1
|
Wang Y, Chen X, Chen J. Advances of the mechanism for copper tolerance in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112299. [PMID: 39455032 DOI: 10.1016/j.plantsci.2024.112299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
Copper (Cu) is a vital trace element necessary for plants growth and development. It acts as a co-factor for enzymes and plays a crucial role in various physiological processes, including photosynthesis, respiration, antioxidant systems, and hormone signaling transduction. However, excessive amounts of Cu can disrupt normal physiological metabolism, thus hindering plant growth, development, and reducing yield. In recent years, the widespread abuse of Cu-containing fungicides and industrial Cu pollution has resulted in significant soil contamination. Therefore, it is of utmost importance to uncover the adverse effects of excessive Cu on plant growth and delve into the molecular mechanisms employed by plants to counteract the stress caused by excessive Cu. Recent studies have confirmed the inhibitory effects of excess Cu on mineral nutrition, chlorophyll biosynthesis, and antioxidant enzyme activity. This review systematically outlines the ways in which plants tolerate excessive Cu stress and summarizes them into eight Cu-tolerance strategies. Furthermore, it highlights the necessity for further research to comprehend the molecular regulatory mechanisms underlying the responses to excessive Cu stress.
Collapse
Affiliation(s)
- Yamei Wang
- School of Agriculture and Biotechnology, Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| | - Xueke Chen
- School of Agriculture and Biotechnology, Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| | - Jingguang Chen
- School of Agriculture and Biotechnology, Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
2
|
Xie Q, Wang D, Ding Y, Gao W, Li J, Cao C, Sun L, Liu Z, Gao C. The ethylene response factor gene, ThDRE1A, is involved in abscisic acid- and ethylene-mediated cadmium accumulation in Tamarix hispida. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173422. [PMID: 38796019 DOI: 10.1016/j.scitotenv.2024.173422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
Tamarix hispida is highly tolerant to salt, drought and heavy metal stress and is a potential material for the remediation of cadmium (Cd)-contaminated soil under harsh conditions. In this study, T. hispida growth and chlorophyll content decreased, whereas flavonoid and carotenoid contents increased under long-term Cd stress (25 d). The aboveground components of T. hispida were collected for RNA-seq to investigate the mechanism of Cd accumulation. GO and KEGG enrichment analyses revealed that the differentially expressed genes (DEGs) were significantly enriched in plant hormone-related pathways. Exogenous hormone treatment and determination of Cd2+ levels showed that ethylene (ETH) and abscisic acid (ABA) antagonists regulate Cd accumulation in T. hispida. Twenty-five transcription factors were identified as upstream regulators of hormone-related pathways. ThDRE1A, which was previously identified as an important regulatory factor, was selected for further analysis. The results indicated that ThABAH2.5 and ThACCO3.1 were direct target genes of ThDRE1A. The determination of Cd2+, ABA, and ETH levels indicated that ThDRE1A plays an important role in Cd accumulation through the antagonistic regulation of ABA and ETH. In conclusion, these results reveal the molecular mechanism underlying Cd accumulation in plants and identify candidate genes for further research.
Collapse
Affiliation(s)
- Qingjun Xie
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Danni Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yuting Ding
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Wenshuo Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jinghang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chuanwang Cao
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Lili Sun
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Zhongyuan Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
3
|
Chengatt AP, Sarath NG, A M S, Sebastian DP, George S. 6-Benzylaminopurine mediated augmentation of cadmium phytostabilization potential in Strobilanthes alternata. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1893-1913. [PMID: 38836518 DOI: 10.1080/15226514.2024.2360573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
This study unveiled the cadmium phytoremediation potential and its augmentation using 6-Benzylaminopurine in Strobilanthes alternata. Cadmium stress was provided by applying 250 mg/kg cadmium chloride in soil and 25 ppm of 6-BAP (25 ml) was administered to the plants as foliar spray. The results revealed high bioconcentration factor (BCF) (18.82 ± 0.54) and low translocation factor (TF) values (0.055 ± 0.002) for the plant based on which we strongly recommend S. alternata as a promising candidate for Cd phytoremediation. The phytostabilization potential of the plant was further enhanced by applying 6-BAP, which augmented its BCF to 22.09 ± 0.64 and reduced the TF to 0.038 ± 0.001. Cd toxicity caused a reduction of plant growth parameters, root volume, adaxial-abaxial stomatal indices, relative water content, tolerance index, moisture content, membrane stability index, and xylem vessel diameter in S. alternata. However, Cd + 6-BAP treated plants exhibited an increase of the same compared to Cd-treated plants. FTIR analysis of Cd + 6-BAP treated plants revealed increased deposition of hemicellulose, causing enhanced retention of Cd in the root xylem walls, which is largely responsible for increased phytostabilization of Cd. Therefore, 6-BAP application in S. alternata can be exploited to restore Cd-contaminated areas effectively.
Collapse
Affiliation(s)
- Akshaya Prakash Chengatt
- Department of Botany, St. Joseph's College (Autonomous) Devagiri, Kozhikode, Affiliated to University of Calicut, Kerala, India
| | - Nair G Sarath
- Department of Botany, Mar Athanasius College (Autonomous), Kothamangalam, Kerala, India
| | - Shackira A M
- Department of Botany, Sir Syed College, Kannur University, Kannur, Kerala, India
| | - Delse Parekkattil Sebastian
- Department of Botany, St. Joseph's College (Autonomous) Devagiri, Kozhikode, Affiliated to University of Calicut, Kerala, India
| | - Satheesh George
- Department of Botany, St. Joseph's College (Autonomous) Devagiri, Kozhikode, Affiliated to University of Calicut, Kerala, India
| |
Collapse
|
4
|
Zainab N, Glick BR, Bose A, Amna, Ali J, Rehman FU, Paker NP, Rengasamy K, Kamran MA, Hayat K, Munis MFH, Sultan T, Imran M, Chaudhary HJ. Deciphering the mechanistic role of Bacillus paramycoides (PM51) and Bacillus tequilensis (PM52) in bio-sorption and phyto-assimilation of Cadmium via Linum usitatissimum L. Seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108652. [PMID: 38723488 DOI: 10.1016/j.plaphy.2024.108652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024]
Abstract
Three Cd2+ resistant bacterium's minimal inhibition concentrations were assessed and their percentages of Cd2+ accumulation were determined by measurements using an atomic absorption spectrophotometer (AAS). The results revealed that two isolates Bacillus paramycoides (PM51) and Bacillus tequilensis (PM52), identified by 16S rDNA gene sequencing, showed a higher percentage of Cd2+ accumulation i.e., 83.78% and 81.79%, respectively. Moreover, both novel strains can tolerate Cd2+ levels up to 2000 mg/L isolated from district Chakwal. Amplification of the czcD, nifH, and acdS genes was also performed. Batch bio-sorption studies revealed that at pH 7.0, 1 g/L of biomass, and an initial 150 mg/L Cd2+ concentration were the ideal bio-sorption conditions for Bacillus paramycoides (PM51) and Bacillus tequilensis (PM52). The experimental data were fit to Langmuir isotherm measurements and Freundlich isotherm model R2 values of 0.999 for each of these strains. Bio sorption processes showed pseudo-second-order kinetics. The intra-diffusion model showed Xi values for Bacillus paramycoides (PM51) and Bacillus tequilensis (PM52) of 2.26 and 2.23, respectively. Different surface ligands, was investigated through Fourier-transformation infrared spectroscopy (FTIR). The scanning electron microscope SEM images revealed that after Cd2+ adsorption, the cells of both strains became thick, adherent, and deformed. Additionally, both enhanced Linum usitatissimum plant seed germination under varied concentrations of Cd2+ (0 mg/L, 250 mg/L,350 mg/L, and 500 mg/L). Current findings suggest that the selected strains can be used as a sustainable part of bioremediation techniques.
Collapse
Affiliation(s)
- Nida Zainab
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Bernard R Glick
- Department of Biology, University of Water Loo, Ontario, Canada
| | - Arpita Bose
- Department of Biology Washington University in St. Louis (WUSTL), United States
| | - Amna
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Department of Botany, Rawalpindi Women University, 6th Road Sattellite Town, Rawalpindi, Pakistan
| | - Javed Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Fazal Ur Rehman
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, Tasmania, Australia
| | - Najeeba Parre Paker
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | | - Muhammad Aqeel Kamran
- College of Environmental and Resource Sciences, Zhejiang University Hangzhou China, China
| | - Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | | | - Tariq Sultan
- Land Resource Research Institute, NARC, Islamabad, Pakistan
| | - Muhammad Imran
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | | |
Collapse
|
5
|
Khan R, Sarwar MJ, Shabaan M, Asghar HN, Zulfiqar U, Iftikhar I, Aijaz N, Haider FU, Chaudhary T, Soufan W. Exploring the synergistic effects of indole acetic acid (IAA) and compost in the phytostabilization of nickel (Ni) in cauliflower rhizosphere. BMC PLANT BIOLOGY 2024; 24:275. [PMID: 38605329 PMCID: PMC11007947 DOI: 10.1186/s12870-024-04920-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024]
Abstract
Heavy metals (HMs) contamination, owing to their potential links to various chronic diseases, poses a global threat to agriculture, environment, and human health. Nickel (Ni) is an essential element however, at higher concentration, it is highly phytotoxic, and affects major plant functions. Beneficial roles of plant growth regulators (PGRs) and organic amendments in mitigating the adverse impacts of HM on plant growth has gained the attention of scientific community worldwide. Here, we performed a greenhouse study to investigate the effect of indole-3-acetic acid (IAA @ 10- 5 M) and compost (1% w/w) individually and in combination in sustaining cauliflower growth and yield under Ni stress. In our results, combined application proved significantly better than individual applications in alleviating the adverse effects of Ni on cauliflower as it increased various plant attributes such as plant height (49%), root length (76%), curd height and diameter (68 and 134%), leaf area (75%), transpiration rate (36%), stomatal conductance (104%), water use efficiency (143%), flavonoid and phenolic contents (212 and 133%), soluble sugars and protein contents (202 and 199%), SPAD value (78%), chlorophyll 'a and b' (219 and 208%), carotenoid (335%), and NPK uptake (191, 79 and 92%) as compared to the control. Co-application of IAA and compost reduced Ni-induced electrolyte leakage (64%) and improved the antioxidant activities, including APX (55%), CAT (30%), SOD (43%), POD (55%), while reducing MDA and H2O2 contents (77 and 52%) compared to the control. The combined application also reduced Ni uptake in roots, shoots, and curd by 51, 78 and 72% respectively along with an increased relative production index (78%) as compared to the control. Hence, synergistic application of IAA and compost can mitigate Ni induced adverse impacts on cauliflower growth by immobilizing it in the soil.
Collapse
Affiliation(s)
- Raheel Khan
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Junaid Sarwar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Shabaan
- Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad, Pakistan.
| | - Hafiz Naeem Asghar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Irfan Iftikhar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Nazish Aijaz
- School of Biomedical Science, Hunan University, Changsha, Hunan, China
- MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Talha Chaudhary
- Faculty of Agricultural and Environmental Sciences, Hungarian University of Agriculture and Life Sciences 2100, Godollo, Hungary.
| | - Walid Soufan
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
6
|
Chunwichit S, Phusantisampan T, Thongchai A, Taeprayoon P, Pechampai N, Kubola J, Pichtel J, Meeinkuirt W. Influence of soil amendments on phytostabilization, localization and distribution of zinc and cadmium by marigold varieties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170791. [PMID: 38342454 DOI: 10.1016/j.scitotenv.2024.170791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Marigolds (Tagetes erecta L.) were evaluated for phytoremediation potential of cadmium (Cd) and zinc (Zn) as a function of amendment application to soil. Vermicompost (V), biodigestate (Bi), and combined V + Bi (VBi) were used as soil amendments in Zn and Cd co-contaminated soils. Application of soil amendments can alter physicochemical properties of soils, particularly pH, EC, CEC and nutrient concentrations. The VBi treatment resulted in highest percentage growth rate in biomass (52 %) for the Twenty yellow variety of marigold. Also, in the VBi treatment, leaves of Dragon yellow variety exhibited maximal accumulation of Zn and Cd. Flower extracts of Twenty yellow in the V treatment had substantial carotenoid content (71.7 mg L-1) and lowest IC50 value (43.7 mg L-1), thus indicating it had highest DPPH free radical scavenging activity. Dragon yellow exhibited highest values of ferric reducing antioxidant power (FRAP; 2066 mg L-1), total flavonoids content (TFC; 64.1 mg L-1), and total phenolics content (TPC; 50.9 mg L-1). Using X-ray fluorescence (XRF) spectroscopy, the atomic percentages of Zn and Cd in all marigold varieties and treatments showed similar patterns over flower surfaces, seeds, and flower petals in descending order. Prime yellow in the V treatment resulted in higher Zn accumulation in roots (bioconcentration factor of root value) > 1 and translocation factor value < 1, indicating an enhanced ability of the plant for phytostabilization. Application of V altered antioxidant activities and production of bioactive compounds as well as enhanced the excluder potential of Cd and Zn, particularly in the Prime yellow variety. Application of Bi contributed to increased flower numbers, suggesting that floriculturists cultivating marigolds for ornamental purposes may be able to generate revenue in terms of productivity and quality of flowers when marigolds are grown on contaminated land.
Collapse
Affiliation(s)
- Salinthip Chunwichit
- Water and Soil Environmental Research Unit, Nakhonsawan Campus, Mahidol University, Nakhonsawan 60130, Thailand
| | - Theerawut Phusantisampan
- Department of Biotechnology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Alapha Thongchai
- Faculty of Science Technology and Agriculture, Yala Rajabhat University, Yala 95000, Thailand
| | - Puntaree Taeprayoon
- Agricultural and Environmental Utilization Research Unit, Nakhonsawan Campus, Mahidol University, Nakhonsawan 60130, Thailand
| | - Natthapong Pechampai
- Academic and Curriculum Division, Nakhonsawan Campus, Mahidol University, Nakhonsawan 60130, Thailand
| | - Jittawan Kubola
- Department of Food Innovation and Processing, Faculty of Agricultural Technology, Buriram Rajabhat University, Buriram 31000, Thailand
| | - John Pichtel
- Ball State University, Environment, Geology, and Natural Resources, Muncie, IN 47306, USA
| | - Weeradej Meeinkuirt
- Water and Soil Environmental Research Unit, Nakhonsawan Campus, Mahidol University, Nakhonsawan 60130, Thailand.
| |
Collapse
|
7
|
Ur Rahman S, Qin A, Zain M, Mushtaq Z, Mehmood F, Riaz L, Naveed S, Ansari MJ, Saeed M, Ahmad I, Shehzad M. Pb uptake, accumulation, and translocation in plants: Plant physiological, biochemical, and molecular response: A review. Heliyon 2024; 10:e27724. [PMID: 38500979 PMCID: PMC10945279 DOI: 10.1016/j.heliyon.2024.e27724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024] Open
Abstract
Lead (Pb) is a highly toxic contaminant that is ubiquitously present in the ecosystem and poses severe environmental issues, including hazards to soil-plant systems. This review focuses on the uptake, accumulation, and translocation of Pb metallic ions and their toxicological effects on plant morpho-physiological and biochemical attributes. We highlight that the uptake of Pb metal is controlled by cation exchange capacity, pH, size of soil particles, root nature, and other physio-chemical limitations. Pb toxicity obstructs seed germination, root/shoot length, plant growth, and final crop-yield. Pb disrupts the nutrient uptake through roots, alters plasma membrane permeability, and disturbs chloroplast ultrastructure that triggers changes in respiration as well as transpiration activities, creates the reactive oxygen species (ROS), and activates some enzymatic and non-enzymatic antioxidants. Pb also impairs photosynthesis, disrupts water balance and mineral nutrients, changes hormonal status, and alters membrane structure and permeability. This review provides consolidated information concentrating on the current studies associated with Pb-induced oxidative stress and toxic conditions in various plants, highlighting the roles of different antioxidants in plants mitigating Pb-stress. Additionally, we discussed detoxification and tolerance responses in plants by regulating different gene expressions, protein, and glutathione metabolisms to resist Pb-induced phytotoxicity. Overall, various approaches to tackle Pb toxicity have been addressed; the phytoremediation techniques and biochar amendments are economical and eco-friendly remedies for improving Pb-contaminated soils.
Collapse
Affiliation(s)
- Shafeeq Ur Rahman
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Anzhen Qin
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Xinxiang, 453002, China
| | - Muhammad Zain
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Crop Cultivation and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Zain Mushtaq
- Department of Soil Science, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Faisal Mehmood
- Department of Land and Water Management, Faculty of Agricultural Engineering, Sindh Agriculture University, Tandojam, 70060, Pakistan
| | - Luqman Riaz
- Department of Environmental Sciences, Kohsar University Murree, 47150, Punjab, Pakistan
| | - Sadiq Naveed
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), 244001, India
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, P.O. Box 2240, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Muhammad Shehzad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| |
Collapse
|
8
|
Yu S, Zehra A, Sahito ZA, Wang W, Chen S, Feng Y, He Z, Yang X. Cytokinin-mediated shoot proliferation and its correlation with phytoremediation effects in Cd-hyperaccumulator ecotype of Sedum alfredii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168993. [PMID: 38043818 DOI: 10.1016/j.scitotenv.2023.168993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
The phytohormones cytokinins (CKs) are known to regulate apical/auxiliary meristems, control shoot growth and are associated with nutrient uptake and high biomass production. In this study, different cytokinins were tested on Sedum alfredii (S.alfredii) for shoot proliferation and growth performance as well as their correlation with phytoextraction efficiency. Among the tested cytokinins, Zeatin (ZTN) treatments produced the highest number of shoots (5-6 per explant) with 5 and 10 μM ZTN concentrations which are shown as zeatin (ZTN) > kinetin (KTN) > benzylaminopurine (BA) > thidiazuron (TDZ). Maximum biomass production was produced on these media. The maximum biomass (0.14 g) was found in 10 μM ZTN concentration with a 1-fold difference (mean value: 0.02 g) from CK (0.12 g). However, the lowest biomass (0.11 g) was found with 4 μM TDZ, with a 1-fold difference (mean value: 0.02 g) from CK (0.13 g) which suppressed shoot growth. The leaf area and leaf chlorophyll index were significantly increased in all cytokinins except TDZ, and the relation was ZTN > KTN > BA>CK > TDZ. Cadmium accumulation was significantly higher in treatments containing cytokinins as compared to cytokinin-free media. Zeatin at 10 μM concentration was the most effective for high biomass production and correlated with higher cadmium uptake efficiency. The results suggest that cytokinins particularly ZTN, play a crucial role in enhancing both biomass production and cadmium, uptake efficiency in S. alfredii. Therefore, in large-scale phytoremediation initiatives conducted in field conditions, cytokinins can be utilized as growth regulators to enhance biomass production and cadmium extraction efficiency in S.alfredii.
Collapse
Affiliation(s)
- Song Yu
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Afsheen Zehra
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Zulfiqar Ali Sahito
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Wenkai Wang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Shaoning Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Ying Feng
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Zhenli He
- University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Fort Pierce, FL 34945, United States
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
9
|
Li N, Wang Y, Zhou L, Fu D, Chen T, Chen X, Wang Q, Zhu W. The joint action of biochar and plant roots on U-stressed soil remediation: Insights from bacteriomics and metabolomics. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132635. [PMID: 37793252 DOI: 10.1016/j.jhazmat.2023.132635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/18/2023] [Accepted: 09/24/2023] [Indexed: 10/06/2023]
Abstract
Although biological remediation of U-stressed soil has been studied for a long time, the combined effects of biochar and plant roots are rarely discussed and its influence on rhizosphere microecology are still unknown. Based on pot experiments, we explored the combined efforts of biochar addition and plant roots on U-stressed rhizosphere soil in several ways, including soil physicochemical properties, soil enzyme activities, uranium chemical speciation, bacterial community structure and metabolic pathways. Our results indicates that the content of DTPA-extractable U decreased by 49.31% after biochar and plant roots application, whereas plant roots only treatment just decreased by 25.46%. Further research has found that the pH, CEC, enzyme activities and nutritional level of rhizosphere soil were more significantly improved after biochar and plant roots application. Meanwhile, the abundance and diversity of bacterial community was also upregulated, which was also suggested by the stronger metabolisms of lipids, carbohydrate, nucleotides as well as amino acids. Correlation analyses also certified the positive associations between soil properties, bacterial communities and metabolism. We speculated that the uranium immobilization was mainly attributed to the direct fixation of biochar for its alkalinity, CEC, DOC, etc. and the joint action of biochar and plant roots for their stimulating effects on bacteria. Our findings suggested that combination of biochar and plant roots could limit bioaccessibility of U in a larger extend than plant roots only, which may be a better strategy for rapid remediation of U-streesed soil.
Collapse
Affiliation(s)
- Nan Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Yilin Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Li Zhou
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Dengjiang Fu
- School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Tao Chen
- School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Xiaoming Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Qing Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| | - Wenkun Zhu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| |
Collapse
|
10
|
Yang W, Dai H, Wei S, Skuza L. The effect of exogenous plant growth regulators on elevated Cd phytoremediation by Solanum nigrum L. in contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3964-3975. [PMID: 38097832 DOI: 10.1007/s11356-023-31420-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024]
Abstract
Maximizing amendment potential is an emphasis in the HM-contaminated field of phytoremediation by hyperaccumulators due to the low bioavailability of HMs in soils and small biomass yields of plants. This study investigated the influence of different types and concentrations of plant growth regulators on Cd phytoremediation by Solanum nigrum in contaminated soil. Our conclusions showed that the shoot Cd extractions (μg plant-1) and the root and shoot biomasses at all the treatments remarkedly increased compared with that of the CK (p < 0.05), while the Cd concentrations at root and aboveground parts by S. nigrum, the extractable Cd concentrations, and pH value of soils did not change significantly compared with the CK (p < 0.05). Furthermore, correlation analysis showed that the shoot Cd phytoaccumulation and the root and aboveground biomasses of S. nigrum were particularly dependent upon the application of CTK and GA3 concentration gradient (p < 0.05). Moreover, some related physicochemical indexes were determined for supervising the growth conditions of plants, and these results pointed out that after exogenous PGRs treatments, the chlorophyll content and antioxidative enzymes POD and SOD activities in vivo of plants clearly advanced, while the H2O2 and MDA contents and CAT apparently declined. These consequence demonstrated that the exogenous PGR addition prominently reinforced the Cd phytoextraction capacity of S. nigrum in contaminated soil by stimulating plant growth and increasing shoot yields.
Collapse
Affiliation(s)
- Wei Yang
- Academy of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang, 110159, Liaoning, China
| | - Huiping Dai
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Lidia Skuza
- Department of Molecular Biology and Cytology, Institute for Research On Biodiversity, University of Szczecin, 71-415, Szczecin, Poland
| |
Collapse
|
11
|
Liu Z, Lu Q, Zhao Y, Wei J, Liu M, Duan X, Lin M. Ameliorating Effects of Graphene Oxide on Cadmium Accumulation and Eco-Physiological Characteristics in a Greening Hyperaccumulator ( Lonicera japonica Thunb.). PLANTS (BASEL, SWITZERLAND) 2023; 13:19. [PMID: 38202327 PMCID: PMC10780341 DOI: 10.3390/plants13010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024]
Abstract
Graphene oxide (GO), as a novel carbon-based nanomaterial (CBN), has been widely applied to every respect of social life due to its unique composite properties. The widespread use of GO inevitably promotes its interaction with heavy metal cadmium (Cd), and influences its functional behavior. However, little information is available on the effects of GO on greening hyperaccumulators under co-occurring Cd. In this study, we chose a typical greening hyperaccumulator (Lonicera japonica Thunb.) to show the effect of GO on Cd accumulation, growth, net photosynthesis rate (Pn), carbon sequestration and oxygen release functions of the plant under Cd stress. The different GO-Cd treatments were set up by (0, 10, 50 and 100 mg L-1) GO and (0, 5 and 25 mg L-1) Cd in solution culture. The maximum rate of Cd accumulation in the roots and shoots of the plant were increased by 10 mg L-1 GO (exposed to 5 mg L-1 Cd), indicating that low-concentration GO (10 mg L-1) combined with low-concentration Cd (5 mg L-1) might stimulate the absorption of Cd by L. japonica. Under GO treatments without Cd, the dry weight of root and shoot biomass, Pn value, carbon sequestration per unit leaf area and oxygen release per unit leaf area all increased in various degrees, especially under 10 mg L-1 GO, were 20.67%, 12.04%, 35% and 28.73% higher than the control. Under GO-Cd treatments, it is observed that the cooperation of low-concentration GO (10 mg L-1) and low-concentration Cd (5 mg L-1) could significantly stimulate Cd accumulation, growth, photosynthesis, carbon sequestration and oxygen release functions of the plant. These results indicated that suitable concentrations of GO could significantly alleviate the effects of Cd on L. japonica, which is helpful for expanding the phytoremediation application of greening hyperaccumulators faced with coexistence with environment of nanomaterials and heavy metals.
Collapse
Affiliation(s)
- Zhouli Liu
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China; (Q.L.); (J.W.); (X.D.)
- Institute of Carbon Neutrality Technology and Policy, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
- Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang 110000, China
| | - Qingxuan Lu
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China; (Q.L.); (J.W.); (X.D.)
- Institute of Carbon Neutrality Technology and Policy, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
- Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang 110000, China
| | - Yi Zhao
- School of Chemistry and Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China
| | - Jianbing Wei
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China; (Q.L.); (J.W.); (X.D.)
- Institute of Carbon Neutrality Technology and Policy, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
- Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang 110000, China
| | - Miao Liu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China;
| | - Xiangbo Duan
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China; (Q.L.); (J.W.); (X.D.)
- Institute of Carbon Neutrality Technology and Policy, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
- Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang 110000, China
| | - Maosen Lin
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110161, China
| |
Collapse
|
12
|
Zhang S, Zhang C, Gao ZF, Qiu CW, Shi SH, Chen ZH, Ali MA, Wang F, Wu F. Integrated physiological and omics analyses reveal the mechanism of beneficial fungal Trichoderma sp. alleviating cadmium toxicity in tobacco (Nicotiana tabacum L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115631. [PMID: 37890251 DOI: 10.1016/j.ecoenv.2023.115631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/05/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023]
Abstract
Cadmium (Cd) is a highly toxic heavy metal and readily accumulates in tobacco, which imperils public health via Cd exposure from smoking. Beneficial microbes have a pivotal role in promoting plant growth, especially under environmental stresses such as heavy metal stresses. In this study, we introduced a novel fungal strain Trichoderma nigricans T32781, and investigated its capacity to alleviate Cd-induced stress in tobacco plants through comprehensive physiological and omics analyses. Our findings revealed that T32781 inoculation in soil leads to a substantial reduction in Cd-induced growth inhibition. This was evidenced by increased plant height, enhanced biomass accumulation, and improved photosynthesis, as indicated by higher values of key photosynthetic parameters, including the maximum quantum yield of photosystem Ⅱ (Fv/Fm), stomatal conductance (Gs), photosynthetic rate (Pn) and transpiration rate (Tr). Furthermore, element analysis demonstrated that T. nigricans T32781 inoculation resulted in a remarkable reduction of Cd uptake by 62.2% and a 37.8% decrease in available soil Cd compared to Cd-stressed plants without inoculation. The protective role of T32781 extended to mitigating Cd-induced oxidative stress by improving antioxidant enzyme activities of superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX). Metabolic profiling of tobacco roots identified 43 key metabolites, with notable contributions from compounds like nicotinic acid, succinic acid, and fumaric acid in reducing Cd toxicity in T32781-inoculated plants. Additionally, rhizosphere microbiome analysis highlighted the promotion of beneficial microbes, including Gemmatimonas and Sphingomonas, by T32781 inoculation, which potentially contributed to the restoration of plant growth under Cd exposure. In summary, our study demonstrated that T. nigricans T32781 effectively alleviated Cd stress in tobacco plants by reducing Cd uptake, alleviating Cd-induced oxidative stress, influencing plant metabolite and modulating the microbial composition in the rhizosphere. These findings offer a novel perspective and a promising candidate strain for enhancing Cd tolerance and prohibiting its accumulation in plants to reduce health risks associated with exposure to Cd-contaminated plants.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Agronomy, Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Chulong Zhang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zi-Feng Gao
- Department of Agronomy, Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Cheng-Wei Qiu
- Department of Agronomy, Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Shou-Heng Shi
- Department of Agronomy, Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Zhong-Hua Chen
- School of Science, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | | | - Feng Wang
- Guizhou Academy of Tobacco Science, Guiyang 550081, China.
| | - Feibo Wu
- Department of Agronomy, Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
13
|
Feng D, Wang R, Sun X, Liu L, Liu P, Tang J, Zhang C, Liu H. Heavy metal stress in plants: Ways to alleviate with exogenous substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165397. [PMID: 37429478 DOI: 10.1016/j.scitotenv.2023.165397] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Accumulation and enrichment of excessive heavy metals due to industrialization and modernization not only devastate our ecosystem, but also pose a threat to the global vegetation, especially crops. To improve plant resilience against heavy metal stress (HMS), numerous exogenous substances (ESs) have been tried as the alleviating agents. After a careful and thorough review of over 150 recently published literature, 93 reported ESs and their corresponding effects on alleviating HMS, we propose that 7 underlying mechanisms of ESs be categorized in plants for: 1) improving the capacity of the antioxidant system, 2) inducing the synthesis of osmoregulatory substances, 3) enhancing the photochemical system, 4) detouring the accumulation and migration of heavy metals, 5) regulating the secretion of endogenous hormones, 6) modulating gene expressions, and 7) participating in microbe-involved regulations. Recent research advances strongly indicate that ESs have proven to be effective in mitigating a potential negative impact of HMS on crops and other plants, but not enough to ultimately solve the devastating problem associated with excessive heavy metals. Therefore, much more research should be focused and carried out to eliminate HMS for the sustainable agriculture and clean environmental through minimizing towards prohibiting heavy metals from entering our ecosystem, phytodetoxicating polluted landscapes, retrieving heavy metals from detoxicating plants or crop, breeding for more tolerant cultivars for both high yield and tolerance against HMS, and seeking synergetic effect of multiply ESs on HMS alleviation in our feature researches.
Collapse
Affiliation(s)
- Di Feng
- Weifang University of Science and Technology/Shandong Facility Horticulture Bioengineering Research Center, Weifang 262700, Shandong, China
| | - Rongxue Wang
- Weifang University of Science and Technology/Shandong Facility Horticulture Bioengineering Research Center, Weifang 262700, Shandong, China
| | - Xiaoan Sun
- Weifang University of Science and Technology/Shandong Facility Horticulture Bioengineering Research Center, Weifang 262700, Shandong, China
| | - Li'nan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ping Liu
- Weifang University of Science and Technology/Shandong Facility Horticulture Bioengineering Research Center, Weifang 262700, Shandong, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chenxi Zhang
- Weifang University of Science and Technology/Shandong Facility Horticulture Bioengineering Research Center, Weifang 262700, Shandong, China.
| | - Hao Liu
- Key Laboratory of Crop Water Requirement and Regulation of the Ministry of Agriculture and Rural Affairs/Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453003, Henan, China.
| |
Collapse
|
14
|
Xin J, Hong C, Wei J, Qie J, Wang H, Lei B, Li X, Cai Z, Kang Q, Zeng Z, Liu Y. A comprehensive review of radioactive pollution treatment of uranium mill tailings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:102104-102128. [PMID: 37684506 DOI: 10.1007/s11356-023-29401-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023]
Abstract
Natural uranium is a crucial resource for clean nuclear energy, which has brought significant economic and social benefits to humanity. However, the development and utilization of uranium resources have also resulted in the accumulation of vast amounts of uranium mill tailings (UMTs), which pose a potential threat to human health and the ecological environment. This paper reviews the research progress on UMTs treatment technologies, including cover disposal, solidification disposal, backfilling disposal, and bioremediation methods. It is found that cover disposal is a versatile method for the long-term management of UMTs, the engineering performance and durability of the cover system can be improved by choosing suitable stabilizers for the cover layer. Solidification disposal can convert UMTs into solid waste for permanent disposal, but it produces a large amount of waste and requires high operating costs; it is necessary to explore the effectiveness and efficiency of solidification disposal for UMTs, while minimizing the bad environmental impact. Backfilling disposal realizes the resource utilization of solid waste, but the high radon exhalation rate caused by the UMTs backfilling also needs to be considered. Bioremediation methods have low investment costs and are less likely to cause secondary pollution, but the remediation efficiency is low, it can be combined with other treatment technologies to remedy the defects of a single remediation method. The article concludes with key issues and corresponding suggestions for the current UMTs treatment methods, which can provide theoretical guidance and reference for further development and application of radioactive pollution treatment of UMTs.
Collapse
Affiliation(s)
- Jiayi Xin
- School of Resources, Environmental and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Changshou Hong
- School of Resources, Environmental and Safety Engineering, University of South China, Hengyang, 421001, China.
| | - Jia Wei
- School of Resources, Environmental and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Jingwen Qie
- School of Resources, Environmental and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Hong Wang
- School of Resources, Environmental and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Bo Lei
- School of Resources, Environmental and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Xiangyang Li
- School of Resources, Environmental and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Ziqi Cai
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Qian Kang
- School of Emergency Management and Safety Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Zhiwei Zeng
- Department of Radiological Medicine and Environmental Medicine, China Institute for Radiation Protection, Taiyuan, 030000, China
| | - Yong Liu
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518061, China
| |
Collapse
|
15
|
Xie Y, Duan H, Wang L, Zhang J, Dong K, Wang X, Zhang Y, Zhou Y, Li W, Qi Y, Zhao W, Dang Z, Wang X, Li W, Zhao L. Phosphorus and naphthalene acetic acid increased the seed yield by regulating carbon and nitrogen assimilation of flax. FRONTIERS IN PLANT SCIENCE 2023; 14:1228755. [PMID: 37719212 PMCID: PMC10499554 DOI: 10.3389/fpls.2023.1228755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/31/2023] [Indexed: 09/19/2023]
Abstract
To evaluate the impact of phosphorus (P) combined with exogenous NAA on flax yield, enhance flax P utilization efficiency and productivity, minimize resource inputs and mitigate negative environmental and human effects. Therefore, it is crucial to comprehend the physiological and biochemical responses of flax to P and naphthylacetic acid (NAA) in order to guide future agronomic management strategies for increasing seed yield. A randomized complete block design trial was conducted under semi-arid conditions in Northwest China, using a factorial split-plot to investigate the effects of three P (0, 67.5, and 135.0 kg P2O5 ha-1) and three exogenous spray NAA levels (0, 20, and 40 mg NAA L-1) on sucrose phosphate synthase (SPS) and diphosphoribulose carboxylase (Rubisco) activities as well as nitrogen (N) and P accumulation and translocation in flax. Results indicated that the SPS and Rubisco activities, N and P accumulation at flowering and maturity along with assimilation and translocation post-flowering, fruiting branches per plant, tillers per plant, capsules per plant, and seed yield were 95, 105, 14, 27, 55, 15, 13, 110, 103, 82, 16, 61, 8, and 13% greater in the P treatments compared to those in the zero P treatment, respectively. Moreover, those characteristics were observed to be greater with exogenous spray NAA treatments compared to that no spray NAA treatment. Additionally, the maximum SPS and Rubisco activities, N and P accumulation, assimilation post-flowering and translocation, capsules per plant, and seed yield were achieved with the application of 67.5 kg P2O5 ha-1 with 20 mg NAA L-1. Therefore, these findings demonstrate that the appropriate combination of P fertilizer and spray NAA is an effective agronomic management strategy for regulating carbon and nitrogen assimilation by maintaining photosynthetic efficiency in plants to increase flax productivity.
Collapse
Affiliation(s)
- Yaping Xie
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Huirong Duan
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Limin Wang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Jianping Zhang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Kongjun Dong
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Xingrong Wang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Yanjun Zhang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Yangchen Zhou
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Wenjuan Li
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Yanni Qi
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Wei Zhao
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Zhao Dang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Xingzhen Wang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Wen Li
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Lirong Zhao
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
16
|
Lu C, Zhang Z, Guo P, Wang R, Liu T, Luo J, Hao B, Wang Y, Guo W. Synergistic mechanisms of bioorganic fertilizer and AMF driving rhizosphere bacterial community to improve phytoremediation efficiency of multiple HMs-contaminated saline soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163708. [PMID: 37105481 DOI: 10.1016/j.scitotenv.2023.163708] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/28/2023] [Accepted: 04/20/2023] [Indexed: 06/03/2023]
Abstract
The addition of Arbuscular mycorrhizal fungi (AMF) or bioorganic fertilizer (BOF) alone has been reported to enhance plant tolerance to heavy metals and salt stress and promote plant growth, while their synergistic effects on plant growth and rhizosphere microorganism are largely unknown. This study explored the effects of AMF (Rhizophagus intraradices), BOF and BOF + RI assisted phytoremediation on heavy metals contaminated saline soil improvement and revealed the microbial mechanism. For this purpose, a pot trial consisting of four treatments (CK, RI, BOF and BOF + RI) was carried out. The results showed that the biomass, nutrient element contents, the accumulation of heavy metals and Na of Astragalus adsurgens and soil properties were most significantly improved by BOF + RI. BOF + RI significantly impacted rhizosphere microbial diversity, abundance and community composition. Chloroflexi and Patescibacteria at the phylum level and Actinomadura, Iamia, and Desulfosporosinus at the genus level were significantly enriched in BOF + RI. Network analysis revealed that BOF + RI significantly changed the keystone and enhanced complexity and interaction. Most of the keystones had roles in promoting plant growth and stress resistance. This study suggested that phytoremediation assisted by BOF and AMF is an attractive approach to ameliorate heavy metals contaminated saline soil.
Collapse
Affiliation(s)
- Chengyan Lu
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhechao Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Peiran Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Run Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Tai Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Junqing Luo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Baihui Hao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yuchen Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wei Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
17
|
Liu Z, An J, Lu Q, Yang C, Mu Y, Wei J, Hou Y, Meng X, Zhao Z, Lin M. Effects of Cadmium Stress on Carbon Sequestration and Oxygen Release Characteristics in A Landscaping Hyperaccumulator- Lonicera japonica Thunb. PLANTS (BASEL, SWITZERLAND) 2023; 12:2689. [PMID: 37514303 PMCID: PMC10385468 DOI: 10.3390/plants12142689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
The carbon sequestration and oxygen release of landscape plants are dominant ecological service functions, which can play an important role in reducing greenhouse gases, improving the urban heat island effect and achieving carbon peaking and carbon neutrality. In the present study, we are choosing Lonicera japonica Thunb. as a model plant to show the effects of Cd stress on growth, photosynthesis, carbon sequestration and oxygen release characteristics. Under 5 mg kg-1 of Cd treatment, the dry weight of roots and shoots biomass and the net photosynthetic rate (PN) in L. japonica had a significant increase, and with the increase in Cd treatment concentration, the dry weight of roots and shoots biomass and PN in the plant began to decrease. When the Cd treatment concentration was up to 125 mg kg-1, the dry weight of root and shoots biomass and PN in the plant decreased by 5.29%, 1.94% and 2.06%, and they had no significant decrease compared with the control, indicating that the plant still had a good ability for growth and photoenergy utilization even under high concentrations of Cd stress. The carbon sequestration and oxygen release functions in terms of diurnal assimilation amounts (P), carbon sequestration per unit leaf area (WCO2), oxygen release per unit leaf area (WO2), carbon sequestration per unit land area (PCO2) and oxygen release per unit land area (PO2) in L. japonica had a similar change trend with the photosynthesis responses under different concentrations of Cd treatments, which indicated that L. japonica as a landscaping Cd-hyperaccumulator, has a good ability for carbon sequestration and oxygen release even under high concentrations of Cd stress. The present study will provide a useful guideline for effectively developing the ecological service functions of landscaping hyperaccumulators under urban Cd-contaminated environment.
Collapse
Affiliation(s)
- Zhouli Liu
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S & T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Jing An
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Qingxuan Lu
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S & T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Chuanjia Yang
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Yitao Mu
- College of Municipal and Environmental Engineering, Shenyang Urban Construction University, Shenyang 110167, China
| | - Jianbing Wei
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S & T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Yongxia Hou
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S & T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Xiangyu Meng
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S & T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Zhuo Zhao
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S & T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Maosen Lin
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110161, China
| |
Collapse
|
18
|
Shah R, Khan RS, Jan AU, Ullah S, Ditta A, Islam Z, Ullah R, Ullah R, Soufan W, Almutairi KF, Rajendran K, Elango D, El Sabagh A. Plant Growth Regulators with a Balanced Supply of Nutrients Enhance the Phytoextraction Efficiency of Parthenium hysterophorus for Cadmium in Contaminated Soil. ACS OMEGA 2023; 8:18940-18950. [PMID: 37273635 PMCID: PMC10233834 DOI: 10.1021/acsomega.3c01429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023]
Abstract
Heavy metal contamination in soil, such as cadmium (Cd), poses a serious threat to global food security and human health. It must be managed using environmentally friendly and cost-effective technologies. Plants with high resistance to Cd stress and high biomass production could be potential candidates for the phytoremediation of Cd-contaminated soils to improve Cd phytoextraction. In this regard, the present study was carried out to determine the effect of gibberellic acid (GA3), indole acetic acid (IAA), and fertilizers (N, P, and K) on Parthenium hysterophorus growth and biomass production as well as Cd phytoextraction capabilities. A pot experiment was conducted with various combinations of PGRs and fertilizers, with treatments arranged in five replicates using a completely randomized design. After harvesting, each plant was divided into various parts such as stems, roots, and leaves, and different growth, physiological, and biochemical parameters were recorded. Results showed that under Cd stress, growth, physiological, and biochemical parameters were all significantly decreased. With the combined application of plant growth regulators (GA3 and IAA) and nutrients, Cd stress was alleviated and all parameters significantly improved. In comparison to the control treatment, the combined application of N + P + K + GA3 + IAA resulted in the highest fresh and dry biomass production of the root (12.31 and 5.11 g pot-1), shoot (19. 69 and 6.99 g pot-1), leaves (16.56 and 7.09 g pot-1), and entire plant (48.56 and 19.19 g pot-1). Similarly, the same treatment resulted in higher chlorophyll a and b and total chlorophyll contents under Cd stress, which were 2.19, 2.03, and 3.21 times higher than the control, which was Cd stress without any treatment. The combination of N + P + K + GA3 + IAA also resulted in the highest proline and phenolic contents. In the case of different enzyme activities, the combined application of N + P + K + GA3 + IAA under Cd stress led to a high increase in catalase (2.5 times), superoxide (3.5 times), and peroxidase (3.7 times) compared to the control. With the combined application of N+ P+ K + GA3 + IAA, the maximum values of BCF (8.25), BAC (2.6), and RF (5.14%) were measured for phytoextraction potential. On the basis of these findings, it is concluded that P. hysterophorus has a high potential to grow, produce the most biomass, and act as a Cd hyperaccumulator in Cd-contaminated soil.
Collapse
Affiliation(s)
- Rehan Shah
- Department
of Biotechnology, Abdul Wali Khan University, Mardan, KPK 23200, Pakistan
| | - Raham Sher Khan
- Department
of Biotechnology, Abdul Wali Khan University, Mardan, KPK 23200, Pakistan
| | - Amin Ullah Jan
- Department
of Biotechnology, Faculty of Science, Shaheed
Benazir Bhutto University Sheringal, Dir Upper, Khyber Pakhtunkhwa 18000, Pakistan
| | - Sadeeq Ullah
- School
of Environment and Civil Engineering, Dongguan
University of Technology, Dongguan 523820, China
| | - Allah Ditta
- Department
of Environmental Sciences, Shaheed Benazir
Bhutto University Sheringal, Dir Upper, Khyber Pakhtunkhwa 18000, Pakistan
- School
of Biological Sciences, The University of
Western Australia, 35
Stirling Highway, Perth, WA 6009, Australia
| | - Ziaul Islam
- Department
of Animal Sciences, Shaheed Benazir Bhutto
University Sheringal, Dir Upper, Khyber Pakhtunkhwa 18000, Pakistan
| | - Rahim Ullah
- Department
of Biotechnology, Faculty of Science, Shaheed
Benazir Bhutto University Sheringal, Dir Upper, Khyber Pakhtunkhwa 18000, Pakistan
| | - Raza Ullah
- Laboratory
of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina 27402-6170, United
States
| | - Walid Soufan
- Plant
Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Khalid F. Almutairi
- Plant
Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Karthika Rajendran
- VIT
School of Agricultural Innovations and Advanced Learning (VAIAL), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Dinakaran Elango
- Department
of Agronomy, Iowa State University, Ames, Iowa 50011-2140, United States
| | - Ayman El Sabagh
- Department
of Agronomy, Faculty of Agriculture, Kafrelsheikh
University, Kafr al-Sheik First, 33511, Egypt
| |
Collapse
|
19
|
Cui L, Chen Y, Liu J, Zhang Q, Xu L, Yang Z. Spraying Zinc Sulfate to Reveal the Mechanism through the Glutathione Metabolic Pathway Regulates the Cadmium Tolerance of Seashore Paspalum ( Paspalum vaginatum Swartz). PLANTS (BASEL, SWITZERLAND) 2023; 12:1982. [PMID: 37653899 PMCID: PMC10221796 DOI: 10.3390/plants12101982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/30/2023] [Accepted: 05/09/2023] [Indexed: 09/02/2023]
Abstract
Cadmium (Cd) is considered to be one of the most toxic metals, causing serious harm to plants' growth and humans' health. Therefore, it is necessary to study simple, practical, and environmentally friendly methods to reduce its toxicity. Until now, people have applied zinc sulfate to improve the Cd tolerance of plants. However, related studies have mainly focused on physiological and biochemical aspects, with a lack of in-depth molecular mechanism research. In this study, we sprayed high (40 mM) and low (2.5 mM) concentrations of zinc sulfate on seashore paspalum (Paspalum vaginatum Swartz) plants under 0.5 mM Cd stress. Transcriptome sequencing and physiological indicators were used to reveal the mechanism of Cd tolerance. Compared with the control treatment, we found that zinc sulfate decreased the content of Cd2+ by 57.03-73.39%, and that the transfer coefficient of Cd decreased by 58.91-75.25% in different parts of plants. In addition, our results indicate that the antioxidant capacity of plants was improved, with marked increases in the glutathione content and the activity levels of glutathione reductase (GR), glutathione S-transferase (GST), and other enzymes. Transcriptome sequencing showed that the differentially expressed genes in both the 0.5 Zn and 40 Zn treatments were mainly genes encoding GST. This study suggests that genes encoding GST in the glutathione pathway may play an important role in regulating the Cd tolerance of seashore paspalum. Furthermore, the present study provides a theoretical reference for the regulation mechanism caused by zinc sulfate spraying to improve plants' Cd tolerance.
Collapse
Affiliation(s)
- Liwen Cui
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | - Zhimin Yang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
20
|
Yang C, Liu C, Li S, Zhang Y, Zhang Y, Wang X, Xiang W. The Transcription Factors WRKY41 and WRKY53 Mediate Early Flowering Induced by the Novel Plant Growth Regulator Guvermectin in Arabidopsis thaliana. Int J Mol Sci 2023; 24:ijms24098424. [PMID: 37176133 PMCID: PMC10178944 DOI: 10.3390/ijms24098424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Flowering is a crucial stage for plant reproductive success; therefore, the regulation of plant flowering has been widely researched. Although multiple well-defined endogenous and exogenous flowering regulators have been reported, new ones are constantly being discovered. Here, we confirm that a novel plant growth regulator guvermectin (GV) induces early flowering in Arabidopsis. Interestingly, our genetic experiments newly demonstrated that WRKY41 and its homolog WRKY53 were involved in GV-accelerated flowering as positive flowering regulators. Overexpression of WRKY41 or WRKY53 resulted in an early flowering phenotype compared to the wild type (WT). In contrast, the w41/w53 double mutants showed a delay in GV-accelerated flowering. Gene expression analysis showed that flowering regulatory genes SOC1 and LFY were upregulated in GV-treated WT, 35S:WRKY41, and 35S:WRKY53 plants, but both declined in w41/w53 mutants with or without GV treatment. Meanwhile, biochemical assays confirmed that SOC1 and LFY were both direct targets of WRKY41 and WRKY53. Furthermore, the early flowering phenotype of 35S:WRKY41 lines was abolished in the soc1 or lfy background. Together, our results suggest that GV plays a function in promoting flowering, which was co-mediated by WRKY41 and WRKY53 acting as new flowering regulators by directly activating the transcription of SOC1 and LFY in Arabidopsis.
Collapse
Affiliation(s)
- Chenyu Yang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chongxi Liu
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin 150030, China
| | - Shanshan Li
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanyan Zhang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yi Zhang
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiangjing Wang
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin 150030, China
| | - Wensheng Xiang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin 150030, China
| |
Collapse
|
21
|
Wang R, Liu T, Lu C, Zhang Z, Guo P, Jia B, Hao B, Wang Y, Guo W. Bioorganic fertilizers improve the adaptability and remediation efficiency of Puccinellia distans in multiple heavy metals-contaminated saline soil by regulating the soil microbial community. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130982. [PMID: 36860055 DOI: 10.1016/j.jhazmat.2023.130982] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Soil salinization and heavy metal (HM) pollution are global environmental problems. Bioorganic fertilizers facilitate phytoremediation, but their roles and microbial mechanisms in natural HM-contaminated saline soils have not been explored. Therefore, greenhouse pot trials were conducted with three treatments: control (CK), manure bioorganic fertilizer (MOF), and lignite bioorganic fertilizer (LOF). The results showed that MOF and LOF significantly increased nutrient uptake, biomass, toxic ion accumulation in Puccinellia distans, soil available nutrients, SOC, and macroaggregates. More biomarkers were enriched in MOF and LOF. Network analysis confirmed that MOF and LOF increased the number of bacterial functional groups and fungal community stability and strengthened their positive association with plants; Bacteria have a more significant effect on phytoremediation. Most biomarkers and keystones play important roles in promoting plant growth and stress resistance in the MOF and LOF treatments. In summary, besides enrichment of soil nutrients, MOF and LOF can also improve the adaptability and phytoremediation efficiency of P. distans by regulating the soil microbial community, with LOF having a greater effect.
Collapse
Affiliation(s)
- Run Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Tai Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Chengyan Lu
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhechao Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Peiran Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Bingbing Jia
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Baihui Hao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yuchen Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wei Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
22
|
Li J, Pan J, Najeeb U, El-Beltagi HS, Huang Q, Lu H, Xu L, Shi B, Zhou W. Promotive Role of 5-Aminolevulinic Acid or Salicylic Acid Combined with Citric Acid on Sunflower Growth by Regulating Manganese Absorption. Antioxidants (Basel) 2023; 12:antiox12030580. [PMID: 36978828 PMCID: PMC10045730 DOI: 10.3390/antiox12030580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Manganese (Mn) is an essential nutrient in most organisms. Establishing an effective regulatory system of Mn absorption is important for sustainable crop development. In this study, we selected sunflower as the model plant to explore the effects of 5-aminolevulinic acid (ALA) or salicylic acid (SA) combined with citric acid (CA) on Mn absorption. Six-leaf-old sunflower plants were exposed to 0.8 g kg−1 Mn for one week and then treated with chelating agents, i.e., CA (10 mmol kg−1), and different concentrations of ALA and SA for one week. The results showed that Mn-treated plants had significantly increased H2O2, O2− and MDA contents in leaves compared with the control. Under the Mn + CA treatment, ALA or SA2 significantly activated the antioxidant defense system by increasing SOD, POD and CAT activities in leaves. Moreover, the application of CA significantly increased the Mn uptake in sunflower roots compared with Mn treatment alone; however, did not accelerate the translocation efficiency of Mn from sunflower roots to shoots. Moreover, ultrastructural and RT-qPCR results further demonstrated that ALA/SA could recover the adverse impact of excessive Mn accumulation in sunflowers. Like a pump, ALA/SA regulated the translocation efficiency and promoted the transportation of Mn from roots to shoots. This study provides insights into the promotive role of ALA/SA combined with CA on sunflower growth by regulating Mn absorption, which would be beneficial for regulating Mn absorption in soil with an Mn deficit.
Collapse
Affiliation(s)
- Juanjuan Li
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Jianmin Pan
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ullah Najeeb
- Queensland Alliance for Agriculture and Food Innovation, Centre for Plant Science, The University of Queensland, Toowoomba, QLD 4350, Australia
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar
| | - Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Qian Huang
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Huaijian Lu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ling Xu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Correspondence: (L.X.); (B.S.); (W.Z.)
| | - Bixian Shi
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- Correspondence: (L.X.); (B.S.); (W.Z.)
| | - Weijun Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
- Correspondence: (L.X.); (B.S.); (W.Z.)
| |
Collapse
|
23
|
Liu Z, Tian L, Chen M, Zhang L, Lu Q, Wei J, Duan X. Hormesis Responses of Growth and Photosynthetic Characteristics in Lonicera japonica Thunb. to Cadmium Stress: Whether Electric Field Can Improve or Not? PLANTS (BASEL, SWITZERLAND) 2023; 12:933. [PMID: 36840281 PMCID: PMC9960363 DOI: 10.3390/plants12040933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
"Hormesis" is considered a dose-response phenomenon mainly observed at hyperaccumulator plants under heavy metals stress. In this study, the effects of electric fields on hormesis responses in Lonicera japonica Thunb. under cadmium (Cd) treatments were investigated by assessing the plant growth and photosynthetic characteristics. Under Cd treatments without electric fields, the parameters of plant growth and photosynthetic characteristics increased significantly when exposed to 5 mg L-1 Cd, and decreased slightly when exposed to 25 mg L-1 Cd, showing an inverted U-shaped trend, which confirmed that low concentration Cd has a hormesis effect on L. japonica. Under electric fields, different voltages significantly promoted the inverted U-shaped trend of the hormesis effect on the plant, especially by 2 V cm-1 voltage. Under 2 V cm-1 voltage, the dry weight of the root and leaf biomass exposed to 5 mg L-1 Cd increased significantly by 38.38% and 42.14%, and the photosynthetic pigment contents and photosynthetic parameters were also increased significantly relative to the control, indicating that a suitable electric field provides better improvements for the hormesis responses of the plant under Cd treatments. The synergistic benefits of the 5 mg L-1 Cd and 2 V cm-1 electric field in terms of the enhanced hormesis responses of growth and photosynthetic characteristics could contribute to the promoted application of electro-phytotechnology.
Collapse
Affiliation(s)
- Zhouli Liu
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Lei Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Mengdi Chen
- Academy of Forest and Grassland Inventory and Planning of National Forestry and Grassland Administration, Beijing 100714, China
| | - Luhua Zhang
- State Owned Ying’emen Forest Farm of Qingyuan Manchu Autonomous County, Fushun 113306, China
| | - Qingxuan Lu
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Jianbing Wei
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Xiangbo Duan
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
| |
Collapse
|
24
|
Chen X, Feng J, Mou H, Liang Z, Ding T, Chen S, Li F. Utilization of Indole Acetic Acid with Leucadendron rubrum and Rhododendron pulchrum for the Phytoremediation of Heavy Metals in the Artificial Soil Made of Municipal Sewage Sludge. TOXICS 2022; 11:toxics11010043. [PMID: 36668769 PMCID: PMC9864706 DOI: 10.3390/toxics11010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 05/06/2023]
Abstract
The development of phytoremediation by garden plants is an effective way to deal with the dilemma of municipal sewage sludge disposal. In this study, two ornamental plants were used as phytoremediation plants to rehabilitate heavy-metal-contaminated municipal sewage sludge in field experiments, and the role of exogenous phytohormone IAA was also tested. Ornamental plants Loropetalum chinense var. rubrum (L. rubrum) and Rhododendron pulchrum (R. pulchrum) adapted well to the artificial soil made of municipal sewage sludge, and the concentrations of Cu, Zn, Pb, and Ni were decreased by 7.29, 261, 20.2, and 11.9 mg kg−1, respectively, in the soil planted with L. rubrum, and 7.60, 308, 50.1, and 17.7 mg kg−1, respectively, in the soil planted with R. pulchrum, accounted for 11−37% of the total amounts and reached significant levels (p < 0.05), except Cd. The concentration of Pb in all parts of the two ornamental plants was increased, as well as most heavy metals in L. rubrum root. As a result, three months after transplant, the phyto-extraction amounts in L. rubrum were 397, 10.9, and 1330 μg for Ni, Cd, and Pb, respectively, increased by 233% to 279%. The phyto-extraction amount in R. pulchrum were 1510, 250, and 237 μg for Zn, Pb, and Cu, respectively, increased by 143% to 193%. These results indicated a potential to remediate heavy metals of the two ornamental plants, especially L. rubrum. The results of correlation analysis implied that the interaction of heavy metals in the plant itself played an important role in the uptake of heavy metals. This seemed to explain why applying IAA in the experiment had little effect on plant growth and phytoremediation of heavy metals. This study provided a green and feasible idea for the proper disposal of municipal sewage sludge.
Collapse
Affiliation(s)
- Xiaoling Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jianru Feng
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Huaqian Mou
- Jinhua Water Treatment Co., Ltd., Jinhua 321016, China
| | - Zheng Liang
- Shaoxing Institute of Energy Testing, Shaoxing 312000, China
| | - Tianzheng Ding
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Shiyu Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Feili Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
- Correspondence:
| |
Collapse
|
25
|
Yin Z, Yu J, Han X, Wang H, Yang Q, Pan H, Lou Y, Zhuge Y. A novel phytoremediation technology for polluted cadmium soil: Salix integra treated with spermidine and activated carbon. CHEMOSPHERE 2022; 306:135582. [PMID: 35803376 DOI: 10.1016/j.chemosphere.2022.135582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
A variety of plants have been used as phytoremediation materials to remove Cd from polluted soil. However, the disadvantages of using plants for decontamination include low biomass, low uptake, and inefficiency. We conducted experiments to determine the effects of spermidine and activated carbon treatments of Salix integra on Cd removal. The results showed that exogenous spermidine and activated carbon increased plant growth and root development compared with the CK. The increased dry mass (39.65-92.95%) with the combined spermidine and activated carbon treatments was higher than that with either single treatment (14.79-62.80%). The root length, surface area, root volume, and root diameter with the combined spermidine and activated carbon treatments (53.51-189.35%, 113.08-207.62%, 111.71-499.27%, and 32.51-106.62%, respectively) were higher than those of the lone application treatments (19.35-132.23%, 52.33-111.57%, 35.08-297.07%, and 24.22-81.38%, respectively). In addition, spermidine and activated carbon application reduced the toxicity of Cd to S. integra by improving the antioxidant capacity, thereby increasing the accumulation of Cd. The application of spermidine and activated carbon also changed the distribution of Cd in each part of S. integra. There was increased accumulation of Cd in the shoots and better absorption by the S. integra shoots, thereby improving their Cd remediation efficiency. The combined 0.8 mM spermidine and 0.5 g kg-1 activated carbon were most effective on removing Cd from the soil. The Cd removal efficiency was 78.11-120.86% higher than that of the CK. Our results may provide foundational information for understanding the mechanisms for the sustainable remediation of Cd-contaminated soil using a combination of spermidine and activated carbon.
Collapse
Affiliation(s)
- Zerun Yin
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, Shandong Province, China; Hunan Agricultural University, Changsha, 410125, Hunan Province, China
| | - Jinpeng Yu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, Shandong Province, China
| | - Xinran Han
- Hunan Agricultural University, Changsha, 410125, Hunan Province, China
| | - Hui Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, Shandong Province, China
| | - Quangang Yang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, Shandong Province, China
| | - Hong Pan
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, Shandong Province, China
| | - Yanhong Lou
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, Shandong Province, China.
| | - Yuping Zhuge
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, Shandong Province, China.
| |
Collapse
|
26
|
Mohapatra S, Sirhindi G, Dogra V. Seed priming with brassinolides improves growth and reinforces antioxidative defenses under normal and heat stress conditions in seedlings of Brassica juncea. PHYSIOLOGIA PLANTARUM 2022; 174:e13814. [PMID: 36326060 DOI: 10.1111/ppl.13814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Environmental stresses pose a major challenge for plant researchers to fulfill increasing food demand. Researchers are trying to generate high-yielding and stress-tolerant or resistant varieties using classical genetics and modern gene-editing tools; however, both approaches have limitations. Chemical treatments emerged as an alternative to improve yield and impart stress resilience. Brassinosteroids (BRs) are a group of phytohormones that regulate various biological processes, including stress management. With foliar spray methods, BR treatments showed promising results but are not economically feasible. We hypothesize that priming of seeds, which requires lesser amounts of BRs, could be equally effective in promoting growth and stress tolerance. Owing to this notion, we analyzed the impact of priming seeds with selected BRs, namely, 24-epibrassinolide (EBL) and 28-homobrassinolide (HBL), in Brassica juncea under normal and heat shock stress conditions. Seeds primed with BRs and grown until seedlings stage at normal conditions (20°C) were subjected to a heat shock (35°C) for a few hours, relating to what plants experience in natural conditions. Heat shock reduced the growth and biomass with an increased accumulation of reactive oxygen species. As anticipated, BRs treatments significantly improved the growth and physiological parameters with an enhanced antioxidant defense under both conditions. Transcriptional analyses revealed that BRs concomitantly induce growth and oxidative stress-responsive gene expression via the canonical BR-signaling pathway. Transfer of unstressed and heat-shock-treated seedlings to field conditions demonstrated the long-term effectivity of BR-priming. Our results showed seed priming with BRs could improve growth and resilience against heat shock; hence, it appears to be a viable strategy to enhance crop yields and stress tolerance.
Collapse
Affiliation(s)
- Sumanta Mohapatra
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Vivek Dogra
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
27
|
Wu F, Wei P, Li X, Huang M, Zhou L, Liu Z. Research progress of rhizosphere effect in the phytoremediation of uranium-contaminated soil. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08630-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Ejaz U, Khan SM, Aqeel M, Khalid N, Sarfraz W, Naeem N, Han H, Yu J, Yue G, Raposo A. Use of Parthenium hysterophorus with synthetic chelator for enhanced uptake of cadmium and lead from contaminated soils-a step toward better public health. Front Public Health 2022; 10:1009479. [PMID: 36311603 PMCID: PMC9613324 DOI: 10.3389/fpubh.2022.1009479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/26/2022] [Indexed: 01/27/2023] Open
Abstract
Parthenium hysterophorus L. is a vigorous plant species with cosmopolitan distribution. It can uptake considerable quantities of heavy metals from the soil and accrue these metals in its different tissue. The use of chelating agent i.e., Ethylenediaminetetraacetic acid (EDTA) can boost up metal uptake capacity. Pot experiment was performed to evaluate phytoextraction potential of P. hysterophorus for lead (Pb) and cadmium (Cd) with and without the aid of EDTA chelator. Shoot length, weight of root and shoot (both fresh and dry), leaves number, and chlorophyll contents of P. hysterophorus got reduced with an increase in metal uptake. The results revealed the highest concentration of Cd in shoot without and with EDTA was 283.6 and 300.1 mg kg-1, correspondingly. Increase in Pb concentration was also boosted up by the EDTA from its maximum concentration in shoot 4.30-9.56 mg kg-1. Generally, Pb and Cd concentrations were greater in shoots of P. hysterophorus than the roots regardless of EDTA in the treatments. EDTA also impacted positively the accumulation of essential ions K+, Na+, and Ca+2 in P. hysterophorus. The capacity of P. hysterophorus to accumulate Pb and Cd found to be increased with EDTA in the soil. Bringing metals level in the soil in accordance to the WHO standards can improve the ecosystem as well as public health.
Collapse
Affiliation(s)
- Ujala Ejaz
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shujaul Mulk Khan
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan,Member, Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Noreen Khalid
- Department of Botany, GC Women University, Sialkot, Pakistan
| | - Wajiha Sarfraz
- Department of Botany, GC Women University, Sialkot, Pakistan
| | - Nayab Naeem
- Department of Botany, GC Women University, Sialkot, Pakistan
| | - Heesup Han
- College of Hospitality and Tourism Management, Sejong University, Seoul, South Korea,Heesup Han
| | - Jongsik Yu
- College of Business Division of Tourism and Hotel Management, Cheongju University, Cheongju-si, South Korea
| | - Gong Yue
- Business School Tourism and Hospitality Management, Xuzhou University of Technology, Xuzhou City, China
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal,*Correspondence: António Raposo
| |
Collapse
|
29
|
Pandey P, Pandey SS, Awasthi A, Tripathi A, Singh HP, Singh AK, Tandon S, Kalra A. Calliterpenone, a natural plant growth promoter from a medicinal plant Callicarpa macrophylla, sustainably enhances the yield and productivity of crops. FRONTIERS IN PLANT SCIENCE 2022; 13:960717. [PMID: 36226284 PMCID: PMC9549104 DOI: 10.3389/fpls.2022.960717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
The global population is rising at an alarming rate, which is threatening food and nutritional security. Although chemical fertilizers and pesticides are important for achieving food security, their excessive usage critically affects soil health and adds up residues in the food chain. There is an increasing interest in identifying eco-friendly farm inputs that can improve crop productivity through sustainable agricultural practices. One of the most common approaches to reducing chemical inputs in agriculture is the use of plant growth regulators (PGRs). Here, we demonstrate the benefits of a natural and novel plant growth enhancer "calliterpenone," isolated from Callicarpa macrophylla, a medicinal plant, for increasing crop productivity in six crops, viz., rice, wheat, potato, tomato, chickpea, and onion. Results revealed that the application of calliterpenone (foliar spraying or seed soaking) enhanced the yield of rice (28.89%), onion (20.63%), potato (37.17%), tomato (28.36%), and chickpea (26.08%) at 0.001 mM and of wheat (27.23%) at 0.01 mM concentrations in comparison to control. This enhancement in yield was reflected through improvements in its growth attributes, viz., spike length, tillers plant-1, seeds spike-1, plant height, and biomass. Furthermore, the exogenous application of calliterpenone could increase the endogenous level of indole-3-acetic acid (IAA) in all tested crops and decrease the content of abscisic acid (ABA) in a few. Trials conducted at farmers' fields showed an overall ~12% increase in rice yield (mean of 11 farmers' fields ranging from 3.48 to 19.63%) and ~10% increase in wheat yield (ranging from 3.91 to 17.51%). The 0.001 mM of calliterpenone was the best effective dose for most crops except wheat, where a concentration of 0.01 mM was found to be the most optimal. This study indicates that calliterpenone is a natural plant growth promoter that can be used in boosting the yields of multiple crops and would be an important input component of organic farming.
Collapse
Affiliation(s)
- Praveen Pandey
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Shiv Shanker Pandey
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Ashutosh Awasthi
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Arpita Tripathi
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Faculty of Education, Teerthanker Mahaveer University, Moradabad, India
| | - Hemendra Pratap Singh
- Biostatistics Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Anil Kumar Singh
- Herbal and Medicinal Products Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Sudeep Tandon
- Process Chemistry and Chemical Engineering, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Alok Kalra
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
30
|
Akhter MS, Noreen S, Ummara U, Aqeel M, Saleem N, Ahmed MM, Mahmood S, Athar HUR, Alyemeni MN, Kaushik P, Ahmad P. Silicon-Induced Mitigation of NaCl Stress in Barley ( Hordeum vulgare L.), Associated with Enhanced Enzymatic and Non-Enzymatic Antioxidant Activities. PLANTS (BASEL, SWITZERLAND) 2022; 11:2379. [PMID: 36145782 PMCID: PMC9503217 DOI: 10.3390/plants11182379] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 01/03/2023]
Abstract
Salt stress obstructs plant's growth by affecting metabolic processes, ion homeostasis and over-production of reactive oxygen species. In this regard silicon (Si) has been known to augment a plant's antioxidant defense system to combat adverse effects of salinity stress. In order to quantify the Si-mediated salinity tolerance, we studied the role of Si (200 ppm) applied through rooting media on antioxidant battery system of barley genotypes; B-10008 (salt-tolerant) and B-14011 (salt-sensitive) subjected to salt stress (200 mM NaCl). A significant decline in the accumulation of shoot (35-74%) and root (30-85%) biomass was observed under salinity stress, while Si application through rooting media enhancing biomass accumulation of shoots (33-49%) and root (32-37%) under salinity stress. The over-accumulation reactive oxygen species i.e., hydrogen peroxide (H2O2) is an inevitable process resulting into lipid peroxidation, which was evident by enhanced malondialdehyde levels (13-67%) under salinity stress. These events activated a defense system, which was marked by higher levels of total soluble proteins and uplifted activities of antioxidants enzymatic (SOD, POD, CAT, GR and APX) and non-enzymatic (α-tocopherol, total phenolics, AsA, total glutathione, GSH, GSSG and proline) in roots and leaves under salinity stress. The Si application through rooting media further strengthened the salt stressed barley plant's defense system by up-regulating the activities of enzymatic and non-enzymatic antioxidant in order to mitigate excessive H2O2 efficiently. The results revealed that although salt-tolerant genotype (B-10008) was best adopted to tolerate salt stress, comparably the response of salt-sensitive genotype (B-14011) was more prominent (accumulation of antioxidant) after application of Si through rooting media under salinity stress.
Collapse
Affiliation(s)
- Muhammad Salim Akhter
- Institute of Botany, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.S.A.); (N.S.); (S.M.); (H.-u.-R.A.)
| | - Sibgha Noreen
- Institute of Botany, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.S.A.); (N.S.); (S.M.); (H.-u.-R.A.)
| | - Ume Ummara
- Department of Botany, The Islamia University of Bahawalpur, Rahim Yar Khan Campus, Rahim Yar Khan 64200, Pakistan;
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Science, Lanzhou University, Lanzhou 730000, China;
| | - Nawishta Saleem
- Institute of Botany, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.S.A.); (N.S.); (S.M.); (H.-u.-R.A.)
| | | | - Seema Mahmood
- Institute of Botany, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.S.A.); (N.S.); (S.M.); (H.-u.-R.A.)
| | - Habib-ur-Rehman Athar
- Institute of Botany, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.S.A.); (N.S.); (S.M.); (H.-u.-R.A.)
| | | | - Prashant Kaushik
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama 192301, Jammu and Kashmir, India
| |
Collapse
|
31
|
Xu L, Feng NJ, Liang XL, Zhao HH, Wang SY, Jiang Y, Zhao Y, Zheng DF. Both uniconazole and 5-aminolevulinic acid increase maize ( Zea mays L.) yield by changing its ear morphology and increasing photosynthetic efficiency and antioxidants in saline-alkali land. PHOTOSYNTHETICA 2022; 60:408-419. [PMID: 39650109 PMCID: PMC11558603 DOI: 10.32615/ps.2022.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2024]
Abstract
Saline-alkaline stress is one of the most detrimental abiotic stresses that restrict the yield and physiological activity of maize (Zea mays L.). In the present study, maize was planted on saline-alkali land, while 25 mg L-1 uniconazole (S3307) and 40 mg L-1 5-aminolevulinic acid (ALA) were sprayed at the stage of nine expanded leaves. Our results showed that both S3307 and ALA applications significantly increased all ear width, volume, and mass in the maturity stage. Both applications also upregulated photosynthetic efficiency via increasing the chlorophyll content, net photosynthetic rate, transpiration rate, and stomatal conductance, as well as reduced the intercellular CO2 concentration after the silking stage. In addition, both applications upregulated further the antioxidant system via enhancing the activity of antioxidants and contents of soluble protein and sugar, as well as reducing the malondialdehyde content after the silking stage. Thus, both S3307 and ALA applications can improve maize yield in saline-alkali land via enhancing ear morphology and increasing photosynthetic efficiency and antioxidants.
Collapse
Affiliation(s)
- L Xu
- Heilongjiang Bayi Agricultural University, Daqing, 163000 Heilongjiang, China
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing, 163000 Heilongjiang, China
| | - N J Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088 Guangdong, China
| | - X L Liang
- Heilongjiang Bayi Agricultural University, Daqing, 163000 Heilongjiang, China
| | - H H Zhao
- Heilongjiang Bayi Agricultural University, Daqing, 163000 Heilongjiang, China
| | - S Y Wang
- Heilongjiang Bayi Agricultural University, Daqing, 163000 Heilongjiang, China
| | - Y Jiang
- Daqing Branch of Heilongjiang Academy of Sciences, Daqing, 163319 Heilongjiang, China
| | - Y Zhao
- Daqing Branch of Heilongjiang Academy of Sciences, Daqing, 163319 Heilongjiang, China
| | - D F Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088 Guangdong, China
| |
Collapse
|
32
|
Xu X, Zhou J, Chen K, Wang Y, Ai Y, Zhang C, Zhou S. Effect of indole-3-acetic acid supplementation on the physiology of Lolium perenne L. and microbial activity in cadmium-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:52483-52492. [PMID: 35258728 DOI: 10.1007/s11356-022-19417-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) pollution has led to a serious deterioration in soil quality, plant growth, and human health. Therefore, restoration of soil quality is imperative. Phytoremediation is inexpensive and yields acceptable outcomes. Phytoremediation involves interaction between plant physiology and microbial activity and has been widely used in the remediation of Cd-contaminated soil. In the present study, Lolium perenne L. (perennial ryegrass) was planted in Cd-spiked soil and indole-3-acetic acid (IAA) was used to explore the physiological and biochemical characteristics of ryegrass as well as soil enzyme activity to remove Cd. The present study provides a theoretical basis for the phytoremediation of Cd-contaminated soil. The study investigated the effect of 30-mg/kg Cd-spiked soil on ryegrass (C) and 30-mg/kg Cd-spiked soil on ryegrass treated with 10-mg/kg IAA (CI) compared with uncontaminated soil and ryegrass as the control. At the end of the experiment, the ryegrass biomass, total chlorophyll, superoxide dismutase (SOD) activity, and soil invertase activity in C group were decreased by 33.7%, 23.0%, 29.7%, and 18.3%, respectively, whereas the peroxidase (POD) activity and soil basal respiration increased by 17.1% and 87.9%, respectively, compared with the control. In the CI group, the biomass of ryegrass, chlorophyll content, SOD activity, sucrase activity, fluorescein diacetate (FDA) hydrolase activity, and Cd removal rates increased by 14.5%, 19.9%, 24.3%, 12.1%, 20.4%, and 15.1%, respectively, whereas the POD activity, soil basal respiration, and Cd residues in the soil declined by 8.0%, 15.0%, and 17.0%, respectively, compared with the C group. Therefore, exposure to exogenous IAA alleviated the Cd stress on ryegrass and soil microorganisms and improved Cd absorption by ryegrass from the contaminated soil.
Collapse
Affiliation(s)
- Xiaoyang Xu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded By Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Jihai Zhou
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded By Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China.
| | - Kun Chen
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210018, China
| | - Yang Wang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded By Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Yanmei Ai
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded By Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Chenyang Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded By Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Shoubiao Zhou
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded By Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
33
|
Zhao M, Meng Y, Wang Y, Sun G, Liu X, Li J, Wei S, Gu W. Exogenous Hemin alleviates cadmium stress in maize by enhancing sucrose and nitrogen metabolism and regulating endogenous hormones. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:368-380. [PMID: 35732582 DOI: 10.1080/15226514.2022.2086212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) stress restricts maize growth and productivity severely. We aimed to investigate the effects of Hemin on the metabolism of sucrose and nitrogen and endogenous hormones in maize under cadmium stress. Maize varieties 'Tiannong 9' (cadmium tolerant) and 'Fenghe 6' (cadmium sensitive) were grown in nutrient solutions to study the effects of Hemin on maize physiological and ecological mechanisms under cadmium stress. The results showed that Hemin mediated the increase of sucrose content and the activities of key enzymes sucrose phosphate synthase (SPS) and sucrose synthase (SS) in maize leaves under cadmium stress. Soluble acid invertase (SAInv) and basic/neutral invertase (A/N-Inv) enzyme activities in leaves were decreased significantly, and sucrose accumulation in leaves was increased. Hemin also mediated the increase of NO3- content in leaves, the decrease of NH4+ content and the increase of nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase activity (GOGAT) and glutamate dehydrogenase (GDH) enzyme activities under cadmium stress. The contents of IAA, ZR, and GA in leaves and roots increased, ABA, MeJA, and SA decreased, and IAA/ABA, ZR/ABA, and GA/ABA increased under cadmium stress. Our study showed Hemin can alleviate cadmium stress in maize by enhancing sucrose and nitrogen metabolism and regulating endogenous hormones.
Collapse
Affiliation(s)
- Meng Zhao
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Yao Meng
- Heilongjiang Academy of Land Reclamation Sciences, Harbin, China
| | - Yong Wang
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Guangyan Sun
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xiaoming Liu
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Jing Li
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Shi Wei
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Wanrong Gu
- College of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
34
|
Laila U, Nazir A, Bareen FE, Shafiq M. Role of composted tannery solid waste and its autochthonous microbes in enhancing phytoextraction of toxic metals and stress abatement in sunflower. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:229-239. [PMID: 35605107 DOI: 10.1080/15226514.2022.2070597] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The excessive concentration of multiple heavy metals in the tannery solid waste (TSW) needs integrated process solutions for its decontamination. This study is aimed at deriving TSW compost and autochthonous microbe synergies for improving phytoextraction potential of sunflower. In-vessel composting of TSW was carried out by using fruit waste as an inoculum to achieve the optimized conditions. Autochthonous strains of Trichoderma viride and Bacilllus sp. isolated from TSW were utilized individually as well as in combination with TSWC amendments of 2.5, 5 and 10% (w/w) prepared in our pilot scale experiment. Analyses of TSW compost based on FTIR and SEM illustrated the wide range of functionality and porosity along the mesh of fungal hyphae and inorganic moieties present on the compost surface. Plant biomass and TMs uptake (Cr 540 mg kg-1 > Cd 330 mg kg-1 > Pb 285 mg kg-1) were significantly pronounced in shoots of sunflower under combined treatments at 10% TSWC amended soils. However, in seeds, TMs were found below detection limit (BDL) through atomic absorption spectrophotometry. Biochemical assays of sunflower including total chlorophyll content (18%), total soluble protein (45%), superoxide dismutase (80%) and catalase (75%) activities were also increased significantly at higher level of amendment in combination with microbes than in the control. Despite being high in TMs, high biomass in sunflower and associated elevation in biochemical products demonstrate the potential of TSW for valorization.Novelty statement: This study identifies the cost-effective management of multi metal contaminated tannery solid waste through deriving its compost along with autochthonous microbes as phytoextraction assistants by yielding higher plant biomass. This study suggests the use of composted TSW inoculated with selected autochthonous fungi and bacteria for enhancing sunflower's biomass and enhancing the bioavailable fractions of toxic metals for phytoextraction.
Collapse
Affiliation(s)
- Ume Laila
- Institute of Botany, Environmental Biotechnology Laboratory (F4), University of the Punjab, Lahore, Pakistan
| | - Aisha Nazir
- Institute of Botany, Environmental Biotechnology Laboratory (F4), University of the Punjab, Lahore, Pakistan
| | - Firdaus-E Bareen
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan
| | - Muhammad Shafiq
- Institute of Botany, Environmental Biotechnology Laboratory (F4), University of the Punjab, Lahore, Pakistan
| |
Collapse
|
35
|
Gao Y, Zhang X, Wang X, Zhang Q, Tang H, Qiu T, Zhang H, Zhao B, Wang H, Liang X, Guo Y. Exogenous DCPTA Treatment Increases Mung Bean Yield by Improving Carbon Metabolism Pathway and Up-Regulating Photosynthetic Capacity and Antioxidants. FRONTIERS IN PLANT SCIENCE 2022; 13:796694. [PMID: 35498667 PMCID: PMC9039728 DOI: 10.3389/fpls.2022.796694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Mung bean is characterized by having a good edible and medicinal value, while its flowers and pods have low production. Being a tertiary amine, DCPTA [2-(3,4-dichlorophenoxy) triethylamine] substantially regulates the growth and development of crops, maintaining production. Yet it is still limited in terms of the regulation of DCPTA on growth and development, including the yield and sugar metabolism of mung bean. In this study, DCPTA was sprayed at the beginning of mung flowering through a two-season cultivation, to assess its effects on the yield, leaf area per plant, plant height, seed setting rate, photosynthesis, chlorophyll content, and endogenous protective enzymes. Experimental results illustrated that relative to the control (CK), the DCPTA application significantly (p < 0.05) improved the yield of Bailv 11 mung bean, which rose to 6.9% in 2020 and 7.8% in 2021, respectively. This effect positively corresponded to a significant (p<0.05) increase in the number of pods and grains per plant and pod setting rate, but a non-significant difference in 1,000-grain weight. DCPA application also increased the area and fresh weight of leaf, mung height, and its organ dry weight (i.e., leaf, branch, and stem). During plant growth over DCPTA application, the increased activities of SOD, POD, and CAT improved the net photosynthetic rate, stomatal conductance, and transpiration. In addition, transcriptome sequencing further demonstrated that DCPTA treatment significantly (p < 0.05) up-regulated the sucrose synthase, invertase, and fructose kinase in all organs (i.e., leaves, pod skins, and grains) of the plant. In particular, this effect was much greater in the sucrose synthesis (i.e., sucrose content) in leaves. Our study, therefore, concludes that DCPTA application promotes the yield of mung bean via likely enhancing its photosynthetic capacity and sucrose synthase, fructokinase, and beta-fructofuranosidase expression regulation.
Collapse
Affiliation(s)
- Yuling Gao
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
- National Coarse Cereals Engineering Research Center, Daqing, China
- Heilongjiang Provincial Key Laboratory of Crop Pest Interaction Biology and Ecological Control, Daqing, China
- Heilongjiang Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology, Daqing, China
| | | | - Xin Wang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
- National Coarse Cereals Engineering Research Center, Daqing, China
| | - Qi Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
- National Coarse Cereals Engineering Research Center, Daqing, China
| | - Huarong Tang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
- National Coarse Cereals Engineering Research Center, Daqing, China
| | - Tian Qiu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
- National Coarse Cereals Engineering Research Center, Daqing, China
| | - HuiLai Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
- National Coarse Cereals Engineering Research Center, Daqing, China
| | - Bingxin Zhao
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
- National Coarse Cereals Engineering Research Center, Daqing, China
| | - Hao Wang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
- National Coarse Cereals Engineering Research Center, Daqing, China
| | - Xilong Liang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Plant Growth Regulator Engineering Technology Research Center, Daqing, China
| | - Yongxia Guo
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
- National Coarse Cereals Engineering Research Center, Daqing, China
- Heilongjiang Provincial Key Laboratory of Crop Pest Interaction Biology and Ecological Control, Daqing, China
- Heilongjiang Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology, Daqing, China
| |
Collapse
|
36
|
Electric Field-Enhanced Cadmium Accumulation and Photosynthesis in a Woody Ornamental Hyperaccumulator—Lonicera japonica Thunb. PLANTS 2022; 11:plants11081040. [PMID: 35448768 PMCID: PMC9030930 DOI: 10.3390/plants11081040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022]
Abstract
The multi-system of electro-phytotechnology using a woody ornamental cadmium (Cd) hyperaccumulator (Lonicera japonica Thunb.) is a new departure for environmental remediation. The effects of four electric field conditions on Cd accumulation, growth, and photosynthesis of L. japonica under four Cd treatments were investigated. Under 25 and 50 mg L−1 Cd treatments, Cd accumulation in L. japonica was enhanced significantly compared to the control and reached 1110.79 mg kg−1 in root and 428.67 mg kg−1 in shoots influenced by the electric field, especially at 2 V cm−1, and with higher bioaccumulation coefficient (BC), translocation factor (TF), removal efficiency (RE), and the maximum Cd uptake, indicating that 2 V cm−1 voltage may be the most suitable electric field for consolidating Cd-hyperaccumulator ability. It is accompanied by increased root and shoots biomass and photosynthetic parameters through the electric field effect. These results show that a suitable electric field may improve the growth, hyperaccumulation, and photosynthetic ability of L.japonica. Meanwhile, low Cd supply (5 mg L−1) and medium voltage (2 V cm−1) improved plant growth and photosynthetic capacity, conducive to the practical application to a plant facing low concentration Cd contamination in the real environment.
Collapse
|
37
|
Chen L, Beiyuan J, Hu W, Zhang Z, Duan C, Cui Q, Zhu X, He H, Huang X, Fang L. Phytoremediation of potentially toxic elements (PTEs) contaminated soils using alfalfa (Medicago sativa L.): A comprehensive review. CHEMOSPHERE 2022; 293:133577. [PMID: 35016965 DOI: 10.1016/j.chemosphere.2022.133577] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/02/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Soil contamination with potentially toxic elements (PTEs) is an increasing environmental problem, posing serious threats to the living organisms. Phytoremediation is a sustainable and highly accepted technology for remediation of PTE-contaminated soils. Alfalfa has been widely adopted for the phytoremediation of PTE-contaminated soils due to its large biomass productivity, high PTE tolerance, and strong capacity to take up PTEs. However, there are still no literature reviews systematically summarized the potential of alfalfa in the phytoremediation. Therefore, we review the available literatures that present its PTE uptake, phytotoxicity, tolerance mechanisms, and aided techniques improving the phytoremediation efficiency. In this review, alfalfa shows high amounts of PTEs accumulation, especially in their root tissue. Meanwhile, the inner mechanisms of PTE tolerance and accumulation in alfalfa are discussed including: (i) the activation of antioxidant enzyme system, (ii) subcellular localization, (iii) production of glutathione, phytochelatins, and proline, and (iv) regulation of gene expression. Indeed, excessive PTE can overcome the defense system, which causes oxidative damage in alfalfa plants, thereby inhibiting growth and physiological processes and weakening the ability of PTE uptake. Till now, several approaches have been developed to improve the tolerance and/or accumulation of PTE in alfalfa plants as follows: (i) selection of PTE tolerant cultivars, (ii) applying plant growth regulators, (iii) addition of chelating agents, fertilizer, and biochar materials, and (iv) inoculation of soil microbes. Finally, we indicate that the selection of PTE-tolerant cultivars along with inoculation of soil microbes may be an efficient and eco-friendly strategy of the soil PTE phytoremediation.
Collapse
Affiliation(s)
- Li Chen
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Jingzi Beiyuan
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China
| | - Weifang Hu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China
| | - Zhiqing Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Chenjiao Duan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Xiaozhen Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Haoran He
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Xuguang Huang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China
| | - Linchuan Fang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China.
| |
Collapse
|
38
|
Can Nanofertilizers Mitigate Multiple Environmental Stresses for Higher Crop Productivity? SUSTAINABILITY 2022. [DOI: 10.3390/su14063480] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The global food production for the worldwide population mainly depends on the huge contributions of the agricultural sector. The cultivated crops of foods need various elements or nutrients to complete their growth, and these are indirectly consumed by humans. During this production, several environmental constraints or stresses may cause losses in the global agricultural production. These obstacles may include abiotic and biotic stresses, which have already been studied in both individual and combined cases. However, there are very few studies on multiple stresses. On the basis of the myriad benefits of nanotechnology in agriculture, nanofertilizers (or nanonutrients) have become promising tools for agricultural sustainability. Nanofertilizers are also the proper solution to overcoming the environmental and health problems that can result from conventional fertilizers. The role of nanofertilizers has increased, especially under different environmental stresses, which can include individual, combined, and multiple stresses. The stresses are most commonly the result of nature; however, studies are still needed on the different stress levels. Nanofertilizers can play a crucial role in supporting cultivated plants under stress and in improving the plant yield, both quantitatively and qualitatively. Similar to other biological issues, many open-ended questions still require further investigation: Is the right time and era for nanofertilizers in agriculture? Will the nanofertilizers be the dominant source of nutrients in modern agriculture? Are nanofertilizers, and particularly biological synthesized ones, the magic solution for sustainable agriculture? What are the expected damages of multiple stresses on plants?
Collapse
|
39
|
Zhang J, Luo X. Bioaccumulation characteristics and acute toxicity of uranium in Hydrodictyon reticulatum: An algae with potential for wastewater remediation. CHEMOSPHERE 2022; 289:133189. [PMID: 34883123 DOI: 10.1016/j.chemosphere.2021.133189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 06/13/2023]
Abstract
The bioaccumulation characteristics and acute toxicity of uranium (U) to Hydrodictyon reticulatum were studied to provide reference for further mechanism and application research. According to an analysis using visual MINTEQ software, the pH change caused by the photosynthesis of H. reticulatum leads to U remaining mainly in the species of UO2(OH)3-. Fourier transform infrared spectrometer (FTIR) and transmission electron microscope (TEM) analysis showed that the bioaccumulation of U was related to the amino and carboxyl groups, resulting in cell wall damage. Using innovative cell staining microscopic observation techniques, U was mainly compartmentalized in vacuoles and pyrenoid; chlorophyll, soluble protein, dehydrogenase activity, and other physiological responses were closely related to the U stress concentration. Especially here, the change trend of the specific activity and specific growth rate of dehydrogenase was consistent, showing low concentration promotion and high concentration inhibition. Combined with the toxic response of the two, the half inhibitory dose for 72 h was determined to be about 30 mg L-1. When bioaccumulation equilibrium is reached at 72 h, the maximum tolerance concentration of U without affecting the easy collection characteristics of the algae is 30 mg L-1, and the maximum U bioaccumulation capacity was able to reach 24.47 ± 0.86 mg g-1 by dry biomass.
Collapse
Affiliation(s)
- Jianguo Zhang
- School of Environmental and Resources, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, PR China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China; Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Xuegang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China; Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
40
|
Wang L, Xie X, Li Q, Yu Z, Hu G, Wang X, Liu J. Accumulation of potentially toxic trace elements (PTEs) by native plant species growing in a typical gold mining area located in the northeast of Qinghai-Tibet Plateau. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:6990-7000. [PMID: 34467488 DOI: 10.1007/s11356-021-16076-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Though gold mines provide significant economic benefits to local governments, mining causes soil pollution by potentially toxic trace elements (PTEs) in mining areas, especially in the Qinghai-Tibet Plateau. Screening of native plant species from mining areas is now an effective, inexpensive, and eco-friendly method for the remediation of PTEs in situ. In the present study, we conducted experiments to assess the accumulation of As, Cd, Pb, and Zn in 12 native plant species growing on a typical gold mining area in the Qinghai-Tibet Plateau. Our results showed that rhizosphere soils have high soil organic matter content, high levels of As, and moderate levels of Cd. Geranium pylzowianum accumulated relatively higher As in its shoots and exhibited translocation factor (TF) higher than 1 for As (4.65), Cd (1.87), and Pb (1.36). Potentilla saundersiana had bioconcentration factor of shoot (BCF-S) higher than 1 for Cd (4.52) and Pb (1.70), whereas its TF was higher than 1 for As, Cd, Pb, and Zn. These plant species exhibit strong tolerance to these PTEs. Furthermore, Elymus nutans accumulated low levels of As, Cd, Pb, and Zn in their shoots and exhibited TF values lower than 1 for the four PTEs. Therefore, G. pylzowianum is a promising candidate for the in situ phytoextraction of As, and P. saundersiana can be used as an effective plant for Cd and Pb phytoextraction. E. nutans is better suited for the phytostabilisation of multiple PTEs. This work is of significant importance for screening native plant species that can provide a reference for phytoremediation of PTE-contaminated soils in this area or other place with similar climate, and has a good potential for developing PTE phytoremediation strategies at mining sites.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Grassland Agro-ecosystems; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Xiaorong Xie
- Basic Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, People's Republic of China
| | - Qifeng Li
- Third Institute Geological and Mineral Exploration of Gansu Provincial Bureau of Geology and Mineral Resources, Lanzhou, 730030, Gansu, People's Republic of China
| | - Zhifeng Yu
- Third Institute Geological and Mineral Exploration of Gansu Provincial Bureau of Geology and Mineral Resources, Lanzhou, 730030, Gansu, People's Republic of China
| | - Guangde Hu
- State Key Laboratory of Grassland Agro-ecosystems; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - XiXi Wang
- State Key Laboratory of Grassland Agro-ecosystems; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jinrong Liu
- State Key Laboratory of Grassland Agro-ecosystems; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
41
|
Li Y, Mo L, Zhou X, Yao Y, Ma J, Liu K, Yu F. Characterization of plant growth-promoting traits of Enterobacter sp. and its ability to promote cadmium/lead accumulation in Centella asiatica L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:4101-4115. [PMID: 34405329 DOI: 10.1007/s11356-021-15948-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/09/2021] [Indexed: 05/22/2023]
Abstract
In the present study, we characterized the plant growth-promoting traits of Enterobacter sp. FM-1 (FM-1) and investigated its ability to promote growth and increase IAA, P, and Fe concentrations as well as Cd and Pb accumulation in Centella asiatica L. (C. asiatica L.) in upstream area (UA) soil and downstream area (DA) soil that we collected from Siding mine. The results demonstrated that FM-1 secreted IAA, produced siderophores, and had P-solubilization ability even under Cd exposure. IAA secretion reached a maximum of 108.3 ± 1.3 mg L-1 under Cd exposure at 25 mg L-1. Siderophore production reached a maximum of 0.94 ± 0.01 under Cd exposure at 50 mg L-1. Pot experiments indicated that FM-1 successfully colonized the roots of C. asiatica L. In both soils, inoculation with FM-1 decreased the pH in rhizosphere soil and increased the bioavailability of both Cd and Pb. In addition, inoculation with FM-1 increased the IAA, P, and Fe concentrations and simultaneously promoted both Cd and Pb accumulation in C. asiatica L. The Cd and Pb concentrations in leaves increased 1.73- and 1.07-fold in the UA soil and 1.25- and 1.11-fold in the DA soil, respectively. Thus, the Cd-resistant strain FM-1 presented excellent PGP traits and could facilitate Cd and Pb phytoremediation by C. asiatica L.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- College of Life Science, Guangxi Normal University, 15th YuCai St., QiXing District, Guilin, 541004, China
- College of Life Science, Guangxi Normal University, 15th YuCai St., QiXing District, Guilin, 541004, China
| | - Lijuan Mo
- College of Life Science, Guangxi Normal University, 15th YuCai St., QiXing District, Guilin, 541004, China
| | - Xiaoqin Zhou
- College of Life Science, Guangxi Normal University, 15th YuCai St., QiXing District, Guilin, 541004, China
| | - Yawei Yao
- College of Life Science, Guangxi Normal University, 15th YuCai St., QiXing District, Guilin, 541004, China
| | - Jiangming Ma
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Innovation Institute of Sustainable Development, Guangxi Normal University, Guilin, 541004, China
- College of Life Science, Guangxi Normal University, 15th YuCai St., QiXing District, Guilin, 541004, China
| | - Kehui Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China.
- Innovation Institute of Sustainable Development, Guangxi Normal University, Guilin, 541004, China.
- College of Life Science, Guangxi Normal University, 15th YuCai St., QiXing District, Guilin, 541004, China.
| | - Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China.
- College of Life Science, Guangxi Normal University, 15th YuCai St., QiXing District, Guilin, 541004, China.
- College of Life Science, Guangxi Normal University, 15th YuCai St., QiXing District, Guilin, 541004, China.
| |
Collapse
|
42
|
Xiao Y, Dai MX, Zhang GQ, Yang ZX, He YM, Zhan FD. Effects of the Dark Septate Endophyte (DSE) Exophiala pisciphila on the Growth of Root Cell Wall Polysaccharides and the Cadmium Content of Zea mays L. under Cadmium Stress. J Fungi (Basel) 2021; 7:jof7121035. [PMID: 34947018 PMCID: PMC8708371 DOI: 10.3390/jof7121035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
This paper aims to investigate the mechanism by which dark septate endophytes (DSEs) enhance cadmium (Cd) tolerance in there host plants. Maize (Zea mays L.) was inoculated with a DSE, Exophiala pisciphila, under Cd stress at different concentrations (0, 5, 10, and 20 mg·kg−1). The results show that, under 20 mg/kg Cd stress, DSE significantly increased maize biomass and plant height, indicating that DSE colonization can be utilized to increase the Cd tolerance of host plants. More Cd was retained in DSE-inoculated roots, especially that fixed in the root cell wall (RCW). The capability of DSE to induce a higher Cd holding capacity in the RCW is caused by modulation of the total sugar and uronic acid of DSE-colonized RCW, mainly the pectin and hemicellulose fractions. The fourier-transform spectroscopy analysis results show that carboxyl, hydroxyl, and acidic groups are involved in Cd retention in the DSE-inoculated RCW. The promotion of the growth of maize and improvement in its tolerance to Cd due to DSEs are related to restriction of the translocation of Cd from roots to shoots; resistance of Cd uptake Cd inside cells; and the increase in RCW-integrated Cd through modulating RCW polysaccharide components.
Collapse
|
43
|
Fang Q, Huang T, Wang N, Ding Z, Sun Q. Effects of Herbaspirillum sp. p5-19 assisted with alien soil improvement on the phytoremediation of copper tailings by Vetiveria zizanioides L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64757-64768. [PMID: 34318414 DOI: 10.1007/s11356-021-15091-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Microbial assisted phytoremediation and reclamation are both potential contaminated soil remediation technologies, but little is known about the combined application of the two technologies on real contaminated soils. This study investigated the potential of Herbaspirillum sp. p5-19 (p5-19) assisted with alien soil improvement on improving stress tolerance and enhancing the accumulation of Mn, Cu, Zn, and Cd by Vetiveria zizanioides L. in copper tailings. Phytoremediation potential was evaluated by plant biomass and the ability of plants to absorb and transfer heavy metals. Results showed that the biomass was increased by 19.64-173.81% in p5-19 inoculation treatments with and without alien soil improvement compared with control. Meanwhile, photosynthetic pigment contents were enhanced in co-inoculation treatment (p5-19 with alien soil improvement). In addition, the malondialdehyde (MDA) content was decreased, and the activities of antioxidant enzymes such as ascorbate peroxidase (APX), superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were increased in p5-19 treatment, thereby alleviating the oxidative stress. Moreover, co-inoculation significantly (p < 0.05) increased the concentrations of Mn, Cu, Zn, and Cd in the roots and shoots of V. zizanioides. In particular, the highest concentrations of Mn, Zn, and Cd in the shoots (roots) were obtained in covering 10 cm combined with p5-19 inoculation treatment, which were 4.44- (2.71-), 4.73- (3.87-), and 5.93- (4.35-) fold as that of the controls, respectively. These results provided basis for the change of phytoremediation ability of V. zizanioides after inoculation. We concluded that p5-19 assisted with alien soil improvement was a potential strategy for enhancing phytoremediation ability in tailings.
Collapse
Affiliation(s)
- Qing Fang
- College of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
- Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China
- Mining Environmental Restoration and Wetland Ecological Security Collaborative Innovation Center, Hefei, China
| | - Tao Huang
- College of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
- Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China
- Mining Environmental Restoration and Wetland Ecological Security Collaborative Innovation Center, Hefei, China
| | - Ning Wang
- College of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
- Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China
- Mining Environmental Restoration and Wetland Ecological Security Collaborative Innovation Center, Hefei, China
| | - Ziwei Ding
- College of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
- Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China
- Mining Environmental Restoration and Wetland Ecological Security Collaborative Innovation Center, Hefei, China
| | - Qingye Sun
- College of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China.
- Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China.
- Mining Environmental Restoration and Wetland Ecological Security Collaborative Innovation Center, Hefei, China.
- Academy of Resources and Environmental Engineering, Anhui University, 111 JiuLong Road, 523, Hefei, 230601, Anhui, People's Republic of China.
| |
Collapse
|
44
|
Song A, Li Z, Wang E, Xu D, Wang S, Bi J, Wang H, Jeyakumar P, Li Z, Fan F. Supplying silicon alters microbial community and reduces soil cadmium bioavailability to promote health wheat growth and yield. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148797. [PMID: 34273835 DOI: 10.1016/j.scitotenv.2021.148797] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Soil amendments of black bone (BB), biochar (BC), silicon fertilizer (SI), and leaf fertilizer (LF) play vital roles in decreasing cadmium (Cd) availability, thereby supporting healthy plant growth and food security in agroecosystems. However, the effect of their additions on soil microbial community and the resulting soil Cd bioavailability, plant Cd uptake and health growth are still unknown. Therefore, in this study, BB, BC, SI, and LF were selected to evaluate Cd amelioration in wheat grown in Cd-contaminated soils. The results showed that relative to the control, all amendments significantly decreased both soil Cd bioavailability and its uptake in plant tissues, promoting healthy wheat growth and yield. This induced-decrease effect in seeds was the most obvious, wherein the effect was the highest in SI (52.54%), followed by LF (43.31%), and lowest in BC (35.24%) and BB (31.98%). Moreover, the induced decrease in soil Cd bioavailability was the highest in SI (29.56%), followed by BC (28.85%), lowest in LF (17.55%), and BB (15.30%). The significant effect in SI likely resulted from a significant increase in both the soil bioavailable Si and microbial community (Acidobacteria and Thaumarchaeota), which significantly decreased soil Cd bioavailability towards plant roots. In particular, a co-occurrence network analysis indicated that soil microbes played a substantial role in wheat yield under Si amendment. Therefore, supplying Si alters the soil microbial community, positively and significantly interacting with soil bioavailable Si and decreasing Cd bioavailability in soils, thereby sustaining healthy crop development and food quality.
Collapse
Affiliation(s)
- Alin Song
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zimin Li
- Earth and Life Institute, Soil Sciences, Université catholique de Louvain (UCLouvain), Croix du Sud 2/L7.05.10, 1348 Louvain-la-Neuve, Belgium.
| | - Enzhao Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Duanyang Xu
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China.
| | - Sai Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingjing Bi
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Paramsothy Jeyakumar
- Environmental Sciences, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Zhongyang Li
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China.
| | - Fenliang Fan
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
45
|
Alleviation of Cadmium Phytotoxicity Using Silicon Fertilization in Wheat by Altering Antioxidant Metabolism and Osmotic Adjustment. SUSTAINABILITY 2021. [DOI: 10.3390/su132011317] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Humans are facing very serious health threats from food contamination with cadmium (Cd), and Cd uptake by wheat is amongst the main causes of Cd entrance into the food chain. The current study examined the effect of foliar application (0, 1.50, 3.00 and 4.00 mM) of various silicate chemicals (calcium silicate and potassium silicate) on wheat growth and Cd addition by wheat under Cd stress 20 mg kg−1 of soil using CdCl2. The results revealed that under control conditions, the application of Si improved all the growth, physiological, biochemical and quality attributes by reducing malondialdehyde contents and electrolyte leakage. Under Cd stress, the supplementation of Si conferred a better growth rate, gaseous exchange for metabolic activity and maintained the tissues’ turgor and membranes’ stabilities compared to those obtained under control (without Si). The enzymatic activities (superoxide dismutase, peroxidase and catalase) also show rapid action by the application of Si supplement, which were associated with elevated osmoprotectant contents and antioxidants, having role in antioxidant defense against Cd stress. These results suggested that a 4.50 mM concentration of Si supplement (potassium silicate) works effectively against Cd stress. The given results showed that Si supplement is beneficial for the enhancement of many metabolic activities that takes places in plants during the growth period that proved a feasible approach in controlling the Cd concentration within wheat plants and, ultimately, in humans.
Collapse
|
46
|
Menhas S, Yang X, Hayat K, Niazi NK, Hayat S, Aftab T, Hui N, Wang J, Chen X, Zhou P. Targeting Cd coping mechanisms for stress tolerance in Brassica napus under spiked-substrate system: from physiology to remediation perspective. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:622-636. [PMID: 34388060 DOI: 10.1080/15226514.2021.1960479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is a prevalent, non-essential, carcinogenic, and hazardous heavy metal that reduces plant productivity and capacity of arable land area around the globe. In the present substrate-based pot study, seedlings of Brassica napus 180015 were grown equidistantly in the spiked-substrate medium for 60 days under increasing concentrations of Cd (0, 10, 20, 30, 40, 50 mg kg-1). Following harvest, the morpho-physio-biochemical, antioxidative, and Cd-induced tolerance responses were evaluated in B. napus under an increasing Cd stress regime. Additionally, these parameters were also investigated to select the plant's threshold tolerance limit for Cd under the spiked-substrate system. B. napus showed dynamic behavior regarding morpho-physio-biochemical attributes, including agronomic features, biomass, photosynthetic pigments, relative water content under increased Cd toxicity. Cd stress-induced hydrogen peroxide (H2O2) production with high MDA contents and passive EL, followed by the orchestration of both enzymatic (SOD, POD, APX, CAT, and GR) and non-enzymatic antioxidants (flavonoids, TPC, TPA, proline, and total soluble protein) up to a certain limit. In addition, Cd-induced stress upregulated transcriptional levels of antioxidative enzyme SOD, POD, APX, GR, and MT encoded genes in B. napus. The increasing trend of Cd accumulation in different tissues at the highest Cd concentration was as follows: root > leaf > stem. In spiked substrate system, B. napus demonstrated improved metal extractability performance and a high potential for phyto-management of low to moderate Cd contamination, implying that this study could be used for integrative breeding programs and decontaminating heavy metals in real contaminated scenarios.Novelty statementThis study provides an insight into Cd-coping mechanisms of oilseed rape involved in alleviating toxicity and simultaneous phyto-management of increasing Cd concentration under spiked substrate system. The current study is the first scientific evidence of using a Cd-spiked soilless substrate medium. The present study will further strengthen our understanding of Cd-instigated positive responses in B. napus. Furthermore, it will provide a useful basis for integrative breeding programs and decontaminating heavy metals in real contaminated scenarios.
Collapse
Affiliation(s)
- Saiqa Menhas
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, P.R. China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xijia Yang
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, P.R. China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Kashif Hayat
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, P.R. China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sikandar Hayat
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, P.R. China
| | - Tariq Aftab
- Department of Botany, Plant Physiology Section, Aligarh Muslim University, Aligarh, India
| | - Nan Hui
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, P.R. China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Juncai Wang
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, P.R. China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xunfeng Chen
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, P.R. China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Pei Zhou
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, P.R. China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
47
|
Li S, Wang T, Guo J, Dong Y, Wang Z, Gong L, Li X. Polystyrene microplastics disturb the redox homeostasis, carbohydrate metabolism and phytohormone regulatory network in barley. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125614. [PMID: 33725553 DOI: 10.1016/j.jhazmat.2021.125614] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/22/2021] [Accepted: 03/07/2021] [Indexed: 05/20/2023]
Abstract
As emerging contaminants, microplastics (mPS, <5 mm) have been reported to adversely affect the plant growth; however, the mechanisms of mPS-induced growth limitation are rarely known. Here, it was found that the plastic particles were absorbed and accumulated in barley plants, which limited the development of rootlets. The mPS-treated plants had significantly higher concentrations of H2O2 and O2- in roots than the control. The mPS significantly increased the activities of dehydroascorbate reductase, glutathione reductase, ADP-Glucose pyrophosphorylase, fructokinase and phosphofructokinase, while decreased the activities of cell wall peroxidase, vacuolar invertase, sucrose synthase, phosphoglucomutase, glucose-6-phosphate dehydrogenase and phosphoglucoisomerase in roots. The changes in activities of carbohydrate and ROS metabolism enzymes in leaves showed a different trend from that in roots. The mPS plants possessed a higher trans-zeatin concentration while lower concentrations of indole-3-acetic acid, indole-3-butyric acid and dihydrozeatin than the control plants in leaves. However, the phytohormone changes in roots were distinct from those in leaves under mPS. In addition, significant correlations between enzyme activities and phytohormone concentrations were found. It was suggested that the phytohormone regulatory network plays key roles in regulating the activities of key enzymes involved in carbohydrate and ROS metabolisms in response to mPS in barley.
Collapse
Affiliation(s)
- Shuxin Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China.
| | - Junhong Guo
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yuefan Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Zongshuai Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Xiangnan Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
48
|
Seed Priming with Brassinosteroids Alleviates Chromium Stress in Rice Cultivars via Improving ROS Metabolism and Antioxidant Defense Response at Biochemical and Molecular Levels. Antioxidants (Basel) 2021; 10:antiox10071089. [PMID: 34356322 PMCID: PMC8301181 DOI: 10.3390/antiox10071089] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 01/24/2023] Open
Abstract
This research was performed to explore the vital role of seed priming with a 0.01 µM concentration of brassinosteroids (EBL) to alleviate the adverse effects of Cr (100 µM) in two different rice cultivars. Seed priming with EBL significantly enhanced the germination attributes (germination percentage, germination energy, germination index, and vigor index, etc.), photosynthetic rate as well as plant growth (shoot and root length including the fresh and dry weight) under Cr toxicity as compared to the plants primed with water. Cr toxicity induced antioxidant enzyme activities (SOD, POD, CAT, and APX) and ROS level (MDA and H2O2 contents) in both rice cultivars; however, a larger increment was observed in YLY-689 (tolerant) than CY-927 (sensitive) cultivar. EBL application stimulatingly increased antioxidant enzyme activities to scavenge ROS production under Cr stress. The gene expression of SOD and POD in EBL-primed rice plants followed a similar increasing trend as observed in the case of enzymatic activities of SOD and POD compared to water-primed rice plants. Simultaneously, Cr uptake was observed to be significantly higher in the water-primed control compared to plants primed with EBL. Moreover, Cr uptake was significant in YLY-689 compared to CY-927. In ultra-structure studies, it was observed that EBL priming relieved the rice plants from sub-cellular damage. Conclusively, our research indicated that seed priming with EBL could be adopted as a promising strategy to enhance rice growth by copping the venomous effect of Cr.
Collapse
|
49
|
Chen L, Liu J, Zhang W, Zhou J, Luo D, Li Z. Uranium (U) source, speciation, uptake, toxicity and bioremediation strategies in soil-plant system: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125319. [PMID: 33582470 DOI: 10.1016/j.jhazmat.2021.125319] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/23/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Uranium(U), a highly toxic radionuclide, is becoming a great threat to soil health development, as returning nuclear waste containing U into the soil systems is increased. Numerous studies have focused on: i) tracing the source in U contaminated soils; ii) exploring U geochemistry; and iii) assessing U phyto-uptake and its toxicity to plants. Yet, there are few literature reviews that systematically summarized the U in soil-plant system in past decade. Thus, we present its source, geochemical behavior, uptake, toxicity, detoxification, and bioremediation strategies based on available data, especially published from 2018 to 2021. In this review, we examine processes that can lead to the soil U contamination, indicating that mining activities are currently the main sources. We discuss the relationship between U bioavailability in the soil-plant system and soil conditions including redox potential, soil pH, organic matter, and microorganisms. We then review the soil-plant transfer of U, finding that U mainly accumulates in roots with a quite limited translocation. However, plants such as willow, water lily, and sesban are reported to translocate high U levels from roots to aerial parts. Indeed, U does not possess any identified biological role, but provokes numerous deleterious effects such as reducing seed germination, inhibiting plant growth, depressing photosynthesis, interfering with nutrient uptake, as well as oxidative damage and genotoxicity. Yet, plants tolerate U toxicity via various defense strategies including antioxidant enzymes, compartmentalization, and phytochelatin. Moreover, we review two biological remediation strategies for U-contaminated soil: (i) phytoremediation and (ii) microbial remediation. They are quite low-cost and eco-friendly compared with traditional physical or chemical remediation technologies. Finally, we conclude some promising research challenges regarding U biogeochemical behavior in soil-plant systems. This review, thus, further indicates that the combined application of U low accumulators and microbial inoculants may be an effective strategy for the bioremediation of U-contaminated soils.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Jinrong Liu
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China.
| | - Weixiong Zhang
- Third Institute Geological and Mineral Exploration of Gansu Provincial Bureau of Geology and Mineral Resources, Lanzhou 730030, Gansu, PR China
| | - Jiqiang Zhou
- Gansu Nonferrous Engineering Exploration & Design Research Institute, Lanzhou 730030, Gansu, PR China
| | - Danqi Luo
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Zimin Li
- Université catholique de Louvain (UCLouvain), Earth and Life Institute, Soil Science, Louvain-La-Neuve 1348, Belgium.
| |
Collapse
|
50
|
Nazir A, Shafiq M, Bareen FE. Fungal biostimulant-driven phytoextraction of heavy metals from tannery solid waste contaminated soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:47-58. [PMID: 34061696 DOI: 10.1080/15226514.2021.1924115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two of the multiple limitations of phytoextraction efficiency (PE %) of TSW polluted soils are: (i) low growth of plant performance, (ii) poor bioavailability of excessive essential and heavy metals (ascribed as Category-I and II metals respectively) The current study reports biostimulant role of allochthonous Trichoderma harzianum (F1) and autochthonous Trichoderma pseudokoningii (F2) in growth of Tagetes patula L. and uptake of Category-I & II metals from TSW-soil (0, 5 & 10%). Significantly higher growth (27.5-47.8% dry wt. than Control) and highly significantly higher uptake of Category-I & II metals (72-80% Ca, 32-69% K, 72-76% Na & 73-86% Cd, 63-100% Cr, 72-77% Cu, 73-78% Fe, 43-77% Mg, 22-33% Ni, 70-73% Zn) was observed in T. patula applied with F1 + F2 treatment. The PE (%) parameters viz.specific extraction yield, tolerance and translocation index of Category-I & II metals were higher in plants cultivated on fungal inoculated TSW:soil. The Trichoderma spp. acted as strong biostimulants for enhancing plant growth and conc. of catalase (CAT, 44-52% than control), superoxide dismutase (SOD, 37-43%), soluble proteins (37-68%) and total chlorophyll (10-26%) in T. patula during metal phytoextraction of TSW:soil. Novelty statement Due to multiple socio-economic constraints for effective management of tannery solid waste (TSW), the heavy metal phytoextraction seems to be one of the promising approaches. However, due to complex composition of TSW, that is, with more than 37 components, high pH, multiple types and high conc. of metals; there lies huge challenge of enhancing phytoextraction efficiency (PE %). This can be done by enhancing growth of hyperaccumulator plants and increasing bioavailable fraction of metals. The current study suggests application of selected fungal biostimulants for increasing growth of T. patula while improving bioavailable fraction of the total metal contents of the TSW: soil.
Collapse
Affiliation(s)
- Aisha Nazir
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Muhammad Shafiq
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | | |
Collapse
|