1
|
Jayan A, Vijayan V, Sreekantan S, Arya S, Krishnaprasad PK, Santosh M, Shaji E. Hematite nanomaterial from a tropical freshwater ecosystem: Geological, environmental, and industrial implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175611. [PMID: 39168323 DOI: 10.1016/j.scitotenv.2024.175611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Synthetic hematite (Fe2O3) nanoparticles are extensively explored for medicine, optics, and environmental remediation. However, natural iron nanoparticles in a freshwater ecosystem have not been well characterized. Here we report the presence of natural iron nanoparticles in a tropical freshwater ecosystem in southern India. These iron nanoparticles that exist as slime in the natural water system were characterized through a multiproxy investigation involving Field-Emission Scanning Electron Microscopy (FE-SEM), X-ray Diffraction (XRD), X-ray Fluorescence (XRF), X-ray Photoelectron Spectroscopy (XPS), and Raman spectroscopy and BET analyses. These nanoparticles exist as amorphous hematite (Fe2O3), with the XRD peaks matching that of the iron arsenate compound. Fe2O3 occurs as mesoporous hollow microspheres with a size range of 14.97 to 61.3 nm and a surface area of 48.45m2/g. Further, the identification of Bacillus cereus in the slime suggests its role in iron sequestration, indicating a biogeochemical origin, which we infer is a particularly common phenomenon in tropical river basins where lateritic soils prevail. This study is the first to describe natural iron nanoparticles in a tropical freshwater ecosystem. It identifies their amorphous hematite structure and biogeochemical origin, offering new insights into their ecological roles and potential applications. This discovery presents an opportunity for utilizing this slime as an important source of hematite nanomaterials, with potential industrial applications.
Collapse
Affiliation(s)
- Arya Jayan
- Department of Geology, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695581, India
| | - Viji Vijayan
- Department of Biochemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695581, India; Translational Research and Innovation Centre, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695581, India
| | - Sruthi Sreekantan
- Department of Biochemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695581, India
| | - S Arya
- Department of Geology, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695581, India
| | - P K Krishnaprasad
- Department of Geology, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695581, India
| | - M Santosh
- School of Earth Sciences and Resources, China University of Geosciences Beijing, 29 Xueyuan Road, Beijing 100083, China; Department of Earth Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - E Shaji
- Department of Geology, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695581, India; Translational Research and Innovation Centre, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695581, India.
| |
Collapse
|
2
|
Akhtar MS, Jutt DSR, Aslam S, Nawaz R, Irshad MA, Khan M, Khairy M, Irfan A, Al-Hussain SA, Zaki MEA. Green synthesis of graphene oxide and magnetite nanoparticles and their arsenic removal efficiency from arsenic contaminated soil. Sci Rep 2024; 14:23094. [PMID: 39367070 PMCID: PMC11452486 DOI: 10.1038/s41598-024-73734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024] Open
Abstract
Graphene-based nanomaterials have been proved to be robust sorbents for efficient removal of environmental contaminants including arsenic (As). Biobased graphene oxide (bGO-P) derived from sugarcane bagasse via pyrolysis, GO-C via chemical exfoliation, and magnetite nanoparticles (FeNPs) via green approach using Azadirachta indica leaf extract were synthesized and characterized by Ultraviolet-Visible Spectrophotometer (UV-vis.), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), mean particle size and Scanning electron microscopy (SEM) along with Energy dispersive spectroscopy (EDX) analysis. Compared to cellulose and hemicellulose, the lignin fraction was less in the precursor material. The GOC, bGO-P and FeNPs displayed maximum absorption at 230, 236, and 374 nm, respectively. FTIR spectrum showed different functional groups (C-OH, C-O-C, COOH and O-H) modifying the surfaces of synthesized materials. Graphene based nanomaterials showed clustered dense flakes of GO-C and thin transparent flakes of bGO-P. Elemental composition by EDX analysis of GO-C (71.26% C and 27.36% O), bGO-P (74.54% C and 24.61% O) and FeNPs (55.61% Fe, 4.1% C and 35.72% O) confirmed the presence of carbon, oxygen, and iron in synthesized nanomaterials. Sorption study was conducted with soil amended with different doses of synthesized nanomaterials (10, 50 and 250 mg) and exposed to 100, 300 and 500 ppm of As. Arsenic concentrations were estimated by colorimetry and atomic absorption spectroscopy (AAS). GO-C, bGO-P, and FeNPs showed substantial As removal efficiency i.e., 81 to 99.3%, 65 to 98.8% and 73.1-89.9%, respectively. Green synthesis of bGO-P and magnetite nanoparticles removed substantial amounts of As compared to GO-C and can be effectively deployed for As removal or immobilization. Higher and medium sorbent doses (250 and 50 mg) exhibited greater As removal and data was best fitted for Freundlich isotherm evidencing favorable sorption. Nevertheless, at low sorbent doses, data was best fitted for both models. Newly synthesized nanomaterials emerged as promising materials for As removal strategy for soil nano-remediation and can be effectively deployed in As contaminated soils.
Collapse
Affiliation(s)
- Muhammad Shahbaz Akhtar
- Department of Environmental Sciences, Forman Christian College University, Lahore, 54600, Pakistan.
| | | | - Sohaib Aslam
- Department of Environmental Sciences, Forman Christian College University, Lahore, 54600, Pakistan
| | - Rab Nawaz
- Department of Environmental Sciences, The University of Lahore, Lahore, 54000, Pakistan
- Faculty of Engineering and Quantity Surveying, INTI International University, Nilai, 71800, Negeri Sembilan, Malaysia
| | - Muhammad Atif Irshad
- Department of Environmental Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Maheer Khan
- Department of Pharmacy, The University of Lahore, Lahore, 54000, Pakistan
| | - M Khairy
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
- Chemistry Department, Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Sami A Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia.
| |
Collapse
|
3
|
Chauhan K, Singh P, Sen K, Singhal RK, Thakur VK. Recent Advancements in the Field of Chitosan/Cellulose-Based Nanocomposites for Maximizing Arsenic Removal from Aqueous Environment. ACS OMEGA 2024; 9:27766-27788. [PMID: 38973859 PMCID: PMC11223156 DOI: 10.1021/acsomega.3c09713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024]
Abstract
Water remediation, acknowledged as a significant scientific topic, guarantees the safety of drinking water, considering the diverse range of pollutants that can contaminate it. Among these pollutants, arsenic stands out as a particularly severe threat to human health, significantly compromising the overall quality of life. Despite widespread awareness of the harmful effects of arsenic poisoning, there remains a scarcity of literature on the utilization of biobased polymers as sustainable alternatives for comprehensive arsenic removal in practical concern. Cellulose and chitosan, two of the most prevalent biopolymers in nature, provide a wide range of potential benefits in cutting-edge industries, including water remediation. Nanocomposites derived from cellulose and chitosan offer numerous advantages over their larger equivalents, including high chelating properties, cost-effective production, strength, integrity during usage, and the potential to close the recycling loop. Within the sphere of arsenic remediation, this Review outlines the selection criteria for novel cellulose/chitosan-nanocomposites, such as scalability in synthesis, complete arsenic removal, and recyclability for technical significance. Especially, it aims to give an overview of the historical development of research in cellulose and chitosan, techniques for enhancing their performance, the current state of the art of the field, and the mechanisms underlying the adsorption of arsenic using cellulose/chitosan nanocomposites. Additionally, it extensively discusses the impact of shape and size on adsorbent efficiency, highlighting the crucial role of physical characteristics in optimizing performance for practical applications. Furthermore, this Review addresses regeneration, reuse, and future prospects for chitosan/cellulose-nanocomposites, which bear practical relevance. Therefore, this Review underscores the significant research gap and offers insights into refining the structural features of adsorbents to improve total inorganic arsenic removal, thereby facilitating the transition of green-material-based technology into operational use.
Collapse
Affiliation(s)
- Kalpana Chauhan
- Chemistry
under School of Engineering and Technology, Central University of Haryana, Mahendragarh, Haryana 123031, India
| | - Prem Singh
- Shoolini
University, Solan, Himachal Pradesh 173229, India
| | - Kshipra Sen
- Shoolini
University, Solan, Himachal Pradesh 173229, India
| | - Rakesh Kumar Singhal
- Analytical
Chemistry Division, Bhabha Atomic Research
Centre, Mumbai 400085, India
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Centre, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom
| |
Collapse
|
4
|
Anjum A, Gupta D, Singh B, Garg R, Pani B, Kashif M, Jain S. Clay-polymer nanocomposites for effective water treatment: opportunities, challenges, and future prospects. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:666. [PMID: 38935201 DOI: 10.1007/s10661-024-12823-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
The metal intoxication and its associated adverse effects to humans have led to the research for development of water treatment technologies from pollution hazards. Therefore, development of cheaper water remediation technologies is more urgent than ever. Clays and clay minerals are naturally occurring, inexpensive, non-toxic materials possessing interesting chemical and physical properties. As a result of interesting surface properties, these have been developed as efficient absorbent in water remediation. Recently, clay-polymer nanocomposites have provided a cost-effective technological platform for removing contaminants from water. Covering research advancements from past 25 years, this review highlights the developments in clay-polymer nanocomposites and their advanced technical applications are evaluated with respect to the background and issues in remediation of toxic metals and organic compounds from water. The extensive analysis of literature survey of more than two decades suggests that future work need to highlight on advancement of green and cost-effective technologies. The development of understanding of the interaction and exchange between toxin and clay-polymer composites would provide new assembly methods of nanocomposites with functional molecules or nanomaterials need to be extended to increase the detection and extraction limit to parts per trillion.
Collapse
Affiliation(s)
- Ansar Anjum
- Department of Applied Sciences and Humanities,, Galgotias College of Engineering and Technology, Greater Noida, 201310, Uttar Pradesh, India.
| | - Deepak Gupta
- Department of Applied Chemistry, Delhi Technological University, Delhi, 110042, India.
| | - Bholey Singh
- Department of Chemistry, Swami Shraddhanand College, University of Delhi, Delhi, 110036, India
| | - Rajni Garg
- Department of Applied Sciences and Humanities,, Galgotias College of Engineering and Technology, Greater Noida, 201310, Uttar Pradesh, India.
| | - Balaram Pani
- Department of Chemistry, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, 110075, India
| | - Mohd Kashif
- Department of Applied Sciences and Humanities,, Galgotias College of Engineering and Technology, Greater Noida, 201310, Uttar Pradesh, India
| | - Shilpa Jain
- Department of Chemistry, Shivaji College (University of Delhi), Delhi, 110027, India
| |
Collapse
|
5
|
Luo R, Li R, Zheng Z, Zhang L, Xie L, Wu C, Wang S, Chai X, Ma NL, Naushad M, Du G, Xu K. Efficient Cr(VI) remediation by electrospun composite porous nanofibers incorporating biomass with metal oxides and metal-organic framework. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124026. [PMID: 38663509 DOI: 10.1016/j.envpol.2024.124026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/16/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Abstract
To develop a highly efficient adsorbent to remediate and remove hexavalent chromium ions (Cr(VI)) from polluted water, cellulose acetate (CA) and chitosan (CS), along with metal oxides (titanium dioxide (TiO2) and ferroferric oxide (Fe3O4)), and a zirconium-based metal-organic framework (UiO-66) were used to fabricate the composite porous nanofiber membranes through electrospinning. The adsorption performance, influencing factors, adsorption kinetics and isotherms of composite nanofiber membranes were comprehensively investigated. The multi-layer membrane with interpenetrating nanofibers and surface functional groups enhanced the natural physical adsorption and provided potential chemical sites. The thermal stability was improved by introducing TiO2 and UiO-66. CA/CS/UiO-66 exhibited the highest adsorption capacity (118.81 mg g-1) and removal rate (60.76%), which were twice higher than those of the control. The correlation coefficients (R2) of all the composite nanofibers regressed by the Langmuir model were significantly higher than those by the Freundlich model. The pseudo-first-order kinetic curve of CA/CS composite nanofibers showed the highest R2 (0.973), demonstrating that the whole adsorption process involved a combination of strong physical adsorption and weak chemical adsorption by the amino groups of CS. However, the R2 values of the pseudo-second-order kinetic model increased after incorporating TiO2, Fe3O4, and UiO-66 into the CA/CS composite nanofiber membranes since an enhanced chemical reaction with Cr (VI) occured during the adsorption.
Collapse
Affiliation(s)
- Ronggang Luo
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming, 650224, China
| | - Ruiqi Li
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming, 650224, China
| | - Zhangzhi Zheng
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming, 650224, China
| | - Lianpeng Zhang
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming, 650224, China
| | - Linkun Xie
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming, 650224, China
| | - Chunhua Wu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming, 650224, China
| | - Siqun Wang
- Center for Renewable Carbon, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Xijuan Chai
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming, 650224, China
| | - Nyuk Ling Ma
- BIOSES Research Interest Group, Faculty of Science & Marine Environment, University of Malaysia Terengganu, 21030, Malaysia; Center for Global Health Research (CGHR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Guanben Du
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming, 650224, China
| | - Kaimeng Xu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming, 650224, China.
| |
Collapse
|
6
|
Wang J, Chen M, Han Y, Sun C, Zhang Y, Zang S, Qi L. Fast and efficient As(III) removal from water by bifunctional nZVI@NBC. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:160. [PMID: 38592564 DOI: 10.1007/s10653-024-01939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/23/2024] [Indexed: 04/10/2024]
Abstract
As a notable toxic substance, metalloid arsenic (As) widely exists in water body and drinking As-contaminated water for an extended period of time can result in serious health concerns. Here, the performance of nanoscale zero-valent iron (nZVI) modified N-doped biochar (NBC) composites (nZVI@NBC) activated peroxydisulfate (PDS) for As(III) removal was investigated. The removal efficiencies of As(III) with initial concentration ranging from 50 to 1000 μg/L were above 99% (the residual total arsenic below 10 μg/L, satisfying the contaminant limit for arsenic in drinking water) within 10 min by nZVI@NBC (0.2 g/L)/PDS (100 μM). As(III) removal efficiency influenced by reaction time, PDS dosage, initial concentration, pH, co-existing ions, and natural organic matter in nZVI@NBC/PDS system were investigated. The nZVI@NBC composite is magnetic and could be conveniently collected from aqueous solutions. In practical applications, nZVI@NBC/PDS has more than 99% As(III) removal efficiency in various water bodies (such as deionized water, piped water, river water, and lake water) under optimized operation parameters. Radical quenching and EPR analysis revealed that SO4·- and ·OH play important roles in nZVI@NBC/PDS system, and the possible reaction mechanism was further proposed. These results suggest that nZVI@NBC activated peroxydisulfate may be an efficient and fast approach for the removal of water contaminated with As(III).
Collapse
Affiliation(s)
- Jiuwan Wang
- College of Environment, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Mengfan Chen
- College of Environment, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Yulian Han
- College of Environment, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Congting Sun
- College of Environment, Liaoning University, Shenyang, 110036, People's Republic of China.
| | - Ying Zhang
- College of Environment, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Shuyan Zang
- Shenyang University of Chemical Technology, Shenyang, 110142, People's Republic of China.
| | - Lin Qi
- Shenyang Municipal Bureau of Ecology and Environment, Shenyang, 110036, People's Republic of China
| |
Collapse
|
7
|
Kalami S, Diakina E, Noorbakhsh R, Sheidaei S, Rezania S, Vasseghian Y, Kamyab H, Mohammadi AA. Metformin-modified polyethersulfone magnetic microbeads for effective arsenic removal from apatite soil leachate water. ENVIRONMENTAL RESEARCH 2024; 241:117627. [PMID: 37967700 DOI: 10.1016/j.envres.2023.117627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/08/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
Arsenic is the hazardous species and still is the global challenge in water treatment. Apatite soil is highly rich in arsenic species, and its mining presents various environmental issues. In this study, novel magnetic microbeads as adsorbent were developed for the elimination of hazardous arsenic ions from apatite soil's aqueous leachate before discharging into environment. The microbeads were fabricated with metformin polyether sulfone after being doped with zero-valent iron (Met-PES/ZVI). The microbeads were characterized using various techniques, including FTIR, XRD, SEM-EDX, VSM, and zeta potential analysis. The developed adsorbent demonstrated a significant elimination in arsenic in aqueous leachate, achieving 82.39% removal after 30 min of contact time, which further increased to 90% after 180 min of shaking. The kinetic analysis revealed that the pseudo-second-order model best represented the adsorption process. The intra-particle diffusion model indicated that the adsorption occurred in two steps. The Langmuir model (R2 = 0.991), with a maximum adsorption capacity of 188.679 mg g-1, was discovered to be the best fit for the experimental data as compared Freundlich model (R2 = 0.981). According to the thermodynamic outcome (ΔG < -20 kJ/mol), the adsorption process was spontaneous and involved physisorption. These findings demonstrate the potential of magnetic Met-PES/ZVI microbeads as an efficient adsorbent for the removal of arsenic from apatite soil aqueous leachate.
Collapse
Affiliation(s)
- Shakila Kalami
- Department of Chemical Engineering and Petroleum, Chemistry & Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Ekaterina Diakina
- Department of Mechanical Engineering, Bauman Moscow State Technical University, Moscow, Russia; Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mishref Campus, Kuwait
| | - Roya Noorbakhsh
- Food Technology and Agricultural Products Research Center, Standard Research Institute (SRI), PO Box 31745-139, Karaj, Iran.
| | - Sina Sheidaei
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
| | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea.
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India
| | - Ali Akbar Mohammadi
- Department of Environmental Health Engineering, Neyshabur University of Medical Sciences, Neyshabur, 9318614139, Iran
| |
Collapse
|
8
|
Wang Y, Lu W, Jing F, Jin M, He X, Xue Y, Hu Y, Yu R. Sulfhydryl-Functionalized Amino Group Polymer Microcomposites toward Efficient Adsorption of Aqueous Cr(VI), As(III), Cd(II), and Pb(II). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:519-528. [PMID: 38150093 DOI: 10.1021/acs.langmuir.3c02778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The development of efficient adsorbents for heavy metal pollution, especially five toxic heavy metals, has attracted great research interest. Polymer-based adsorbents have aroused research value for their abundant functional groups and high porosity to the ability to capture metal ions. We designed a sulfhydryl-functionalized polymer microcomposite to take up Cr(VI), As(III), Cd(II), and Pb(II). The adsorption capacity achieved was 64.2 mg g-1 for Cr(VI), 44.9 mg g-1 for As(III), 35.5 mg g-1 for Cd(II), and 18.2 mg g-1 for Pb(II). Langmuir and Sips isotherm model is dominant for As(III), Cd(II), and Pb(II) adsorption. Pseudo-second-order kinetic models can better describe the adsorption behavior of Cr(VI), implying that chemisorption is accompanied by Cr(VI) adsorption. Cr(VI) simultaneous reduction to Cr(III) through the benzenoid amine oxidate pathway was the dominant mechanism, precipitation for Cd(II) adsorption was convinced, and chelation between As(III)/Pb(II) and─SH group and complexation between Pb(II) and C═O or benzene hydroxyl were a plausible mechanism for As(III) and Pb(II) adsorption.
Collapse
Affiliation(s)
- Yueyang Wang
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, Jiangxi 333403, P. R. China
| | - Weiwei Lu
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, Jiangxi 333403, P. R. China
| | - Fangfen Jing
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, Jiangxi 333403, P. R. China
| | - Mingzhu Jin
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, Jiangxi 333403, P. R. China
| | - Xinyang He
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, Jiangxi 333403, P. R. China
| | - Yuchen Xue
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, Jiangxi 333403, P. R. China
| | - Yajun Hu
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, Jiangxi 333403, P. R. China
| | - Rongtai Yu
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, Jiangxi 333403, P. R. China
| |
Collapse
|
9
|
Chen D, Song Y, Li H, Ma M, Nan F, Huang P, Zhan W. Remarkable adsorption of As(V) by Fe 3+ and Mg 2+ modified alginate porous beads (Fe/Mg-SA) via a facile method. Int J Biol Macromol 2024; 254:127994. [PMID: 37952800 DOI: 10.1016/j.ijbiomac.2023.127994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Although sodium alginate (SA) is frequently utilized because of its good gelling properties, the substance's dearth of adsorption active sites prevents it from effectively removing heavy metals. Herein, SA was used as the base material to form a cross-linked structure with Fe3+ and Mg2+, and gel beads with a diameter of 2.0 ± 0.1 mm with specific adsorption on As(V) were synthesized as adsorbent (Fe/Mg-SA). Fe/Mg-SA was systematically characterized, and its adsorption properties were investigated by varying several conditions. Fe/Mg-SA had a wide pH application range. The adsorption kinetics revealed that a quasi-secondary kinetic model was followed. The adsorption process is linked to the complexation of hydroxyl and AsO43-, chemisorption predominated the adsorption process. The maximal adsorption capacity of Fe/Mg-SA is determined by fitting the Langmuir model to be 37.4 mg/g. Compared to other adsorbents, it is simpler to synthesis, more effective and cheaper. Each treatment of 1 m3 wastewater of Fe/Mg-SA only costs ¥ 38.612. The novel gel beads synthesized provides a better option for purifying groundwater contaminated with As(V).
Collapse
Affiliation(s)
- Donghui Chen
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China; Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Wuhan 430074, PR China
| | - Yanqing Song
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China; Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Wuhan 430074, PR China
| | - Hong Li
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China; Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Wuhan 430074, PR China
| | - Mengyu Ma
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China; Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Wuhan 430074, PR China
| | - Fangming Nan
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China; Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Wuhan 430074, PR China
| | - Ping Huang
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China; Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Wuhan 430074, PR China
| | - Wei Zhan
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China; Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Wuhan 430074, PR China.
| |
Collapse
|
10
|
Saravanan A, Ragini YP, Kumar PS, Thamarai P, Rangasamy G. A critical review on the removal of toxic pollutants from contaminated water using magnetic hybrids. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105099-105118. [PMID: 37740158 DOI: 10.1007/s11356-023-29811-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/06/2023] [Indexed: 09/24/2023]
Abstract
The persistence of organic/inorganic pollutants in the water has become a serious environmental issue. Among the different pollutants, dyes and heavy metal pollution in waterways are viewed as a global ecological problem that can have an impact on humans, plants, and animals. The necessity to develop a sustainable and environmentally acceptable approach to remove these toxic contaminants from the ecosystem has been raised. In the past two decades, rapid industrialization and anthropogenic activities in developed countries have aggravated environmental pollution. Industrial effluents that are discharged directly into the natural environment taint the water, which has a consequence for the water resources. Magnetic nanohybrids are broadly investigated materials used in the adsorption and photocatalytic degradation of poisonous pollutants present across water effluents. In the present review, the toxic health effects of heavy metals and dyes from the water environment have been discussed. This paper reviews the role of magnetic nanohybrids in the removal of pollutants from the water environment, providing an adequate point of view on their new advances regarding their qualities, connection methodologies, execution, and their scale-up difficulties.
Collapse
Affiliation(s)
- Anbalagan Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | | | - Ponnusamy Senthil Kumar
- Centre for Pollution Control and Environmental Engineering, Pondicherry University, Chinna Kalapet, Puducherry-605014, India.
| | - Packiyam Thamarai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
11
|
Nurmamat X, Zhao Z, Ablat H, Ma X, Xie Q, Zhang Z, Tian J, Jia H, Wang F. Application of surface-enhanced Raman scattering to qualitative and quantitative analysis of arsenic species. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4798-4810. [PMID: 37724459 DOI: 10.1039/d3ay00736g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Given the toxicity of arsenic, there is an urgent need for the development of efficient and reliable detection systems. Raman spectroscopy, a powerful tool for material characterization and analysis, can be used to explore the properties of a wide range of different materials. Surface-enhanced Raman spectroscopy (SERS) can detect low concentrations of chemicals. This review focuses on the progress of qualitative and quantitative studies of the adsorption processes of inorganic arsenic and organic arsenic in aqueous media using Raman spectroscopy in recent years and discusses the application of Raman spectroscopy theory simulations to arsenic adsorption processes. Sliver nanoparticles are generally used as the SERS substrate to detect arsenic. Inorganic arsenic is chemisorbed onto the silver surface by forming As-O-Ag bonds, and the Raman shift difference in the As-O stretching (∼60 cm-1) between As(V) and As(III) allows SERS to detect and distinguish between As(V) and As(III) in groundwater samples. For organic arsenicals, specific compounds can be identified based on spectral differences in the vibration modes of the chemical bonds. Under the same laser excitation, the intensity of the Raman spectra for different arsenic concentrations is linearly related to the concentration, thus allowing quantitative analysis of arsenic. Molecular modeling of adsorbed analytes via density functional theory calculation (DFT) can predict the Raman shifts of analytes in different laser wavelengths.
Collapse
Affiliation(s)
- Xamsiya Nurmamat
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
- Xinjiang Key Laboratory of Energy Storage and Photoelectroctalytic Materials, Urumqi 830054, China
| | - Zhixi Zhao
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
- Xinjiang Key Laboratory of Energy Storage and Photoelectroctalytic Materials, Urumqi 830054, China
| | - Hadiya Ablat
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
- Xinjiang Key Laboratory of Energy Storage and Photoelectroctalytic Materials, Urumqi 830054, China
| | - Xiaoyan Ma
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
- Xinjiang Key Laboratory of Energy Storage and Photoelectroctalytic Materials, Urumqi 830054, China
| | - Qingqing Xie
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
- Xinjiang Key Laboratory of Energy Storage and Photoelectroctalytic Materials, Urumqi 830054, China
| | - Ziqi Zhang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
- Xinjiang Key Laboratory of Energy Storage and Photoelectroctalytic Materials, Urumqi 830054, China
| | - Jianrong Tian
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
- Xinjiang Key Laboratory of Energy Storage and Photoelectroctalytic Materials, Urumqi 830054, China
| | - Huiying Jia
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
- Xinjiang Key Laboratory of Energy Storage and Photoelectroctalytic Materials, Urumqi 830054, China
| | - Fupeng Wang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
- Xinjiang Key Laboratory of Energy Storage and Photoelectroctalytic Materials, Urumqi 830054, China
| |
Collapse
|
12
|
Yue T, Yang Y, Chen S, Yao J, Liang H, Jia L, Fu K, Wang Z. In situ prepared Chlorella vulgaris-supported nanoscale zero-valent iron to remove arsenic (III). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:89676-89689. [PMID: 37454381 DOI: 10.1007/s11356-023-28168-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023]
Abstract
Nanoscale zero-valent iron (nZVI) has a high removal affinity toward arsenic (As). However, the agglomeration of nZVI reduces the removal efficiency of As and, thus, limit its application. In this study, we report an environmentally friendly novel composite of Chlorella vulgaris-supported nanoscale zero-valent iron (abbreviated as CV-nZVI) that exhibits a fast and efficient removal of As(III) from As-contaminated water. Scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS), X-ray diffractometry (XRD), attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR), and X-ray photoelectron spectroscopy (XPS) were used to characterize and analyze the CV-nZVI. These results indicated that the stabilization effect of C. vulgaris reduced the nZVI agglomeration and enhanced the reactivity of nZVI. The experiments showed a removal efficiency of 99.11% for As(III) at an optimum pH of 7.0. The adsorption kinetics and isotherms followed the pseudo-second-order kinetic model and Langmuir adsorption isotherm with the superior maximum adsorption capacities of 34.11 mg/g for As(III). The FTIR showed that the As(III) was adsorbed on the CV-nZVI surface by complexation reaction, and XPS indicated that oxidation reaction was also involved. After five reuse cycles, the removal efficiency of As(III) by CV-nZVI was 32.93%, suggesting that the CV-nZVI had some reusability and regeneration. Overall, this work provides a practical and highly efficient approach for As remediation in As-contaminated water, and simultaneously resolves the agglomeration problems of nZVI nanoparticles.
Collapse
Affiliation(s)
- Tingting Yue
- The Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yuankun Yang
- The Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Shu Chen
- The Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Jun Yao
- The School of Water Resource and Environment Engineering, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Huili Liang
- The Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Liang Jia
- The Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Kaibin Fu
- The Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu, 621010, China
| | - Zhe Wang
- The Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| |
Collapse
|
13
|
Kanel SR, Das TK, Varma RS, Kurwadkar S, Chakraborty S, Joshi TP, Bezbaruah AN, Nadagouda MN. Arsenic Contamination in Groundwater: Geochemical Basis of Treatment Technologies. ACS ENVIRONMENTAL AU 2023; 3:135-152. [PMID: 37215436 PMCID: PMC10197174 DOI: 10.1021/acsenvironau.2c00053] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 05/24/2023]
Abstract
Arsenic (As) is abundant in the environment and can be found in both organic (e.g., methylated) and inorganic (e.g., arsenate and arsenite) forms. The source of As in the environment is attributed to both natural reactions and anthropogenic activities. As can also be released naturally to groundwater through As-bearing minerals including arsenopyrites, realgar, and orpiment. Similarly, agricultural and industrial activities have elevated As levels in groundwater. High levels of As in groundwater pose serious health risks and have been regulated in many developed and developing countries. In particular, the presence of inorganic forms of As in drinking water sources gained widespread attention due to their cellular and enzyme disruption activities. The research community has primarily focused on reviewing the natural occurrence and mobilization of As. Yet, As originating from anthropogenic activities, its mobility, and potential treatment techniques have not been covered. This review summarizes the origin, geochemistry, occurrence, mobilization, microbial interaction of natural and anthropogenic-As, and common remediation technologies for As removal from groundwater. In addition, As remediation methods are critically evaluated in terms of practical applicability at drinking water treatment plants, knowledge gaps, and future research needs. Finally, perspectives on As removal technologies and associated implementation limitations in developing countries and small communities are discussed.
Collapse
Affiliation(s)
- Sushil R. Kanel
- Department
of Chemistry, Wright State University, Dayton, Ohio 45435, United States
| | - Tonoy K. Das
- Nanoenvirology
Research Group, Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Rajender S. Varma
- Office
of Research & Development, Center for Environmental Solutions
and Emergency Response (CESER), United States
Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Sudarshan Kurwadkar
- Department
of Civil and Environmental Engineering, California State University, Fullerton, California 92831, United States
| | - Sudip Chakraborty
- Laboratory
of Transport Phenomena & Biotechnology, Department of DIMES, Universita della Calabria, Via Pietro Bucci, Cubo 42/a, Rende 87036, (CS), Italy
| | - Tista Prasai Joshi
- Environment
and Climate Study Laboratory, Faculty of Science, Nepal Academy of Science and Technology, Lalitpur 44700, Khumaltar, Nepal
| | - Achintya N. Bezbaruah
- Nanoenvirology
Research Group, Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Mallikarjuna N. Nadagouda
- Office
of Research & Development, Center for Environmental Solutions
and Emergency Response (CESER), United States
Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| |
Collapse
|
14
|
ALSamman MT, Sánchez J. Adsorption of Copper and Arsenic from Water Using a Semi-Interpenetrating Polymer Network Based on Alginate and Chitosan. Polymers (Basel) 2023; 15:2192. [PMID: 37177337 PMCID: PMC10180717 DOI: 10.3390/polym15092192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
New biobased hydrogels were prepared via a semi-interpenetrating polymer network (semi-IPN) using polyacrylamide/chitosan (PAAM/chitosan) hydrogel for the adsorption of As(V) or poly acrylic acid/alginate (PAA/alginate) hydrogel for the adsorption of Cu(II). Both systems were crosslinked using N,N'-methylenebisacrylamide as the crosslinker and ammonium persulfate as the initiating agent. The hydrogels were characterized by SEM, Z-potential, and FTIR. Their performance was studied under different variables, such as the biopolymer effect, adsorbent dose, pH, contact time, and concentration of metal ions. The characterization of hydrogels revealed the morphology of the material, with and without biopolymers. In both cases, the added biopolymer provided porosity and cavities' formation, which improved the removal capacity. The Z-potential informed the surface charge of hydrogels, and the addition of biopolymers modified it, which explains the further metal removal ability. The FTIR spectra showed the functional groups of the hydrogels, confirming its chemical structure. In addition, the adsorption results showed that PAAM/chitosan can efficiently remove arsenic, reaching a capacity of 17.8 mg/g at pH 5.0, and it can also be regenerated by HNO3 for six cycles. On the other hand, copper-ion absorption was studied on PAA/alginate, which can remove with an adsorption capacity of 63.59 mg/g at pH 4.0, and the results indicate that it can also be regenerated by HNO3 for five cycles.
Collapse
Affiliation(s)
| | - Julio Sánchez
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| |
Collapse
|
15
|
Aktar S, Mia S, Makino T, Rahman MM, Rajapaksha AU. Arsenic removal from aqueous solution: A comprehensive synthesis with meta-data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160821. [PMID: 36509267 DOI: 10.1016/j.scitotenv.2022.160821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/19/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Removal of arsenic from drinking water is one of the most important global concerns. Among the various techniques, adsorptive removal of arsenic is considered as a viable most effective method. However, limited attention is given to understand the overall relative sorption capacity of different sorbents (e.g., biocomposite, biochar and nano-composite etc.) since various factors influence the sorption capacity. The aim of this study is to assess the effectiveness of various adsorbents with quantitative estimation (Langmuir adsorption maxima, Qmax) as well as to evaluate the influence of experimental conditions on the achievement of maximum adsorption. A number of analyses including meta-analysis, analysis of variance (ANOVA), scientometric and regression were performed. The results revealed that among the sorbents, nanoparticles show the greatest sorption capacity while pre-doped biochar performed the best among different biochars. Average across all sorbents, As (V) removal efficacy was higher than As (III). As expected, a high point of zero charge (PZC) and higher positive surface charge favored adsorption. The relative contribution of different mechanisms was also discussed. Our scientometric analyses revealed that, research should focus on the development of low-cost adsorbents and increase their reusability, safe disposal of adsorbed arsenic. Altogether, our findings provide a molecular understanding of arsenic sorption to different sorbents with implications for tailoring a good sorbent for arsenic removal from drinking water.
Collapse
Affiliation(s)
- Sanjida Aktar
- Department of Environmental Science, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh
| | - Shamim Mia
- Department of Agronomy, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh.
| | - Tomoyuki Makino
- Graduate School of Agricultural Science, Tohoku University, Japan
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; Department of General Educational Development, Faculty of Science & Information Technology, Daffodil International University, Ashulia, Savar, Dhaka 1207, Bangladesh
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka; Instrument Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
16
|
Raza MB, Datta SP, Golui D, Barman M, Das TK, Sahoo RN, Upadhyay D, Rahman MM, Behera B, Naveenkumar A. Synthesis and Performance Evaluation of Novel Bentonite-Supported Nanoscale Zero Valent Iron for Remediation of Arsenic Contaminated Water and Soil. Molecules 2023; 28:molecules28052168. [PMID: 36903414 PMCID: PMC10004430 DOI: 10.3390/molecules28052168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Groundwater arsenic (As) pollution is a naturally occurring phenomenon posing serious threats to human health. To mitigate this issue, we synthesized a novel bentonite-based engineered nano zero-valent iron (nZVI-Bento) material to remove As from contaminated soil and water. Sorption isotherm and kinetics models were employed to understand the mechanisms governing As removal. Experimental and model predicted values of adsorption capacity (qe or qt) were compared to evaluate the adequacy of the models, substantiated by error function analysis, and the best-fit model was selected based on corrected Akaike Information Criterion (AICc). The non-linear regression fitting of both adsorption isotherm and kinetic models revealed lower values of error and lower AICc values than the linear regression models. The pseudo-second-order (non-linear) fit was the best fit among kinetic models with the lowest AICc values, at 57.5 (nZVI-Bare) and 71.9 (nZVI-Bento), while the Freundlich equation was the best fit among the isotherm models, showing the lowest AICc values, at 105.5 (nZVI-Bare) and 105.1 (nZVI-Bento). The adsorption maxima (qmax) predicted by the non-linear Langmuir adsorption isotherm were 354.3 and 198.5 mg g-1 for nZVI-Bare and nZVI-Bento, respectively. The nZVI-Bento successfully reduced As in water (initial As concentration = 5 mg L-1; adsorbent dose = 0.5 g L-1) to below permissible limits for drinking water (10 µg L-1). The nZVI-Bento @ 1% (w/w) could stabilize As in soils by increasing the amorphous Fe bound fraction and significantly diminish the non-specific and specifically bound fraction of As in soil. Considering the enhanced stability of the novel nZVI-Bento (upto 60 days) as compared to the unmodified product, it is envisaged that the synthesized product could be effectively used for removing As from water to make it safe for human consumption.
Collapse
Affiliation(s)
- Md Basit Raza
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
- ICAR-Indian Institute of Soil and Water Conservation, RC Koraput, Odisha 763002, India
| | - Siba Prasad Datta
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
- Correspondence: (S.P.D.); (D.G.); (M.M.R.)
| | - Debasis Golui
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, USA
- Correspondence: (S.P.D.); (D.G.); (M.M.R.)
| | - Mandira Barman
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Tapas Kumar Das
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Rabi Narayan Sahoo
- Division of Agricultural Physics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Devi Upadhyay
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
- Department of General Educational Development, Faculty of Science & Information Technology, Daffodil International University, Ashulia, Savar, Dhaka 1207, Bangladesh
- Correspondence: (S.P.D.); (D.G.); (M.M.R.)
| | | | - A Naveenkumar
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
17
|
Rind IK, Tuzen M, Sarı A, Lanjwani MF, Memon N, Saleh TA. Synthesis of TiO2 nanoparticles loaded on Magnetite nanoparticles modified Kaolinite clay (KC) and their efficiency for As(III) adsorption. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Joya-Cárdenas DR, Rodríguez-Caicedo JP, Gallegos-Muñoz A, Zanor GA, Caycedo-García MS, Damian-Ascencio CE, Saldaña-Robles A. Graphene-Based Adsorbents for Arsenic, Fluoride, and Chromium Adsorption: Synthesis Methods Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3942. [PMID: 36432228 PMCID: PMC9698471 DOI: 10.3390/nano12223942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Water contamination around the world is an increasing problem due to the presence of contaminants such as arsenic, fluoride, and chromium. The presence of such contaminants is related to either natural or anthropogenic processes. The above-mentioned problem has motivated the search for strategies to explore and develop technologies to remove these contaminants in water. Adsorption is a common process employed for such proposals due to its versatility, high adsorption capacity, and lower cost. In particular, graphene oxide is a material that is of special interest due to its physical and chemical properties such as surface area, porosity, pore size as well as removal efficiency for several contaminants. This review shows the advances, development, and perspectives of materials based on GO employed for the adsorption of contaminants such as arsenite, arsenate, fluoride, and hexavalent chromium. We provided a detailed discussion of the synthesis techniques and their relationship with the adsorption capacities and other physical properties as well as pH ranges employed to remove the contaminants. It is concluded that the adsorption capacity is not proportional to the surface area in all the cases; instead, the synthesis method, as well as the functional groups, play an important role. In particular, the sol-gel synthesis method shows better adsorption capacities.
Collapse
Affiliation(s)
| | | | | | - Gabriela A. Zanor
- Graduate Program in Biosciences, University of Guanajuato, Irapuato 36500, Mexico
- Department of Environmental Engineering, University of Guanajuato, Irapuato 36500, Mexico
| | - Maya S. Caycedo-García
- Facultad de Ingenierías y Tecnologías, Instituto de Investigación Xerira, Universidad de Santander, Bucaramanga 680003, Colombia
| | | | - Adriana Saldaña-Robles
- Graduate Program in Biosciences, University of Guanajuato, Irapuato 36500, Mexico
- Department of Agricultural Engineering, University of Guanajuato, Irapuato 36500, Mexico
| |
Collapse
|
19
|
Chai F, Zhang R, Min X, Yang Z, Chai L, Zhao F. Highly efficient removal of arsenic (III/V) from groundwater using nZVI functionalized cellulose nanocrystals fabricated via a bioinspired strategy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156937. [PMID: 35753491 DOI: 10.1016/j.scitotenv.2022.156937] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Utilizing nanoscale zero valent iron (nZVI) to purify groundwater contaminated by arsenic species [As(III/V)] is an efficient technology, but the fast and severe aggregation of nZVI limits its practical applications. Herein, nZVI was anchored onto the mussel-inspired polydopamine-coated cellulose nanocrystals (CNCs-PDA-nZVI) as an efficient material for As groundwater remediation. In this set, the introduction of nZVI was expected to significantly enhance the arsenic removal property, while cellulose nanocrystals (CNCs) endowed nZVI with ultrahigh dispersibility. The batch results showed that the maximum As adsorption capacities of CNCs-PDA-nZVI (i.e., 333.3 mg g-1 and 250.0 mg g-1 for As(III) and As(V), respectively) were ten times higher compared with those of pristine CNCs. The kinetics results revealed that chemical adsorption was dominant for As adsorption. The isotherms indicated that a homogeneous adsorption for As(III) and heterogenous adsorption for As(V) on the surface of CNCs-PDA-nZVI. The removal mechanisms for As by CNCs-PDA-nZVI included adsorption-oxidation, coprecipitation and inner-sphere complexation. Overall, the excellent arsenic removal efficiency makes CNCs-PDA-nZVI a promising material for the remediation of As polluted groundwater, and this in-situ anchoring strategy can be extended to overcome the aggregation bottleneck of other nanoparticles for various applications.
Collapse
Affiliation(s)
- Fei Chai
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (CNERC-CTHMP), School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China
| | - Rui Zhang
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (CNERC-CTHMP), School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China
| | - Xiaobo Min
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (CNERC-CTHMP), School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China
| | - Zhihui Yang
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (CNERC-CTHMP), School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China
| | - Liyuan Chai
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (CNERC-CTHMP), School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China
| | - Feiping Zhao
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (CNERC-CTHMP), School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China.
| |
Collapse
|
20
|
Yin L, Li W, Lin S, Owens G, Chen Z. Simultaneous removal of arsenite and arsenate from mining wastewater using ZIF-8 embedded with iron nanoparticles. CHEMOSPHERE 2022; 304:135269. [PMID: 35691398 DOI: 10.1016/j.chemosphere.2022.135269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Arsenic contamination is an increasing global environmental problem, especially in mining industry wastewater where both arsenite (As(III)) and arsenate (As(V)) have been routinely detected. In this paper, a novel porous metal-organic framework material (ZIF-8) was composited with iron nanoparticles (FeNPs) to form a functional material (ZIF-8@FeNPs) for the simultaneous removal of As(III)/(V) from wastewater. The material effectively removed both As(III) and As(V) with removal efficiencies of 99.9 and 71.2%, respectively. Advanced characterization techniques including X-ray photoelectron spectroscopy (XPS) and Fourier infrared (FTIR) indicated that removal of As(III) and As(V) involved complex formation. Adsorption kinetics followed a pseudo-second order kinetics indicating adsorption involved chemisorption. After four cycles of reuse the he removal rate of As species was still relatively high at > 60% When ZIF-8@FeNPs were used to remove As from real wastewater from acid mines the removal efficiency was 94.27%. Finally, a As(III) and As(V) removal mechanism was proposed.
Collapse
Affiliation(s)
- Longwei Yin
- School of Chemistry& Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Wenpeng Li
- School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, China
| | - Shen Lin
- School of Chemistry& Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Zuliang Chen
- School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, China.
| |
Collapse
|
21
|
Fu X, Song X, Zheng Q, Liu C, Li K, Luo Q, Chen J, Wang Z, Luo J. Frontier Materials for Adsorption of Antimony and Arsenic in Aqueous Environments: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10824. [PMID: 36078532 PMCID: PMC9518092 DOI: 10.3390/ijerph191710824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 05/14/2023]
Abstract
As highly toxic and carcinogenic substances, antimony and arsenic often coexist and cause compound pollution. Heavy metal pollution in water significantly threatens human health and the ecological environment. This article elaborates on the sources and hazards of compound antimony and arsenic contamination and systematically discusses the research progress of treatment technology to remove antimony and arsenic in water. Due to the advantages of simple operation, high removal efficiency, low economic cost, and renewable solid and sustainable utilization, adsorption technology for removing antimony and arsenic from sewage stand out among many treatment technologies. The adsorption performance of adsorbent materials is the key to removing antimony and arsenic in water. Therefore, this article focused on summarizing frontier adsorption materials' characteristics, adsorption mechanism, and performance, including MOFs, COFs, graphene, and biomass materials. Then, the research and application progress of antimony and arsenic removal by frontier materials were described. The adsorption effects of various frontier adsorption materials were objectively analyzed and comparatively evaluated. Finally, the characteristics, advantages, and disadvantages of various frontier adsorption materials in removing antimony and arsenic from water were summarized to provide ideas for improving and innovating adsorption materials for water pollution treatment.
Collapse
Affiliation(s)
- Xiaohua Fu
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xinyu Song
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Qingxing Zheng
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Chang Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Kun Li
- A.B Freeman School of Business, Tulane University, 6823 Saint Charles Ave, New Orleans, LA 70118, USA
- Guangzhou Huacai Environmental Protection Technology Co., Ltd., Guangzhou 511480, China
| | - Qijin Luo
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jianyu Chen
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zhenxing Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jian Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
22
|
Song Y, Huang P, Li H, Li R, Zhan W, Du Y, Ma M, Lan J, Zhang TC, Du D. Uptake of arsenic(V) using iron and magnesium functionalized highly ordered mesoporous MCM-41 (Fe/Mg-MCM-41) as an effective adsorbent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:154858. [PMID: 35351504 DOI: 10.1016/j.scitotenv.2022.154858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/03/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Mesoporous silica (MCM-41) is widely used as a supporting material due to its large specific surface area and good stability, but it cannot remove heavy metals due to the lack of adsorption active sites. In this study, the MCM-41 (a mesoporous SiO2 material) decorated with iron and magnesium oxide (Fe/Mg-MCM-41) was found to be an excellent adsorbent to remove arsenic(V) from water. FTIR, BET, TEM-EDS, XRD, XPS, etc. were applied for characterization analysis. Adsorption isotherms were fitted well by the Langmuir model and the experimental maximum adsorption capacity of Fe/Mg4-MCM-41 (magnesium accounts for 4%) was 71.53 mg/g at pH = 3. Thermodynamics analysis suggested exothermic nature of adsorption behavior. Kinetic process was well described by the pseudo-second-order model and adsorption rate was controlled by intraparticle diffusion and film diffusion. Moreover, the adsorption behavior of As(V) onto Fe/Mg4-MCM-41 was investigated under different reaction conditions, such as pH, temperature, Mg-doping and competing ions. The results showed that loading a certain amount of magnesium can significantly improve arsenic removal efficiency. Additionally, Fe/Mg4-MCM-41 exhibits high arsenic(V) removal in the wide pH range of 3-10. The Fe/Mg4-MCM-41 can be regenerated and used after four consecutive cycles. The high arsenic(V) sorption capacity, wide range of pH applications, ability to regenerate, and reusability of Fe/Mg4-MCM-41 confirmed that this adsorbent is promising for treating As-contaminated wastewater.
Collapse
Affiliation(s)
- Yanqing Song
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan 430074, China; Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan 430074, China
| | - Ping Huang
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan 430074, China; Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan 430074, China
| | - Hong Li
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan 430074, China; Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan 430074, China
| | - Ruiyue Li
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan 430074, China; Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan 430074, China
| | - Wei Zhan
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan 430074, China; Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan 430074, China.
| | - Yaguang Du
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan 430074, China; Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan 430074, China
| | - Mengyu Ma
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan 430074, China; Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan 430074, China
| | - Jirong Lan
- School of Resource and Environmental Science, Wuhan University, PR China
| | - Tian C Zhang
- Civil and Environmental Engineering Department, College of Engineering, University of Nebraska-Lincoln, Omaha, NE 68182, USA
| | - Dongyun Du
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan 430074, China; Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan 430074, China
| |
Collapse
|
23
|
López YC, Ortega GA, Reguera E. Hazardous ions decontamination: From the element to the material. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
|
24
|
Numpilai T, Cheng CK, Chareonpanich M, Witoon T. Rapid effectual entrapment of arsenic pollutant by Fe 2O 3 supported on bimodal meso-macroporous silica for cleaning up aquatic system. CHEMOSPHERE 2022; 300:134613. [PMID: 35430200 DOI: 10.1016/j.chemosphere.2022.134613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/02/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Arsenic (As) contamination in aqueous media is a major concern due to its adverse impacts on humans and the ecosystem more broadly because of its non-biodegradability. Consequently, an effective and selective sorbent is needed urgently to scavenge As pollutant. Herein, the adsorption behaviors of As(V) by Fe2O3 and Fe2O3 supported on different silica materials, consisting of unimodal mesoporous silica (Fe2O3/U-SiO2) and dual meso-macroporous silica (Fe2O3/B-SiO2), were compared to examine their structure-efficiency relationships in the elimination of As(V). Fe2O3/B-SiO2 was much faster at As(V) removal and had an impressively higher uptake capability, reaching nearly 50% and 2.5 mg g-1 within 5 min compared to bare Fe2O3 (6% and 0.3 mg g-1) and Fe2O3/U-SiO2 (11.9% and 0.59 mg g-1). These better results were because of the highly dispersed Fe2O3 nanoparticles on the B-SiO2 support that provided abundant reactive sites as well as a macropore structure facilitating As(V) diffusion into adsorptive sites. The maximum adsorptive capacity of Fe2O3/B-SiO2 (4.7 mg As per 1 g adsorbent) was 1.3- and 1.7-fold greater than for Fe2O3/U-SiO2 and Fe2O3, respectively. The outstanding performance and reusability of Fe2O3/B-SiO2 with its ease of production, economical and environmentally friendly features made it even more attractive for As(V) remediation. The explored relationship between the structure of SiO2-supported Fe2O3 sorbents and their performance in removing As(V) could be informative for the future design of highly efficient adsorbents for the decontamination of water.
Collapse
Affiliation(s)
- Thanapha Numpilai
- Department of Environmental Science, Faculty of Science and Technology, Thammasat University, Pathumthani, 12120, Thailand
| | - Chin Kui Cheng
- Center for Catalysis and Separation (CeCaS), Department of Chemical Engineering, College of Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Metta Chareonpanich
- Center of Excellence on Petrochemical and Materials Technology, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand; Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand
| | - Thongthai Witoon
- Center of Excellence on Petrochemical and Materials Technology, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand; Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
25
|
Akha NZ, Salehi S, Anbia M. Removal of arsenic by metal organic framework/chitosan/carbon nanocomposites: Modeling, optimization, and adsorption studies. Int J Biol Macromol 2022; 208:794-808. [PMID: 35367270 DOI: 10.1016/j.ijbiomac.2022.03.161] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 12/25/2022]
Abstract
In this work removal of the arsenic (As) spiked in water through adsorption using synthesized nanocomposites as a adsorbent. The Zn-BDC@chitosan/carbon nanotube (Zn-BDC@CT/CNT) and Zn-BDC@chitosan/graphene oxide (Zn-BDC@CT/GO) were synthesized from metal organic framework, carbon nanotube/graphene oxide and natural polysaccharide. Results of adsorption experiments showed that the Zn-BDC@CT/GO possessed a higher adsorption capacity than that of the Zn-BDC@CT/CNT. A study on the adsorption of As onto Zn-BDC@CT/GO was conducted and the process parameters were optimized by response surface methodology (RSM). A five-level, four-factor central composite design (CCD) has been used to determine the effect of various process parameters on As uptake from aqueous solution. By using this design a total of 20 adsorption experimental data were fitted. The regression analysis showed good fit of the experimental data to the second-order polynomial model with coefficient of determination (R2) value of 0.9997 and model F-value of 1099.97. The adsorption matched with the pseudo-second-order model and the Freundlich model. The thermodynamic parameters revealed that the nature of adsorption was feasible, spontaneous and endothermic process. Adsorption of As in the presence of other competitive ions was not significantly affected The effective adsorption performance also sustained even after ten adsorption-desorption cycles, indicating favorable reusability.
Collapse
Affiliation(s)
- Nastaran Zare Akha
- Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Farjam Street, Narmak, P.O. Box 16846-13114, Tehran, Iran
| | - Samira Salehi
- Health, Safety and Environment Department, Petropars Company, Farhang Blvd, Saadat-Abad, P.O. Box 19977-43881, Tehran, Iran
| | - Mansoor Anbia
- Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Farjam Street, Narmak, P.O. Box 16846-13114, Tehran, Iran.
| |
Collapse
|
26
|
Mao W, Zhang L, Zhang Y, Wang Y, Wen N, Guan Y. Adsorption and photocatalysis removal of arsenite, arsenate, and hexavalent chromium in water by the carbonized composite of manganese-crosslinked sodium alginate. CHEMOSPHERE 2022; 292:133391. [PMID: 34942215 DOI: 10.1016/j.chemosphere.2021.133391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
The preparation of easily synthesized and cheap composite materials for the efficient removal of toxic oxoanions still remains challenging in sewage treatment. Herein, a new carbonized manganese-crosslinked sodium alginate (Mn/SA-C) was fabricated for the removal of arsenite (As(III)), arsenate (As(V)) and hexavalent chromium (Cr(VI)) in water. The results indicated that the Mn/SA-C pretreated with MnSO4 solution (Mn/SA-C-S) exhibited a rapid adsorption toward As(III) and As(V) with the removal efficiency of >98% within 10 min, and had a high adsorption capacity toward As(III), As(V), and Cr(VI) with the maximum value of 189.29, 193.29, and 104.50 mg/g based on the Langmuir model, respectively. The removal efficiency of As(III), As(V), and Cr(VI) could be further significantly enhanced by coupling a photocatalytic process. For example, the time in which >98% of Cr(VI) (10 mg/L) was removed dramatically shortened from 360 min (adsorption) to 45 min (adsorption-photocatalysis), and the removal efficiency of As(III) increased by ∼10% within initial 5 min. This was primarily attributed to the Mn-catalyzed production of the photocatalytic excitons for Cr(VI) reduction, and the superoxide (•O2-) and hydroxyl (•OH) radicals for As(III) oxidation. The adsorption removal of arsenic (As) was primarily ascribed to surface complexation with MnO and precipitation by MnS2, and oxidative adsorption because of Mn valence cycle. The removal mechanisms of Cr(VI) mainly contained reduction by MnO and MnS2, complexation with MnO and carboxyl/hydroxyl groups as well as Cr(OH)3 precipitation. Our research provides a promising Mn/SA-C-S material for rapid and efficient removal of As(III), As(V), and Cr(VI) in contaminated water through an adsorption-photocatalysis synergistic strategy.
Collapse
Affiliation(s)
- Wei Mao
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Lixun Zhang
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China; Department of Civil and Environmental Engineering, University of California, Irvine, CA, 92612, United States.
| | - Ying Zhang
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yanfei Wang
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Nuanling Wen
- Shenzhen Zhenheli Ecology & Environment Co., Ltd., Shenzhen, 518052, China
| | - Yuntao Guan
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
27
|
Scurti S, Dattilo S, Gintsburg D, Vigliotti L, Winkler A, Carroccio SC, Caretti D. Superparamagnetic Iron Oxide Nanoparticle Nanodevices Based on Fe 3O 4 Coated by Megluminic Ligands for the Adsorption of Metal Anions from Water. ACS OMEGA 2022; 7:10775-10788. [PMID: 35382325 PMCID: PMC8973093 DOI: 10.1021/acsomega.2c00558] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The uptake ability toward arsenic(V), chromium(VI), and boron(III) ions of ad hoc functionalized magnetic nanostructured devices has been investigated. To this purpose, ligands based on meglumine have been synthesized and used to coat magnetite nanoparticles (Fe3O4) obtained by the co-precipitation methodology. The as-prepared hybrid material was characterized by infrared spectroscopy (IR), X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy combined with energy-dispersive X-ray analysis. Moreover, its magnetic hysteresis properties were measured to evaluate its magnetic properties, and the adsorption kinetics and isothermal models were applied to discern between the different adsorption phenomena. Specifically, the better fitting was observed by the Langmuir isotherm model for all metal ions tested, highlighting a higher uptake in arsenic (28.2 mg/g), chromium (12.3 mg/g), and boron (23.7 mg/g) sorption values if compared with other magnetic nanostructured materials. After adsorption, an external magnetic stimulus can be used to efficiently remove nanomaterials from the water. Finally the nanomaterial can be reused up to five cycles and regenerated for another three cycles.
Collapse
Affiliation(s)
- Stefano Scurti
- Dipartimento
di Chimica Industriale “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Sandro Dattilo
- Istituto
per i Polimeri, Compositi e Biomateriali, CNR-IPCB, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - David Gintsburg
- Dipartimento
di Chimica Industriale “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Luigi Vigliotti
- Istituto
di Scienze Marine, ISMAR-CNR, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Aldo Winkler
- Istituto
Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata, 605, 00143 Rome, Italy
| | - Sabrina Carola Carroccio
- Istituto
per i Polimeri, Compositi e Biomateriali, CNR-IPCB, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Daniele Caretti
- Dipartimento
di Chimica Industriale “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
28
|
Samad A, Furukawa M, Tateishi I, Katsumata H, Kaneco S. Highly efficient visible light-induced photocatalytic oxidation of arsenite with nanosized WO 3 particles in the presence of Cu 2+ and CuO. ENVIRONMENTAL TECHNOLOGY 2022:1-12. [PMID: 35262453 DOI: 10.1080/09593330.2022.2051607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Although WO3 appears to be one of the extensively studied photocatalysts, the low response of pure WO3 in aqueous solution under visible light limits its application remarkably. In this work, the enhancement of the efficiency of WO3 for the visible light-driven photocatalytic oxidation of arsenite was explored using Cu2+ ion and CuO as a co-catalyst. While the addition of Cu2+ was found effective for the suppression of dissolution of WO3, the efficiency of CuO appeared to be slightly lower. Significant improvement of the efficiency for the photocatalytic oxidation of As(III) with WO3 was noted when Cu2+ ions and CuO were added. The optimized conditions were WO3 in the presence of 10 mg L-1 Cu2+ ion and 1 wt% CuO coupled with WO3, respectively. The As(III) concentration of 10 mg L-1 could be lowered to less than 0.1 mg L-1 by the photocatalytic treatment. Acidic pH favours the oxidation of arsenite in the presence of Cu2+ whereas basic pH is suitable with CuO. Characterization techniques such as TEM, XPS, XRD and UV-DRS were used to characterize photocatalysts. The reactive species scavenger tests revealed that the photo-induced holes (h+) play a key role in the photocatalytic oxidation process while the effect of •OH is negligible. It was found that As(III) oxidation rate was remarkably suppressed in the nitrogen atmosphere. A mechanism for enhanced photocatalytic oxidation has been proposed based on the results of the reactive species scavenger tests. This research may contribute to the large-scale As(III) oxidation treatment in the groundwater.
Collapse
Affiliation(s)
- Abdus Samad
- Department of Chemistry, Jagannath University, Dhaka, Bangladesh
| | - Mai Furukawa
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Japan
| | - Ikki Tateishi
- Mie Global Environment Centre for Education & Research, Mie University, Tsu, Japan
| | - Hideyuki Katsumata
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Japan
| | - Satoshi Kaneco
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Japan
- Mie Global Environment Centre for Education & Research, Mie University, Tsu, Japan
| |
Collapse
|
29
|
Rahman MA, Lamb D, Rahman MM, Bahar MM, Sanderson P. Adsorption-Desorption Behavior of Arsenate Using Single and Binary Iron-Modified Biochars: Thermodynamics and Redox Transformation. ACS OMEGA 2022; 7:101-117. [PMID: 35036682 PMCID: PMC8756808 DOI: 10.1021/acsomega.1c04129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Arsenic (As) is a dangerous contaminant in drinking water which displays cogent health risks to humans. Effective clean-up approaches must be developed. However, the knowledge of adsorption-desorption behavior of As on modified biochars is limited. In this study, the adsorption-desorption behavior of arsenate (AsV) by single iron (Fe) and binary zirconium-iron (Zr-Fe)-modified biosolid biochars (BSBC) was investigated. For this purpose, BSBC was modified using Fe-chips (FeBSBC), Fe-salt (FeCl3BSBC), and Zr-Fe-salt (Zr-FeCl3BSBC) to determine the adsorption-desorption behavior of AsV using a range of techniques. X-ray photoelectron spectroscopy results revealed the partial reduction of pentavalent AsV to the more toxic trivalent AsIII form by FeCl3BSBC and Zr-FeCl3BSBC, which was not observed with FeBSBC. The Langmuir maximum AsV adsorption capacities were achieved as 27.4, 29.77, and 67.28 mg/g when treated with FeBSBC (at pH 5), FeCl3BSBC (at pH 5), and Zr-FeCl3BSBC (at pH 6), respectively, using 2 g/L biochar density and 22 ± 0.5 °C. Co-existing anions reduced the AsV removal efficiency in the order PO4 3- > CO3 2- > SO4 2- > Cl- > NO3 -, although no significant inhibitory effects were observed with cations like Na+, K+, Mg2+, Ca2+, and Al3+. The positive correlation of AsV adsorption capacity with temperature demonstrated that the endothermic process and the negative value of Gibbs free energy increased (-14.95 to -12.47 kJ/mol) with increasing temperature (277 to 313 K), indicating spontaneous reactions. Desorption and regeneration showed that recycled Fe-chips, Fe-salt, and Zr-Fe-salt-coated biochars can be utilized for the effective removal of AsV up to six-repeated cycles.
Collapse
Affiliation(s)
- Md. Aminur Rahman
- Global
Centre for Environmental Remediation (GCER), College of Engineering,
Science and Environment, The University
of Newcastle, Callaghan, New South Wales 2308, Australia
- Department
of Public Health Engineering (DPHE), Zonal
Laboratory, Khulna 9100, Bangladesh
| | - Dane Lamb
- Chemical
and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Mohammad Mahmudur Rahman
- Global
Centre for Environmental Remediation (GCER), College of Engineering,
Science and Environment, The University
of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Md Mezbaul Bahar
- Global
Centre for Environmental Remediation (GCER), College of Engineering,
Science and Environment, The University
of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Peter Sanderson
- Global
Centre for Environmental Remediation (GCER), College of Engineering,
Science and Environment, The University
of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
30
|
Effective removal of water-soluble methylated arsenic contaminants with phosphorene oxide nanoflakes: A DFT study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Rashid US, Das TK, Sakthivel TS, Seal S, Bezbaruah AN. GO-CeO₂ nanohybrid for ultra-rapid fluoride removal from drinking water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148547. [PMID: 34328953 DOI: 10.1016/j.scitotenv.2021.148547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/06/2021] [Accepted: 06/15/2021] [Indexed: 05/05/2023]
Abstract
The presence of excess fluoride (F- > 1.5 mg/L) in drinking water affects more than 260 million people globally and leads to dental and skeletal fluorosis among other health problems. This study investigated fluoride removal by graphene oxide-ceria nanohybrid (GO-CeO2) and elucidated the mechanisms involved. The nanohybrid exhibited ultra-rapid kinetics for fluoride removal and the equilibrium (85% removal, 10 mg F-/L initial concentration) was achieved within 1 min which is one of the fastest kinetics for fluoride removal reported so far. Fluoride removal by the nanohybrid followed Langmuir isotherm with a maximum adsorption capacity of 8.61 mg/g at pH 6.5 and that increased to 16.07 mg/g when the pH was lowered to 4.0. Based on the experimental results and characterization data, we have postulated that both electrostatic interaction and surface complexation participated in the fluoride removal process. The O2- ions present in the CeO2 lattice were replaced by F- ions to make a coordination compound (complex). While both Ce4+ and Ce3+ were present in ceria nanoparticles (CeO2 NPs), Ce3+ participated in fluoride complexation. During fluoride removal by GO-CeO2, the GO sheets acted as electron mediators and help to reduce Ce4+ to Ce3+ at the CeO2 NPs-GO interface, and the additional Ce3+ enhanced fluoride removal by the nanohybrid.
Collapse
Affiliation(s)
- Umma S Rashid
- Nanoenvirology Research Group, Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58105, USA
| | - Tonoy K Das
- Nanoenvirology Research Group, Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58105, USA
| | - Tamil S Sakthivel
- Advanced Materials Processing and Analysis Center (AMPAC), Nanoscience and Technology Center (NSTC), Materials Science and Engineering (MSE), University of Central Florida, Orlando, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center (AMPAC), Nanoscience and Technology Center (NSTC), Materials Science and Engineering (MSE), University of Central Florida, Orlando, USA; College of Medicine, University of Central Florida, Orlando, FL 32826, USA.
| | - Achintya N Bezbaruah
- Nanoenvirology Research Group, Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58105, USA.
| |
Collapse
|
32
|
Arsenate and Arsenite Sorption Using Biogenic Iron Compounds: Treatment of Real Polluted Waters in Batch and Continuous Systems. METALS 2021. [DOI: 10.3390/met11101608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Arsenic pollution in waters is due to natural and anthropogenic sources. Human exposure to arsenic is associated with acute health problems in areas with high concentrations of this element. Nanometric iron compounds with large specific surface areas and higher binding energy produced by some anaerobic microorganisms are thus expected to be more efficient adsorbents for the removal of harmful metals and metalloids than chemically produced iron oxides. In this study, a natural consortium from an abandoned mine site containing mainly Clostridium species was used to biosynthesize solid Fe(II) compounds, siderite (FeCO3) and iron oxides. Biogenic precipitates were used as adsorbents in contact with solutions containing arsenate and arsenite. The adsorption of As(V) fitted to the Langmuir model (qmax = 0.64 mmol/g, KL = 0.019 mmol/L) at the optimal pH value (pH 2), while the As(III) adsorption mechanism was better represented by the Freundlich model (KF = 0.476 L/g, n = 2.13) at pH 10. Water samples from the Caracarani River (Chile) with high contents of arsenic and zinc were treated with a biogenic precipitate encapsulated in alginate beads in continuous systems. The optimal operation conditions were low feed flow rate and the up-flow system, which significantly improved the contaminant uptake. This study demonstrates the feasibility of the application of biogenic iron compounds in the treatment of polluted waters.
Collapse
|
33
|
Wang X, Zhang Y, Wang Z, Xu C, Tratnyek PG. Advances in metal(loid) oxyanion removal by zerovalent iron: Kinetics, pathways, and mechanisms. CHEMOSPHERE 2021; 280:130766. [PMID: 34162087 DOI: 10.1016/j.chemosphere.2021.130766] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 06/13/2023]
Abstract
Metal(loid) oxyanions in groundwater, surface water, and wastewater can have harmful effects on human or ecological health due to their high toxicity, mobility, and lack of degradation. In recent years, the removal of metal(loid) oxyanions using zerovalent iron (ZVI) has been the subject of many studies, but the full scope of this literature has not been systematically reviewed. The main elements that form metal(loid) oxyanions under environmental conditions are Cr(VI), As(V and III), Sb(V and III), Tc(VII), Re(VII), Mo(VI), V(V), etc. The removal mechanisms of metal(loid) oxyanions by ZVI may involve redox reactions, adsorption, precipitation, and coprecipitation, usually with one of these mechanisms being the main reaction pathway and the other playing auxiliary roles. However, the removal mechanisms are coupled to the reactions involved in corrosion of Fe(0) and reaction conditions. The layer of iron oxyhydroxides that forms on ZVI during corrosion mediates the sequestration of metal(loid) oxyanions. This review summarizes most of the currently available data on mechanisms and performance (e.g., kinetics) of removal of the most widely studies metal(loid) oxyanion contaminants (Cr, As, Sb) by different types of ZVI typically used in wastewater treatment, as well as ZVI that has been sulfidated or combination with catalytic bimetals.
Collapse
Affiliation(s)
- Xiao Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yue Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zhiwei Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Chunhua Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Paul G Tratnyek
- OHSU-PSU School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
| |
Collapse
|
34
|
Enriching Trace Level Adsorption Affinity of As3+ Ion Using Hydrothermally Synthesized Iron-Doped Hydroxyapatite Nanorods. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02103-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
35
|
Rathi BS, Kumar PS. A review on sources, identification and treatment strategies for the removal of toxic Arsenic from water system. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126299. [PMID: 34102361 DOI: 10.1016/j.jhazmat.2021.126299] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 05/10/2023]
Abstract
Arsenic liberation and accumulation in the groundwater environment are both affected by the presence of primary ions and soluble organic matter. The most important influencing role in the co-occurrence is caused by human activity, which includes logging, agricultural runoff stream, food, tobacco, and fertilizers. Furthermore, it covers a wide range of developed and emerging technologies for removing arsenic impurities from the ecosystem, including adsorption, ion exchangers, bio sorption, coagulation and flocculation, membrane technology and electrochemical methods. This review thoroughly explores various arsenic toxicity to the atmosphere and the removal methods involved with them. To begin, the analysis focuses on the general context of arsenic outbreaks in the area, health risks associated with arsenic, and measuring techniques. The utilization of innovative functional substances such as graphite oxides, metal organic structures, carbon nanotubes, and other emerging types of composite materials, as well as the ease, reduced price, and simple operating method of the adsorbent material, are better potential alternatives for arsenic removal. The aim of this article is to examine the origins of arsenic, as well as identification and treatment methods. It also addressed recent advancements in Arsenic removal using graphite oxides, carbon nanotubes, metal organic structures, magnetic nano composites, and other novel types of usable materials. Under ideal conditions for the above methods, the arsenic removal will achieve nearly 99% in lab scale.
Collapse
Affiliation(s)
- B Senthil Rathi
- Department of Chemical Engineering, St. Joseph's College of Engineering, Chennai 600119, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India.
| |
Collapse
|
36
|
Ramos-Guivar JA, Flores-Cano DA, Caetano Passamani E. Differentiating Nanomaghemite and Nanomagnetite and Discussing Their Importance in Arsenic and Lead Removal from Contaminated Effluents: A Critical Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2310. [PMID: 34578626 PMCID: PMC8471304 DOI: 10.3390/nano11092310] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022]
Abstract
Arsenic and lead heavy metals are polluting agents still present in water bodies, including surface (lake, river) and underground waters; consequently, the development of new adsorbents is necessary to uptake these metals with high efficiency, quick and clean removal procedures. Magnetic nanoparticles, prepared with iron-oxides, are excellent candidates to achieve this goal due to their ecofriendly features, high catalytic response, specific surface area, and pulling magnetic response that favors an easy removal. In particular, nanomagnetite and maghemite are often found as the core and primary materials regarding magnetic nanoadsorbents. However, these phases show interesting distinct physical properties (especially in their surface magnetic properties) but are not often studied regarding correlations between the surface properties and adsorption applications, for instance. Thus, in this review, we summarize the main characteristics of the co-precipitation and thermal decomposition methods used to prepare the nano-iron-oxides, being the co-precipitation method most promising for scaling up processes. We specifically highlight the main differences between both nano-oxide species based on conventional techniques, such as X-ray diffraction, zero and in-field Mössbauer spectroscopy, X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and X-ray magnetic circular dichroism, the latter two techniques performed with synchrotron light. Therefore, we classify the most recent magnetic nanoadsorbents found in the literature for arsenic and lead removal, discussing in detail their advantages and limitations based on various physicochemical parameters, such as temperature, competitive and coexisting ion effects, i.e., considering the simultaneous adsorption removal (heavy metal-heavy metal competition and heavy metal-organic removal), initial concentration, magnetic adsorbent dose, adsorption mechanism based on pH and zeta potential, and real water adsorption experiments. We also discuss the regeneration/recycling properties, after-adsorption physicochemical properties, and the cost evaluation of these magnetic nanoadsorbents, which are important issues, but less discussed in the literature.
Collapse
Affiliation(s)
- Juan A. Ramos-Guivar
- Grupo de Investigación de Nanotecnología Aplicada para Biorremediación Ambiental, Energía, Biomedicina y Agricultura (NANOTECH), Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 15081, Perú;
| | - Diego A. Flores-Cano
- Grupo de Investigación de Nanotecnología Aplicada para Biorremediación Ambiental, Energía, Biomedicina y Agricultura (NANOTECH), Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 15081, Perú;
| | | |
Collapse
|
37
|
Liu L, Zhao J, Liu X, Bai S, Lin H, Wang D. Reduction and removal of As(Ⅴ) in aqueous solution by biochar derived from nano zero-valent-iron (nZVI) and sewage sludge. CHEMOSPHERE 2021; 277:130273. [PMID: 33770694 DOI: 10.1016/j.chemosphere.2021.130273] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Biochar prepared by co-pyrolysis of nano-zero-valent iron and sewage sludge (nZVISB) was used to remove As(Ⅴ) from aqueous solution. When the initial pH was 2, the initial As(Ⅴ) concentration was 20 mg L-1, the dose of nZVISB was 10 g L-1, the contact time was 24 h, and the adsorption temperature was 298K, the removal efficiency of As(Ⅴ) was greater than 99%. The isothermal removal of As(Ⅴ) followed the Freundlich model better, and the maximum adsorption capacity of As(Ⅴ) was 60.61 mg g-1. The removal process of As(Ⅴ) could be better described by pseudo-second-order kinetic model, and the rate-controlling step should be liquid film diffusion and chemical reaction. Thermodynamic analysis indicated that the removal of As(Ⅴ) was a spontaneous and endothermic process dominated by chemical adsorption. The characterizations of nZVISB before/after adsorption and the solution after adsorption suggested that the iron-containing substances (Fe0, Fe2+, FeOOH) and organics in the nZVISB had a great effect on the removal of As(Ⅴ), and the As was mainly immobilized on nZVISB by speciation of As-O-Fe.
Collapse
Affiliation(s)
- Liheng Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Jirong Zhao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Xiu Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Shaoyuan Bai
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Hua Lin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China.
| | - Dunqiu Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| |
Collapse
|
38
|
Zhang E, Zhou K, Zhang X, Peng C, Chen W, He D. Separation and recovery of arsenic from As, Cu, and Zn rich leaching liquor using a reduction-crystallization approach. RSC Adv 2021; 11:22426-22432. [PMID: 35480809 PMCID: PMC9034198 DOI: 10.1039/d1ra03270d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/20/2021] [Indexed: 11/21/2022] Open
Abstract
As, Cu, and Zn rich leaching liquor is generated in the leaching process of copper dust, which contains various metals with high recovery value. Herein, an approach for the direct separation and recovery of arsenic from As, Cu, and Zn rich leaching liquor was proposed. The approach includes two steps, namely SO2 reduction and arsenic crystallization. The factors affecting the reduction of As(v) to As(iii) were investigated, including the pH, SO2 dosage, and reduction temperature. In the crystallization stage, the impacts of sulfuric acid consumption and temperature on the crystallization of arsenic (As2O3) were studied. The results show that the optimal H+ concentration, temperature, and SO2 input for the arsenic reduction were 3.95 mol L-1, 45 °C, and 1.14 L g-1 As(v), respectively. While the optimal temperature and sulfuric acid dosage in As recovery process were 5 °C and 0.1 L L-1 leaching liquor, respectively. Under these conditions, the As2O3 recovery percentage reached 96.53%, and the losses of Cu and Zn were only 3.12% and 0.75%, respectively. The precipitate contained 96.72% of As2O3, 0.83% of Cu, and 0.13% Zn. Compared with the traditional technologies, this new method can improve the recovery efficiency of As2O3 and reduce the loss percentage of other valuable metals (Cu and Zn).
Collapse
Affiliation(s)
- Erjun Zhang
- School of Metallurgy and Environment, Central South University Changsha 410083 China
| | - Kanggen Zhou
- School of Metallurgy and Environment, Central South University Changsha 410083 China
| | - Xuekai Zhang
- School of Metallurgy and Environment, Central South University Changsha 410083 China
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Changhong Peng
- School of Metallurgy and Environment, Central South University Changsha 410083 China
| | - Wei Chen
- School of Metallurgy and Environment, Central South University Changsha 410083 China
| | - Dewen He
- School of Metallurgy and Environment, Central South University Changsha 410083 China
| |
Collapse
|
39
|
Ahmad K, Shah HUR, Ashfaq M, Nawaz H. Removal of decidedly lethal metal arsenic from water using metal organic frameworks: a critical review. REV INORG CHEM 2021. [DOI: 10.1515/revic-2021-0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract
Water contamination is worldwide issue, undermining whole biosphere, influencing life of a large number of individuals all over the world. Water contamination is one of the chief worldwide danger issues for death, sickness, and constant decrease of accessible drinkable water around the world. Among the others, presence of arsenic, is considered as the most widely recognized lethal contaminant in water bodies and poses a serious threat not exclusively to humans but also towards aquatic lives. Hence, steps must be taken to decrease quantity of arsenic in water to permissible limits. Recently, metal-organic frameworks (MOFs) with outstanding stability, sorption capacities, and ecofriendly performance have empowered enormous improvements in capturing substantial metal particles. MOFs have been affirmed as good performance adsorbents for arsenic removal having extended surface area and displayed remarkable results as reported in literature. In this review we look at MOFs which have been recently produced and considered for potential applications in arsenic metal expulsion. We have delivered a summary of up-to-date abilities as well as significant characteristics of MOFs used for this removal. In this review conventional and advanced materials applied to treat water by adsorptive method are also discussed briefly.
Collapse
Affiliation(s)
- Khalil Ahmad
- Institute of Chemistry, Baghdad ul Jadeed Campus, The Islamia University of Bahawalpur , Bahawalpur 63100 , Pakistan
| | - Habib-Ur-Rehman Shah
- Institute of Chemistry, Baghdad ul Jadeed Campus, The Islamia University of Bahawalpur , Bahawalpur 63100 , Pakistan
| | - Muhammad Ashfaq
- Institute of Chemistry, Baghdad ul Jadeed Campus, The Islamia University of Bahawalpur , Bahawalpur 63100 , Pakistan
| | - Haq Nawaz
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences (CAS) , Beijing 100190 , China
| |
Collapse
|
40
|
Pashaei-Fakhri S, Peighambardoust SJ, Foroutan R, Arsalani N, Ramavandi B. Crystal violet dye sorption over acrylamide/graphene oxide bonded sodium alginate nanocomposite hydrogel. CHEMOSPHERE 2021; 270:129419. [PMID: 33418222 DOI: 10.1016/j.chemosphere.2020.129419] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 05/07/2023]
Abstract
The synthesis of acrylamide bonded sodium alginate (AM-SA) hydrogel and acrylamide/graphene oxide bonded sodium alginate (AM-GO-SA) nanocomposite hydrogel was successfully performed using the free radical method. The AM-SA and AM-GO-SA hydrogels were applied as composited adsorbents in crystal violet (CV) dye removal. The adsorption process experiments were performed discontinuously and the acquired data showed that the efficiency is more dependent on pH than other factors. The C-O, CO, and CC groups were detected in the produced hydrogels. The amount of surface area was computed to be 44.689 m2/g, 0.0392 m2/g, and 6.983 m2/g for GO, AM-SA, and AM-GO-SA nanocomposite hydrogel, respectively. The results showed that the experimental data follow the Redlich-Peterson isotherm model. Also, the maximum adsorption capacity of monolayer for CV dye adsorption was determined using AM-SA hydrogel and AM-GO-SA nanocomposite hydrogel 62.07 mg/g and 100.30 mg/g, respectively. In addition, the parameters RL, n, and E showed that the processes of adsorption of CV dye using both types of adsorbents are physical and desirable. Thermodynamically, the CV elimination was exothermic and spontaneous. Besides, thermodynamic results showed that the adsorption process is better proceeding at low temperatures. The experimental data followed a pseudo- second- order (PSO) kinetic model. Also, the Elovich model showed that AM-GO-SA nanocomposite hydrogel has more ability to absorb CV dye. Therefore, according to the obtained results, it can be stated that the produced hydrogels are efficient and viable composited adsorbent in removing CV dye from aqueous solution.
Collapse
Affiliation(s)
| | | | - Rauf Foroutan
- Faculty of Chemical & Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Nasser Arsalani
- Research Laboratory of Polymer, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
41
|
Bilici Baskan M, Hadimlioglu S. Removal of arsenate using graphene oxide-iron modified clinoptilolite-based composites: adsorption kinetic and column study. J Anal Sci Technol 2021. [DOI: 10.1186/s40543-021-00274-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AbstractIn this study, graphene oxide (GO), iron modified clinoptilolite (FeZ), and composites of GO-FeZ (GOFeZA and GOFeZB) were synthesized and characterized using SEM, EDS, XRF, FTIR, and pHpzc. The arsenate uptake on composites of GOFeZA and GOFeZB was examined by both kinetic and column studies. The adsorption capacity increases with the increase of the initial arsenate concentration at equilibrium for both composites. At the initial arsenate concentration of 450 μg/L, the arsenate adsorption on GOFeZA and GOFeZB was 557.86 and 554.64 μg/g, respectively. Arsenate adsorption on both composites showed good compatibility with the pseudo second order kinetic model. The adsorption process was explained by the surface complexation or ion exchange and electrostatic attraction between GOFeZA or GOFeZB and arsenate ions in the aqueous solution due to the relatively low equilibrium time and fairly rapid adsorption of arsenate at the beginning of the process. The adsorption mechanism was confirmed by characterization studies performed after arsenate was loaded onto the composites. The fixed-bed column experiments showed that the increasing the flow rate of the arsenate solution through the column resulted in a decrease in empty bed contact time, breakthrough time, and volume of treated water. As a result of the continuous operation column study with regenerated GOFeZA, it was demonstrated that the regenerated GOFeZA has lower breakthrough time and volume of treated water compared to fresh GOFeZA.
Collapse
|
42
|
Das TK, Bezbaruah AN. Comparative study of arsenic removal by iron-based nanomaterials: Potential candidates for field applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142914. [PMID: 33127156 DOI: 10.1016/j.scitotenv.2020.142914] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
Graphene oxide supported magnetite (GM) and graphene oxide supported nanoscale zero-valent iron (GNZVI) nanohybrids were compared for arsenic removal at a wide pH range (3-9). While already published work reported high process efficiency for GM and GNZVI, they cannot be compared one-on-one given the non-identical experimental conditions. Each researcher team used different initial arsenic concentration, solution pH, and adsorbent dose. This study evaluated GM and GNZVI, bare magnetite (M), and bare nanoscale zero-valent iron (NZVI) for aqueous arsenic removal under similar experimental conditions. GNZVI worked more efficiently (>90%) in a wide pH range (3-9) for both As(III) and As(V), while GM was efficient (>90%) only at pH 3 for As(V) and As(III) removal was maximum of ~80% at pH 9. GNZVI also exhibited better aqueous dispersibility with a zeta potential of -21.02 mV compared to other adsorbents in this experiment. The arsenic removal based on normalized iron content indicated that the nanohybrids recorded improved arsenic removal compare to bare nanoparticles, and GNZVI worked the best. In NZVI-based nanomaterials (GNZVI and NZVI), electrostatic attraction played a limited role while surface complexation was dominant in removal of both the arsenic species. In case of M-based nanomaterials (GM and M), As(V) removal was controlled by electrostatic attraction while As(III) adsorption was ligand exchange and surface complexation. GNZVI has the potential for field application for drinking water arsenic removal.
Collapse
Affiliation(s)
- Tonoy K Das
- Nanoenvirology Research Group, Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58105, USA.
| | - Achintya N Bezbaruah
- Nanoenvirology Research Group, Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58105, USA.
| |
Collapse
|
43
|
Liu Y, Yang S, Jiang H, Yang B, Fang X, Shen C, Yang J, Sand W, Li F. Sea urchin-like FeOOH functionalized electrochemical CNT filter for one-step arsenite decontamination. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124384. [PMID: 33229265 DOI: 10.1016/j.jhazmat.2020.124384] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/17/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Advanced nanotechnologies for efficient arsenic decontamination remain largely underdeveloped. The most abundant inorganic arsenic species are neutrally-charged arsenate, As(III), and negatively-charged arsenite, As(V). Compared with As(V), As(III) is 60 times more toxic and more difficult to remove due to high mobility. Herein, an electrochemical filtration system was rationally designed for one-step As(III) decontamination. The key to this technology is a functional electroactive carbon nanotube (CNT) filter functionalized with sea urchin-like FeOOH. With the assistance of electric field, CNT-FeOOH anodic filter can in situ transform As(III) to less toxic As(V) while passing through. Then, as-produced As(V) could be effectively sequestrated by FeOOH. The sufficient exposed sorption sites, flow-through design, and filter's electrochemical reactivity synergistically guaranteed a rapid arsenic removal kinetic. The underlying working mechanism was unveiled based on systematic experimental investigations and theoretical calculations. The system efficacy can be adapted across a wide pH range and environmental matrixes. Exhausted CNT-FeOOH filters could be effectively regenerated by chemical washing with diluted NaOH solution. Outcomes of the present study are dedicated to provide a straightforward and effective strategy by integrating electrochemistry, nanotechnology, and membrane separation for the removal of arsenic and other similar heavy metals from water bodies.
Collapse
Affiliation(s)
- Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China.
| | - Shengnan Yang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Hualin Jiang
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Bo Yang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xiaofeng Fang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Chensi Shen
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Jianmao Yang
- Research Center for Analysis & Measurement, Donghua University, Shanghai 201620, China
| | - Wolfgang Sand
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Institute of Biosciences, Freiberg University of Mining and Technology, Freiberg 09599, Germany
| | - Fang Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
44
|
Wu F, Zhao C, Qu G, Yan Z, Zeng Y, Chen B, Hu Y, Ji W, Li Y, Tang H. Adsorption of arsenic from aqueous solution using a zero-valent iron material modified by the ionic liquid [Hmim]SbF 6. RSC Adv 2021; 11:6577-6585. [PMID: 35423198 PMCID: PMC8694885 DOI: 10.1039/d0ra09339d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/21/2021] [Indexed: 01/22/2023] Open
Abstract
The environmental and health impacts caused by arsenic (As) in wastewater make it necessary to carefully manage As wastes. In the present work, a composite of the ionic liquid [Hmim]SbF6 and nano-iron (H/Fe) was used as an adsorbent to remove As(v) from aqueous solution. To better understand the removal effect of H/Fe on As(v) in aqueous solution, the reaction parameters of pH, reaction temperature, time and H/Fe dosage were systematically analyzed in detail. The results show that H/Fe has significant removal efficiency toward As(v), and that the adsorption of As(v) by 0.5 g H/Fe reaches its maximum adsorption capacity within 2 h. The adsorption of As(v) on H/Fe is a non-linear, time-varying process. The initial adsorption reaction is fast; however, unlike at the beginning, the later reaction involves sustained slow absorption, resulting in a distinct two-phase adsorption characteristic. Redox reaction may be one of the mechanisms responsible for the slow adsorption of As(v) on H/Fe. At the same time, the As(v) removal effect of H/Fe is greatly restricted by the pH. Electrostatic adsorption, adsorption co-precipitation and redox reactions act together on H/Fe in the As(v) removal process. This study provides a basis for further clarifying the adsorption, adsorption rules and mechanism of As(v) on H/Fe and a feasible method for the improvement of As(v) removal efficiency of zero-valent iron materials.
Collapse
Affiliation(s)
- Fenghui Wu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology Kunming 650500 Yunnan People's Republic of China .,National Regional Engineering Research Center-NCW Kunming 650500 Yunnan People's Republic of China
| | - Chenyang Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology Kunming 650500 Yunnan People's Republic of China .,National Regional Engineering Research Center-NCW Kunming 650500 Yunnan People's Republic of China
| | - Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology Kunming 650500 Yunnan People's Republic of China .,National Regional Engineering Research Center-NCW Kunming 650500 Yunnan People's Republic of China
| | - Zhoupeng Yan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology Kunming 650500 Yunnan People's Republic of China .,National Regional Engineering Research Center-NCW Kunming 650500 Yunnan People's Republic of China
| | - Yingda Zeng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology Kunming 650500 Yunnan People's Republic of China .,National Regional Engineering Research Center-NCW Kunming 650500 Yunnan People's Republic of China
| | - Bangjin Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology Kunming 650500 Yunnan People's Republic of China .,National Regional Engineering Research Center-NCW Kunming 650500 Yunnan People's Republic of China
| | - Yinghui Hu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology Kunming 650500 Yunnan People's Republic of China .,National Regional Engineering Research Center-NCW Kunming 650500 Yunnan People's Republic of China
| | - Wei Ji
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology Kunming 650500 Yunnan People's Republic of China .,National Regional Engineering Research Center-NCW Kunming 650500 Yunnan People's Republic of China
| | - Yingli Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology Kunming 650500 Yunnan People's Republic of China .,National Regional Engineering Research Center-NCW Kunming 650500 Yunnan People's Republic of China
| | - Huimin Tang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology Kunming 650500 Yunnan People's Republic of China .,National Regional Engineering Research Center-NCW Kunming 650500 Yunnan People's Republic of China
| |
Collapse
|
45
|
Ethylenediamine functionalized magnetic graphene oxide (Fe3O4@GO-EDA) as an efficient adsorbent in Arsenic(III) decontamination from aqueous solution. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-020-04368-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
46
|
Cheraghi M, Lorestani B, Zandipak R, Sobhanardakani S. GO@Fe3O4@ZnO@CS nanocomposite as a novel adsorbent for removal of doxorubicin hydrochloride from aqueous solutions. TOXIN REV 2021. [DOI: 10.1080/15569543.2020.1839910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mehrdad Cheraghi
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Bahareh Lorestani
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Raziyeh Zandipak
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Soheil Sobhanardakani
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| |
Collapse
|
47
|
Liu H, Pan B, Wang Q, Niu Y, Tai Y, Du X, Zhang K. Crucial roles of graphene oxide in preparing alginate/nanofibrillated cellulose double network composites hydrogels. CHEMOSPHERE 2021; 263:128240. [PMID: 33297187 DOI: 10.1016/j.chemosphere.2020.128240] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 06/12/2023]
Abstract
In this study, a novel strategy to prepare sodium alginate (SA)/nano fibrillated cellulose (NFC) double network (DN) hydrogel beads with the aid of graphene oxide (GO) was developed. In comparison with the multi-step freezing-thawing method, this study employs a facile one-step freeze drying method with the presence of GO sheets. The crucial roles of GO were highlighted as an efficient nucleating agent of NFC and a reinforcer for the hydrogel. The adsorption property of the DN hydrogel towards crystal violet (CV) was also studied. Results indicated that the introduction of GO could greatly facilitate the formation of double networks. Furthermore, the as-prepared DN hydrogel beads exhibited an efficacious adsorption property towards CV. The maximum adsorption capacity of the hydrogels for CV was observed as 665 mg g-1. Therefore, our approach here represents a facile method for the preparation of crystalline polymer based DN hydrogels to replace the awkward freezing-thawing process, giving inspiration for DN hydrogels design and preparation. Moreover, due to its efficient adsorption capacity, the hydrogels hold great promise for the water pollution control materials.
Collapse
Affiliation(s)
- Hongyu Liu
- Chemical Engineering and Pharmaceutics School, Henan University of Science and Technology, Luoyang, 471023, China
| | - Bingli Pan
- Chemical Engineering and Pharmaceutics School, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Qianjie Wang
- Chemical Engineering and Pharmaceutics School, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yumiao Niu
- Chemical Engineering and Pharmaceutics School, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yuping Tai
- Chemical Engineering and Pharmaceutics School, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xigang Du
- Chemical Engineering and Pharmaceutics School, Henan University of Science and Technology, Luoyang, 471023, China
| | - Keke Zhang
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
48
|
Zhang M, Ni F, He J, Liu Y. Evaluation of the formation and antifouling properties of a novel adsorptive homogeneous mixed matrix membrane with in situ generated Zr-based nanoparticles. RSC Adv 2021; 11:8491-8504. [PMID: 35423351 PMCID: PMC8695176 DOI: 10.1039/d0ra10330f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/03/2021] [Indexed: 11/24/2022] Open
Abstract
In situ generation is a powerful technique used to prepare homogenous adsorptive mixed matrix membranes (MMMs) containing functional nanoparticles, although the mechanism of formation of the membranes is not yet clear and there have been few published evaluations of membrane fouling. We therefore used this method to prepare a novel homogeneous adsorptive Zr-based nanoparticle–polyethersulfone (PES) MMM and systematically studied the mechanism of membrane formation at the atomic level. As the amount of ZrOCl2·8H2O in the casting solution increased, the phase inversion kinetics changed from instantaneous demixing due to the thermodynamic enhancement effect to a delayed demixing process caused by viscosity hindrance. The in situ generation of nanoparticles in these MMMs can be divided into three stages: the migration stage, the exfoliation stage and the stable stage. Our findings provide a fundamental understanding of the interface chemistry in the development of in situ generated MMMs. M2 showed a higher adsorption of As(v) than the pure PES membrane and could be reused after regeneration. The removal of As(v) from the M2 filtration system mainly took place via adsorption rather than size exclusion, as confirmed by EDS and experimental data. The presence of humic acid slightly inhibited the removal of As(v) during the filtration process as a result of the barrier effect caused by the formation of a filter cake via humic acid fouling. The filtration of a bovine serum albumin solution showed that the MMM with in situ generated nanoparticles had better antifouling properties than the PES membrane alone in multiple applications as a result of the enhanced hydrophilic surface. A homogeneous in situ generated Zr-based NPs/PES mixed matrix membrane with enhanced adsorptive and antifouling performance was developed.![]()
Collapse
Affiliation(s)
- Mei Zhang
- Institute of Ecological and Environmental Sciences
- Sichuan Agricultural University
- Chengdu
- China
| | - Fan Ni
- Department of Chemical Engineering
- Northwest University for Nationalities
- Lanzhou
- China
| | - Jinsong He
- Institute of Ecological and Environmental Sciences
- Sichuan Agricultural University
- Chengdu
- China
| | - Yan Liu
- College of Environmental Sciences
- Sichuan Agricultural University
- Chengdu
- China
| |
Collapse
|
49
|
Foti C, Mineo PG, Nicosia A, Scala A, Neri G, Piperno A. Recent Advances of Graphene-Based Strategies for Arsenic Remediation. Front Chem 2020; 8:608236. [PMID: 33381493 PMCID: PMC7767874 DOI: 10.3389/fchem.2020.608236] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/11/2020] [Indexed: 12/07/2022] Open
Abstract
The decontamination of water containing toxic metals is a challenging problem, and in the last years many efforts have been undertaken to discover efficient, cost-effective, robust, and handy technology for the decontamination of downstream water without endangering human health. According to the World Health Organization (WHO), 180 million people in the world have been exposed to toxic levels of arsenic from potable water. To date, a variety of techniques has been developed to maintain the arsenic concentration in potable water below the limit recommended by WHO (10 μg/L). Recently, a series of technological advancements in water remediation has been obtained from the rapid development of nanotechnology-based strategies that provide a remarkable control over nanoparticle design, allowing the tailoring of their properties toward specific applications. Among the plethora of nanomaterials and nanostructures proposed in the remediation field, graphene-based materials (G), due to their unique physico-chemical properties, surface area, size, shape, ionic mobility, and mechanical flexibility, are proposed for the development of reliable tools for water decontamination treatments. Moreover, an emerging class of 3D carbon materials characterized by the intrinsic properties of G together with new interesting physicochemical properties, such as high porosity, low density, unique electrochemical performance, has been recently proposed for water decontamination. The main design criteria used to develop remediation nanotechnology-based strategies have been reviewed, and special attention has been reserved for the advances of magnetic G and for nanostructures employed in the fabrication of membrane filtration.
Collapse
Affiliation(s)
- Claudia Foti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | | | - Angelo Nicosia
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|