1
|
Yu L, Hua Z, Liu X, Xing X, Zhang C, Hu T, Xue H. Multi-compartment levels and distributions of per- and polyfluoroalkyl substances surrounding fluorochemical manufacturing parks in China: A review of the current literature. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136196. [PMID: 39426146 DOI: 10.1016/j.jhazmat.2024.136196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Fluorochemical manufacturing parks (FMPs) are important point sources of per- and polyfluoroalkyl substances (PFASs) emissions to the surrounding environment. With legacy PFASs being phased-out and restricted in developed countries, China has emerged as one of the world's leading producers of PFASs. However, the occurrence and distribution patterns of PFASs emitted from FMPs in China remain poorly understood. This knowledge gap may lead to an underestimation of the contribution of FMPs as a source of PFASs in the environment. In this study, we collected pertinent data from published studies of PFAS emissions from FMPs and explored the occurrence patterns and distribution characteristics of PFASs across various media, including surface water, groundwater, tap water, sediment, soil, air, dust, plants, and animals. Seventeen classes of PFASs containing 80 compounds were identified in different media around FMPs, with concentrations significantly greater than in other suspected PFAS-contaminated sites. Notably, the levels of ultra-short-chain and emerging PFASs in the areas surrounding some FMPs were comparable to those of legacy PFASs, highlighting an increasing prevalence for the use of PFAS alternatives. In terms of spatial distribution, there was a decline in the PFAS concentration in most environmental media as the distance from FMPs increased. In addition, the distribution patterns of PFASs were associated with PFAS characteristics, the properties of different media, migration pathways, and other relevant aspects. This information will provide valuable insights into the current contamination situation regarding PFASs surrounding FMPs and will have profound implications for the effective implementation of PFAS management at FMPs.
Collapse
Affiliation(s)
- Liang Yu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China
| | - Zulin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China
| | - Xiaodong Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China.
| | - Xiaolei Xing
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Chenyang Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China
| | - Tao Hu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China
| | - Hongqin Xue
- School of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Liu X, Yu L, Zhang Y, Hua Z, Li X, Xue H, Chu K. Release of perfluoroalkyl acids from sediments under the effects of the discharge ratio and flow flux at a Y-shaped confluence. WATER RESEARCH 2024; 260:121947. [PMID: 38901312 DOI: 10.1016/j.watres.2024.121947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/22/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
The sediments in riverine environments contain notably high concentrations of perfluoroalkyl acids (PFAAs), which may be released into the water body under different hydrodynamic forces, such as those occurring at Y-shaped confluences. The release of PFAAs may pose a significant risk to the surrounding aquatic ecosystems. However, our understanding of the release and transport of PFAAs from sediments at Y-shaped confluences remains unclear. Thus, in this study, we performed a series of flume experiments to explore the effects of discharge ratio and total flow flux on the release and redistribution of PFAAs. The results indicated that these two parameters significantly affected the hydrodynamic features of confluences and the water physicochemical parameters. PFAA concentrations in the dissolved phase and suspended particulate matter (SPM) rose significantly as the discharge ratio and total flow flux increased. The dissolved phase was the predominant loading form of PFAAs, with short-chain PFAAs being the main kind, while long-chain PFAAs were dominant in the SPM. The spatial distribution pattern of PFAAs in sediments at the confluence exhibited a high degree of correspondence with hydrodynamic zones. The separation zone and maximum velocity zone were consistent with sediment regions with low and high capacities to release PFAAs, respectively. The patterns of variation in PFAA distribution were comparable to those observed in hydrodynamic zones as the discharge ratio and total flow flux varied. Furthermore, these two parameters altered the partitioning behaviors of PFAAs; specifically, the PFAAs in sediments tended to be released into the pore-water, while the liberated PFAAs tended to attach to SPM. Linear regression and correlation analyses suggested that the stream-wise and vertical flow velocity components near the sediment-water interface were the primary contributors to sediment suspension and PFAA exchange between the water column and pore-water. These findings will help us to understand the patterns of PFAA release in sediments at Y-shaped confluences and assist in the management of PFAA-contaminated sediments at these locations.
Collapse
Affiliation(s)
- Xiaodong Liu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai Universities, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China
| | - Liang Yu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai Universities, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China.
| | - Yuan Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai Universities, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China
| | - Zulin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai Universities, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China
| | - Xiaoqing Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai Universities, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China
| | - Hongqin Xue
- School of Civil Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Kejian Chu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai Universities, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China
| |
Collapse
|
3
|
Yu L, Liu X, Hua Z, Chu K. Intense Turbulent Bursts Promote the Release of Perfluoroalkyl Acids from Sediments at High Flow Velocity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11737-11747. [PMID: 38889003 DOI: 10.1021/acs.est.4c03885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Despite frequent detection of high levels of perfluoroalkyl acids (PFAAs) in sediments, research on the environmental fate of PFAAs in sediments, particularly under hydrodynamic conditions, is rather limited, challenging effective management of PFAA loadings. Therefore, this study investigated the release and transport of 15 PFAAs in sediments under environmentally relevant flow velocities using recirculating flumes and revealed the underlying release mechanisms by identifying related momentum transfer. An increased velocity enhanced the release magnitude of total PFAAs by a factor of 3.09. The release capacity of short-chain PFAAs was notably higher than that of long-chain PFAAs, and this pattern was further amplified by flow velocity. Pore-water drainage was the major pathway for PFAA release, with the release amount predominantly determined by flow velocity-induced release intensity and depth, as well as affected by the perfluorocarbon chain length and sediment size. The weak anion exchanger-diffusion gradients in the thin-film technique confirmed that the release depth of PFAAs increased with flow velocity. Quadrant analysis revealed that the rise in the frequency and intensity of turbulent bursts driven by sweeps and ejections at high flow velocity was the underlying cause of the increased release magnitude and depth of PFAAs.
Collapse
Affiliation(s)
- Liang Yu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
- Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China
| | - Xiaodong Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
- Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China
| | - Zulin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
- Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China
| | - Kejian Chu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
- Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China
| |
Collapse
|
4
|
Lai Y, Wang Y, Zhang S, Duan A. Kinetics and mechanism analysis of advanced oxidation degradation of PFOA/PFOS by UV/Fe 3+ and persulfate: A DFT study. CHEMOSPHERE 2024; 357:141951. [PMID: 38626815 DOI: 10.1016/j.chemosphere.2024.141951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/13/2024] [Accepted: 04/07/2024] [Indexed: 04/22/2024]
Abstract
UV/Fe3+ and persulfate are two promising advanced oxidative degradation systems for in situ remediation of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), yet a lack of comprehensive understanding of the degradation mechanisms. For the first time, we used density functional theory (DFT) to calculate the entire reaction pathways of the degradation of PFOA/PFOS in water by UV/Fe3+ and persulfate. In addition, we have deeply explored the different attack pathways driven by •OH and SO4-•, and found that SO4-• determines PFOA/PFOS to obtain PFOA/PFOS free radicals through single electron transfer to initiate the degradation reaction, while •OH determines the speed of PFOA/PFOS degradation reaction. Both degradation reactions were thermodynamically advantageous and kinetically feasible under calculated conditions. Based on the thermodynamic data, persulfate was found to be more favorable for the advanced oxidative degradation of Perfluorinated compounds (PFCs). Moreover, for SO4-• and •OH co-existing in the persulfate system, pH will affect the presence and concentration of these two types of free radicals, and low pH is not necessary for the degradation of PFOA/PFOS in the persulfate system. These results can considerably advance our understanding of the PFOA/PFOS degradation process in advanced oxidation processes (AOPs), which is driven by •OH and SO4-•. This study provides a DFT calculation process for the mechanism calculation of advanced oxidation degradation of other types of PFCs pollutants, hoping to elucidate the future development of PFCs removal. Further research should focus on determining the advanced oxidation degradation pathways of other types of PFCs, to support the development of computational studies on the advanced oxidation degradation of PFCs.
Collapse
Affiliation(s)
- Yilei Lai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Ying Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Shuyu Zhang
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Abing Duan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
5
|
Li J, Liang E, Xu X, Xu N. Occurrence, mass loading, and post-control temporal trend of legacy perfluoroalkyl substances (PFASs) in the middle and lower Yangtze River. MARINE POLLUTION BULLETIN 2024; 199:115966. [PMID: 38150975 DOI: 10.1016/j.marpolbul.2023.115966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/25/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Present study focused on per- and polyfluoroalkyl substances (PFASs) occurrence in dry and wet seasons in the middle and lower Yangtze River (YZR) and changing temporal trends after years of control. Results revealed that perfluorooctanoic acid (PFOA) was 75 % of total PFAS concentrations (∑11PFASs). ∑11PFASs were ranged 0.20-28.49 ng/L and 1.17-112.84 μg/kg in water and sediment. The logKoc of perfluoroalkyl carboxylic acids was positive with the carbon chain length (p < 0.05, r2 = 0.78). A meta-analysis of results from 16 peer-reviewed publications about PFASs in the YZR showed that fluorochemical industries strongly influenced the high PFAS levels in the detected scenes. PFOA was still the primary pollutant. Individual PFAS in the lower reach was higher than those in the middle reach. The mass loading of PFASs imported into the sea was 10.80 t/y. This study will help develop effective approaches for controlling emerging pollutants in the YZR.
Collapse
Affiliation(s)
- Jie Li
- Environment Research Institute, Shandong University, Qingdao 266237, China; Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| | - Enhang Liang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Xuming Xu
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
6
|
Dong Q, Min X, Zhao Y, Wang Y. Adsorption of per- and polyfluoroalkyl substances (PFAS) by ionic liquid-modified clays: Effect of clay composition and PFAS structure. J Colloid Interface Sci 2024; 654:925-934. [PMID: 37898076 DOI: 10.1016/j.jcis.2023.10.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/01/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Organically modified clays have been reported as a promising class of adsorbents for the treatment of per- and polyfluoroalkyl substances (PFAS), a group of emerging contaminants of widespread concerns. Here, we reported the development and evaluation of ionic liquid (IL)-modified clays prepared with various natural clays to explore the role of clay substrate in the adsorption of eight persistent perfluoroalkyl acids (PFAAs). Based on detailed adsorption isotherm study, we found that the adsorption capacities of PFAAs were closely related to the cation exchange capacities of the raw clays and correspondingly the IL loadings of the modified clays. Additionally, a positive correlation was observed between the adsorption affinity of PFAAs onto IL-modified clays and the octanol-water distribution coefficient (Dow) of PFAAs. Adsorption free energy analysis suggested that both electrostatic and hydrophobic interactions played important roles in the adsorption of PFAAs onto IL-modified clays. Although electrostatic interactions were more predominant, the contribution of hydrophobic interactions increased with the increasing carbon number of perfluoroalkyl moiety of PFAAs, resulting in more favorable adsorption of long-chain PFAAs than their short-chain homologs. The performance of IL-modified clays was further demonstrated for the removal of PFAA mixtures under environmentally relevant conditions. Overall, results of this work can provide important insights into guiding the design of organically modified clay adsorbents for PFAS treatment.
Collapse
Affiliation(s)
- Qianqian Dong
- Department of Civil and Environmental Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, United States
| | - Xiaopeng Min
- Department of Civil and Environmental Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, United States.
| | - Yanan Zhao
- Department of Civil and Environmental Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, United States
| | - Yin Wang
- Department of Civil and Environmental Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, United States.
| |
Collapse
|
7
|
Yu L, Hua Z, Liu X, Chen L, Zhang Y, Ma Y, Dong Y, Xue H. The addition of iron-carbon enhances the removal of perfluoroalkyl acids (PFAAs) in constructed wetlands. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121534. [PMID: 37001598 DOI: 10.1016/j.envpol.2023.121534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Hazardous perfluoroalkyl acids (PFAAs), particularly perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA), have become ubiquitous environmental persistent organic contaminants, posing serious threats to environmental health, which has led to the development of PFAA treatment methods. Wetland construction in combination with iron-carbon (CW-I), a low-maintenance and high-efficiency technology, may be capable of removing PFAAs through physico-biochemical processes. In this study, we aim to investigate the removal efficiency of PFAAs by CW-I as well as the critical functions of all components within the wetlands. Pairwise comparisons of iron-carbon and control groups revealed that iron-carbon significantly enhanced 15.9% for PFOA and 17.9% for PFOS absorption through phytouptake and substrate adsorption, with respective removal efficiencies of 71.8% ± 1.03% and 85.8% ± 1.56%. The generated iron ions stimulated plant growth and further enhanced phytouptake of PFAAs, with PFAAs accumulated primarily in root tissues with limited translocation. Observations of batch adsorption suggest that chemical and electrostatic interactions are involved in the iron-carbon adsorption process, with film and intraparticle diffusions being the rate-limiting events. Fourier transform infrared spectrometer and X-ray photoelectron spectroscopy revealed that PFAA adsorption by substrates occurs at the molecular level, as well as the occurrence of hydrophobic force effects and ligand exchanges during the iron-carbon adsorption process. Additionally, iron-carbon significantly altered the genera, phyla, and community structure of microorganisms, and some microorganisms and their extracellular polymers may possess ability to bind PFAAs. The information provided in this study contributes to our understanding of the PFAA removal processes in CW-I and enriched the classical cases of PFAA removal by CWs.
Collapse
Affiliation(s)
- Liang Yu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zulin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Xiaodong Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Luying Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yuan Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yixin Ma
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yueyang Dong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Hongqin Xue
- School of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
8
|
Nganda A, Kumar M, Uday V, Srivastava P, Deka BJ, Zitouni F, Mahlknecht J. EI/IOT of PFCs: Environmental impacts/interactions, occurrences, and toxicities of perfluorochemicals. ENVIRONMENTAL RESEARCH 2023; 218:114707. [PMID: 36436554 DOI: 10.1016/j.envres.2022.114707] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Various studies have been conducted on the perfluorochemicals (PFCs) family over the years. These compounds have been sought in various industrial aspects involving the synthesis of everyday utilities due to their broad range of applications. As a result, PFCs have built up in the environment, causing concern. The presence of PFCs in various environmental media, such as terrestrial and marine settings, as well as the mechanisms of transport, bioaccumulation, and physio-chemical interactions of PFCs within plants, aquatic organisms, microplastics, and, ultimately, the human body, are discussed in this review, which draws on a variety of research publications. The interaction of PFCs with proteins, translocation, and adsorption by hydrophobic interactions were observed, and this had an impact on the natural functioning of biological processes, resulting in events such as phylogenic clustering, competitive inhibition, and many others, posing potential hazards to human health and other relevant organisms in the ecosystem. However, further research is needed to have a better knowledge of PFCs and their interactions so that low-cost treatments can be developed to eliminate them. It is therefore, future research should focus on the role of soil matrix as a defensive mechanism for PFCs, as well as the impact of PFC chain length rejection.
Collapse
Affiliation(s)
- Armel Nganda
- Energy Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, India
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, UPES, Dehradun, 248007, India; Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501 Sur, Monterrey, 64849, Mexico.
| | - Vismaya Uday
- Sustainability Cluster, School of Engineering, UPES, Dehradun, 248007, India
| | - Pankaj Srivastava
- Sustainability Cluster, School of Engineering, UPES, Dehradun, 248007, India
| | - Bhaskar Jyoti Deka
- Department of Hydrology, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, India 247667
| | - Faiza Zitouni
- College of Engineering, Applied Science University (ASU), Bahrain
| | - Jurgen Mahlknecht
- Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501 Sur, Monterrey, 64849, Mexico
| |
Collapse
|
9
|
Hua ZL, Gao C, Zhang JY, Li XQ. Perfluoroalkyl acids in the aquatic environment of a fluorine industry-impacted region: Spatiotemporal distribution, partition behavior, source, and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159452. [PMID: 36265630 DOI: 10.1016/j.scitotenv.2022.159452] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/16/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The present study investigated the temporal and spatial distributions, partition behaviors, sources, and risks of 14 perfluoroalkyl acids (PFAAs) in the aquatic environment of a fluorine industry-impacted region. The total concentrations of 14 PFAAs (ΣPFAAs) were 118.10-2235.4 ng/L, 40.00-2316.1 ng/g dw, and 6.90-180.5 ng/g dw in dissolved, suspended particle matter (SPM), and sedimentary phases, respectively. The predominant pollutants in the dissolved and SPM phases were perfluoroalkyl carboxylic acids (PFCAs) with carbon chain lengths <9, whereas C13 and C14 PFCAs accounted for a large proportion in the sedimentary phase. The dry season exhibited the highest concentration of ΣPFAAs in the dissolved phase (500.9 ± 350.2 ng/L), while the wet season showed the highest concentrations of ΣPFAAs in the SPM and sedimentary phases (591.6 ± 469.1 ng/g dw and 59.7 ± 35.5 ng/g dw, respectively). Significantly higher concentrations of PFAAs have been found in sewage plant and industrial areas. The concentration of PFAAs in the Xupu water source area (XPS) was slightly higher than that in other water source areas of the Yangtze River, which were either not affected or were less affected by the fluorine industry. The log KD-SPM (distribution coefficient between SPM and water), log KD-SED (distribution coefficient between sediment and water), and log KOC-SED (the organic carbon normalized distribution coefficient) of PFAAs showed significant differences between the wet season and dry season, which may also be affected by carbon chain length. Source identification results showed that industries, wastewater discharge, and nonpoint sources were the main sources of PFAAs in this region. The ecological risk posed by long-chain PFAAs in aquatic organisms cannot be ignored, especially in areas with intensive industrial and agricultural activities. Health risks may exist for local toddlers with long-term exposure to perfluorooctanoic acid (PFOA) through drinking water intake and dermal contact.
Collapse
Affiliation(s)
- Zu-Lin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Nanjing 210098, PR China.
| | - Chang Gao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jian-Yun Zhang
- Yangtze Institute for Conservation and Development, Nanjing 210098, PR China
| | - Xiao-Qing Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
10
|
Ren J, Yu M, Chen F, Cui L, Zhang Y, Li J, Chen M, Wang X, Fu J. Occurrence, spatial heterogeneity, and risk assessment of perfluoroalkyl acids (PFAAs) in the major rivers of the Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159026. [PMID: 36167123 DOI: 10.1016/j.scitotenv.2022.159026] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The Tibetan Plateau (TP) is home to the headwaters of major rivers in Asia, yet their water quality security on a large spatial scale is scarcely studied, especially in regard to emerging organic pollutants. In this study, a systematic field campaign was carried out along Yarlung Tsangpo River, Nu River, Lancang River and Jinsha River, and 13 perfluoroalkyl acids (PFAAs) were analyzed. The total concentrations of PFAAs in the river waters of the TP were in the range of 0.58-7.46 ng/L, containing a high proportion of perfluorobutanoic acid (PFBA) and perfluorobutane sulfonate (PFBS) with average values of 56.7 %. Elevated PFAA loadings were found for the midstream of Yarlung Tsangpo River in central Tibet. Geodetector results indicated that precipitation, solar radiation and vegetation type were the top three influential factors contributing to the observed spatial heterogeneity. When interactions with human activities were taken into account, the explanatory power was significantly enhanced and rose above 0.70, highlighting the increased risks for TP rivers from the combined effects of natural environments and anthropogenic activities. Risk assessments suggest a low risk is posed to the alpine aquatic ecosystems and human health. The discharge fluxes of PFAAs via riverine export were estimated at 94-425 kg/year, which is one to two orders of magnitude lower than their mass loadings in major rivers worldwide. Our study underlined the need for further attention to the increased risk of water resource quality on the central TP in the context of long-range transport, increased cryosphere melting and local emission.
Collapse
Affiliation(s)
- Jiao Ren
- Research Institute of Transition of Resource-Based Economics, Shanxi University of Finance and Economics, Taiyuan 030006, Shanxi, China
| | - Mengjiao Yu
- School of Resources and Environment, Shanxi University of Finance and Economics, Taiyuan, Shanxi 030006, China
| | - Feng Chen
- School of Resources and Environment, Shanxi University of Finance and Economics, Taiyuan, Shanxi 030006, China
| | - Liang Cui
- School of Resources and Environment, Shanxi University of Finance and Economics, Taiyuan, Shanxi 030006, China
| | - Yuzhi Zhang
- School of Resources and Environment, Shanxi University of Finance and Economics, Taiyuan, Shanxi 030006, China
| | - Junming Li
- School of Statistics, Shanxi University of Finance and Economics, Taiyuan 030006, Shanxi, China
| | - Mengke Chen
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoping Wang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jianjie Fu
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Liu X, Chen L, Yu L, Hua Z, Zhang Y, Ma Y, Lu Y, Dong Y, Wang Y, Zhang Z, Xue H. Removing nutrients from wastewater by constructed wetlands under perfluoroalkyl acids stress. ENVIRONMENTAL RESEARCH 2022; 212:113334. [PMID: 35452673 DOI: 10.1016/j.envres.2022.113334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/20/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Constructed wetlands (CWs) are often used to treat wastewater discharged from wastewater treatment plants (WWTPs), while emerging contaminants (such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS)) have been commonly discovered in WWTPs. However, no research has examined whether PFOA/OS (i.e. PFOA and PFOS) affects the performance of CW. Therefore, this study compared the nutrient removal efficiencies of four CWs with varied configurations under PFOA/OS and no PFOA/OS stress conditions. We found that CW containing plants or/and iron-carbon had higher removal efficiency for nutrients (except NH4+-N) than conventional CW in stable operation under wastewater without PFOA/OS. Plants or/and iron increased the nutrient removal efficiency by plant uptake, chemical reaction, and co-precipitation of iron hydroxides. In contrast, the iron-carbon inhibited the nitrification of nitrifying bacteria by consuming dissolved oxygen, converting NO3--N to NH4+-N. Although the removal efficiencies of nutrients by CWs differed after introducing PFOA/OS, the removal order was consistent with those before adding PFOA/OS. Plants or/and iron-carbon effectively increased CWs' resistance to PFOA/OS loading and toxicity, and the function of iron-carbon was superior to the plants. In addition, PFOA/OS reduced the abundances of microbes Hydrogenophaga, Pseudomonas, Sphingomonas, Nitrospira, and Candidatus_Accumulibacter that contributed to nutrient removal.
Collapse
Affiliation(s)
- Xiaodong Liu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai Universities, Nanjing, 210098, China
| | - Luying Chen
- Longteng Engineering Design CO., LTD., Jiangsu, 210014, China
| | - Liang Yu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai Universities, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China.
| | - Zulin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai Universities, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China
| | - Yuan Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai Universities, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China
| | - Yixin Ma
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai Universities, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China
| | - Ying Lu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai Universities, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China
| | - Yueyang Dong
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai Universities, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China
| | - Yifan Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai Universities, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China
| | - Zihao Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai Universities, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China
| | - Hongqin Xue
- School of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
12
|
Zhang Y, Liu X, Yu L, Hua Z, Zhao L, Xue H, Tong X. Perfluoroalkyl acids in representative edible aquatic species from the lower Yangtze River: Occurrence, distribution, sources, and health risk. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115390. [PMID: 35661881 DOI: 10.1016/j.jenvman.2022.115390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Perfluoroalkyl acid (PFAA) exposure poses a potential hazard to wildlife and humans. Food consumption is one of the main routes of PFAA exposure for the general population, with aquatic organisms being the major contributors. To evaluate the risk of coastal residents' intake of wild aquatic organisms, 14 PFAAs were detected in crucian carp and oriental river prawn from 18 sampling sites from the lower reaches of Yangtze River. The total PFAA (∑PFAA) concentrations ranged from 5.9 to 51.3 ng/g wet weight (ww) in the muscle of crucian carp and river prawn, suggesting the potential risk to human and wildlife. Perfluorooctanesulfonate (PFOS), perfluorooctanoic acid (PFOA) and long-chain PFAAs (C ≥ 10) were the main pollutants in the tissues of crucian carp and river prawn, which are known for their higher bioaccumulation capacity. The ∑PFAA concentration in all the samples showed an increasing trend from upstream to downstream and was higher in the south bank, owing to population density, prevailing winds, background pollution and industrial emission. Principal component analysis-multiple linear regression and Pearson correlation analysis showed that WWTP effluent, industrial pollution and surface runoff ware the main sources of PFAAs in the aquatic organisms and industrial pollution highest contributor, suggesting better regulation is needed to manage them. The assessment of risk to human health and wild life suggested a low risk for most residents of cities along the Yangtze River except for resident of Nantong, where frequent consumption of wild aquatic organisms may cause potential risk to human health, especially for traditional eaters and middle-aged people.
Collapse
Affiliation(s)
- Yuan Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Xiaodong Liu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China.
| | - Liang Yu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Zulin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China
| | - Li Zhao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Hongqin Xue
- School of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Xuneng Tong
- Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore
| |
Collapse
|
13
|
Cai L, Hu J, Li J, Cao X, Lyu Y, Sun W. Occurrence, source apportionment, and pollution assessment of per- and polyfluoroalkyl substances in a river across rural and urban areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155505. [PMID: 35487461 DOI: 10.1016/j.scitotenv.2022.155505] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Forty-three novel and legacy per- and polyfluoroalkyl substances (PFASs) in water and sediments from the Chaobai River (Beijing) were quantified. The total PFASs concentrations varied from 0.04 to 31.3 ng/L in water with significant spatial but insignificant seasonal variations, and changed from 0.03 to 4.29 ng/g in sediment with insignificant spatial but significant seasonal variations. The PFASs concentrations in water from the upstream across the rural area reflected the background level due to the extremely low concentration and very few detected PFASs. The consumer products and metal plating/textile were the predominant pollution sources of PFASs in winter and summer, respectively, for both water and sediment samples. Integrating the determined baseline value, the distribution of PFASs concentrations, and the ecological risks of PFASs, three criteria were proposed, which divide the PFASs concentrations in water into four pollution levels, i.e., insignificant, low, medium, and high. According to the suggested criteria, 96.4% of the PFASs levels in upstream was insignificant pollution, which decreased to 50.4% in downstream and 50.8% in reservoirs. The PFASs in China's and world's surface waters demonstrated similar pollution patterns, with PFOA, PFOS, and PFHxA being the top 3 polluted PFASs. This study makes a small step forward the development of water quality standard for PFASs, which is of great importance for pollution control and risk management of PFASs.
Collapse
Affiliation(s)
- Leilei Cai
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Jingrun Hu
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China
| | - Jie Li
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China
| | - Xiaoqiang Cao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Yitao Lyu
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
14
|
Wu JY, Hua ZL, Gu L. Per-, poly-fluoroalkyl substances (PFASs) and planktonic microbiomes: Identification of biotic and abiotic regulations in community coalescence and food webs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119078. [PMID: 35245616 DOI: 10.1016/j.envpol.2022.119078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The importance of per-, poly-fluoroalkyl substances (PFASs) effects on riverine microbiomes is receiving increased recognition in the environmental sciences. However, few studies have explored how PFASs affect microbiomes across trophic levels, specifically through predator-prey interactions. This study examined the community profiles of planktonic archaea, bacteria, fungi, algae, protozoa, and metazoa in a semi-industrial and agricultural river alongside their interactions with 15 detected PFASs. As abiotic factors, PFASs affected community coalescence more than biogenic substances (p < 0.05). For biotic regulations, sub-communities in rare biospheres (including always rare taxa-ART and critically rare taxa-CRT) contributed to spatial community coalescence more than sub-communities in abundant biospheres (always abundant taxa-AAT and critically abundant taxa-CAT) (p < 0.05). Metazoa-bacteria (Modularity = 1.971) and protozoa-fungi (1.723) were determined to be the most stable predator-prey networks. Based on pathway models, short-chain PFBA (C4) was shown to weaken the trophic transfer efficiencies from heterotrophic bacteria (HB) to heterotrophic flagellates (HF) (p < 0.05). Long-chain PFTeDA (C14) promoted HB to amoeba (p < 0.05), which we postulate is the pathway for PFTeDA to enter the microbial food chain. Our preliminary results elucidated the influence of PFASs on planktonic microbial food webs and highlighted the need to consider protecting and remediating riverine ecosystems containing PFASs.
Collapse
Affiliation(s)
- Jian-Yi Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China
| | - Zu-Lin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China
| | - Li Gu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China.
| |
Collapse
|
15
|
Morales-McDevitt ME, Dunn M, Habib A, Vojta S, Becanova J, Lohmann R. Poly- and Perfluorinated Alkyl Substances in Air and Water from Dhaka, Bangladesh. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:334-342. [PMID: 34793599 PMCID: PMC9558080 DOI: 10.1002/etc.5255] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 05/19/2023]
Abstract
Bangladesh hosts extensive textile manufacturing, for some of which per- and polyfluorinated alkyl substances (PFAS) have been used to impart water and dirt repellency, among other things. Textile waste emissions to the atmosphere and discharge into rivers and other bodies of water could present a significant concern for human and ecosystem health, but there is little information on PFAS in Bangladesh. To assess the presence of ionic PFAS and their precursors in air and water from Dhaka, Bangladesh, polyethylene sheets were deployed for 28 days as passive samplers for neutral PFAS in outdoor air and water, while ionic PFAS were measured from discrete water grabs. Fluorotelomer alcohols (FTOHs) were detected at almost all sites in air and water; the most frequently detected compound was 6:2 FTOH, ranging from below instrumental detection limits (<IDL) to 70 ng m-3 in air and from <IDL to -19 ng L-1 in water. Of the ionic PFAS, perfluorobutanoic acid (PFBA), perfluorohexanoic acid, perfluorooctanoic acid, perfluorohexane sulfonic acid, and perfluorooctane sulfonic acid dominated in frequency of detection and magnitude, with concentrations ranging from 1.8 to 19.0 ng L-1 in surface waters. The prevalence of 6:2 FTOH and PFBA across sites probably reflects their use in textile manufacturing and could indicate the industry's switch to shorter-chain PFAS alternatives. Environ Toxicol Chem 2022;41:334-342. © 2021 SETAC.
Collapse
Affiliation(s)
- Maya E. Morales-McDevitt
- Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Rd, Narragansett, 02882 RI, USA
| | - Matthew Dunn
- Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Rd, Narragansett, 02882 RI, USA
| | - Ahsan Habib
- Department of Chemistry, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Simon Vojta
- Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Rd, Narragansett, 02882 RI, USA
| | - Jitka Becanova
- Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Rd, Narragansett, 02882 RI, USA
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Rd, Narragansett, 02882 RI, USA
- Corresponding author: ; Tel (1) 401-874-6612
| |
Collapse
|
16
|
Research on the Non-Point Source Pollution Characteristics of Important Drinking Water Sources. WATER 2022. [DOI: 10.3390/w14020211] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In recent years, freshwater resource contamination by non-point source pollution has become particularly prominent in China. To control non-point source (NPS) pollution, it is important to estimate NPS pollution exports, identify sources of pollution, and analyze the pollution characteristics. As such, in this study, we established the modified export coefficient model based on rainfall and terrain to investigate the pollution sources and characteristics of non-point source total nitrogen (TN) and total phosphorus (TP) throughout the Huangqian Reservoir watershed—which serves as an important potable water source for the main tributary of the lower Yellow River. The results showed that: (1) In 2018, the non-point source total nitrogen (TN) and total phosphorus (TP) loads in the Huangqian Reservoir basin were 707.09 t and 114.42 t, respectively. The contribution ratios to TN export were, from high to low, rural life (33.58%), farmland (32.68%), other land use types (20.08%), and livestock and poultry breeding (13.67%). The contribution ratios to TP export were, from high to low, rural life (61.19%), livestock and poultry breeding (21.65%), farmland (12.79%), and other land use types (4.38%). The non-point source pollution primarily originated from the rural life of the water source protection zone. (2) Non-point source TN and TP pollution loads and load intensities showed significantly different spatial distribution patterns throughout the water source protection area. Specifically, their load intensities and loads were the largest in the second-class protected zone, which is the key source area of non-point source pollution. (3) When considering whether to invest in agricultural land fertilizer control or rural domestic sewage, waste, and livestock manure pollution control, the latter is demonstrably more effective. Thus, in addition to putting low-grade control on agricultural fertilizer loss, to rapidly and effectively improve potable water quality, non-point source pollution should, to a larger extent, also be controlled through measures such as establishing household biogas digesters, introducing village sewage treatment plants, and improving the recovery rate of rural domestic garbage. The research results discussed herein provide a theoretical basis for formulating a reasonable and effective protection plan for the Huangqian Reservoir water source and can potentially be used to do the same for other similar freshwater resources.
Collapse
|