1
|
Das S, Jose SA, Giri S, Shah J, Pulimi M, Anand S, Rai PK, Mukherjee A. Diclofenac enhances Boron nitride nanoparticle toxicity in freshwater green microalgae, Scenedesmus obliquus: Elucidating the role of oxidative stress. Toxicol Rep 2024; 13:101696. [PMID: 39104368 PMCID: PMC11298660 DOI: 10.1016/j.toxrep.2024.101696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 08/07/2024] Open
Abstract
Boron nanoparticles have numerous medical, industrial, and environmental applications as potential nanomaterials. Given the inevitable release of these particles in aquatic environments, they can combine with other pollutants like pharmaceuticals. Therefore, it is necessary to investigate their combined detrimental effects on freshwater biota. This study examined the joint impacts of Boron nitride nanoparticles (BNNPs) and Diclofenac (DCF) on freshwater microalgae Scenedesmus obliquus. Three different concentrations of BNNPs (0.1, 1, and 10 mg L-1) were mixed with 1 mg L-1 of DCF and were treated with algal cells, and biochemical analyses were performed. A concentration-dependent decrease in algal cell viability was observed after a 72-h interaction period with BNNPs and their binary combinations. The maximum toxic effects were observed for the highest combination of BNNPs + DCF, i.e., 10 mg L-1 BNNPs + 1 mg L-1 DCF. Similarly, an increase in the oxidative stress parameters and antioxidant enzyme activity was observed, which correlated directly to the decline in cell viability. The algal cells also showed reduced photosynthetic efficiency and electron transfer rate upon interaction with BNNPs. The results of this research emphasize the importance of considering the negative consequences of emerging pollutants and their combinations with other pollutants, BNNPs, and DCF as part of a thorough evaluation of ecotoxicity in freshwater algal species.
Collapse
Affiliation(s)
- Soupam Das
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Shinta Ann Jose
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sampriti Giri
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Janmey Shah
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Mrudula Pulimi
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Shalini Anand
- Centre for Fire, Explosives and Environment Safety, Timarpur, Delhi 110054, India
| | - Pramod Kumar Rai
- Centre for Fire, Explosives and Environment Safety, Timarpur, Delhi 110054, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
2
|
Rex M C, Debroy A, Mukherjee A. The impact of nTiO 2 and GO (graphene oxide), and their combinations, on freshwater Chlorella sp.: a comparative study in lake water and BG-11 media. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1281-1294. [PMID: 38780043 DOI: 10.1039/d4em00041b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Titanium dioxide nanoparticles (nTiO2) and graphene oxide (GO) are extensively used nanomaterials in various products and applications. Freshwater ecosystems are a crucial sink for these pollutants, posing severe threats to aquatic organisms. Although multiple studies have investigated the pristine toxicity of nTiO2 and GO in freshwater organisms, the combined toxicity of these materials remains unexplored. Interaction media is a crucial factor in evaluating toxicity nanomaterial toxicity towards algae. In this study, we have investigated the comparative effect of sterilized and filtered freshwater and BG-11 medium on the pristine and combined toxicity of nTiO2 and GO on freshwater algae Chlorella sp. Results indicated that the combination of nTiO2 and GO showed more toxicity when compared to their respective pristine forms. This could be due to the additive effect exhibited by nTiO2 and GO on Chlorella sp. The enhanced growth inhibition for the combined toxicity was in the order of 1 mg L-1 nTiO2 + 1 mg L-1 GO > 1 mg L-1 nTiO2 + 0.1 mg L-1 GO > 0.1 mg L-1 nTiO2 + 1 mg L-1 GO > 0.1 mg L-1 nTiO2 + 0.1 mg L-1 GO. All test groups that interacted in BG-11 media exhibited less toxicity when compared to corresponding groups in the lake water medium. This could be attributed to the cushioning effect of BG-11 medium, providing supplementary nutrition to the algal cells. This signifies that the environmentally relevant conditions could be more detrimental than the laboratory conditions. This study elucidates valuable insights into the potential detrimental effects associated with the combination of nTiO2 and GO on freshwater algae. Furthermore, we have evaluated the growth inhibition, oxidative stress, and photosynthetic activity of Chlorella sp. in both environmentally relevant interaction medium and well-defined culture medium.
Collapse
Affiliation(s)
- Camil Rex M
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| | - Abhrajit Debroy
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
3
|
Lin H, Buerki-Thurnherr T, Kaur J, Wick P, Pelin M, Tubaro A, Carniel FC, Tretiach M, Flahaut E, Iglesias D, Vázquez E, Cellot G, Ballerini L, Castagnola V, Benfenati F, Armirotti A, Sallustrau A, Taran F, Keck M, Bussy C, Vranic S, Kostarelos K, Connolly M, Navas JM, Mouchet F, Gauthier L, Baker J, Suarez-Merino B, Kanerva T, Prato M, Fadeel B, Bianco A. Environmental and Health Impacts of Graphene and Other Two-Dimensional Materials: A Graphene Flagship Perspective. ACS NANO 2024; 18:6038-6094. [PMID: 38350010 PMCID: PMC10906101 DOI: 10.1021/acsnano.3c09699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/15/2024]
Abstract
Two-dimensional (2D) materials have attracted tremendous interest ever since the isolation of atomically thin sheets of graphene in 2004 due to the specific and versatile properties of these materials. However, the increasing production and use of 2D materials necessitate a thorough evaluation of the potential impact on human health and the environment. Furthermore, harmonized test protocols are needed with which to assess the safety of 2D materials. The Graphene Flagship project (2013-2023), funded by the European Commission, addressed the identification of the possible hazard of graphene-based materials as well as emerging 2D materials including transition metal dichalcogenides, hexagonal boron nitride, and others. Additionally, so-called green chemistry approaches were explored to achieve the goal of a safe and sustainable production and use of this fascinating family of nanomaterials. The present review provides a compact survey of the findings and the lessons learned in the Graphene Flagship.
Collapse
Affiliation(s)
- Hazel Lin
- CNRS,
UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, ISIS, University of Strasbourg, 67000 Strasbourg, France
| | - Tina Buerki-Thurnherr
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Jasreen Kaur
- Nanosafety
& Nanomedicine Laboratory, Institute
of Environmental Medicine, Karolinska Institutet, 177 77 Stockholm, Sweden
| | - Peter Wick
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Marco Pelin
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Aurelia Tubaro
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | | | - Mauro Tretiach
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Emmanuel Flahaut
- CIRIMAT,
Université de Toulouse, CNRS, INPT,
UPS, 31062 Toulouse CEDEX 9, France
| | - Daniel Iglesias
- Facultad
de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
- Instituto
Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
| | - Ester Vázquez
- Facultad
de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
- Instituto
Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
| | - Giada Cellot
- International
School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Laura Ballerini
- International
School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Valentina Castagnola
- Center
for
Synaptic Neuroscience and Technology, Istituto
Italiano di Tecnologia, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Fabio Benfenati
- Center
for
Synaptic Neuroscience and Technology, Istituto
Italiano di Tecnologia, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Andrea Armirotti
- Analytical
Chemistry Facility, Istituto Italiano di
Tecnologia, 16163 Genoa, Italy
| | - Antoine Sallustrau
- Département
Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Frédéric Taran
- Département
Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Mathilde Keck
- Département
Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Cyrill Bussy
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre, National Graphene Institute, Manchester M13 9PT, United
Kingdom
| | - Sandra Vranic
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre, National Graphene Institute, Manchester M13 9PT, United
Kingdom
| | - Kostas Kostarelos
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre, National Graphene Institute, Manchester M13 9PT, United
Kingdom
| | - Mona Connolly
- Instituto Nacional de Investigación y Tecnología
Agraria
y Alimentaria (INIA), CSIC, Carretera de la Coruña Km 7,5, E-28040 Madrid, Spain
| | - José Maria Navas
- Instituto Nacional de Investigación y Tecnología
Agraria
y Alimentaria (INIA), CSIC, Carretera de la Coruña Km 7,5, E-28040 Madrid, Spain
| | - Florence Mouchet
- Laboratoire
Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, 31000 Toulouse, France
| | - Laury Gauthier
- Laboratoire
Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, 31000 Toulouse, France
| | - James Baker
- TEMAS Solutions GmbH, 5212 Hausen, Switzerland
| | | | - Tomi Kanerva
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
| | - Maurizio Prato
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Bengt Fadeel
- Nanosafety
& Nanomedicine Laboratory, Institute
of Environmental Medicine, Karolinska Institutet, 177 77 Stockholm, Sweden
| | - Alberto Bianco
- CNRS,
UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, ISIS, University of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
4
|
Xu Y, Li H, Li X, Liu W. What happens when nanoparticles encounter bacterial antibiotic resistance? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162856. [PMID: 36931524 DOI: 10.1016/j.scitotenv.2023.162856] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/23/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Bacterial resistance to antibiotics has become a widespread concern, and poses serious environmental and global health problems. Lots of studies have demonstrated that engineered nanoparticles (NPs) can significantly affect bacterial antibiotic resistance; however, whether NPs promote or inhibit antibiotic resistance remains a complex and well-debated issue. This will constrain environmental antibiotic resistance gene contamination and clinical bacterial resistance problems, resulting in unclear and poorly targeted treatment efficacy. To better understand the relationship between NPs and antibiotic resistance, this review systematically summarizes and reanalyzes published data on the effect of NPs on bacterial antibiotic resistance and related mechanisms. The effects of intrinsic properties of NPs, such as size, concentration, functional groups, and extrinsic properties of NPs on the development of antibiotic resistance were dissected. This review will provide a better understanding of the effects of increasingly released NPs in different environments on bacterial resistance and underlines the direction for employing NPs to control the dissemination of antibiotic resistance genes in the environment. Next, how NPs affect intracellular and extracellular antibiotic resistance needs in-depth exploration. Besides, alternative treatments of NPs and antibiotics in therapy will be a future trend for combating antibiotic resistance, and the follow-up emphasis should determine their dose effects and potential mechanism. This study will expand our understanding of the biosafety of nanomaterials and provides a theoretical reference to guide the proper application of nanomaterials or technologies to environmental pollution control and clinical treatment.
Collapse
Affiliation(s)
- Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, 300191, China
| | - Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, 300191, China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, 300191, China
| | - Wei Liu
- Department F.A. Forel for Environmental and Aquatic Sciences, Faculty of Sciences, University of Geneva, Bvd. Carl-Vogt 66, 1211 Geneva, Switzerland.
| |
Collapse
|
5
|
Das S, Giri S, Wadhwa G, Pulimi M, Anand S, Chandrasekaran N, Johari SA, Rai PK, Mukherjee A. Comparative ecotoxicity of graphene, functionalized multi-walled CNTs, and their mixture in freshwater microalgae, Scenedesmus obliquus: analyzing the role of oxidative stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27367-6. [PMID: 37145361 DOI: 10.1007/s11356-023-27367-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Due to their remarkable properties, the applications of carbon-based nanomaterials (CNMs) such as graphene and functionalized multi-walled carbon nanotubes (f-MWCNTs) are increasing. These CNMs can enter the freshwater environment via numerous routes, potentially exposing various organisms. The current study assesses the effects of graphene, f-MWCNTs, and their binary mixture on the freshwater algal species Scenedesmus obliquus. The concentration for the individual materials was kept at 1 mg L-1, while graphene and f-MWCNTs were taken at 0.5 mg L-1 each for the combination. Both the CNMs caused a decrease in cell viability, esterase activity, and photosynthetic efficiency in the cells. The cytotoxic effects were accompanied by increased hydroxyl and superoxide radical generation, lipid peroxidation, antioxidant enzyme activity (catalase and superoxide dismutase), and mitochondrial membrane potential. Graphene was more toxic compared to f-MWCNTs. The binary mixture of the pollutants demonstrated a synergistic enhancement of the toxic potential. Oxidative stress generation played a critical role in toxicity responses, as noted by a strong correlation between the physiological parameters and the biomarkers of oxidative stress. The outcomes from this study emphasize the significance of considering the combined effects of various CNMs as part of a thorough evaluation of ecotoxicity in freshwater organisms.
Collapse
Affiliation(s)
- Soupam Das
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sayani Giri
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Gaurav Wadhwa
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Mrudula Pulimi
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Shalini Anand
- Centre for Fire, Explosives and Environment Safety, Timarpur, Delhi, 110054, India
| | | | - Seyed Ali Johari
- Aquaculture Department, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran
| | - Pramod Kumar Rai
- Centre for Fire, Explosives and Environment Safety, Timarpur, Delhi, 110054, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
6
|
Kim KY, Kim JY, Park J, Choi YE. The cytotoxicity of nano- and micro-sized graphene oxides on microalgae depends on the characteristics of cell wall and flagella. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161783. [PMID: 36702276 DOI: 10.1016/j.scitotenv.2023.161783] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/06/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Cytotoxic effects of emerging contaminants in aquatic environments have been widely studied using diverse microalgal species. However, the role of microalgal characteristics such as presence/absence of cell wall or flagella on cytotoxicity of contaminants was not elucidated yet. In this study, four different Chlamydomonas reinhardtii strains that have different characteristics were used to confirm how these characteristics affect toxicity of contaminants, nano-/micro-sized graphene oxide (GO). The nano-sized GO inhibited the growth of cell wall-deficient strains and reduced the photosynthetic activity. The micro-sized GO inhibited the growth of all strains, but the inhibition efficiency was higher in flagella-deficient strains, indicating that cell wall and flagella have different roles in response to contaminant exposure. The electron microscopy analysis demonstrated that nano-sized GO caused the cell rupture in cell wall-deficient strains. In flagella-deficient strains, the nano- and micro-sized GOs were parallelly attached on the surface of cells, covering the cells. The wrapping of flagella-deficient cells by GO led to the increase of reactive oxygen species (ROS) contents. These results indicate main cytotoxic mechanism of nano-sized GO was the membrane damage of cells, and the presence of cell wall can protect the cells from the attack of nano-sized GO. On the one hand, the presence of flagella might help to avoid the attachment of GO while the cell proliferation and photosynthesis were inhibited in flagella-deficient cells due to the GO wrapping. Overall, given that different microalgal species have different characteristics and these characteristics might affect the cytotoxic effect of the contaminants, it is of great importance to consider the characteristics of test microalgal species when evaluating the cytotoxic mechanism of the nano-/micro-sized pollutants.
Collapse
Affiliation(s)
- Ka Young Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jee Young Kim
- Institute of Life Science and Natural Resources, Korea University, Seoul 02841, Republic of Korea
| | - Jaewon Park
- OJeong Resilience Institute, Korea University, Seoul 02841, Republic of Korea.
| | - Yoon-E Choi
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|