1
|
Nguyen ATP, Weigle AT, Shukla D. Functional regulation of aquaporin dynamics by lipid bilayer composition. Nat Commun 2024; 15:1848. [PMID: 38418487 PMCID: PMC10901782 DOI: 10.1038/s41467-024-46027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/12/2024] [Indexed: 03/01/2024] Open
Abstract
With the diversity of lipid-protein interactions, any observed membrane protein dynamics or functions directly depend on the lipid bilayer selection. However, the implications of lipid bilayer choice are seldom considered unless characteristic lipid-protein interactions have been previously reported. Using molecular dynamics simulation, we characterize the effects of membrane embedding on plant aquaporin SoPIP2;1, which has no reported high-affinity lipid interactions. The regulatory impacts of a realistic lipid bilayer, and nine different homogeneous bilayers, on varying SoPIP2;1 dynamics are examined. We demonstrate that SoPIP2;1's structure, thermodynamics, kinetics, and water transport are altered as a function of each membrane construct's ensemble properties. Notably, the realistic bilayer provides stabilization of non-functional SoPIP2;1 metastable states. Hydrophobic mismatch and lipid order parameter calculations further explain how lipid ensemble properties manipulate SoPIP2;1 behavior. Our results illustrate the importance of careful bilayer selection when studying membrane proteins. To this end, we advise cautionary measures when performing membrane protein molecular dynamics simulations.
Collapse
Affiliation(s)
- Anh T P Nguyen
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Austin T Weigle
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
2
|
Nguyen ATP, Weigle AT, Shukla D. Functional Regulation of Aquaporin Dynamics by Lipid Bilayer Composition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.20.549977. [PMID: 37502896 PMCID: PMC10370204 DOI: 10.1101/2023.07.20.549977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
With the diversity of lipid-protein interactions, any observed membrane protein dynamics or functions directly depend on the lipid bilayer selection. However, the implications of lipid bilayer choice are seldom considered unless characteristic lipid-protein interactions have been previously reported. Using molecular dynamics simulation, we characterize the effects of membrane embedding on plant aquaporin SoPIP2;1, which has no reported high-affinity lipid interactions. The regulatory impacts of a realistic lipid bilayer, and nine different homogeneous bilayers, on varying SoPIP2;1 dynamics were examined. We demonstrate that SoPIP2;1s structure, thermodynamics, kinetics, and water transport are altered as a function of each membrane construct's ensemble properties. Notably, the realistic bilayer provides stabilization of non-functional SoPIP2;1 metastable states. Hydrophobic mismatch and lipid order parameter calculations further explain how lipid ensemble properties manipulate SoPIP2;1 behavior. Our results illustrate the importance of careful bilayer selection when studying membrane proteins. To this end, we advise cautionary measures when performing membrane protein molecular dynamics simulations.
Collapse
Affiliation(s)
- Anh T P Nguyen
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, IL 61801
| | - Austin T Weigle
- Department of Chemistry, University of Illinois at Urbana-Champaign, IL 61801
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, IL 61801
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, IL 61801
- Department of Bioengineering, University of Illinois at Urbana-Champaign, IL 61801
- Department of Plant Biology, University of Illinois at Urbana-Champaign, IL 61801
| |
Collapse
|
3
|
Mechanisms underlying drug-mediated regulation of membrane protein function. Proc Natl Acad Sci U S A 2021; 118:2113229118. [PMID: 34753824 DOI: 10.1073/pnas.2113229118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 11/18/2022] Open
Abstract
The hydrophobic coupling between membrane proteins and their host lipid bilayer provides a mechanism by which bilayer-modifying drugs may alter protein function. Drug regulation of membrane protein function thus may be mediated by both direct interactions with the protein and drug-induced alterations of bilayer properties, in which the latter will alter the energetics of protein conformational changes. To tease apart these mechanisms, we examine how the prototypical, proton-gated bacterial potassium channel KcsA is regulated by bilayer-modifying drugs using a fluorescence-based approach to quantify changes in both KcsA function and lipid bilayer properties (using gramicidin channels as probes). All tested drugs inhibited KcsA activity, and the changes in the different gating steps varied with bilayer thickness, suggesting a coupling to the bilayer. Examining the correlations between changes in KcsA gating steps and bilayer properties reveals that drug-induced regulation of membrane protein function indeed involves bilayer-mediated mechanisms. Both direct, either specific or nonspecific, binding and bilayer-mediated mechanisms therefore are likely to be important whenever there is overlap between the concentration ranges at which a drug alters membrane protein function and bilayer properties. Because changes in bilayer properties will impact many diverse membrane proteins, they may cause indiscriminate changes in protein function.
Collapse
|
4
|
Khelashvili G, Pillai AN, Lee J, Pandey K, Payne AM, Siegel Z, Cuendet MA, Lewis TR, Arshavsky VY, Broichhagen J, Levitz J, Menon AK. Unusual mode of dimerization of retinitis pigmentosa-associated F220C rhodopsin. Sci Rep 2021; 11:10536. [PMID: 34006992 PMCID: PMC8131606 DOI: 10.1038/s41598-021-90039-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/29/2021] [Indexed: 12/30/2022] Open
Abstract
Mutations in the G protein-coupled receptor (GPCR) rhodopsin are a common cause of autosomal dominant retinitis pigmentosa, a blinding disease. Rhodopsin self-associates in the membrane, and the purified monomeric apo-protein opsin dimerizes in vitro as it transitions from detergent micelles to reconstitute into a lipid bilayer. We previously reported that the retinitis pigmentosa-linked F220C opsin mutant fails to dimerize in vitro, reconstituting as a monomer. Using fluorescence-based assays and molecular dynamics simulations we now report that whereas wild-type and F220C opsin display distinct dimerization propensities in vitro as previously shown, they both dimerize in the plasma membrane of HEK293 cells. Unexpectedly, molecular dynamics simulations show that F220C opsin forms an energetically favored dimer in the membrane when compared with the wild-type protein. The conformation of the F220C dimer is unique, with transmembrane helices 5 and 6 splayed apart, promoting widening of the intracellular vestibule of each protomer and influx of water into the protein interior. FRET experiments with SNAP-tagged wild-type and F220C opsin expressed in HEK293 cells are consistent with this conformational difference. We speculate that the unusual mode of dimerization of F220C opsin in the membrane may have physiological consequences.
Collapse
Affiliation(s)
- George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, 10065, USA.
- Institute of Computational Biomedicine, Weill Cornell Medical College, New York, NY, 10065, USA.
| | | | - Joon Lee
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Kalpana Pandey
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Alexander M Payne
- Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Zarek Siegel
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michel A Cuendet
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, 10065, USA
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, University Hospital of Lausanne, 1009, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Tylor R Lewis
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Vadim Y Arshavsky
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Johannes Broichhagen
- Leibniz-Forschungsinstitut Für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA.
| | - Anant K Menon
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
5
|
Schachter I, Allolio C, Khelashvili G, Harries D. Confinement in Nanodiscs Anisotropically Modifies Lipid Bilayer Elastic Properties. J Phys Chem B 2020; 124:7166-7175. [PMID: 32697588 PMCID: PMC7526989 DOI: 10.1021/acs.jpcb.0c03374] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
![]()
Lipid
nanodiscs are small synthetic lipid bilayer structures that
are stabilized in solution by special circumscribing (or scaffolding)
proteins or polymers. Because they create native-like environments
for transmembrane proteins, lipid nanodiscs have become a powerful
tool for structural determination of this class of systems when combined
with cryo-electron microscopy or nuclear magnetic resonance. The elastic
properties of lipid bilayers determine how the lipid environment responds
to membrane protein perturbations, and how the lipid in turn modifies
the conformational state of the embedded protein. However, despite
the abundant use of nanodiscs in determining membrane protein structure,
the elastic material properties of even pure lipid nanodiscs (i.e.,
without embedded proteins) have not yet been quantitatively investigated.
A major hurdle is due to the inherently nonlocal treatment of the
elastic properties of lipid systems implemented by most existing methods,
both experimental and computational. In addition, these methods are
best suited for very large “infinite” size lipidic assemblies,
or ones that contain periodicity, in the case of simulations. We have
previously described a computational analysis of molecular dynamics
simulations designed to overcome these limitations, so it allows quantification
of the bending rigidity (KC) and tilt
modulus (κt) on a local scale even for finite, nonperiodic
systems, such as lipid nanodiscs. Here we use this computational approach
to extract values of KC and κt for a set of lipid nanodisc systems that vary in size and
lipid composition. We find that the material properties of lipid nanodiscs
are different from those of infinite bilayers of corresponding lipid
composition, highlighting the effect of nanodisc confinement. Nanodiscs
tend to show higher stiffness than their corresponding macroscopic
bilayers, and moreover, their material properties vary spatially within
them. For small-size MSP1 nanodiscs, the stiffness decreases radially,
from a value that is larger in their center than the moduli of the
corresponding bilayers by a factor of ∼2–3. The larger
nanodiscs (MSP1E3D1 and MSP2N2) show milder spatial changes of moduli
that are composition dependent and can be maximal in the center or
at some distance from it. These trends in moduli correlate with spatially
varying structural properties, including the area per lipid and the
nanodisc thickness. Finally, as has previously been reported, nanodiscs
tend to show deformations from perfectly flat circular geometries
to varying degrees, depending on size and lipid composition. The modulations
of lipid elastic properties that we find should be carefully considered
when making structural and functional inferences concerning embedded
proteins.
Collapse
Affiliation(s)
- Itay Schachter
- Institute of Chemistry, the Fritz Haber Research Center, and the Harvey M. Kruger center for Nanoscience & Nanotechnology, The Hebrew University, Jerusalem 9190401, Israel
| | - Christoph Allolio
- Institute of Mathematics, Faculty of Mathematics and Physics, Charles University, Prague 18674, Czech Republic
| | - George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York 10065, United States.,Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University, New York, New York 10065, United States
| | - Daniel Harries
- Institute of Chemistry, the Fritz Haber Research Center, and the Harvey M. Kruger center for Nanoscience & Nanotechnology, The Hebrew University, Jerusalem 9190401, Israel
| |
Collapse
|
6
|
Khelashvili G, Cheng X, Falzone ME, Doktorova M, Accardi A, Weinstein H. Membrane lipids are both the substrates and a mechanistically responsive environment of TMEM16 scramblase proteins. J Comput Chem 2020; 41:538-551. [PMID: 31750558 PMCID: PMC7261202 DOI: 10.1002/jcc.26105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/04/2019] [Accepted: 10/17/2019] [Indexed: 12/21/2022]
Abstract
Recent discoveries about functional mechanisms of proteins in the TMEM16 family of phospholipid scramblases have illuminated the dual role of the membrane as both the substrate and a mechanistically responsive environment in the wide range of physiological processes and genetic disorders in which they are implicated. This is highlighted in the review of recent findings from our collaborative investigations of molecular mechanisms of TMEM16 scramblases that emerged from iterative functional, structural, and computational experimentation. In the context of this review, we present new MD simulations and trajectory analyses motivated by the fact that new structural information about the TMEM16 scramblases is emerging from cryo-EM determinations in lipid nanodiscs. Because the functional environment of these proteins in in vivo and in in vitro is closer to flat membranes, we studied comparatively the responses of the membrane to the TMEM16 proteins in flat membranes and nanodiscs. We find that bilayer shapes in the nanodiscs are very different from those observed in the flat membrane systems, but the function-related slanting of the membrane observed at the nhTMEM16 boundary with the protein is similar in the nanodiscs and in the flat bilayers. This changes, however, in the bilayer composed of longer-tail lipids, which is thicker near the phospholipid translocation pathway, which may reflect an enhanced tendency of the long tails to penetrate the pathway and create, as shown previously, a nonconductive environment. These findings support the correspondence between the mechanistic involvement of the lipid environment in the flat membranes, and the nanodiscs. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York, 10065
- Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University, New York, New York, 10065
| | - Xiaolu Cheng
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York, 10065
| | - Maria E Falzone
- Department of Biochemistry, Weill Cornell Medical College of Cornell University, New York, New York, 10065
| | - Milka Doktorova
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, 77030
| | - Alessio Accardi
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York, 10065
- Department of Biochemistry, Weill Cornell Medical College of Cornell University, New York, New York, 10065
- Department of Anesthesiology, Weill Cornell Medical College of Cornell University, New York, New York, 10065
| | - Harel Weinstein
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York, 10065
- Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University, New York, New York, 10065
| |
Collapse
|
7
|
Shiref H, Bergman S, Clivio S, Sahai MA. The fine art of preparing membrane transport proteins for biomolecular simulations: Concepts and practical considerations. Methods 2020; 185:3-14. [PMID: 32081744 PMCID: PMC10062712 DOI: 10.1016/j.ymeth.2020.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 10/25/2022] Open
Abstract
Molecular dynamics (MD) simulations have developed into an invaluable tool in bimolecular research, due to the capability of the method in capturing molecular events and structural transitions that describe the function as well as the physiochemical properties of biomolecular systems. Due to the progressive development of more efficient algorithms, expansion of the available computational resources, as well as the emergence of more advanced methodologies, the scope of computational studies has increased vastly over time. We now have access to a multitude of online databases, software packages, larger molecular systems and novel ligands due to the phenomenon of emerging novel psychoactive substances (NPS). With so many advances in the field, it is understandable that novices will no doubt find it challenging setting up a protein-ligand system even before they run their first MD simulation. These initial steps, such as homology modelling, ligand docking, parameterization, protein preparation and membrane setup have become a fundamental part of the drug discovery pipeline, and many areas of biomolecular sciences benefit from the applications provided by these technologies. However, there still remains no standard on their usage. Therefore, our aim within this review is to provide a clear overview of a variety of concepts and methodologies to consider, providing a workflow for a case study of a membrane transport protein, the full-length human dopamine transporter (hDAT) in complex with different stimulants, where MD simulations have recently been applied successfully.
Collapse
Affiliation(s)
- Hana Shiref
- Department of Life Sciences, University of Roehampton, London SW15 4JD, UK
| | - Shana Bergman
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University (WCMC), New York, NY 10065, USA
| | | | - Michelle A Sahai
- Department of Life Sciences, University of Roehampton, London SW15 4JD, UK.
| |
Collapse
|
8
|
Selvam B, Yu YC, Chen LQ, Shukla D. Molecular Basis of the Glucose Transport Mechanism in Plants. ACS CENTRAL SCIENCE 2019; 5:1085-1096. [PMID: 31263768 PMCID: PMC6598156 DOI: 10.1021/acscentsci.9b00252] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Indexed: 05/04/2023]
Abstract
The SWEET family belongs to a class of transporters in plants that undergoes large conformational changes to facilitate transport of sugar molecules across the cell membrane (SWEET, Sugars Will Eventually Be Exported Transporter). However, the structures of their functionally relevant conformational states in the transport cycle have not been reported. In this study, we have characterized the conformational dynamics and complete transport cycle of glucose in the OsSWEET2b transporter using extensive molecular dynamics simulations. Using Markov state models, we estimated the free energy barrier associated with different states as well as for the glucose transport mechanism. SWEETs undergo a structural transition to outward-facing (OF), occluded (OC), and inward-facing (IF) and strongly support an alternate access transport mechanism. The glucose diffuses freely from outside to inside the cell without causing major conformational changes which means that the conformations of glucose unbound and bound snapshots are exactly the same for OF, OC, and IF states. We identified a network of hydrophobic core residues at the center of the transporter that restricts the glucose entry to the cytoplasmic side and acts as an intracellular hydrophobic gate. The mechanistic predictions from molecular dynamics simulations are validated using site-directed mutagenesis experiments. Our simulation also revealed hourglass-like intermediate states making the pore radius narrower at the center. This work provides new fundamental insights into how substrate-transporter interactions actively change the free energy landscape of the transport cycle to facilitate enhanced transport activity.
Collapse
Affiliation(s)
- Balaji Selvam
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ya-Chi Yu
- Department
of Plant Biology, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Li-Qing Chen
- Department
of Plant Biology, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Diwakar Shukla
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department
of Plant Biology, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
- Center
for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- NIH
Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- E-mail:
| |
Collapse
|
9
|
Corradi V, Sejdiu BI, Mesa-Galloso H, Abdizadeh H, Noskov SY, Marrink SJ, Tieleman DP. Emerging Diversity in Lipid-Protein Interactions. Chem Rev 2019; 119:5775-5848. [PMID: 30758191 PMCID: PMC6509647 DOI: 10.1021/acs.chemrev.8b00451] [Citation(s) in RCA: 291] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 02/07/2023]
Abstract
Membrane lipids interact with proteins in a variety of ways, ranging from providing a stable membrane environment for proteins to being embedded in to detailed roles in complicated and well-regulated protein functions. Experimental and computational advances are converging in a rapidly expanding research area of lipid-protein interactions. Experimentally, the database of high-resolution membrane protein structures is growing, as are capabilities to identify the complex lipid composition of different membranes, to probe the challenging time and length scales of lipid-protein interactions, and to link lipid-protein interactions to protein function in a variety of proteins. Computationally, more accurate membrane models and more powerful computers now enable a detailed look at lipid-protein interactions and increasing overlap with experimental observations for validation and joint interpretation of simulation and experiment. Here we review papers that use computational approaches to study detailed lipid-protein interactions, together with brief experimental and physiological contexts, aiming at comprehensive coverage of simulation papers in the last five years. Overall, a complex picture of lipid-protein interactions emerges, through a range of mechanisms including modulation of the physical properties of the lipid environment, detailed chemical interactions between lipids and proteins, and key functional roles of very specific lipids binding to well-defined binding sites on proteins. Computationally, despite important limitations, molecular dynamics simulations with current computer power and theoretical models are now in an excellent position to answer detailed questions about lipid-protein interactions.
Collapse
Affiliation(s)
- Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Besian I. Sejdiu
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haydee Mesa-Galloso
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haleh Abdizadeh
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Sergei Yu. Noskov
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
10
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
11
|
Muller MP, Jiang T, Sun C, Lihan M, Pant S, Mahinthichaichan P, Trifan A, Tajkhorshid E. Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chem Rev 2019; 119:6086-6161. [PMID: 30978005 PMCID: PMC6506392 DOI: 10.1021/acs.chemrev.8b00608] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cellular membrane constitutes one of the most fundamental compartments of a living cell, where key processes such as selective transport of material and exchange of information between the cell and its environment are mediated by proteins that are closely associated with the membrane. The heterogeneity of lipid composition of biological membranes and the effect of lipid molecules on the structure, dynamics, and function of membrane proteins are now widely recognized. Characterization of these functionally important lipid-protein interactions with experimental techniques is however still prohibitively challenging. Molecular dynamics (MD) simulations offer a powerful complementary approach with sufficient temporal and spatial resolutions to gain atomic-level structural information and energetics on lipid-protein interactions. In this review, we aim to provide a broad survey of MD simulations focusing on exploring lipid-protein interactions and characterizing lipid-modulated protein structure and dynamics that have been successful in providing novel insight into the mechanism of membrane protein function.
Collapse
Affiliation(s)
- Melanie P. Muller
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chang Sun
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Muyun Lihan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paween Mahinthichaichan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anda Trifan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
12
|
Schumann-Gillett A, Blyth MT, O’Mara ML. Is protein structure enough? A review of the role of lipids in SLC6 transporter function. Neurosci Lett 2019; 700:64-69. [DOI: 10.1016/j.neulet.2018.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 12/17/2022]
|
13
|
The Role of Lipid Interactions in Simulations of the α-Hemolysin Ion-Channel-Forming Toxin. Biophys J 2018; 115:1720-1730. [PMID: 30287110 DOI: 10.1016/j.bpj.2018.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 01/25/2023] Open
Abstract
Molecular dynamics simulations were performed to describe the function of the ion-channel-forming toxin α-hemolysin (αHL) in lipid membranes that were composed of either 1,2-diphytanoyl-sn-glycero-3-phospho-choline or 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-choline. The simulations highlight the importance of lipid type in maintaining αHL structure and function, enabling direct comparison to experiments for biosensing applications. We determined that although the two lipids studied are similar in structure, 1,2-diphytanoyl-sn-glycero-3-phospho-choline membranes better match the hydrophobic thickness of αHL compared to 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-choline membranes. This hydrophobic match is essential to maintaining proper alignment of β-sheet loops at the trans entrance of αHL, which, when disrupted, creates an additional constriction to ion flow that decreases the channel current below experimental values and creates greater variability in channel conductance. Agreement with experiments was further improved with sufficient lipid membrane equilibration and allowed the discrimination of subtle αHL conduction states with lipid type. Finally, we explore the effects of truncating the extramembrane cap of αHL and its role in maintaining proper alignment of αHL in the membrane and channel conductance. Our results demonstrate the essential role of lipid type and lipid-protein interactions in simulations of αHL and will considerably improve the interpretation of experimental data.
Collapse
|
14
|
Terry DS, Kolster RA, Quick M, LeVine MV, Khelashvili G, Zhou Z, Weinstein H, Javitch JA, Blanchard SC. A partially-open inward-facing intermediate conformation of LeuT is associated with Na + release and substrate transport. Nat Commun 2018; 9:230. [PMID: 29335402 PMCID: PMC5768729 DOI: 10.1038/s41467-017-02202-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 11/12/2017] [Indexed: 12/20/2022] Open
Abstract
Neurotransmitter:sodium symporters (NSS), targets of antidepressants and psychostimulants, clear neurotransmitters from the synaptic cleft through sodium (Na+)-coupled transport. Substrate and Na+ are thought to be transported from the extracellular to intracellular space through an alternating access mechanism by coordinated conformational rearrangements in the symporter that alternately expose the binding sites to each side of the membrane. However, the mechanism by which the binding of ligands coordinates conformational changes occurring on opposite sides of the membrane is not well understood. Here, we report the use of single-molecule fluorescence resonance energy transfer (smFRET) techniques to image transitions between distinct conformational states on both the extracellular and intracellular sides of the prokaryotic NSS LeuT, including partially open intermediates associated with transport activity. The nature and functional context of these hitherto unidentified intermediate states shed new light on the allosteric mechanism that couples substrate and Na+ symport by the NSS family through conformational dynamics.
Collapse
Affiliation(s)
- Daniel S Terry
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Rachel A Kolster
- Department of Psychiatry, Division of Molecular Therapeutics, Columbia University College of Physicians and Surgeons and New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Matthias Quick
- Department of Psychiatry, Division of Molecular Therapeutics, Columbia University College of Physicians and Surgeons and New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Michael V LeVine
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, 1305 York Avenue, New York, NY, 10021, USA
| | - George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, 1305 York Avenue, New York, NY, 10021, USA
| | - Zhou Zhou
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Harel Weinstein
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, 1305 York Avenue, New York, NY, 10021, USA
| | - Jonathan A Javitch
- Department of Psychiatry, Division of Molecular Therapeutics, Columbia University College of Physicians and Surgeons and New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA.
- Department of Pharmacology, Columbia University College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY, 10032, USA.
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
15
|
Argudo D, Bethel NP, Marcoline FV, Wolgemuth CW, Grabe M. New Continuum Approaches for Determining Protein-Induced Membrane Deformations. Biophys J 2017; 112:2159-2172. [PMID: 28538153 DOI: 10.1016/j.bpj.2017.03.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/16/2017] [Accepted: 03/27/2017] [Indexed: 01/21/2023] Open
Abstract
The influence of the membrane on transmembrane proteins is central to a number of biological phenomena, notably the gating of stretch activated ion channels. Conversely, membrane proteins can influence the bilayer, leading to the stabilization of particular membrane shapes, topological changes that occur during vesicle fission and fusion, and shape-dependent protein aggregation. Continuum elastic models of the membrane have been widely used to study protein-membrane interactions. These mathematical approaches produce physically interpretable membrane shapes, energy estimates for the cost of deformation, and a snapshot of the equilibrium configuration. Moreover, elastic models are much less computationally demanding than fully atomistic and coarse-grained simulation methodologies; however, it has been argued that continuum models cannot reproduce the distortions observed in fully atomistic molecular dynamics simulations. We suggest that this failure can be overcome by using chemically and geometrically accurate representations of the protein. Here, we present a fast and reliable hybrid continuum-atomistic model that couples the protein to the membrane. We show that the model is in excellent agreement with fully atomistic simulations of the ion channel gramicidin embedded in a POPC membrane. Our continuum calculations not only reproduce the membrane distortions produced by the channel but also accurately determine the channel's orientation. Finally, we use our method to investigate the role of membrane bending around the charged voltage sensors of the transient receptor potential cation channel TRPV1. We find that membrane deformation significantly stabilizes the energy of insertion of TRPV1 by exposing charged residues on the S4 segment to solution.
Collapse
Affiliation(s)
- David Argudo
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California
| | - Neville P Bethel
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California
| | - Frank V Marcoline
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California
| | - Charles W Wolgemuth
- Departments of Molecular and Cellular Biology and Physics, University of Arizona, Tucson, Arizona
| | - Michael Grabe
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California.
| |
Collapse
|
16
|
Van Lehn RC, Alexander-Katz A. Grafting Charged Species to Membrane-Embedded Scaffolds Dramatically Increases the Rate of Bilayer Flipping. ACS CENTRAL SCIENCE 2017; 3:186-195. [PMID: 28386596 PMCID: PMC5364453 DOI: 10.1021/acscentsci.6b00365] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Indexed: 05/07/2023]
Abstract
The cell membrane is a barrier to the passive diffusion of charged molecules due to the chemical properties of the lipid bilayer. Surprisingly, recent experiments have identified processes in which synthetic and biological charged species directly transfer across lipid bilayers on biologically relevant time scales. In particular, amphiphilic nanoparticles have been shown to insert into lipid bilayers, requiring the transport of charged species across the bilayer. The molecular factors facilitating this rapid insertion process remain unknown. In this work, we use atomistic molecular dynamics simulations to calculate the free energy barrier associated with "flipping" charged species across a lipid bilayer for species that are grafted to a membrane-embedded scaffold, such as a membrane-embedded nanoparticle. We find that the free energy barrier for flipping a grafted ligand can be over 7 kcal/mol lower than the barrier for translocating an isolated, equivalent ion, yielding a 5 order of magnitude decrease in the corresponding flipping time scale. Similar results are found for flipping charged species grafted to either nanoparticle or protein scaffolds. These results reveal new mechanistic insight into the flipping of charged macromolecular components that might play an important, yet overlooked, role in signaling and charge transport in biological settings. Furthermore, our results suggest guidelines for the design of synthetic materials capable of rapidly flipping charged moieties across the cell membrane.
Collapse
Affiliation(s)
- Reid C. Van Lehn
- Department
of Chemical and Biological Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- E-mail:
| | - Alfredo Alexander-Katz
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
17
|
Immadisetty K, Hettige J, Moradi M. What Can and Cannot Be Learned from Molecular Dynamics Simulations of Bacterial Proton-Coupled Oligopeptide Transporter GkPOT? J Phys Chem B 2016; 121:3644-3656. [PMID: 27959539 DOI: 10.1021/acs.jpcb.6b09733] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We have performed an extensive set of all-atom molecular dynamics (MD) simulations of a bacterial proton-coupled oligopeptide transporter (POT) in an explicit membrane environment. We have characterized both the local and global conformational dynamics of the transporter upon the proton and/or substrate binding, within a statistical framework. Our results reveal a clearly distinct behavior for local conformational dynamics in the absence and presence of the proton at the putative proton binding residue E310. Particularly, we find that the substrate binding conformation is drastically different in the two conditions, where the substrate binds to the protein in a lateral/vertical manner, in the presence/absence of the proton. We do not observe any statistically significant distinctive behavior in terms of the global conformational changes in different simulation conditions, within the time scales of our simulations. Our extensive simulations and analyses call into question the implicit assumption of many MD studies that local conformational changes observed in short simulations could provide clues to the global conformational changes that occur on much longer time scales. The linear regression analysis of quantities associated with the global conformational fluctuations, however, provides an indication of a mechanism involving the concerted motion of the transmembrane helices, consistent with the rocker-switch mechanism.
Collapse
Affiliation(s)
- Kalyan Immadisetty
- Department of Chemistry and Biochemistry, University of Arkansas , Fayetteville, Arkansas 72701, United States
| | - Jeevapani Hettige
- Department of Chemistry and Biochemistry, University of Arkansas , Fayetteville, Arkansas 72701, United States
| | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas , Fayetteville, Arkansas 72701, United States
| |
Collapse
|
18
|
Sohail A, Jayaraman K, Venkatesan S, Gotfryd K, Daerr M, Gether U, Loland CJ, Wanner KT, Freissmuth M, Sitte HH, Sandtner W, Stockner T. The Environment Shapes the Inner Vestibule of LeuT. PLoS Comput Biol 2016; 12:e1005197. [PMID: 27835643 PMCID: PMC5105988 DOI: 10.1371/journal.pcbi.1005197] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 10/12/2016] [Indexed: 12/27/2022] Open
Abstract
Human neurotransmitter transporters are found in the nervous system terminating synaptic signals by rapid removal of neurotransmitter molecules from the synaptic cleft. The homologous transporter LeuT, found in Aquifex aeolicus, was crystallized in different conformations. Here, we investigated the inward-open state of LeuT. We compared LeuT in membranes and micelles using molecular dynamics simulations and lanthanide-based resonance energy transfer (LRET). Simulations of micelle-solubilized LeuT revealed a stable and widely open inward-facing conformation. However, this conformation was unstable in a membrane environment. The helix dipole and the charged amino acid of the first transmembrane helix (TM1A) partitioned out of the hydrophobic membrane core. Free energy calculations showed that movement of TM1A by 0.30 nm was driven by a free energy difference of ~15 kJ/mol. Distance measurements by LRET showed TM1A movements, consistent with the simulations, confirming a substantially different inward-open conformation in lipid bilayer from that inferred from the crystal structure. Crystal structures of the bacterial small amino acid transporter LeuT provided structural evidence for the alternating access model. Thereby, these structures shaped our understanding of the mechanisms underlying substrate translocation by neurotransmitter transporters. However, it has been questioned, if the crystallized inward-open conformation of LeuT can exist in the membrane environment. Here we show that, while stable in detergent micelles, the inward-open conformation of LeuT is of high energy and undergoes structural readjustments. We use a multi-faceted approach including molecular dynamics simulations, scintillation proximity assays, free energy calculations and apply for the first time lanthanide resonance energy transfer measurements to verify the in silico predictions. In silico and in vitro approaches using the same conditions allowed us to combine the macroscopic experimental data with microscopic all atom results from simulations to identify the underlying driving forces: partitioning of charged and polar groups from the hydrophobic membrane interior to the hydrophilic environment. We propose that the inward-facing state shows a much smaller movement of TM1A, but large enough to create an access path to the S1 substrate binding site from the vestibule.
Collapse
Affiliation(s)
- Azmat Sohail
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Vienna, Austria
| | - Kumaresan Jayaraman
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Vienna, Austria
| | - Santhoshkannan Venkatesan
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Vienna, Austria
| | - Kamil Gotfryd
- University of Copenhagen, Faculty of Health and Medical Sciences Denmark, Department of Neuroscience and Pharmacology, Copenhagen, Denmark
- University of Copenhagen, Faculty of Health Sciences Denmark, Department of Biomedical Sciences, Copenhagen, Denmark
| | - Markus Daerr
- Ludwig Maximilians University Munich, Department of Pharmacy, Center of Drug Research, Munich, Germany
| | - Ulrik Gether
- University of Copenhagen, Faculty of Health and Medical Sciences Denmark, Department of Neuroscience and Pharmacology, Copenhagen, Denmark
| | - Claus J. Loland
- University of Copenhagen, Faculty of Health and Medical Sciences Denmark, Department of Neuroscience and Pharmacology, Copenhagen, Denmark
| | - Klaus T. Wanner
- Ludwig Maximilians University Munich, Department of Pharmacy, Center of Drug Research, Munich, Germany
| | - Michael Freissmuth
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Vienna, Austria
| | - Harald H. Sitte
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Vienna, Austria
- * E-mail:
| | - Walter Sandtner
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Vienna, Austria
| | - Thomas Stockner
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Vienna, Austria
| |
Collapse
|
19
|
Khelashvili G, Schmidt SG, Shi L, Javitch JA, Gether U, Loland CJ, Weinstein H. Conformational Dynamics on the Extracellular Side of LeuT Controlled by Na+ and K+ Ions and the Protonation State of Glu290. J Biol Chem 2016; 291:19786-99. [PMID: 27474737 DOI: 10.1074/jbc.m116.731455] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Indexed: 01/06/2023] Open
Abstract
Ions play key mechanistic roles in the gating dynamics of neurotransmitter:sodium symporters (NSSs). In recent microsecond scale molecular dynamics simulations of a complete model of the dopamine transporter, a NSS protein, we observed a partitioning of K(+) ions from the intracellular side toward the unoccupied Na2 site of dopamine transporter following the release of the Na2-bound Na(+) Here we evaluate with computational simulations and experimental measurements of ion affinities under corresponding conditions, the consequences of K(+) binding in the Na2 site of LeuT, a bacterial homolog of NSS, when both Na(+) ions and substrate have left, and the transporter prepares for a new cycle. We compare the results with the consequences of binding Na(+) in the same apo system. Analysis of >50-μs atomistic molecular dynamics and enhanced sampling trajectories of constructs with Glu(290), either charged or neutral, point to the Glu(290) protonation state as a main determinant in the structural reconfiguration of the extracellular vestibule of LeuT in which a "water gate" opens through coordinated motions of residues Leu(25), Tyr(108), and Phe(253) The resulting water channel enables the binding/dissociation of the Na(+) and K(+) ions that are prevalent, respectively, in the extracellular and intracellular environments.
Collapse
Affiliation(s)
- George Khelashvili
- From the Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York 10065,
| | - Solveig Gaarde Schmidt
- the Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Lei Shi
- From the Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York 10065, the Computational Chemistry and Molecular Biophysics Unit, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224
| | - Jonathan A Javitch
- the Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, New York, New York 10032, Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York 10032, and
| | - Ulrik Gether
- the Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Claus J Loland
- the Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Harel Weinstein
- From the Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York 10065, the Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York 10065
| |
Collapse
|
20
|
Argudo D, Bethel NP, Marcoline FV, Grabe M. Continuum descriptions of membranes and their interaction with proteins: Towards chemically accurate models. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1858:1619-34. [PMID: 26853937 PMCID: PMC4877259 DOI: 10.1016/j.bbamem.2016.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 01/30/2016] [Accepted: 02/01/2016] [Indexed: 01/21/2023]
Abstract
Biological membranes deform in response to resident proteins leading to a coupling between membrane shape and protein localization. Additionally, the membrane influences the function of membrane proteins. Here we review contributions to this field from continuum elastic membrane models focusing on the class of models that couple the protein to the membrane. While it has been argued that continuum models cannot reproduce the distortions observed in fully-atomistic molecular dynamics simulations, we suggest that this failure can be overcome by using chemically accurate representations of the protein. We outline our recent advances along these lines with our hybrid continuum-atomistic model, and we show the model is in excellent agreement with fully-atomistic simulations of the nhTMEM16 lipid scramblase. We believe that the speed and accuracy of continuum-atomistic methodologies will make it possible to simulate large scale, slow biological processes, such as membrane morphological changes, that are currently beyond the scope of other computational approaches. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- David Argudo
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, United States
| | - Neville P Bethel
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, United States
| | - Frank V Marcoline
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, United States
| | - Michael Grabe
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, United States.
| |
Collapse
|
21
|
Grouleff J, Søndergaard S, Koldsø H, Schiøtt B. Properties of an inward-facing state of LeuT: conformational stability and substrate release. Biophys J 2016; 108:1390-1399. [PMID: 25809252 DOI: 10.1016/j.bpj.2015.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 01/12/2023] Open
Abstract
The leucine transporter (LeuT) is a bacterial homolog of the human monoamine transporters, which are important pharmaceutical targets. There are no high-resolution structures of the human transporters available; however, LeuT has been crystallized in several different conformational states. Recently, an inward-facing conformation of LeuT was solved revealing an unexpectedly large movement of transmembrane helix 1a (TM1a). We have performed molecular dynamics simulations of the mutated and wild-type transporter, with and without the cocrystallized Fab antibody fragment, to investigate the properties of this inward-facing conformation in relation to transport by LeuT within the membrane environment. In all of the simulations, local conformational changes with respect to the crystal structure are consistently observed, especially in TM1a. Umbrella sampling revealed a soft potential for TM1a tilting. Furthermore, simulations of inward-facing LeuT with Na(+) ions and substrate bound suggest that one of the Na(+) ion binding sites is fully disrupted. Release of alanine and the second Na(+) ion is also observed, giving insight into the final stage of the translocation process in atomistic detail.
Collapse
Affiliation(s)
- Julie Grouleff
- Center for Insoluble Protein Structures and Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Siri Søndergaard
- Center for Insoluble Protein Structures and Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Heidi Koldsø
- Center for Insoluble Protein Structures and Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Birgit Schiøtt
- Center for Insoluble Protein Structures and Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
22
|
LeVine MV, Cuendet MA, Khelashvili G, Weinstein H. Allosteric Mechanisms of Molecular Machines at the Membrane: Transport by Sodium-Coupled Symporters. Chem Rev 2016; 116:6552-87. [PMID: 26892914 DOI: 10.1021/acs.chemrev.5b00627] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Solute transport across cell membranes is ubiquitous in biology as an essential physiological process. Secondary active transporters couple the unfavorable process of solute transport against its concentration gradient to the energetically favorable transport of one or several ions. The study of such transporters over several decades indicates that their function involves complex allosteric mechanisms that are progressively being revealed in atomistic detail. We focus on two well-characterized sodium-coupled symporters: the bacterial amino acid transporter LeuT, which is the prototype for the "gated pore" mechanism in the mammalian synaptic monoamine transporters, and the archaeal GltPh, which is the prototype for the "elevator" mechanism in the mammalian excitatory amino acid transporters. We present the evidence for the role of allostery in the context of a quantitative formalism that can reconcile biochemical and biophysical data and thereby connects directly to recent insights into the molecular structure and dynamics of these proteins. We demonstrate that, while the structures and mechanisms of these transporters are very different, the available data suggest a common role of specific models of allostery in their functions. We argue that such allosteric mechanisms appear essential not only for sodium-coupled symport in general but also for the function of other types of molecular machines in the membrane.
Collapse
Affiliation(s)
- Michael V LeVine
- Department of Physiology and Biophysics, ‡HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University , New York, New York 10065, United States
| | - Michel A Cuendet
- Department of Physiology and Biophysics, ‡HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University , New York, New York 10065, United States
| | - George Khelashvili
- Department of Physiology and Biophysics, ‡HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University , New York, New York 10065, United States
| | - Harel Weinstein
- Department of Physiology and Biophysics, ‡HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University , New York, New York 10065, United States
| |
Collapse
|
23
|
LeVine MV, Khelashvili G, Shi L, Quick M, Javitch JA, Weinstein H. Role of Annular Lipids in the Functional Properties of Leucine Transporter LeuT Proteomicelles. Biochemistry 2016; 55:850-9. [PMID: 26811944 PMCID: PMC4757857 DOI: 10.1021/acs.biochem.5b01268] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
![]()
Recent
work has shown that the choice of the type and concentration
of detergent used for the solubilization of membrane proteins can
strongly influence the results of functional experiments. In particular,
the amino acid transporter LeuT can bind two substrate molecules in
low concentrations of n-dodecyl β-d-maltopyranoside (DDM), whereas high concentrations reduce the molar
binding stoichiometry to 1:1. Subsequent molecular dynamics (MD) simulations
of LeuT in DDM proteomicelles revealed that DDM can penetrate to the
extracellular vestibule and make stable contacts in the functionally
important secondary substrate binding site (S2), suggesting a potential
competitive mechanism for the reduction in binding stoichiometry.
Because annular lipids can be retained during solubilization, we performed
MD simulations of LeuT proteomicelles at various stages of the solubilization
process. We find that at low DDM concentrations, lipids are retained
around the protein and penetration of detergent into the S2 site does
not occur, whereas at high concentrations, lipids are displaced and
the probability of DDM binding in the S2 site is increased. This behavior
is dependent on the type of detergent, however, as we find in the
simulations that the detergent lauryl maltose-neopentyl glycol, which
is approximately twice the size of DDM and structurally more closely
resembles lipids, does not penetrate the protein even at very high
concentrations. We present functional studies that confirm the computational
findings, emphasizing the need for careful consideration of experimental
conditions, and for cautious interpretation of data in gathering mechanistic
information about membrane proteins.
Collapse
Affiliation(s)
- Michael V LeVine
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University (WCMC) , New York, New York 10065, United States
| | - George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University (WCMC) , New York, New York 10065, United States
| | - Lei Shi
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University (WCMC) , New York, New York 10065, United States.,Computational Chemistry and Molecular Biophysics Unit, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health , Baltimore, Maryland 21224, United States
| | | | - Jonathan A Javitch
- Division of Molecular Therapeutics, New York State Psychiatric Institute , New York, New York 10032, United States
| | - Harel Weinstein
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University (WCMC) , New York, New York 10065, United States.,HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University , New York, New York 10065, United States
| |
Collapse
|
24
|
Marcoline FV, Bethel N, Guerriero CJ, Brodsky JL, Grabe M. Membrane Protein Properties Revealed through Data-Rich Electrostatics Calculations. Structure 2015; 23:1526-1537. [PMID: 26118532 DOI: 10.1016/j.str.2015.05.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/09/2015] [Accepted: 05/02/2015] [Indexed: 01/29/2023]
Abstract
The electrostatic properties of membrane proteins often reveal many of their key biophysical characteristics, such as ion channel selectivity and the stability of charged membrane-spanning segments. The Poisson-Boltzmann (PB) equation is the gold standard for calculating protein electrostatics, and the software APBSmem enables the solution of the PB equation in the presence of a membrane. Here, we describe significant advances to APBSmem, including full automation of system setup, per-residue energy decomposition, incorporation of PDB2PQR, calculation of membrane-induced pKa shifts, calculation of non-polar energies, and command-line scripting for large-scale calculations. We highlight these new features with calculations carried out on a number of membrane proteins, including the recently solved structure of the ion channel TRPV1 and a large survey of 1,614 membrane proteins of known structure. This survey provides a comprehensive list of residues with large electrostatic penalties for being embedded in the membrane, potentially revealing interesting functional information.
Collapse
Affiliation(s)
- Frank V Marcoline
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Neville Bethel
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA; Integrative Program in Quantitative Biology, University of California, San Francisco, CA 94158, USA
| | | | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Michael Grabe
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
25
|
Stansfeld PJ, Goose JE, Caffrey M, Carpenter EP, Parker JL, Newstead S, Sansom MSP. MemProtMD: Automated Insertion of Membrane Protein Structures into Explicit Lipid Membranes. Structure 2015; 23:1350-61. [PMID: 26073602 PMCID: PMC4509712 DOI: 10.1016/j.str.2015.05.006] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/24/2015] [Accepted: 05/02/2015] [Indexed: 01/26/2023]
Abstract
There has been exponential growth in the number of membrane protein structures determined. Nevertheless, these structures are usually resolved in the absence of their lipid environment. Coarse-grained molecular dynamics (CGMD) simulations enable insertion of membrane proteins into explicit models of lipid bilayers. We have automated the CGMD methodology, enabling membrane protein structures to be identified upon their release into the PDB and embedded into a membrane. The simulations are analyzed for protein-lipid interactions, identifying lipid binding sites, and revealing local bilayer deformations plus molecular access pathways within the membrane. The coarse-grained models of membrane protein/bilayer complexes are transformed to atomistic resolution for further analysis and simulation. Using this automated simulation pipeline, we have analyzed a number of recently determined membrane protein structures to predict their locations within a membrane, their lipid/protein interactions, and the functional implications of an enhanced understanding of the local membrane environment of each protein. A simulation pipeline for predicting the location of a membrane protein in a bilayer A protocol for identifying novel membrane protein structures in the PDB Analysis of lipid binding sites and local bilayer deformation by membrane proteins Functional implications from enhanced understanding of local membrane environments
Collapse
Affiliation(s)
- Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Joseph E Goose
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Martin Caffrey
- Schools of Medicine and Biochemistry & Immunology, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Elisabeth P Carpenter
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Joanne L Parker
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
26
|
Functional mechanisms of neurotransmitter transporters regulated by lipid-protein interactions of their terminal loops. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1765-74. [PMID: 25847498 DOI: 10.1016/j.bbamem.2015.03.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/16/2015] [Accepted: 03/23/2015] [Indexed: 01/28/2023]
Abstract
The physiological functions of neurotransmitter:sodium symporters (NSS) in reuptake of neurotransmitters from the synapse into the presynaptic nerve have been shown to be complemented by their involvement, together with non-plasma membrane neurotransmitter transporters, in the reverse transport of substrate (efflux) in response to psychostimulants. Recent experimental evidence implicates highly anionic phosphatidylinositol 4,5-biphosphate (PIP(2)) lipids in such functions of the serotonin (SERT) and dopamine (DAT) transporters. Thus, for both SERT and DAT, neurotransmitter efflux has been shown to be strongly regulated by the presence of PIP(2) lipids in the plasma membrane, and the electrostatic interaction of the N-terminal region of DAT with the negatively charged PIP(2) lipids. We examine the experimentally established phenotypes in a structural context obtained from computational modeling based on recent crystallographic data. The results are shown to set the stage for a mechanistic understanding of physiological actions of neurotransmitter transporters in the NSS family of membrane proteins. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
|
27
|
Li J, Wen PC, Moradi M, Tajkhorshid E. Computational characterization of structural dynamics underlying function in active membrane transporters. Curr Opin Struct Biol 2015; 31:96-105. [PMID: 25913536 PMCID: PMC4476910 DOI: 10.1016/j.sbi.2015.04.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 11/21/2022]
Abstract
Active transport of materials across the cellular membrane is one the most fundamental processes in biology. In order to accomplish this task, membrane transporters rely on a wide range of conformational changes spanning multiple time and size scales. These molecular events govern key functional aspects in membrane transporters, namely, coordinated gating motions underlying the alternating access mode of operation, and coupling of uphill transport of substrate to various sources of energy, for example, transmembrane electrochemical gradients and ATP binding and hydrolysis. Computational techniques such as molecular dynamics simulations and free energy calculations have equipped us with a powerful repertoire of biophysical tools offering unparalleled spatial and temporal resolutions that can effectively complement experimental methodologies, and therefore help fill the gap of knowledge in understanding the molecular basis of function in membrane transporters.
Collapse
Affiliation(s)
- Jing Li
- Department of Biochemistry, Center for Biophysics and Computational Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Po-Chao Wen
- Department of Biochemistry, Center for Biophysics and Computational Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Mahmoud Moradi
- Department of Biochemistry, Center for Biophysics and Computational Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Emad Tajkhorshid
- Department of Biochemistry, Center for Biophysics and Computational Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
28
|
Khelashvili G, Doktorova M, Sahai MA, Johner N, Shi L, Weinstein H. Computational modeling of the N-terminus of the human dopamine transporter and its interaction with PIP2 -containing membranes. Proteins 2015; 83:952-69. [PMID: 25739722 DOI: 10.1002/prot.24792] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/05/2015] [Accepted: 02/24/2015] [Indexed: 12/18/2022]
Abstract
The dopamine transporter (DAT) is a transmembrane protein belonging to the family of neurotransmitter:sodium symporters (NSS). Members of the NSS are responsible for the clearance of neurotransmitters from the synaptic cleft, and for their translocation back into the presynaptic nerve terminal. The DAT contains long intracellular N- and C-terminal domains that are strongly implicated in the transporter function. The N-terminus (N-term), in particular, regulates the reverse transport (efflux) of the substrate through DAT. Currently, the molecular mechanisms of the efflux remain elusive in large part due to lack of structural information on the N-terminal segment. Here we report a computational model of the N-term of the human DAT (hDAT), obtained through an ab initio structure prediction, in combination with extensive atomistic molecular dynamics (MD) simulations in the context of a lipid membrane. Our analysis reveals that whereas the N-term is a highly dynamic domain, it contains secondary structure elements that remain stable in the long MD trajectories of interactions with the bilayer (totaling >2.2 μs). Combining MD simulations with continuum mean-field modeling we found that the N-term engages with lipid membranes through electrostatic interactions with the charged lipids PIP2 (phosphatidylinositol 4,5-Biphosphate) or PS (phosphatidylserine) that are present in these bilayers. We identify specific motifs along the N-term implicated in such interactions and show that differential modes of N-term/membrane association result in differential positioning of the structured segments on the membrane surface. These results will inform future structure-based studies that will elucidate the mechanistic role of the N-term in DAT function.
Collapse
Affiliation(s)
- George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York, 10065
| | | | | | | | | | | |
Collapse
|
29
|
Akyuz N, Georgieva ER, Zhou Z, Stolzenberg S, Cuendet MA, Khelashvili G, Altman RB, Terry DS, Freed JH, Weinstein H, Boudker O, Blanchard SC. Transport domain unlocking sets the uptake rate of an aspartate transporter. Nature 2015; 518:68-73. [PMID: 25652997 PMCID: PMC4351760 DOI: 10.1038/nature14158] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 12/15/2014] [Indexed: 12/12/2022]
Abstract
Glutamate transporters terminate neurotransmission by clearing synaptically released glutamate from the extracellular space, allowing repeated rounds of signaling and preventing glutamate-mediated excitotoxicity. Crystallographic studies on an archaeal homologue, GltPh, showed that distinct transport domains translocate substrates into the cytoplasm by moving across the membrane within a central trimerization scaffold. Here, we report direct observations of these 'elevator-like' transport domain motions in the context of reconstituted proteoliposomes and physiological ion gradients using single-molecule fluorescence resonance energy transfer (smFRET) imaging. We show that GltPh bearing two “humanizing” mutations exhibits markedly increased transport domain dynamics, which parallels an increased rate of substrate transport, thereby establishing a direct temporal relationship between transport domain motions and substrate uptake. Crystallographic and computational investigations reveal that these mutations favor structurally “unlocked” states with increased solvent occupancy at the interface between the transport domain and the trimeric scaffold.
Collapse
Affiliation(s)
- Nurunisa Akyuz
- Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, New York 10065, USA
| | - Elka R Georgieva
- 1] National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, New York 14853, USA [2] Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Zhou Zhou
- Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, New York 10065, USA
| | - Sebastian Stolzenberg
- Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, New York 10065, USA
| | - Michel A Cuendet
- 1] Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, New York 10065, USA [2] Swiss Institute of Bioinformatics, Quartier Sorge - Batiment Genopode, 1015 Lausanne, Switzerland
| | - George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, New York 10065, USA
| | - Roger B Altman
- Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, New York 10065, USA
| | - Daniel S Terry
- Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, New York 10065, USA
| | - Jack H Freed
- 1] National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, New York 14853, USA [2] Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Harel Weinstein
- 1] Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, New York 10065, USA [2] HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, Cornell University, 1305 York Avenue, New York, New York 10065, USA
| | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, New York 10065, USA
| | - Scott C Blanchard
- 1] Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, New York 10065, USA [2] Tri-Institutional Training Program in Chemical Biology, 445 East 69th Street, New York, New York 10065, USA
| |
Collapse
|
30
|
Wickles S, Singharoy A, Andreani J, Seemayer S, Bischoff L, Berninghausen O, Soeding J, Schulten K, van der Sluis EO, Beckmann R. A structural model of the active ribosome-bound membrane protein insertase YidC. eLife 2014; 3:e03035. [PMID: 25012291 PMCID: PMC4124156 DOI: 10.7554/elife.03035] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The integration of most membrane proteins into the cytoplasmic membrane of bacteria occurs co-translationally. The universally conserved YidC protein mediates this process either individually as a membrane protein insertase, or in concert with the SecY complex. Here, we present a structural model of YidC based on evolutionary co-variation analysis, lipid-versus-protein-exposure and molecular dynamics simulations. The model suggests a distinctive arrangement of the conserved five transmembrane domains and a helical hairpin between transmembrane segment 2 (TM2) and TM3 on the cytoplasmic membrane surface. The model was used for docking into a cryo-electron microscopy reconstruction of a translating YidC-ribosome complex carrying the YidC substrate FOc. This structure reveals how a single copy of YidC interacts with the ribosome at the ribosomal tunnel exit and identifies a site for membrane protein insertion at the YidC protein-lipid interface. Together, these data suggest a mechanism for the co-translational mode of YidC-mediated membrane protein insertion.
Collapse
Affiliation(s)
- Stephan Wickles
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany Center for Integrated Protein Science Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Abhishek Singharoy
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Jessica Andreani
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany Center for Integrated Protein Science Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefan Seemayer
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany Center for Integrated Protein Science Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lukas Bischoff
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany Center for Integrated Protein Science Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Otto Berninghausen
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany Center for Integrated Protein Science Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Johannes Soeding
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany Center for Integrated Protein Science Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Klaus Schulten
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Eli O van der Sluis
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany Center for Integrated Protein Science Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Roland Beckmann
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany Center for Integrated Protein Science Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
31
|
Guixà-González R, Ramírez-Anguita JM, Kaczor AA, Selent J. Simulating G protein-coupled receptors in native-like membranes: from monomers to oligomers. Methods Cell Biol 2014; 117:63-90. [PMID: 24143972 DOI: 10.1016/b978-0-12-408143-7.00004-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
G protein-coupled receptors (GPCRs) are one of the most relevant superfamilies of transmembrane proteins as they participate in an important variety of biological events. Recently, the scientific community is witnessing an advent of a GPCR crystallization age along with impressive improvements achieved in the field of computer simulations during the last two decades. Computer simulation techniques such as molecular dynamics (MD) simulations are now frequent tools to study the dynamic behavior of GPCRs and, more importantly, to model the complex membrane environment where these proteins spend their lifetime. Thanks to these tools, GPCRs can be simulated not only longer but also in a more "physiological" fashion. In this scenario, scientists are taking advantage of such advances to approach certain phenomena such as GPCR oligomerization occurring only at timescales not reachable until now. Thus, despite current MD simulations having important limitations today, they have become an essential tool to study key biophysical properties of GPCRs and GPCR oligomers.
Collapse
Affiliation(s)
- Ramon Guixà-González
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences, Universitat Pompeu Fabra/IMIM (Hospital del Mar Medical Research Institute), Dr. Aiguader, Barcelona, Spain
| | | | | | | |
Collapse
|
32
|
Mondal S, Khelashvili G, Weinstein H. Not just an oil slick: how the energetics of protein-membrane interactions impacts the function and organization of transmembrane proteins. Biophys J 2014; 106:2305-16. [PMID: 24896109 PMCID: PMC4052241 DOI: 10.1016/j.bpj.2014.04.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/31/2014] [Accepted: 04/23/2014] [Indexed: 01/12/2023] Open
Abstract
The membrane environment, its composition, dynamics, and remodeling, have been shown to participate in the function and organization of a wide variety of transmembrane (TM) proteins, making it necessary to study the molecular mechanisms of such proteins in the context of their membrane settings. We review some recent conceptual advances enabling such studies, and corresponding computational models and tools designed to facilitate the concerted experimental and computational investigation of protein-membrane interactions. To connect productively with the high resolution achieved by cognate experimental approaches, the computational methods must offer quantitative data at an atomistically detailed level. We show how such a quantitative method illuminated the mechanistic importance of a structural characteristic of multihelical TM proteins, that is, the likely presence of adjacent polar and hydrophobic residues at the protein-membrane interface. Such adjacency can preclude the complete alleviation of the well-known hydrophobic mismatch between TM proteins and the surrounding membrane, giving rise to an energy cost of residual hydrophobic mismatch. The energy cost and biophysical formulation of hydrophobic mismatch and residual hydrophobic mismatch are reviewed in the context of their mechanistic role in the function of prototypical members of multihelical TM protein families: 1), LeuT, a bacterial homolog of mammalian neurotransmitter sodium symporters; and 2), rhodopsin and the β1- and β2-adrenergic receptors from the G-protein coupled receptor family. The type of computational analysis provided by these examples is poised to translate the rapidly growing structural data for the many TM protein families that are of great importance to cell function into ever more incisive insights into mechanisms driven by protein-ligand and protein-protein interactions in the membrane environment.
Collapse
Affiliation(s)
- Sayan Mondal
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York
| | - George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York
| | - Harel Weinstein
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University, New York, New York.
| |
Collapse
|
33
|
Koshy C, Ziegler C. Structural insights into functional lipid-protein interactions in secondary transporters. Biochim Biophys Acta Gen Subj 2014; 1850:476-87. [PMID: 24859688 DOI: 10.1016/j.bbagen.2014.05.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/09/2014] [Accepted: 05/12/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Structural evidences with functional corroborations have revealed distinct features of lipid-protein interactions especially in channels and receptors. Many membrane embedded transporters are also known to require specific lipids for their functions and for some of them cellular and biochemical data suggest tight regulation by the lipid bilayer. However, molecular details on lipid-protein interactions in transporters are sparse since lipids are either depleted from the detergent solubilized transporters in three-dimensional crystals or not readily resolved in crystal structures. Nevertheless the steady increase in the progress of transporter structure determination contributed more examples of structures with resolved lipids. SCOPE OF REVIEW This review gives an overview on transporter structures in complex with lipids reported to date and discusses commonly encountered difficulties in the identification of functionally significant lipid-protein interactions based on those structures and functional in vitro data. Recent structures provided molecular details into regulation mechanism of transporters by specific lipids. The review highlights common findings and conserved patterns for distantly related transporter families to draw a more general picture on the regulatory role of lipid-protein interactions. MAJOR CONCLUSIONS Several common themes of the manner in which lipids directly influence membrane-mediated folding, oligomerization and structure stability can be found. Especially for LeuT-like fold transporters similarities in structurally resolved lipid-protein interactions suggest a common way in which transporter conformations are affected by lipids even in evolutionarily distinct transporters. Lipids appear to play an additional role as joints mechanically reinforcing the inverted repeat topology, which is a major determinant in the alternating access mechanism of secondary transporters. GENERAL SIGNIFICANCE This review brings together and adds to the repertoire of knowledge on lipid-protein interactions of functional significance presented in structures of membrane transporters. Knowledge of specific lipid-binding sites and modes of lipid influence on these proteins not only accomplishes the molecular description of transport cycle further, but also sheds light into localization dependent differences of transporter function. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.
Collapse
Affiliation(s)
- Caroline Koshy
- Max Planck Institute of Biophysics, Structural Biology Department, Frankfurt am Main, Germany; Max-Planck Institute of Biophysics, Computational Structural Biology Group, Frankfurt am Main, Germany
| | - Christine Ziegler
- Max Planck Institute of Biophysics, Structural Biology Department, Frankfurt am Main, Germany; Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
34
|
LeVine MV, Weinstein H. NbIT--a new information theory-based analysis of allosteric mechanisms reveals residues that underlie function in the leucine transporter LeuT. PLoS Comput Biol 2014; 10:e1003603. [PMID: 24785005 PMCID: PMC4006702 DOI: 10.1371/journal.pcbi.1003603] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 03/24/2014] [Indexed: 11/23/2022] Open
Abstract
Complex networks of interacting residues and microdomains in the structures of biomolecular systems underlie the reliable propagation of information from an input signal, such as the concentration of a ligand, to sites that generate the appropriate output signal, such as enzymatic activity. This information transduction often carries the signal across relatively large distances at the molecular scale in a form of allostery that is essential for the physiological functions performed by biomolecules. While allosteric behaviors have been documented from experiments and computation, the mechanism of this form of allostery proved difficult to identify at the molecular level. Here, we introduce a novel analysis framework, called N-body Information Theory (NbIT) analysis, which is based on information theory and uses measures of configurational entropy in a biomolecular system to identify microdomains and individual residues that act as (i)-channels for long-distance information sharing between functional sites, and (ii)-coordinators that organize dynamics within functional sites. Application of the new method to molecular dynamics (MD) trajectories of the occluded state of the bacterial leucine transporter LeuT identifies a channel of allosteric coupling between the functionally important intracellular gate and the substrate binding sites known to modulate it. NbIT analysis is shown also to differentiate residues involved primarily in stabilizing the functional sites, from those that contribute to allosteric couplings between sites. NbIT analysis of MD data thus reveals rigorous mechanistic elements of allostery underlying the dynamics of biomolecular systems. We developed the new information theory-based analysis framework presented here, NbIT analysis, for the study of allosteric mechanisms in biomolecular systems from Molecular Dynamics trajectories. The illustrative application of NbIT to the analysis of the occluded state in the bacterial transporter LeuT, produced a quantitative representation of the allosteric behavior, and identified intramolecular channels that enable the long-distance information transmission. Our findings, identifying the roles of specific residues in the communication of the allosteric information, were validated by the recognition of residues that have been previously shown to play functional roles in this very well studied system. In addition, we show that application of NbIT analysis leads to the discrimination of functional roles by differentiating between residues that are essential to the dynamics within functional sites (e.g., the substrate binding sites), and residues whose role is to communicate between such functional sites. These results demonstrate that the information theoretical analysis presented here is a powerful tool for quantifying complex allosteric behavior in biomolecular systems and for identifying the crucial components underlying those behaviors.
Collapse
Affiliation(s)
- Michael V. LeVine
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University (WCMC), New York, New York, United States of America
| | - Harel Weinstein
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University (WCMC), New York, New York, United States of America
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute of Computational Biomedicine, Weill Cornell Medical College of Cornell University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
35
|
Johner N, Mondal S, Morra G, Caffrey M, Weinstein H, Khelashvili G. Protein and lipid interactions driving molecular mechanisms of in meso crystallization. J Am Chem Soc 2014; 136:3271-84. [PMID: 24494670 PMCID: PMC3985912 DOI: 10.1021/ja4129839] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The recent advances in the in meso crystallization technique for the structural characterization of G-protein coupled receptor (GPCR) proteins have established the usefulness of the lipidic-cubic phases (LCPs) in the field of crystallography of membrane proteins. It is surprising that despite the success of the approach, the molecular mechanisms of the in meso method are still not well understood. Therefore, the approach must rely on extensive screening for a suitable protein construct, for host and additive lipids, and for the appropriate precipitants and temperature. To shed light on the in meso crystallization mechanisms, we used extensive coarse-grained molecular dynamics simulations to study, in molecular detail, LCPs under different conditions (compositions and temperatures relevant to crystallogenesis) and their interactions with different types of GPCR constructs. The results presented show how the modulation of the lattice constant of the LCP (triggered by the addition of precipitant during the in meso assay), or of the host lipid type, can destabilize monomeric proteins in the bilayer of the LCP and thus drive their aggregation into the stacked lamellae, where the residual hydrophobic mismatch between the protein and the membrane can drive the formation of lateral contacts leading to nucleation and crystal growth. Moreover, we demonstrate how particular protein designs (such as transmembrane proteins engineered to contain large polar regions) can promote protein stacking interactions in the third, out-of-plane, dimension. The insights provided by the new aspects of the specific molecular mechanisms responsible for protein-protein interactions inside the cubic phase presented here should be helpful in guiding the rational design of future in meso trials with successful outcomes.
Collapse
Affiliation(s)
- Niklaus Johner
- Weill Cornell Medical College of Cornell University , New York, New York, 10065, United States
| | | | | | | | | | | |
Collapse
|
36
|
Structural evidence for functional lipid interactions in the betaine transporter BetP. EMBO J 2013; 32:3096-105. [PMID: 24141878 DOI: 10.1038/emboj.2013.226] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 09/11/2013] [Indexed: 11/09/2022] Open
Abstract
Bilayer lipids contribute to the stability of membrane transporters and are crucially involved in their proper functioning. However, the molecular knowledge of how surrounding lipids affect membrane transport is surprisingly limited and despite its general importance is rarely considered in the molecular description of a transport mechanism. One reason is that only few atomic resolution structures of channels or transporters reveal a functional interaction with lipids, which are difficult to detect in X-ray structures per se. Overcoming these difficulties, we report here on a new structure of the osmotic stress-regulated betaine transporter BetP in complex with anionic lipids. This lipid-associated BetP structure is important in the molecular understanding of osmoregulation due to the strong dependence of activity regulation in BetP on the presence of negatively charged lipids. We detected eight resolved palmitoyl-oleoyl phosphatidyl glycerol (PG) lipids mimicking parts of the membrane leaflets and interacting with key residues in transport and regulation. The lipid-protein interactions observed here in structural detail in BetP provide molecular insights into the role of lipids in osmoregulated secondary transport.
Collapse
|
37
|
Abstract
Spatial organization of G-protein coupled receptors (GPCRs) into dimers and higher order oligomers has been demonstrated in vitro and in vivo. The pharmacological readout was shown to depend on the specific interfaces, but why particular regions of the GPCR structure are involved, and how ligand-determined states change them remains unknown. Here we show why protein-membrane hydrophobic matching is attained upon oligomerization at specific interfaces from an analysis of coarse-grained molecular dynamics simulations of the spontaneous diffusion-interaction of the prototypical beta2-adrenergic (β2AR) receptors in a POPC lipid bilayer. The energy penalty from mismatch is significantly reduced in the spontaneously emerging oligomeric arrays, making the spatial organization of the GPCRs dependent on the pattern of mismatch in the monomer. This mismatch pattern is very different for β2AR compared to the highly homologous and structurally similar β1AR, consonant with experimentally observed oligomerization patterns of β2AR and β1AR. The results provide a mechanistic understanding of the structural context of oligomerization.
Collapse
|