department of Public Health Sciences, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA.
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA; Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami (BioNIUM), Miami, FL, USA
| |
Collapse
|
4
|
Gill R, Wang Q, Takaku-Pugh S, Lytle E, Wang M, Bennett DH, Park J, Petreas M. Trends in flame retardant levels in upholstered furniture and children's consumer products after regulatory action in California. CHEMOSPHERE 2024; 351:141152. [PMID: 38218243 DOI: 10.1016/j.chemosphere.2024.141152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/02/2024] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
In 2013, California revised its upholstered furniture flammability standard TB 117-2013 to improve fire safety without the need for flame retardant (FR) chemicals. Subsequent legislation (SB 1019) required disclosure of FR content. In 2020 California expanded restriction on FR chemicals to include juvenile products and upholstered furniture (AB 2998). To monitor trends in FR use, and assess the effectiveness of the new regulations, we analyzed 346 samples from upholstered furniture (n = 270) and children's consumer products (n = 76), collected pre- and post-regulatory intervention for added FR chemicals (i.e., ∑FR > 1000 mg/kg). Upholstered furniture samples, collected from products before enactment of the new regulations, had a median FR concentration of 41,600 mg/kg (range: 1360-92,900 mg/kg), with 100% of the foam samples and 13.7% of the textile samples containing ∑FR > 1000 mg/kg. Firemaster formulations (FM 550 and FM 600), a mixture of triphenyl phosphate (TPHP), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB), bis(2-ethylhexyl)-3,4,5,6-tetrabromophthalate (BEH-TEBP) and a mixture of isopropyl- or tert-butyl-triphenyl phosphates (ITPs or TBPPs), were the most frequently detected FR (34%), followed by tris(1,3-dichloroisopropyl) phosphate (TDCIPP; 25%), TPHP with a mixture of polybrominated diphenyl ethers (BDE-47, 99, 100, 153 and 154; 20%) and tris(2-chloroethyl) phosphate (TCEP; 11%). Upholstered furniture components collected after enactment of the new legislation had a median FR concentration of 2600 mg/kg (range: 1160-49,800 mg/kg, outlier sample 282,200 mg/kg), with 11.9% of the foam samples and no textile samples containing ∑FR > 1000 mg/kg. Of these samples, tris(1-chloro-2-propyl) phosphate (TCIPP) was the most frequently detected FR (55%), followed by TDCIPP (30%) and Firemaster (FM 550, 15%). No PBDEs were detected in the post-regulatory intervention products. Our initial work on children's products showed 15% of the samples contained ∑FR > 1000 mg/kg. In our post- AB 2998 work, no regulated children's product components failed compliance (i.e., ∑FR > 1000 mg/kg). The data confirm successful adoption of the new regulations with most samples in compliance, demonstrating the efficacy of regulatory intervention. Given these results, environmental FR exposure is expected to decrease as older FR treated consumer products are replaced with FR free products.
Collapse
Affiliation(s)
- R Gill
- California Department of Toxic Substances Control, Environmental Chemistry Laboratory, Berkeley, CA, 94710, United States.
| | - Q Wang
- California Department of Toxic Substances Control, Environmental Chemistry Laboratory, Berkeley, CA, 94710, United States
| | - S Takaku-Pugh
- California Department of Toxic Substances Control, Environmental Chemistry Laboratory, Berkeley, CA, 94710, United States
| | - E Lytle
- California Department of Toxic Substances Control, Environmental Chemistry Laboratory, Berkeley, CA, 94710, United States
| | - M Wang
- California Department of Toxic Substances Control, Environmental Chemistry Laboratory, Berkeley, CA, 94710, United States
| | - D H Bennett
- University of California, Davis, Department of Public Health Sciences, Davis, CA, 95616, United States
| | - J Park
- California Department of Toxic Substances Control, Environmental Chemistry Laboratory, Berkeley, CA, 94710, United States; University of California, San Francisco, Department of Obstetrics, Gynecology and Reproductive Sciences, San Francisco, CA, 94158, United States
| | - M Petreas
- California Department of Toxic Substances Control, Environmental Chemistry Laboratory, Berkeley, CA, 94710, United States
| |
Collapse
|
5
|
Bralewska K. Air pollution inside fire stations: State-of-the-art and future challenges. Int J Hyg Environ Health 2024; 255:114289. [PMID: 37976582 DOI: 10.1016/j.ijheh.2023.114289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Firefighters are frequently exposed to products of combustion and pyrolysis. Exposure to these substances occurs not only during fires but also at fire stations, particularly where fire equipment and fire uniforms are stored after firefighting operations. The aims of this study were to review the research on the concentrations of various air pollutants in fire stations, identify the limitations and strengths of such research, identify research gaps and related future challenges, and highlight potential solutions for reducing firefighter exposure to air pollution at fire stations. A total of 32 articles published in international journals during 1987-2023 were selected for analysis. The most frequently studied pollutants in fire stations were polycyclic aromatic hydrocarbons, particulate matter, and diesel particulate matter. Research was most often conducted on changing rooms and garages. Firefighting equipment, personal protective equipment, fire trucks, and combustion tools were identified as the main sources of pollution at fire stations. Recommendations aimed at reducing the concentration of pollutants in fire stations were mainly concerned with the systematic decontamination of equipment and the introduction of ventilation solutions that would remove exhaust fumes from garages. This in-depth literature review indicates a lack of comprehensive research on the state and quality of air at fire stations. It also highlights the emerging need for more knowledge on the concentrations of air pollutants in fire stations, health exposure related to these substances, and an analysis of the effectiveness of the proposed solutions.
Collapse
Affiliation(s)
- Karolina Bralewska
- Institute of Safety Engineering, Fire University (formerly Main School of Fire Service), 52/54 Slowackiego Street, Warsaw, 01-629, Poland.
| |
Collapse
|
6
|
Tastet V, Le Vée M, Kerhoas M, Zerdoug A, Jouan E, Bruyère A, Fardel O. Interactions of organophosphate flame retardants with human drug transporters. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115348. [PMID: 37597291 DOI: 10.1016/j.ecoenv.2023.115348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/21/2023]
Abstract
Organophosphate flame retardants (OPFRs) are environmental pollutants of increasing interest, widely distributed in the environment and exerting possible deleterious effects towards the human health. The present study investigates in vitro their possible interactions with human drug transporters, which are targets for environmental chemicals and actors of their toxicokinetics. Some OPFRs, i.e., tris(2-butoxyethyl) phosphate (TBOEP), tris(1,3-dichloroisopropyl) phosphate (TDCPP), tri-o-cresyl phosphate (TOCP) and triphenyl phosphate (TPHP), were found to inhibit activities of some transporters, such as organic anion transporter 3 (OAT3), organic anion transporting polypeptide (OATP) 1B1, OATP1B3, organic cation transporter 2 (OCT2) or breast cancer resistance protein (BCRP). These effects were concentration-dependent, with IC50 values ranging from 6.1 µM (for TDCPP-mediated inhibition of OCT2) to 51.4 µM (for TOCP-mediated inhibition of BCRP). OPFRs also blocked the transporter-dependent membrane passage of endogenous substrates, notably that of hormones. OAT3 however failed to transport TBOEP and TPHP. OPFRs additionally repressed mRNA expressions of some transporters in cultured human hepatic HepaRG cells, especially those of OAT2 and OCT1 in response to TOCP, with IC50 values of 2.3 µM and 2.5 µM, respectively. These data therefore add OPFRs to the expanding list of pollutants interacting with drug transporters, even if OPFR concentrations required to impact transporters, in the 2-50 µM range, are rather higher than those observed in humans environmentally or dietarily exposed to these chemicals.
Collapse
Affiliation(s)
- Valentin Tastet
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Marie Kerhoas
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Anna Zerdoug
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Arnaud Bruyère
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé), France.
| |
Collapse
|
7
|
Li W, Yuan Y, Wang S, Liu X. Occurrence, spatiotemporal variation, and ecological risks of organophosphate esters in the water and sediment of the middle and lower streams of the Yellow River and its important tributaries. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130153. [PMID: 36244105 DOI: 10.1016/j.jhazmat.2022.130153] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Research on the environmental occurrence and behavior of organophosphate esters (OPEs) is very imperative. In this study, 12 targeted OPEs in the water and sediment samples collected from the middle and lower streams of the Yellow River (YR) and its tributaries during the dry, normal, and wet season were analyzed, to reveal their concentration, spatiotemporal variations, and ecological risks. The results indicated that the total concentration of OPEs (ΣOPE) ranged from 97.66 to 2433.30 ng/L in water, and from 47.33 to 234.08 ng/g in sediment. Tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl)phosphate (TCIPP), and triethyl phosphate (TEP) were the most abundant OPEs in the surface water and sediment. The OPEs levels in river water were ranked as the order of dry > normal > wet season. The ΣOPE concentrations in water and sediment were relatively high in the central and lower sections of the YR. The resorcinol-bis(diphenyl)phosphate (RDP) effectively transferred from the overlying water to the sediment. TCEP and RDP posed relatively higher ecological risk than other OPEs. Municipal and chemical industrial discharge might be sources of OPEs in the middle and lower streams of the YR.
Collapse
Affiliation(s)
- Wanting Li
- School of Life Science, Qufu Normal University, Qufu 273165, PR China; College of Resources and Environmental Science, Northwest A&F University, Yangling 712100, PR China
| | - Yin Yuan
- School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Shiliang Wang
- School of Life Science, Qufu Normal University, Qufu 273165, PR China.
| | - Xiaoyu Liu
- School of Life Science, Qufu Normal University, Qufu 273165, PR China
| |
Collapse
|
8
|
Wolffe TAM, Robinson A, Clinton A, Turrell L, Stec AA. Mental health of UK firefighters. Sci Rep 2023; 13:62. [PMID: 36627314 PMCID: PMC9832123 DOI: 10.1038/s41598-022-24834-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/21/2022] [Indexed: 01/12/2023] Open
Abstract
Exposure to trauma, high-stress situations, and disrupted sleep are well known risk factors affecting firefighters' mental health. Little is known about the association between firefighters' exposure to fire contaminants and mental health disorders. The UK Firefighter Contamination Survey assessed firefighters' health and capacity for occupational exposure to contaminants. Participants were invited to anonymously complete its 64 questions online. Logistic regression analyses assessed the associations between self-reported mental health disorders and proxies of contaminant exposure. Results found that firefighters who notice soot in their nose/throat for more than a day after attending fires (Odds Ratio (OR) = 1.8, 1.4-2.4), and those who remain in their personal protective equipment (PPE) for over 4 h after fires (OR = 1.9, 1.2-3.1), were nearly twice as likely to report mental health disorders. Significantly increased odds ratios for all three outcomes of interest (anxiety, depression and/or any mental health disorders) were also found among firefighters who take PPE home to clean. Sleeping problems were reported by 61% of firefighters. These firefighters were 4.2 times more likely to report any mental health disorder (OR = 4.2, 3.7-4.9), 2.9 times more likely to report anxiety (OR = 2.9, 2.4-3.5) and 2.3 times more likely to report depression (OR = 2.3, 1.9-2.8) when compared to firefighters who did not report sleep issues. Effective decontamination measures within UK Fire and Rescue Services, together with firefighters' wellness, may play a crucial role in protecting firefighters' mental health.
Collapse
Affiliation(s)
- Taylor A M Wolffe
- Centre for Fire and Hazards Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
| | - Andrew Robinson
- Centre for Fire and Hazards Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
- Royal Preston Hospital, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, Lancashire, PR2 9HT, UK
| | - Anna Clinton
- Centre for Fire and Hazards Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
| | - Louis Turrell
- Centre for Fire and Hazards Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
- Royal Preston Hospital, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, Lancashire, PR2 9HT, UK
| | - Anna A Stec
- Centre for Fire and Hazards Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK.
| |
Collapse
|
9
|
Wolffe TAM, Clinton A, Robinson A, Turrell L, Stec AA. Contamination of UK firefighters personal protective equipment and workplaces. Sci Rep 2023; 13:65. [PMID: 36627304 PMCID: PMC9832125 DOI: 10.1038/s41598-022-25741-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/05/2022] [Indexed: 01/12/2023] Open
Abstract
Firefighters' personal protective equipment (PPE) is a potential source of chronic exposure to toxic contaminants commonly released from fires. These contaminants have also been found in fire stations. However, little research characterises the routes via which fire contaminants travel back to fire stations. The UK Firefighter Contamination Survey provides information on firefighters' PPE provision, decontamination, and storage practices. All serving UK firefighters were eligible to take part in the survey, which comprised 64 questions. A total of 10,649 responses were included for analysis, accounting for roughly 24% of the UK's firefighting workforce. Results revealed that most firefighters (84%) de-robe contaminated PPE/workwear after re-entering the appliance cab. There was a significant decreasing tendency to send PPE for cleaning after every incident with increasing seniority of role, length of service, and fire attendance frequency. Around one third of firefighters cleaned PPE after every incident. A number of issues were linked to external professional cleaning services, e.g. shrinkage, fit, turn-around time, and stock of reserve/pooled PPE. PPE storage was found to be a potential source of cross contamination, with almost half of firefighters (45%) indicating clean and dirty PPE is not stored separately. More than half of firefighters (57%) stored fire gloves (an item sent for professional decontamination by only 19% of firefighters, and never cleaned by 20%) within other items of PPE such as helmets, boots and tunic/trouser pockets. The survey's results can be used to target gaps in decontamination measures within UK Fire and Rescue Services.
Collapse
Affiliation(s)
- Taylor A M Wolffe
- Centre for Fire and Hazards Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
| | - Anna Clinton
- Centre for Fire and Hazards Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
| | - Andrew Robinson
- Centre for Fire and Hazards Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
- Royal Preston Hospital, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, Lancashire, PR2 9HT, UK
| | - Louis Turrell
- Centre for Fire and Hazards Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
- Royal Preston Hospital, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, Lancashire, PR2 9HT, UK
| | - Anna A Stec
- Centre for Fire and Hazards Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK.
| |
Collapse
|
10
|
Choi S, Ekpe OD, Sim W, Choo G, Oh JE. Exposure and Risk Assessment of Korean Firefighters to PBDEs and PAHs via Fire Vehicle Dust and Personal Protective Equipment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:520-530. [PMID: 36539350 DOI: 10.1021/acs.est.2c06393] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this study, the levels of polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenyl ethers (PBDEs) were characterized in firefighters' personal protective equipment (PPE) (i.e., jackets, pants, hoods, and gloves) and vehicle dust wipe samples to assess the exposure and potential risk of firefighters to these combustion-related toxic pollutants. The mean levels of ∑PBDEs in the fire vehicle dust samples (778 and 449 pg/cm2 for pump trucks and command cars, respectively) were significantly higher than those in the private vehicles (31.2 pg/cm2) (Kruskal-Wallis test, p < 0.05), which was similar to the ∑PAH levels (521, 185, and 46.8 pg/cm2 for pump trucks, command cars, and private vehicles, respectively). In the case of firefighters' PPE, the levels of ∑PBDEs and ∑PAHs in used jackets and pants were found to be, respectively, 70- to 2242-folds and 11- to 265-folds higher than those in their unused counterparts. Biomass/petroleum combustion was found to be the main source of PAH contamination in fire vehicle dust and used PPE in the present study. Both carcinogenic and noncarcinogenic risks via vehicle dust ingestion and dermal absorption from wearing of PPE were within permissible limits, although the relative risk evaluation showed that PAH/PBDE absorption via wearing of PPE could pose a higher likelihood of carcinogenic and noncarcinogenic risks than the ingestion of pollutants via fire vehicle dust, warranting the need for appropriate management of firefighters' personal protective ensembles.
Collapse
Affiliation(s)
- Sol Choi
- Department of Civil and Environmental Engineering, Pusan National University, Busan46241, Republic of Korea
| | - Okon Dominic Ekpe
- Department of Civil and Environmental Engineering, Pusan National University, Busan46241, Republic of Korea
| | - Wonjin Sim
- Institute for Environment and Energy, Pusan National University, Busan46241, Republic of Korea
| | - Gyojin Choo
- Department of Civil and Environmental Engineering, Pusan National University, Busan46241, Republic of Korea
- School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon24341, Republic of Korea
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Busan46241, Republic of Korea
- Institute for Environment and Energy, Pusan National University, Busan46241, Republic of Korea
| |
Collapse
|
11
|
Sonego E, Simonetti G, Di Filippo P, Riccardi C, Buiarelli F, Fresta A, Olivastri M, Pomata D. Characterization of organophosphate esters (OPEs) and polyfluoralkyl substances (PFASs) in settled dust in specific workplaces. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:52302-52316. [PMID: 35258734 DOI: 10.1007/s11356-022-19486-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
An analytical method for detecting flame retardants was slightly modified and optimized for the simultaneous determination of 11 organophosphate esters (OPEs) and 26 polyfluoralkyl substances (PFASs) contained in dust. All the analytes were determined in HPLC/MS-MS, and OPEs were also analyzed in GC/MS, and the results were compared. The study was conducted through the investigation of the Standard Reference Material SRM 2585 of the National Institute of Standard and Technology (NIST). The results were compared with the available reference mass fraction reported in the NIST certificate. The mass fraction obtained for the other OPEs and PFASs was compared to available data in the literature. After verifying the reliability of the results, the method was applied to environmental samples of settled dust, collected in four workplaces, where OPE and PFAS content is expected to be higher than in house dust: a mechanical workshop, an electronic repair center, a disassembly site, and a shredding site of two electronic waste recycling plants. By analyzing both PFASs and OPEs in the same samples, the present work demonstrated that the selected working places were more polluted in OPEs than houses; on the contrary, PFAS content in house dust proved to be more than ten times higher than that in workplaces. Additional research is necessary to confirm these data. Nevertheless, because this preliminary study showed not negligible concentrations of OPEs in some workplaces and of PFASs in houses, their monitoring should be extended to other domestic and selected working sites.
Collapse
Affiliation(s)
- Elisa Sonego
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Giulia Simonetti
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | | | | | - Francesca Buiarelli
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Alice Fresta
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Matteo Olivastri
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | | |
Collapse
|
12
|
Ren Q, Xie X, Zhao C, Wen Q, Pan R, Du Y. 2,2',4,4'-Tetrabromodiphenyl Ether (PBDE 47) Selectively Stimulates Proatherogenic PPARγ Signatures in Human THP-1 Macrophages to Contribute to Foam Cell Formation. Chem Res Toxicol 2022; 35:1023-1035. [PMID: 35575305 DOI: 10.1021/acs.chemrestox.2c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
2,2',4,4'-Tetrabromodiphenyl ether (PBDE 47) is one of the most prominent PBDE congeners detected in the human body, suggesting that the potential health risks of PBDE 47 should be thoroughly considered. However, the cardiovascular toxicity of PBDE 47 remains poorly understood. Here, toxic outcomes of PBDE 47 in human THP-1 macrophages concerning foam cell formation, which play crucial roles in the occurrence and development of atherosclerosis, were elucidated. First, our results indicated that PBDE 47 affected the PPARγ pathway most efficiently in THP-1 macrophages by transcriptomic analysis. Second, the PPARγ target genes CD36 and FABP4, responsible for lipid uptake and accumulation in macrophages, were consistently upregulated both at transcriptional and translational levels in THP-1 macrophages upon PBDE 47. Unexpectedly, PBDE 47 failed to activate the PPARγ target gene LXRα and PPARγ-LXRα-ABCA1/G1 cascade, which is activated by the PPARγ full agonist rosiglitazone and enables cholesterol efflux in macrophages. Thus, coincident with the selective upregulation of the PPARγ target genes CD36 and FABP4, PBDE 47, distinct from rosiglitazone, functionally resulted in more lipid accumulation and oxLDL uptake in THP-1 macrophages through high-content analysis (HCA). Moreover, these effects were markedly abrogated by the addition of the PPARγ antagonist T0070907. Mechanistically, the structural basis of selective activation of PPARγ by PBDE 47 was explored by molecular docking and dynamics simulation, which indicated that PBDE 47 interacted with the PPARγ ligand binding domain (PPARγ-LBD) distinctively from that of rosiglitazone. PBDE 47 was revealed to interact with helix 3 and helix 5 but not helix 12 in the PPARγ-LBD. Collectively, these results unraveled the potential cardiovascular toxicity of PBDE 47 by selective activation of PPARγ to facilitate foam cell formation for the first time.
Collapse
Affiliation(s)
- Qidong Ren
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinni Xie
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chuanfang Zhao
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qing Wen
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiying Pan
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Muensterman DJ, Titaley IA, Peaslee GF, Minc LD, Cahuas L, Rodowa AE, Horiuchi Y, Yamane S, Fouquet TNJ, Kissel JC, Carignan CC, Field JA. Disposition of Fluorine on New Firefighter Turnout Gear. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:974-983. [PMID: 34961317 DOI: 10.1021/acs.est.1c06322] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Firefighter turnout gear is essential for reducing occupational exposure to hazardous chemicals during training and fire events. Per-and polyfluoroalkyl substances (PFASs) are observed in firefighter serum, and possible occupational sources include the air and dust of fires, aqueous film-forming foam, and turnout gear. Limited data exist for nonvolatile and volatile PFASs on firefighter turnout gear and the disposition of fluorine on the individual layers of turnout gear. Further implications for exposure to fluorine on turnout gear are not well understood. Three unused turnout garments purchased in 2019 and one purchased in 2008, were analyzed for 50 nonvolatile and 15 volatile PFASs by liquid chromatography quadrupole time-of-flight mass spectrometry (LC-qTOF-MS) and gas chromatography-mass spectrometry (GC-MS), respectively. Particle-induced gamma ray emission (PIGE), a surface technique, and instrumental neutron activation analysis (INAA), a bulk technique, were used to measure total fluorine. Bulk characterization of the layers by pyrolysis-GC/MS (py-GC/MS) was used to differentiate fluoropolymer (e.g., PTFE) films from textile layers finished with side-chain polymers. The outer layer, moisture barrier, and thermal layers of the turnout gear all yielded measured concentrations of volatile PFASs that exceeded nonvolatile PFAS concentrations, but the summed molar concentrations made up only a small fraction of total fluorine (0.0016-6.7%). Moisture barrier layers comprised a PTFE film, as determined by py-GC-MS, and gave the highest individual nonvolatile (0.159 mg F/kg) and volatile PFAS (20.7 mg F/kg) as well as total fluorine (122,000 mg F/kg) concentrations. Outer and thermal layers comprised aromatic polyamide-based fibers (aramid) treated with side-chain fluoropolymers and had lower levels of individual nonvolatile and volatile PFASs. Equal concentrations of total fluorine by both PIGE and INAA on the outer and thermal layers is consistent with treatment with a side-chain fluoropolymer coating. New turnout gear should be examined as a potential source of firefighter occupational exposure to nonvolatile and volatile PFASs in future assessments.
Collapse
Affiliation(s)
- Derek J Muensterman
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Ivan A Titaley
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Graham F Peaslee
- Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Leah D Minc
- Radiation Center, Oregon State University, Corvallis, Oregon 97311, United States
| | - Liliana Cahuas
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Alix E Rodowa
- Hollings Marine Laboratory, National Institute of Standards and Technology, Charleston, South Carolina 29412, United States
| | - Yuki Horiuchi
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Shogo Yamane
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Thierry N J Fouquet
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - John C Kissel
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105, United States
| | - Courtney C Carignan
- Department of Food Science and Human Nutrition, Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jennifer A Field
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
14
|
Yao C, Yang H, Li Y. A review on organophosphate flame retardants in the environment: Occurrence, accumulation, metabolism and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148837. [PMID: 34246143 DOI: 10.1016/j.scitotenv.2021.148837] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Organophosphate flame retardants (OPFRs), as a substitute for brominated flame retardants (BFRs), are widely used in industrial production and life. The presence of OPFRs in the environment has an adverse effect on the ecological environment system. This review provides comprehensive data for the occurrence of OPFRs and their diester metabolites (OP diesters) in wastewater treatment plants, surface water, drinking water, sediment, soil, air and dust in the environment. In particular, the accumulation and metabolism of OPFRs in organisms and the types of metabolites and metabolic pathways are discussed for animals and plants. In addition, the toxicity of OP triesters and OP diesters in organisms is discussed. Although research on OPFRs has gradually increased in recent years, there are still many gaps to be filled, especially for metabolic and toxicity mechanisms that need in-depth study. This review also highlights the shortcomings of current research and provides suggestions for a basis for future research on OPFRs.
Collapse
Affiliation(s)
- Chi Yao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China
| | - Hanpei Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China
| | - Ying Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China.
| |
Collapse
|
15
|
Yuan J, Sun X, Che S, Zhang L, Ruan Z, Li X, Yang J. AhR-mediated CYP1A1 and ROS overexpression are involved in hepatotoxicity of decabromodiphenyl ether (BDE-209). Toxicol Lett 2021; 352:26-33. [PMID: 34571075 DOI: 10.1016/j.toxlet.2021.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 01/18/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants. They are constantly detected in terrestrial, ocean, and atmospheric systems, and it is of particular concern that these fat-soluble xenobiotics may have a negative impact on human health. This study aimed to evaluate the toxic effect and underlying mechanism of decabromodiphenyl ether (BDE-209) on human liver in a HepG2 cell model. The results showed that BDE-209 significantly induced HepG2 cells apoptosis, increased intracellular reactive oxygen species (ROS), disturbed [Ca 2+] homeostasis and mitochondrial membrane potential (MMP), and caused nuclear shrinkage and DNA double-strand breaks. BDE-209 also significantly decreased the activities of antioxidant parameters, superoxide dismutase (SOD), total antioxygenic capacity (T-AOC), glutathione (GSH), and total glutathione (T-GSH). The up-regulation of the Aryl hydrocarbon receptor (AhR)/cytochrome P4501A1 (CYP1A1) signaling pathway indicates that after long-term and high-dose exposure, BDE-209 may be a liver carcinogen. Interestingly, HepG2 cells attempt to metabolize BDE-209 through the Nrf2-mediated antioxidant pathway. These findings help elucidate the mechanisms of BDE-209-induced hepatotoxicity in humans.
Collapse
Affiliation(s)
- Jinwen Yuan
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Xiaoming Sun
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Siyan Che
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Li Zhang
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China.
| | - Xiaomin Li
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Junhua Yang
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| |
Collapse
|
16
|
Detection of Brominated Plastics from E-Waste by Short-Wave Infrared Spectroscopy. RECYCLING 2021. [DOI: 10.3390/recycling6030054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work, the application of Short-Wave Infrared (SWIR: 1000–2500 nm) spectroscopy was evaluated to identify plastic waste containing brominated flame retardants (BFRs) using two different technologies: a portable spectroradiometer, providing spectra of single spots, and a hyperspectral imaging (HSI) platform, acquiring spectral images. X-ray Fluorescence (XRF) analysis was preliminarily performed on plastic scraps to analyze their bromine content. Chemometric methods were then applied to identify brominated plastics and polymer types. Principal Component Analysis (PCA) was carried out to explore collected data and define the best preprocessing strategies, followed by Partial Least Squares—Discriminant Analysis (PLS-DA), used as a classification method. Plastic fragments were classified into “High Br content” (Br > 2000 mg/kg) and “Low Br content” (Br < 2000 mg/kg). The identified polymers were acrylonitrile butadiene styrene (ABS) and polystyrene (PS). Correct recognition of 89–90%, independently from the applied technique, was achieved for brominated plastics, whereas a correct recognition ranging from 81 to 89% for polymer type was reached. The study demonstrated as a systematic utilization of both the approaches at the industrial level and/or at laboratory scale for quality control can be envisaged especially considering their ease of use and the short detection response.
Collapse
|
17
|
Mayer AC, Fent KW, Chen IC, Sammons D, Toennis C, Robertson S, Kerber S, Horn GP, Smith DL, Calafat AM, Ospina M, Sjodin A. Characterizing exposures to flame retardants, dioxins, and furans among firefighters responding to controlled residential fires. Int J Hyg Environ Health 2021; 236:113782. [PMID: 34119852 PMCID: PMC8325627 DOI: 10.1016/j.ijheh.2021.113782] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/10/2021] [Accepted: 05/31/2021] [Indexed: 01/14/2023]
Abstract
Firefighters may encounter items containing flame retardants (FRs), including organophosphate flame retardants (OPFRs) and polybrominated diphenyl ethers (PBDEs), during structure fires. This study utilized biological monitoring to characterize FR exposures in 36 firefighters assigned to interior, exterior, and overhaul job assignments, before and after responding to controlled residential fire scenarios. Firefighters provided four urine samples (pre-fire and 3-h, 6-h, and 12-h post-fire) and two serum samples (pre-fire and approximately 23-h post-fire). Urine samples were analyzed for OPFR metabolites, while serum samples were analyzed for PBDEs, brominated and chlorinated furans, and chlorinated dioxins. Urinary concentrations of diphenyl phosphate (DPhP), a metabolite of triphenyl phosphate (TPhP), bis(1,3-dichloro-2-propyl) phosphate (BDCPP), a metabolite of tris(1,3-dichloro-2-propyl) phosphate (TDCPP), and bis(2-chloroethyl) phosphate (BCEtP), a metabolite of tris(2-chloroethyl) phosphate (TCEP), increased from pre-fire to 3-hr and 6-hr post-fire collection, but only the DPhP increase was statistically significant at a 0.05 level. The 3-hr and 6-hr post-fire concentrations of DPhP and BDCPP, as well as the pre-fire concentration of BDCPP, were statistically significantly higher than general population levels. BDCPP pre-fire concentrations were statistically significantly higher in firefighters who previously participated in a scenario (within the past 12 days) than those who were responding to their first scenario as part of the study. Similarly, firefighters previously assigned to interior job assignments had higher pre-fire concentrations of BDCPP than those previously assigned to exterior job assignments. Pre-fire serum concentrations of 2,3,4,7,8-pentachlorodibenzofuran (23478-PeCDF), a known human carcinogen, were also statistically significantly above the general population levels. Of the PBDEs quantified, only decabromodiphenyl ether (BDE-209) pre- and post-fire serum concentrations were statistically significantly higher than the general population. These results suggest firefighters absorbed certain FRs while responding to fire scenarios.
Collapse
Affiliation(s)
- Alexander C Mayer
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention (CDC), Cincinnati, OH, USA.
| | - Kenneth W Fent
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention (CDC), Cincinnati, OH, USA
| | - I-Chen Chen
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention (CDC), Cincinnati, OH, USA
| | - Deborah Sammons
- Health Effects Laboratory Division, NIOSH, CDC, Cincinnati, OH, USA
| | | | | | - Steve Kerber
- Firefighter Safety Research Institute, Underwriters Laboratories, Columbia, MD, USA
| | - Gavin P Horn
- Firefighter Safety Research Institute, Underwriters Laboratories, Columbia, MD, USA; Illinois Fire Service Institute, University of Illinois at Urbana-Champaign, IL, USA
| | - Denise L Smith
- Skidmore College, Saratoga Springs, NY, USA; Illinois Fire Service Institute, University of Illinois at Urbana-Champaign, IL, USA
| | - Antonia M Calafat
- Division of Laboratory Services, National Center for Environmental Health, CDC, Atlanta, GA, USA
| | - Maria Ospina
- Division of Laboratory Services, National Center for Environmental Health, CDC, Atlanta, GA, USA
| | - Andreas Sjodin
- Division of Laboratory Services, National Center for Environmental Health, CDC, Atlanta, GA, USA
| |
Collapse
|
18
|
Qi Y, He Z, Yuan J, Ma X, Du J, Yao Z, Wang W. Comprehensive evaluation of organophosphate ester contamination in surface water and sediment of the Bohai Sea, China. MARINE POLLUTION BULLETIN 2021; 163:112013. [PMID: 33454638 DOI: 10.1016/j.marpolbul.2021.112013] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
This study investigated the occurrence and profile of 14 organophosphate esters (OPEs) in surface water and sediment of the whole Bohai Sea. A total of 53 pairs of surface water and sediment samples were collected and the contained OPEs were quantified using a gas chromatography-mass spectrometry (GC-MS). The average concentrations of OPEs in surface water and sediment were in the range of 0-92.9 ng/L and 0.001-8.58 ng/g dry weight (dw), respectively, with tri (2-chloroethyl) phosphate (TCEP) as the predominant congener in both compartments. The total concentrations of 14 OPEs (∑14OPEs) in surface water and sediment were in the range of 10.9-516.4 ng/L and 1.42-52.9 ng/g dw, respectively. The inventories of ∑14OPEs were calculated to be 179.3 tons in the water and 101.5 tons in the sediment. Based on the risk quotients (RQs), the ecological risks of OPEs to the aquatic organisms in the Bohai Sea were considered to be negligible.
Collapse
Affiliation(s)
- Yanjie Qi
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Zhuoshi He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jingjing Yuan
- Henan Institute of Metrology, Zhengzhou 450000, China
| | - Xindong Ma
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China.
| | - Jinqiu Du
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Ziwei Yao
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Wenfeng Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
19
|
Xia D, Maurice A, Leybros A, Lee JM, Grandjean A, Gabriel JCP. On-line spectroscopic study of brominated flame retardant extraction in supercritical CO 2. CHEMOSPHERE 2021; 263:128282. [PMID: 33297226 DOI: 10.1016/j.chemosphere.2020.128282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 06/12/2023]
Abstract
Removal of brominated flame retardants (BFRs) from polymers before disposal or recycling will alleviate negative environmental effects and ensure safe usage of recycled products. Extraction of BFRs in supercritical CO2 is appealing but also presents challenges to industries due to limited solubility and lack of kinetic studies. For a more comprehensive evaluation of supercritical extraction potentialities, we (i) developed an on-line pressure apparatus that is compatible with both the FTIR and UV-vis spectrometers to enable kinetic and thermodynamic studies; (ii) studied kinetic extraction involving three conventional and two novel BFRs as well as three typical polymeric matrix. Solubilities were determined using the gravimetric method or X-ray fluorescence. FTIR exhibited a superior applicability compared to UV-vis in the following BFR extraction's time-dependency binary and ternary systems. We observed that faster stirring speed, higher temperature, and finer particle size can accelerate the overall extraction kinetics. In binary systems, it took less than 2 h to achieve equilibrium for each BFR at 60 °C, 25 MPa and 1000 rpm. In the presence of polymeric matrix, slower extraction kinetics were observed due to the occurrence of competitive dissolution and molecular diffusion within the matrix. Mathematical models derived from irreversible desorption and Fick's diffusion laws fitted well with the observed extraction kinetics of BFRs, thus enabling us to identify the rate-determining step. The high solubilization rate coefficients that we measured for BFRs revealed that the dynamic extraction process in up-scaling design could compensate for the low solubility with flowing supercritical CO2.
Collapse
Affiliation(s)
- Dong Xia
- Nanyang Technological University, Energy Research Institute @ NTU (ERI@N), SCARCE Laboratory 637459, Singapore
| | - Ange Maurice
- Nanyang Technological University, Energy Research Institute @ NTU (ERI@N), SCARCE Laboratory 637459, Singapore
| | | | - Jong-Min Lee
- Nanyang Technological University, Energy Research Institute @ NTU (ERI@N), SCARCE Laboratory 637459, Singapore; Nanyang Technological University, School of Chemical and Biomedical Engineering, 637459, Singapore
| | | | - Jean-Christophe P Gabriel
- Nanyang Technological University, Energy Research Institute @ NTU (ERI@N), SCARCE Laboratory 637459, Singapore; Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| |
Collapse
|
20
|
Hall SM, Patton S, Petreas M, Zhang S, Phillips AL, Hoffman K, Stapleton HM. Per- and Polyfluoroalkyl Substances in Dust Collected from Residential Homes and Fire Stations in North America. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14558-14567. [PMID: 33143410 PMCID: PMC7939574 DOI: 10.1021/acs.est.0c04869] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Over the past few years, human exposure to per- and polyfluoroalkyl substances (PFAS) has garnered increased attention. Research has focused on PFAS exposure via drinking water and diet, and fewer studies have focused on exposure in the indoor environment. To support more research on the latter exposure pathway, we conducted a study to evaluate PFAS in indoor dust. Dust samples from 184 homes in North Carolina and 49 fire stations across the United States and Canada were collected and analyzed for a suite of PFAS using liquid and gas chromatography-mass spectrometry. Fluorotelomer alcohols (FTOHs) and di-polyfluoroalkyl phosphoric acid esters (diPAPs) were the most prevalent PFAS in both fire station and house dust samples, with medians of approximately 100 ng/g dust or greater. Notably, perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonate, perfluorononanoic acid, and 6:2 diPAP were significantly higher in dust from fire stations than from homes, and 8:2 FTOH was significantly higher in homes than in fire stations. Additionally, when comparing our results to earlier published values, we see that perfluoroalkyl acid levels in residential dust appear to decrease over time, particularly for PFOA and PFOS. These results highlight a need to better understand what factors contribute to PFAS levels in dust and to understand how much dust contributes to overall human PFAS exposure.
Collapse
Affiliation(s)
- Samantha M. Hall
- Nicholas School of the Environment, Duke University, 9 Circuit Drive, Box 90328, Durham, North Carolina, United States
| | - Sharyle Patton
- Commonweal, Bolinas, California, USA, 451 Mesa Road, Bolinas, California, United States
| | - Myrto Petreas
- Environmental Chemistry Laboratory, California Department of Toxic Substances Control, 700 Heinz Avenue, Berkeley, California, United States
| | - Sharon Zhang
- Nicholas School of the Environment, Duke University, 9 Circuit Drive, Box 90328, Durham, North Carolina, United States
| | - Allison L. Phillips
- Nicholas School of the Environment, Duke University, 9 Circuit Drive, Box 90328, Durham, North Carolina, United States
| | - Kate Hoffman
- Nicholas School of the Environment, Duke University, 9 Circuit Drive, Box 90328, Durham, North Carolina, United States
| | - Heather M. Stapleton
- Nicholas School of the Environment, Duke University, 9 Circuit Drive, Box 90328, Durham, North Carolina, United States
- CORRESPONDING AUTHOR: Heather M. Stapleton, PhD, Nicholas School of the Environment, Duke University, 9 Circuit Drive, Box 90328, Durham, North Carolina 27708;
| |
Collapse
|