1
|
Li Z, Wang Z, Dai L, Ma J, Liu X. Highly effective catalytic degradation of bisphenol A through activation of peroxymonosulfate by an Fe-N x structure anchored on novel lignin-based graphitic biochar: Electron transfer mechanism. Int J Biol Macromol 2024; 286:138322. [PMID: 39638199 DOI: 10.1016/j.ijbiomac.2024.138322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
A lignin-based Fe/N co-doped carbonaceous catalyst was synthesized via freeze-drying followed by pyrolysis to activate peroxymonosulfate (PMS) for efficient degradation of bisphenol A (BPA). The Fe/N co-doped biochar exhibited a high specific surface area (364.84 m2/g), hierarchical porous structures, and abundant oxygen-containing functional groups (hydroxyl and carboxyl groups), which enhancing the dispersion of Fe3O4 nanoparticle and exposure of catalytic site. The Fe8-N10-C/PMS system achieved 100 % BPA degradation within 20 min with a corresponding first-order reaction rate constant (kobs) of 0.4056 min-1, which outperformed most reported catalysts in efficiency. Quenching and EPR analyses revealed that both free radicals (•OH, SO4•-, and O2•-) and non-radical (1O2) were rate-limiting steps, while graphitic N and Fe-Nx structures facilitated direct electron transfer from BPA to PMS in electrochemical tests. XPS results confirmed that pyrrolic N, rather than pyridinic N, played a crucial role in forming the Fe-Nx structure. Moreover, the catalyst showed excellent stability, regeneration capability, and adaptability under diverse conditions, highlighting the potential of the Fe-N-C/PMS system for practical wastewater treatment applications.
Collapse
Affiliation(s)
- Zhenrui Li
- International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Zhihui Wang
- International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Linxin Dai
- International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Jianfeng Ma
- International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China.
| | - Xing'e Liu
- International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| |
Collapse
|
2
|
Sodré V, Bugg TDH. Sustainable production of aromatic chemicals from lignin using enzymes and engineered microbes. Chem Commun (Camb) 2024; 60:14360-14375. [PMID: 39569570 PMCID: PMC11580001 DOI: 10.1039/d4cc05064a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
Lignin is an aromatic biopolymer found in plant cell walls and is the most abundant source of renewable aromatic carbon in the biosphere. Hence there is considerable interest in the conversion of lignin, either derived from agricultural waste or produced as a byproduct of pulp/paper manufacture, into high-value chemicals. Although lignin is rather inert, due to the presence of ether C-O and C-C linkages, several microbes are able to degrade lignin. This review will introduce these microbes and the enzymes that they use to degrade lignin and will describe recent studies on metabolic engineering that can generate high-value chemicals from lignin bioconversion. Catabolic pathways for degradation of lignin fragments will be introduced, and case studies where these pathways have been engineered by gene knockout/insertion to generate bioproducts that are of interest as monomers for bioplastic synthesis or aroma chemicals will be described. Life cycle analysis of lignin bioconversion processes is discussed.
Collapse
Affiliation(s)
- Victoria Sodré
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | - Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
3
|
Sun N, Ji X, Tian Z, Wang B. Toward Extensive Utilization of Pulping Liquor from Chemical-Mechanical Pulping Process of Wheat Straw in Biorefinery View. Molecules 2024; 29:5368. [PMID: 39598756 PMCID: PMC11596738 DOI: 10.3390/molecules29225368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Extensive utilization of renewable biomass is crucial for the progress of carbon neutral and carbon peak implementation. Wheat straw, as an important by-product of crops, is hardly ever efficiently utilized by conventional processes. Here, we proposed a mild acid-coupled-with-enzymatic-treatment process to realize the utilization of lignin and hemicelluloses from pulping liquor on the basis of the chemical-mechanical pulping process. The pulping liquor was treated with acid first to precipitate lignin, and it was further hydrolyzed with xylanase to obtain XOSs. The recovered lignin was characterized by FT-IR, 2D-HSQC, GPC, etc. It was found that lignin undergoes depolymerization and condensation during acid treatment. Also, saccharide loss enhanced with the decrease in pH due to the presence of the LCC structure. As a result, an optimized pH of 4 for the acid treatment ensured that the removal rate of lignin and loss rate of polysaccharides achieved 77.15% and 6.13%, respectively. Moreover, further xylanase treatment of the pulping liquor attained a recovery rate of 51.87% for XOSs. The study presents a new insight for the efficient utilization of lignin and hemicellulose products from non-woody materials in the prevailing biorefinery concept.
Collapse
Affiliation(s)
- Ning Sun
- School of Bionengneering, Qilu University of Technology, Jinan 250013, China;
| | - Xingxiang Ji
- State Key Laboratory of Biobased Material & Green Papermaking, Qilu University of Technology, Jinan 250013, China; (X.J.); (B.W.)
| | - Zhongjian Tian
- School of Bionengneering, Qilu University of Technology, Jinan 250013, China;
- State Key Laboratory of Biobased Material & Green Papermaking, Qilu University of Technology, Jinan 250013, China; (X.J.); (B.W.)
| | - Baobin Wang
- State Key Laboratory of Biobased Material & Green Papermaking, Qilu University of Technology, Jinan 250013, China; (X.J.); (B.W.)
| |
Collapse
|
4
|
Kumar R, Næss G, Sørensen M. Xylooligosaccharides from lignocellulosic biomass and their applications as nutraceuticals: a review on their production, purification, and characterization. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7765-7775. [PMID: 38625727 DOI: 10.1002/jsfa.13523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/11/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
Xylooligosaccharides (XOS) are considered a potent source of prebiotics for humans. The global prebiotic market is expanding in size, was valued at USD 6.05 billion in 2021, and is expected to grow at a 14.9% compound annual growth rate between 2022 and 2030, indicating a huge demand. These XOS are non-digestible pentose sugar oligomers comprising mainly xylose. Xylose is naturally present in the lignocellulosic biomass (LCB), fruits and vegetables. Apart from the prebiotic effect, these XOS have been reported to reduce blood cholesterol, possess antioxidant effects, increase calcium absorption, reduce colon cancer risk, and benefit diabetic patients. The primary use of XOS is reported in the feed industry followed by health, medical use, food and drinks. LCB mainly contains glucan, xylan and lignin. After glucan, xylan is the second-highest available sugar on the globe composed of xylose. Therefore, the xylan fraction of LCB has great significance in producing food, feed and energy. Glucan has been exploited for the commercial production of ethanol, xylitol, furfural, hydroxymethyl furfural and glucose. As of now, xylan has limited applications. Therefore, xylan can be exploited to convert to XOS. The production of XOS from LCB fraction not only helps to produce these at a very low price, but also helps in the reduction of greenhouse gases. Its use in food and drinks is increasing as it can be derived from the abundantly and cheaply available LCB. The article provides a review on the production, purification and characterization of XOS in view of their use as nutraceuticals. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ravindra Kumar
- Faculty of Biosciences and Aquaculture, Nord University, Steinkjer, Norway
| | - Geir Næss
- Faculty of Biosciences and Aquaculture, Nord University, Steinkjer, Norway
| | - Mette Sørensen
- Faculty of Biosciences and Aquaculture, Nord University, Steinkjer, Norway
| |
Collapse
|
5
|
Xu L, Nawaz MZ, Khalid HR, Waqar-Ul-Haq, Alghamdi HA, Sun J, Zhu D. Modulating the pH profile of vanillin dehydrogenase enzyme from extremophile Bacillus ligniniphilus L1 through computational guided site-directed mutagenesis. Int J Biol Macromol 2024; 263:130359. [PMID: 38387643 DOI: 10.1016/j.ijbiomac.2024.130359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Vanillin dehydrogenase (VDH) has recently come forward as an important enzyme for the commercial production of vanillic acid from vanillin in a one-step enzymatic process. However, VDH with high alkaline tolerance and efficiency is desirable to meet the biorefinery requirements. In this study, computationally guided site-directed mutagenesis was performed by increasing the positive and negative charges on the surface and near the active site of the VDH from the alkaliphilic marine bacterium Bacillus ligniniphilus L1, respectively. In total, 20 residues including 15 from surface amino acids and 5 near active sites were selected based on computational analysis and were subjected to site-directed mutations. The optimum pH of the two screened mutants including I132R, and T235E from surface residue and near active site mutant was shifted to 9, and 8.6, with a 2.82- and 2.95-fold increase in their activity compared to wild enzyme at pH 9, respectively. A double mutant containing both these mutations i.e., I132R/T235E was produced which showed a shift in optimum pH of VDH from 7.4 to 9, with an increase of 74.91 % in enzyme activity. Therefore, the double mutant of VDH from the L1 strain (I132R/T235E) produced in this study represents a potential candidate for industrial applications.
Collapse
Affiliation(s)
- Lingxia Xu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Muhammad Zohaib Nawaz
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Hafiz Rameez Khalid
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Waqar-Ul-Haq
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Huda Ahmed Alghamdi
- Department of Biology, College of Sciences, King Khalid University, Abha 61413, Saudi Arabia
| | - Jianzhong Sun
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
6
|
Agede O, Thies MC. Purification and Fractionation of Lignin via ALPHA: Liquid-Liquid Equilibrium for the Lignin-Acetic Acid-Water System. CHEMSUSCHEM 2024; 17:e202300989. [PMID: 37668938 DOI: 10.1002/cssc.202300989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
In order to effectively practice the Aqueous Lignin Purification with Hot Agents (ALPHA) process for lignin purification and fractionation, the temperatures and feed compositions where regions of liquid-liquid equilibrium (LLE) exist must be identified. To this end, pseudo-ternary phase diagrams for the lignin-acetic acid-water system were mapped out at 45-95 °C and various solvent: feed lignin mass ratios (S : F). For a given temperature, the accompanying SL (solid-liquid), SLL (solid-liquid-liquid), and one-phase regions were also located. For the first time, ALPHA using acetic acid (AcOH)-water solution was applied to a lignin recovered via the commercial LignoBoost process. In addition to determining tie-line compositions for the two regions of LLE that were discovered, the distribution of lignin and key impurities (the latter can negatively impact lignin performance for materials applications) between the two liquid phases was also measured. As a representative example, lignin isolated in the lignin-rich phase was reduced 7x in metals and 4x in polysaccharides by using ALPHA with a feed solvent composition of 50-55 % AcOH and an S : F of 6 : 1, with said lignin being obtained at a yield of 50-70 % of the feed lignin and having a molecular weight triple that of the feed.
Collapse
Affiliation(s)
- Oreoluwa Agede
- Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd, Clemson, South Carolina, 29634-0909, USA
| | - Mark C Thies
- Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd, Clemson, South Carolina, 29634-0909, USA
| |
Collapse
|
7
|
Xu L, Liaqat F, Sun J, Khazi MI, Xie R, Zhu D. Advances in the vanillin synthesis and biotransformation: A review. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2024; 189:113905. [DOI: 10.1016/j.rser.2023.113905] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
8
|
Wee MXJ, Chin BLF, Saptoro A, Yiin CL, Chew JJ, Sunarso J, Yusup S, Sharma A. A review on co-pyrolysis of agriculture biomass and disposable medical face mask waste for green fuel production: recent advances and thermo-kinetic models. Front Chem Sci Eng 2023; 17:1-21. [PMID: 37359292 PMCID: PMC10225287 DOI: 10.1007/s11705-022-2230-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/08/2022] [Indexed: 06/28/2023]
Abstract
The Association of Southeast Asian Nations is blessed with agricultural resources, and with the growing population, it will continue to prosper, which follows the abundance of agricultural biomass. Lignocellulosic biomass attracted researchers' interest in extracting bio-oil from these wastes. However, the resulting bio-oil has low heating values and undesirable physical properties. Hence, co-pyrolysis with plastic or polymer wastes is adopted to improve the yield and quality of the bio-oil. Furthermore, with the spread of the novel coronavirus, the surge of single-use plastic waste such as disposable medical face mask, can potentially set back the previous plastic waste reduction measures. Therefore, studies of existing technologies and techniques are referred in exploring the potential of disposable medical face mask waste as a candidate for co-pyrolysis with biomass. Process parameters, utilisation of catalysts and technologies are key factors in improving and optimising the process to achieve commercial standard of liquid fuel. Catalytic co-pyrolysis involves a series of complex mechanisms, which cannot be explained using simple iso-conversional models. Hence, advanced conversional models are introduced, followed by the evolutionary models and predictive models, which can solve the non-linear catalytic co-pyrolysis reaction kinetics. The outlook and challenges for the topic are discussed in detail.
Collapse
Affiliation(s)
- Melvin X. J. Wee
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Miri, 98009 Malaysia
| | - Bridgid L. F. Chin
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Miri, 98009 Malaysia
- Energy and Environment Research Cluster, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Miri, 98009 Malaysia
| | - Agus Saptoro
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Miri, 98009 Malaysia
| | - Chung L. Yiin
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan, 94300 Malaysia
- Institute of Sustainable and Renewable Energy (ISuRE), Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan, 94300 Malaysia
| | - Jiuan J. Chew
- Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Kuching, 93350 Malaysia
| | - Jaka Sunarso
- Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Kuching, 93350 Malaysia
| | - Suzana Yusup
- Generation Unit (Fuel Technology & Combustion), Tenaga Nasional Berhad (TNB) Research Sdn Bhd, Kajang, 43000 Malaysia
| | - Abhishek Sharma
- Department of Chemical Engineering, Manipal University Jaipur, Jaipur, 303007 India
- Chemical & Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000 Australia
| |
Collapse
|
9
|
Centi G, Perathoner S, Genovese C, Arrigo R. Advanced (photo)electrocatalytic approaches to substitute the use of fossil fuels in chemical production. Chem Commun (Camb) 2023; 59:3005-3023. [PMID: 36794323 PMCID: PMC9997108 DOI: 10.1039/d2cc05132j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023]
Abstract
Electrification of the chemical industry for carbon-neutral production requires innovative (photo)electrocatalysis. This study highlights the contribution and discusses recent research projects in this area, which are relevant case examples to explore new directions but characterised by a little background research effort. It is organised into two main sections, where selected examples of innovative directions for electrocatalysis and photoelectrocatalysis are presented. The areas discussed include (i) new approaches to green energy or H2 vectors, (ii) the production of fertilisers directly from the air, (iii) the decoupling of the anodic and cathodic reactions in electrocatalytic or photoelectrocatalytic devices, (iv) the possibilities given by tandem/paired reactions in electrocatalytic devices, including the possibility to form the same product on both cathodic and anodic sides to "double" the efficiency, and (v) exploiting electrocatalytic cells to produce green H2 from biomass. The examples offer hits to expand current areas in electrocatalysis to accelerate the transformation to fossil-free chemical production.
Collapse
Affiliation(s)
- Gabriele Centi
- University of Messina, Dept ChiBioFarAm, V.le F. Stagno D'Alcontres 32, 98166 Messina, Italy.
| | - Siglinda Perathoner
- University of Messina, Dept ChiBioFarAm, V.le F. Stagno D'Alcontres 32, 98166 Messina, Italy.
| | - Chiara Genovese
- University of Messina, Dept ChiBioFarAm, V.le F. Stagno D'Alcontres 32, 98166 Messina, Italy.
| | - Rosa Arrigo
- University of Salford, 336 Peel building, M5 4WT Manchester, UK
| |
Collapse
|
10
|
Lignin-Based Admixtures: A Scientometric Analysis and Qualitative Discussion Applied to Cement-Based Composites. Polymers (Basel) 2023; 15:polym15051254. [PMID: 36904495 PMCID: PMC10006873 DOI: 10.3390/polym15051254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
The development of lignin-based admixtures (LBAs) for cement-based composites is an alternative to valorizing residual lignins generated in biorefineries and pulp and paper mills. Consequently, LBAs have become an emerging research domain in the past decade. This study examined the bibliographic data on LBAs through a scientometric analysis and in-depth qualitative discussion. For this purpose, 161 articles were selected for the scientometric approach. After analyzing the articles' abstracts, 37 papers on developing new LBAs were selected and critically reviewed. Significant publication sources, frequent keywords, influential scholars, and contributing countries in LBAs research were identified during the science mapping. The LBAs developed so far were classified as plasticizers, superplasticizers, set retarders, grinding aids, and air-entraining admixtures. The qualitative discussion revealed that most studies have focused on developing LBAs using Kraft lignins from pulp and paper mills. Thus, residual lignins from biorefineries need more attention since their valorization is a relevant strategy for emerging economies with high biomass availability. Most studies focused on production processes, chemical characterizations, and primary fresh-state analyses of LBA-containing cement-based composites. However, to better assess the feasibility of using different LBAs and encompass the multidisciplinarity of this subject, it is mandatory that future studies also evaluate hardened-sate properties. This holistic review offers a helpful reference point to early-stage researchers, industry professionals, and funding authorities on the research progress in LBAs. It also contributes to understanding the role of lignin in sustainable construction.
Collapse
|
11
|
Sharma V, Tsai ML, Nargotra P, Chen CW, Sun PP, Singhania RR, Patel AK, Dong CD. Journey of lignin from a roadblock to bridge for lignocellulose biorefineries: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160560. [PMID: 36574559 DOI: 10.1016/j.scitotenv.2022.160560] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/06/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The grave concerns arisen as a result of environmental pollution and diminishing fossil fuel reserves in the 21st century have shifted the focus on the use of sustainable and environment friendly alternative resources. Lignocellulosic biomass constituted by cellulose, hemicellulose and lignin is an abundantly available natural bioresource. Lignin, a natural biopolymer has over the years gained much importance as a high value material with commercial importance. The present review provides an in-depth knowledge on the journey of lignin from being considered a roadblock to a bridge connecting diverse industries with widescale applications. The successful valorization of lignin for the production of bio-based platform chemicals and fuels has been the subject of intensive investigation. A deeper understanding of lignin characteristics and factors governing the biomass conversion into valuable products can support improved biomass consumption. The components of lignocellulosic biomass might be totally transformed into a variety of value-added products with the improvements in bioprocess techniques that valorize lignin. In this review, the recent advances in the lignin extraction and depolymerization methods that may help in achieving the cost-economics of the bioprocess are summarized and compared. The industrial potential of lignin-derived products such as aromatics, biopolymers, biofuels and agrochemicals are also outlined. Additionally, assessment of the recent research trends in lignin valorization into value-added chemicals has been done and present scenario of technological-industrial applications of lignin with economic perspectives is highlighted.
Collapse
Affiliation(s)
- Vishal Sharma
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Parushi Nargotra
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Pei-Pei Sun
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
12
|
Shao L, Wan H, Wang L, Wang J, Liu Z, Wu Z, Zhan P, Zhang L, Ma X, Huang J. N-doped highly microporous carbon derived from the self-assembled lignin/chitosan composites beads for selective CO2 capture and efficient p-nitrophenol adsorption. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
13
|
Deivayanai VC, Yaashikaa PR, Senthil Kumar P, Rangasamy G. A comprehensive review on the biological conversion of lignocellulosic biomass into hydrogen: Pretreatment strategy, technology advances and perspectives. BIORESOURCE TECHNOLOGY 2022; 365:128166. [PMID: 36283663 DOI: 10.1016/j.biortech.2022.128166] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 05/16/2023]
Abstract
The globe has dependent on energy generation and utilization for many years; conversely, ecological concerns constrained the world to view hydrogen as an alternative for economic development. Lignocellulosic biomass is broadly accessible as a low-cost renewable feedstock and nonreactive nature; it has received a lot of consideration as a global energy source and the most attractive alternative to replace fossil natural substances for energy production. Pretreatment of lignocellulosic biomass is essential to advance its fragmentation and lower the lignin content for sustainable energy generation. This review's goal is to provide the different pretreatment strategies for enlarging the solubility and surface area of lignocellulosic biomass. The biological conversion of lignocellulosic biomass to hydrogen was reviewed and operational conditions and enhancing methods were discussed. This review summarizes the working conditions, parameters, yield percentages, techno-economic analysis, challenges, and future recommendations on the direct conversion of biomass to hydrogen.
Collapse
Affiliation(s)
- V C Deivayanai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| |
Collapse
|
14
|
Robinson AJ, Giuliano A, Abdelaziz OY, Hulteberg CP, Koutinas A, Triantafyllidis KS, Barletta D, De Bari I. Techno-economic optimization of a process superstructure for lignin valorization. BIORESOURCE TECHNOLOGY 2022; 364:128004. [PMID: 36162782 DOI: 10.1016/j.biortech.2022.128004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Lignin, the most abundant aromatic biopolymer on Earth, is often considered a biorefinery by-product, despite its potential to be valorized into high-added-value chemicals and fuels. In this work, an integrated superstructure-based optimization model was set up and optimized using mixed-integer non-linear programming for the conversion of technical lignin to three main biobased products: aromatic monomers, phenol-formaldehyde resins, and aromatic aldehydes/acids. Several alternative conversion pathways were simultaneously compared to assess the profitability of lignins-based processes by predicting the performance of technologies with different TRL. Upon employing key technologies such as hydrothermal liquefaction, dissolution in solvent, or high-temperature electrolysis, the technical lignins could have a market value of 200 €/t when the market price for aromatic monomers, resins, and vanillin is at least 2.0, 0.8, and 15.0 €/kg, respectively. When lower product selling prices were considered, the aromatic monomers and the resins were not profitable as target products.
Collapse
Affiliation(s)
- Ada Josefina Robinson
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (SA), Italy
| | - Aristide Giuliano
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, S.S. 106 Ionica, Laboratory of Technologies and Processes for Biorefineries and Green Chemistry, km 419+500, Rotondella (MT), Italy.
| | - Omar Y Abdelaziz
- Department of Chemical Engineering, Lund University, Naturvetarvägen 14, SE-221 00 Lund, Sweden
| | - Christian P Hulteberg
- Department of Chemical Engineering, Lund University, Naturvetarvägen 14, SE-221 00 Lund, Sweden
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | | | - Diego Barletta
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (SA), Italy
| | - Isabella De Bari
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, S.S. 106 Ionica, Laboratory of Technologies and Processes for Biorefineries and Green Chemistry, km 419+500, Rotondella (MT), Italy
| |
Collapse
|
15
|
Sivagurunathan P, Raj T, Chauhan PS, Kumari P, Satlewal A, Gupta RP, Kumar R. High-titer lactic acid production from pilot-scale pretreated non-detoxified rice straw hydrolysate at high-solid loading. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
16
|
Valorization of Lignin and Its Derivatives Using Yeast. Processes (Basel) 2022. [DOI: 10.3390/pr10102004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As the third most plentiful biopolymer after other lignocellulosic derivates such as cellulose and hemicellulose, lignin carries abundant potential as a substitute for petroleum-based products. However, the efficient, practical, value-added product valorization of lignin remains quite challenging. Although several studies have reviewed the valorization of lignin by microorganisms, this present review covers recent studies on the valorization of lignin by employing yeast to obtain products such as single-cell oils (SCOs), enzymes, and other chemical compounds. The use of yeasts has been found to be suitable for the biological conversion of lignin and might provide new insights for future research to develop a yeast strain for lignin to produce other valuable chemical compounds.
Collapse
|
17
|
Advances and Challenges in Biocatalysts Application for High Solid-Loading of Biomass for 2nd Generation Bio-Ethanol Production. Catalysts 2022. [DOI: 10.3390/catal12060615] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Growth in population and thereby increased industrialization to meet its requirement, has elevated significantly the demand for energy resources. Depletion of fossil fuel and environmental sustainability issues encouraged the exploration of alternative renewable eco-friendly fuel resources. Among major alternative fuels, bio-ethanol produced from lignocellulosic biomass is the most popular one. Lignocellulosic biomass is the most abundant renewable resource which is ubiquitous on our planet. All the plant biomass is lignocellulosic which is composed of cellulose, hemicellulose and lignin, intricately linked to each other. Filamentous fungi are known to secrete a plethora of biomass hydrolyzing enzymes. Mostly these enzymes are inducible, hence the fungi secrete them economically which causes challenges in their hyperproduction. Biomass’s complicated structure also throws challenges for which pre-treatments of biomass are necessary to make the biomass amorphous to be accessible for the enzymes to act on it. The enzymatic hydrolysis of biomass is the most sustainable way for fermentable sugar generation to convert into ethanol. To have sufficient ethanol concentration in the broth for efficient distillation, high solid loading ~<20% of biomass is desirable and is the crux of the whole technology. High solid loading offers several benefits including a high concentration of sugars in broth, low equipment sizing, saving cost on infrastructure, etc. Along with the benefits, several challenges also emerged simultaneously, like issues of mass transfer, low reaction rate due to water constrains in, high inhibitor concentration, non-productive binding of enzyme lignin, etc. This article will give an insight into the challenges for cellulase action on cellulosic biomass at a high solid loading of biomass and its probable solutions.
Collapse
|
18
|
Liu H, Liu ZH, Zhang RK, Yuan JS, Li BZ, Yuan YJ. Bacterial conversion routes for lignin valorization. Biotechnol Adv 2022; 60:108000. [DOI: 10.1016/j.biotechadv.2022.108000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022]
|
19
|
Hasanov I, Shanmugam S, Kikas T. Extraction and isolation of lignin from ash tree (Fraxinus exselsior) with protic ionic liquids (PILs). CHEMOSPHERE 2022; 290:133297. [PMID: 34921853 DOI: 10.1016/j.chemosphere.2021.133297] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/01/2021] [Accepted: 12/11/2021] [Indexed: 05/11/2023]
Abstract
Protic ionic liquids (PILs) have been considered effective solvents for the selective separation and recovery of cellulose from lignocellulosic biomass. However, PILs can also be utilized for the extraction and conversion of lignin into fuels and value-added products. The objective of this work was to study the extraction of lignin from ash tree (Fraxinus exselsior) hardwood biomass using three different PILs-pyridinium acetate, pyridinium formate [Py][For], and pyrrolidinium acetate. Fiber analysis was used to determine the biochemical composition of the left-over biomass after lignin separation. FTIR and NMR were applied to determine the structure of dissolved lignin. Additionally, the regeneration potential and recyclability of PILs were assessed. Our results demonstrate that treatment with [Py][For] at 75 °C yields the highest percentage of lignin dissolution from biomass. This indicates that PILs could be used for Kraft lignin dissolution as well as separation of lignin from raw, milled biomass.
Collapse
Affiliation(s)
- Isa Hasanov
- Chair of Biosystems Engineering, Institute of Technology, Estonian University of Life Sciences, Kreutzwaldi 56, 51014, Tartu, Estonia.
| | - Sabarathinam Shanmugam
- Chair of Biosystems Engineering, Institute of Technology, Estonian University of Life Sciences, Kreutzwaldi 56, 51014, Tartu, Estonia.
| | - Timo Kikas
- Chair of Biosystems Engineering, Institute of Technology, Estonian University of Life Sciences, Kreutzwaldi 56, 51014, Tartu, Estonia
| |
Collapse
|
20
|
Raj T, Chandrasekhar K, Naresh Kumar A, Rajesh Banu J, Yoon JJ, Kant Bhatia S, Yang YH, Varjani S, Kim SH. Recent advances in commercial biorefineries for lignocellulosic ethanol production: Current status, challenges and future perspectives. BIORESOURCE TECHNOLOGY 2022; 344:126292. [PMID: 34748984 DOI: 10.1016/j.biortech.2021.126292] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 05/26/2023]
Abstract
Cellulosic ethanol production has received global attention to use as transportation fuels with gasoline blending virtue of carbon benefits and decarbonization. However, due to changing feedstock composition, natural resistance, and a lack of cost-effective pretreatment and downstream processing, contemporary cellulosic ethanol biorefineries are facing major sustainability issues. As a result, we've outlined the global status of present cellulosic ethanol facilities, as well as main roadblocks and technical challenges for sustainable and commercial cellulosic ethanol production. Additionally, the article highlights the technical and non-technical barriers, various R&D advancements in biomass pretreatment, enzymatic hydrolysis, fermentation strategies that have been deliberated for low-cost sustainable fuel ethanol. Moreover, selection of a low-cost efficient pretreatment method, process simulation, unit integration, state-of-the-art in one pot saccharification and fermentation, system microbiology/ genetic engineering for robust strain development, and comprehensive techno-economic analysis are all major bottlenecks that must be considered for long-term ethanol production in the transportation sector.
Collapse
Affiliation(s)
- Tirath Raj
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - A Naresh Kumar
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Jeong-Jun Yoon
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan-si, Chungcheongnam-do 31056, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
21
|
Prakash DG, Gopinath KP, Vinatha V, Shreya S, Sivaramakrishnan R, Lan Chi NT. Enhanced production of hydrocarbons from lignin isolated from sugarcane bagasse using formic acid induced supercritical ethanol liquefaction followed by hydrodeoxygenation. CHEMOSPHERE 2021; 285:131491. [PMID: 34329131 DOI: 10.1016/j.chemosphere.2021.131491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 06/23/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
This study involves the production of hydrocarbons from lignin extracted from sugarcane bagasse using Hydrothermal Liquefaction (HTL) followed by Hydrodeoxygenation (HDO). HTL of the lignin was studied under different solvents-methanol, ethanol and isopropanol in the presence of formic acid as an effective H-donor under varying lignin to solvent ratios (L:S = 1:15,1:30,1:40 g/mL), reaction temperatures (200 °C - 320 °C), reaction times (15, 30, 45,60 min) and ZnCl2 catalyst concentrations (30, 40, 50, 60 wt%). A maximum of 86% lignin derived phenolics was obtained when ethanol was used as solvent at 250 °C under L:S = 1:30 at 30 min reaction time with 60 wt% ZnCl2. The lignin-oil was upgraded by HDO process in the presence of Ni/Al2O3 catalyst and a maximum hydrocarbon yield of 73.5% was obtained with a HHV value of 48 MJ/kg. The hydrocarbons had excellent properties with a carbon range of C6-C12 with a purity of 51.2%.
Collapse
Affiliation(s)
- Dhakshinamoorthy Gnana Prakash
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603 110, Tamil Nadu, India.
| | - Kannappan Panchamoorthy Gopinath
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603 110, Tamil Nadu, India
| | - Viswanathan Vinatha
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603 110, Tamil Nadu, India
| | - Suresh Shreya
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603 110, Tamil Nadu, India
| | - Ramachandran Sivaramakrishnan
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nguyen Thuy Lan Chi
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
22
|
Availability and Environmental Performance of Wood for a Second-Generation Biorefinery. FORESTS 2021. [DOI: 10.3390/f12111609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The current global climate change, the 2030 Agenda, and the planetary boundaries have driven new development strategies, such as the circular economy, bioeconomy, and biorefineries. In this framework, this study analyzes the potential availability and sustainability of the wood supply chain for a small-scale biorefinery aiming at producing 280–300 L of bioethanol per ton of dry biomass, consuming 30,000 t of dry biomass per year harvested in a 50 km radius. This wood production goal was assessed from Eucalyptus grandis stands planted for solid wood in northeastern Uruguay. Moreover, to understand the environmental performance of this biomass supply chain, the energy return on investment (EROI), carbon footprint (CF), and potential soil erosion were also assessed. The results showed that the potential wood production would supply an average of 81,800 t of dry mass per year, maintaining the soil erosion below the upper threshold recommended, an EROI of 2.3, and annual CF of 1.22 kg CO2−eq m−3 (2.6 g CO2−eq MJ−1). Combined with the environmental performance of the bioethanol biorefinery facility, these results would show acceptable values of sustainability according to EU Directive 2009/28/ec because the bioethanol CF becomes 1.7% of this petrol’s CF.
Collapse
|
23
|
Agrawal R, Verma A, Singhania RR, Varjani S, Di Dong C, Kumar Patel A. Current understanding of the inhibition factors and their mechanism of action for the lignocellulosic biomass hydrolysis. BIORESOURCE TECHNOLOGY 2021; 332:125042. [PMID: 33813178 DOI: 10.1016/j.biortech.2021.125042] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Biorefining of lignocellulosic biomass is a relatively new concept but it has strong potential to develop and partially replace the fossil derived fuels and myriad of value products to subsequently reduce the greenhouse gas emissions. However, the energy and cost intensive process of releasing the entrapped fermentable sugars is a major challenge for its commercialization. Various factors playing a detrimental role during enzymatic hydrolysis of biomass are inherent recalcitrance of lignocellulosic biomass, expensive enzymes, sub-optimal enzyme composition, lack of synergistic activity and enzyme inhibition caused by various inhibitors. The current study investigated the mechanism of enzyme inhibition during lignocellulosic biomass saccharification especially at high solid loadings. These inhibition factors are categorized into physio-chemical factors, water-soluble and -insoluble enzyme inhibitors, oligomers and enzyme-lignin binding. Furthermore, different approaches are proposed to alleviate the challenges and improve the enzymatic hydrolysis efficiency such as supplementation with surfactants, synergistic catalytic/non-catalytic proteins, and bioprocess modifications.
Collapse
Affiliation(s)
- Ruchi Agrawal
- The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, Haryana, India
| | - Amit Verma
- College of Basic Science and Humanities, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar - 385506 (Banaskantha), Gujarat, India
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382010, India
| | - Cheng Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|