1
|
Trautmann-Rodriguez M, Fromen CA. Nanoparticle-Based Pulmonary Immune Engineering. Annu Rev Chem Biomol Eng 2025; 16:249-270. [PMID: 40073112 DOI: 10.1146/annurev-chembioeng-082223-105117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Respiratory conditions represent a significant global healthcare burden impacting hundreds of millions worldwide and necessitating new treatment paradigms. Pulmonary immune engineering using synthetic nanoparticle (NP) platforms can reprogram immune responses for therapeutically beneficial or protective responses directly within the lung tissue. However, effectively localizing these game-changing approaches to the lung remains a significant challenge due to the lung's natural defense. We highlight the target pulmonary immune cells and address advances to localize NPs to the lung via both aerosol and vascular delivery. For each administration route, we discuss physiochemical design rules and recent immune-modulatory successes of synthetic, extracellular vesicle, and cell-mediated NP delivery. We aim to provide readers with an updated summary of this emerging field and offer a roadmap for future research aimed at enhancing the efficacy of pulmonary immunotherapies.
Collapse
Affiliation(s)
| | - Catherine A Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA;
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
2
|
Quan J, Liu Q, Li P, Yang Z, Zhang Y, Zhao F, Zhu G. Mesenchymal stem cell exosome therapy: current research status in the treatment of neurodegenerative diseases and the possibility of reversing normal brain aging. Stem Cell Res Ther 2025; 16:76. [PMID: 39985030 PMCID: PMC11846194 DOI: 10.1186/s13287-025-04160-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/21/2025] [Indexed: 02/23/2025] Open
Abstract
With the exacerbation of the aging population trend, a series of neurodegenerative diseases caused by brain aging have become increasingly common, significantly impacting the daily lives of the elderly and imposing heavier burdens on nations and societies. Brain aging is a complex process involving multiple mechanisms, including oxidative stress, apoptosis of damaged neuronal cells, chronic inflammation, and mitochondrial dysfunction, and research into new therapeutic strategies to delay brain aging has gradually become a research focus in recent years. Mesenchymal stem cells (MSCs) have been widely used in cell therapy due to their functions such as antioxidative stress, anti-inflammation, and tissue regeneration. However, accompanying safety issues such as immune rejection, tumor development, and pulmonary embolism cannot be avoided. Studies have shown that using exosome derived from mesenchymal stem cells (MSC-Exo) for the treatment of neurodegenerative diseases is a safe and effective method. It not only has the therapeutic effects of stem cells but also avoids the risks associated with cell therapy. Therefore, exploring new therapeutic strategies to delay normal brain aging from the mechanism of MSC-Exo in the treatment of neurodegenerative diseases is feasible. This review summarizes the characteristics of MSC-Exo and their clinical progress in the treatment of neurodegenerative diseases, aiming to explore the possibility and potential mechanisms of MSC-Exo in reversing brain aging.
Collapse
Affiliation(s)
- Jinglan Quan
- Department of Nuclear Medicine, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming, Yunnan, 650032, China
| | - Qing Liu
- Department of Library, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming, Yunnan, 650032, China
| | - Pinghui Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming, Yunnan, 650032, China
| | - Zhiyu Yang
- Department of Nuclear Medicine, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming, Yunnan, 650032, China
| | - Yaohui Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming, Yunnan, 650032, China
| | - Fuxing Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming, Yunnan, 650032, China
| | - Gaohong Zhu
- Department of Nuclear Medicine, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming, Yunnan, 650032, China.
| |
Collapse
|
3
|
Zheng B, Wang X, Guo M, Tzeng CM. Current Development of Mesenchymal Stem Cell-Derived Extracellular Vesicles. Cell Transplant 2025; 34:9636897241297623. [PMID: 39874070 PMCID: PMC11775985 DOI: 10.1177/09636897241297623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 01/30/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are pluripotent stem cells with self-renewal. They play a critical role in cell therapy due to their powerful immunomodulatory and regenerative effects. Recent studies suggest that one of the key therapeutic mechanisms of MSCs seems to derive from their paracrine product, called extracellular vesicles (EVs). The EVs contain much DNA, messenger RNA (mRNA), microRNA, and protein components, which can exert intracellular communication to target cells. In clinical applications, the MSC-EVs have been widely used in tissue repair and immune disorder diseases. However, there are serval issues need to be considered such as how to accomplish the large-scale production of EVs and how to verify the exact mechanism of EVs. In this review, we summarize the current progress of MSC-EVs and discuss the challenges and future of MSC-EVs.
Collapse
Affiliation(s)
- Bingyi Zheng
- Cells Good (Xiamen) Inc. Huli, Xiamen Torch Development Zone, Fujian, China
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Xueting Wang
- Cells Good (Xiamen) Inc. Huli, Xiamen Torch Development Zone, Fujian, China
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Meizhai Guo
- Cells Good (Xiamen) Inc. Huli, Xiamen Torch Development Zone, Fujian, China
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Chi-Meng Tzeng
- Cells Good (Xiamen) Inc. Huli, Xiamen Torch Development Zone, Fujian, China
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
4
|
Rahnama M, Heidari M, Poursalehi Z, Golchin A. Global Trends of Exosomes Application in Clinical Trials: A Scoping Review. Stem Cell Rev Rep 2024; 20:2165-2193. [PMID: 39340738 DOI: 10.1007/s12015-024-10791-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Exosomes, nano-sized extracellular vesicles, have emerged as a promising tool for the diagnosis and treatment of various intractable diseases, including chronic wounds and cancers. As our understanding of exosomes continues to grow, their potential as a powerful therapeutic modality in medicine is also expanding. This systematic review aims to examine the progress of exosome-based clinical trials and provide a comprehensive overview of the therapeutic perspectives of exosomes. METHODS This systematic review strictly follows PRISMA guidelines and has been registered in PROSPERO, the International Prospective Register of Systematic Reviews. It encompasses articles from January 2000 to January 2023, sourced from bibliographic databases, with targeted search terms targeting exosome applications in clinical trials. During the screening process, strict inclusion and exclusion criteria were applied, including a focus on clinical trials utilizing different cell-derived exosomes for therapeutic purposes. RESULTS Among the 522 publications initially identified, only 10 studies met the stringent eligibility criteria after meticulous screening. The selection process involved systematically excluding duplicates and irrelevant articles to provide a transparent overview. CONCLUSION According to our systematic review, exosomes have promising applications in a variety of medical fields, including cell-free therapies and drug delivery systems for treating a variety of diseases, especially cancers and chronic wounds. To ensure safety, potency, and broader clinical applications, further optimization of exosome extraction, loading, targeting, and administration is necessary. While cell-based therapeutics are increasingly utilizing exosomes, this field is still in its infancy, and ongoing clinical trials will provide valuable insights into the clinical utility of exosomes.
Collapse
Affiliation(s)
- Maryam Rahnama
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Heidari
- Department of Biostatistics and Epidemiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Poursalehi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Golchin
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
5
|
Rahmani A, Soleymani A, Almukhtar M, Behzad Moghadam K, Vaziri Z, Hosein Tabar Kashi A, Adabi Firoozjah R, Jafari Tadi M, Zolfaghari Dehkharghani M, Valadi H, Moghadamnia AA, Gasser RB, Rostami A. Exosomes, and the potential for exosome-based interventions against COVID-19. Rev Med Virol 2024; 34:e2562. [PMID: 38924213 DOI: 10.1002/rmv.2562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/17/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
Since late 2019, the world has been devastated by the coronavirus disease 2019 (COVID-19) induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with more than 760 million people affected and ∼seven million deaths reported. Although effective treatments for COVID-19 are currently limited, there has been a strong focus on developing new therapeutic approaches to address the morbidity and mortality linked to this disease. An approach that is currently being investigated is the use of exosome-based therapies. Exosomes are small, extracellular vesicles that play a role in many clinical diseases, including viral infections, infected cells release exosomes that can transmit viral components, such as miRNAs and proteins, and can also include receptors for viruses that facilitate viral entry into recipient cells. SARS-CoV-2 has the ability to impact the formation, secretion, and release of exosomes, thereby potentially facilitating or intensifying the transmission of the virus among cells, tissues and individuals. Therefore, designing synthetic exosomes that carry immunomodulatory cargo and antiviral compounds are proposed to be a promising strategy for the treatment of COVID-19 and other viral diseases. Moreover, exosomes generated from mesenchymal stem cells (MSC) might be employed as cell-free therapeutic agents, as MSC-derived exosomes can diminish the cytokine storm and reverse the suppression of host anti-viral defences associated with COVID-19, and boost the repair of lung damage linked to mitochondrial activity. The present article discusses the significance and roles of exosomes in COVID-19, and explores potential future applications of exosomes in combating this disease. Despite the challenges posed by COVID-19, exosome-based therapies could represent a promising avenue for improving patient outcomes and reducing the impact of this disease.
Collapse
Affiliation(s)
- Abolfazl Rahmani
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Soleymani
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Kimia Behzad Moghadam
- Independent Researcher, Former University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Zahra Vaziri
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Hosein Tabar Kashi
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Reza Adabi Firoozjah
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mehrdad Jafari Tadi
- Department of Cell and Molecular Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Maryam Zolfaghari Dehkharghani
- Department of Healthcare Administration and Policy, School of Public Health, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada, USA
| | - Hadi Valadi
- Department of Rheumatology and Inflammation Research Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ali Akbar Moghadamnia
- Department of Pharmacology and Toxicology, Babol University of Medical Sciences, Babol, Iran
- Pharmaceutical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Robin B Gasser
- Department of Veterinary Biosciences, Faculty of Science, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Ali Rostami
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
6
|
Baig MS, Ahmad A, Pathan RR, Mishra RK. Precision Nanomedicine with Bio-Inspired Nanosystems: Recent Trends and Challenges in Mesenchymal Stem Cells Membrane-Coated Bioengineered Nanocarriers in Targeted Nanotherapeutics. J Xenobiot 2024; 14:827-872. [PMID: 39051343 PMCID: PMC11270309 DOI: 10.3390/jox14030047] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/09/2024] [Accepted: 06/15/2024] [Indexed: 07/27/2024] Open
Abstract
In the recent past, the formulation and development of nanocarriers has been elaborated into the broader fields and opened various avenues in their preclinical and clinical applications. In particular, the cellular membrane-based nanoformulations have been formulated to surpass and surmount the limitations and restrictions associated with naïve or free forms of therapeutic compounds and circumvent various physicochemical and immunological barriers including but not limited to systemic barriers, microenvironmental roadblocks, and other cellular or subcellular hinderances-which are quite heterogeneous throughout the diseases and patient cohorts. These limitations in drug delivery have been overcome through mesenchymal cells membrane-based precision therapeutics, where these interventions have led to the significant enhancements in therapeutic efficacies. However, the formulation and development of nanocarriers still focuses on optimization of drug delivery paradigms with a one-size-fits-all resolutions. As mesenchymal stem cell membrane-based nanocarriers have been engineered in highly diversified fashions, these are being optimized for delivering the drug payloads in more and better personalized modes, entering the arena of precision as well as personalized nanomedicine. In this Review, we have included some of the advanced nanocarriers which have been designed and been utilized in both the non-personalized as well as precision applicability which can be employed for the improvements in precision nanotherapeutics. In the present report, authors have focused on various other aspects of the advancements in stem cells membrane-based nanoparticle conceptions which can surmount several roadblocks and barriers in drug delivery and nanomedicine. It has been suggested that well-informed designing of these nanocarriers will lead to appreciable improvements in the therapeutic efficacy in therapeutic payload delivery applications. These approaches will also enable the tailored and customized designs of MSC-based nanocarriers for personalized therapeutic applications, and finally amending the patient outcomes.
Collapse
Affiliation(s)
- Mirza Salman Baig
- Anjuman-I-Islam Kalsekar Technical Campus School of Pharmacy, Sector-16, Near Thana Naka, Khandagao, New Panvel, Navi Mumbai 410206, Maharashtra, India;
| | - Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC), Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, Foothills Medical Centre, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | - Rakesh Kumar Mishra
- School of Health Sciences and Technology, University of Petroleum and Energy Studies (UPES), Bidholi, Dehradun 248007, Uttarakhand, India;
| |
Collapse
|
7
|
Lu W, Yan L, Tang X, Wang X, Du J, Zou Z, Li L, Ye J, Zhou L. Efficacy and safety of mesenchymal stem cells therapy in COVID-19 patients: a systematic review and meta-analysis of randomized controlled trials. J Transl Med 2024; 22:550. [PMID: 38851730 PMCID: PMC11162060 DOI: 10.1186/s12967-024-05358-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) has become a serious public health issue. In COVID-19 patients, the elevated levels of inflammatory cytokines lead to the manifestation of COVID-19 symptoms, such as lung tissue edema, lung diffusion dysfunction, acute respiratory distress syndrome (ARDS), secondary infection, and ultimately mortality. Mesenchymal stem cells (MSCs) exhibit anti-inflammatory and immunomodulatory properties, thus providing a potential treatment option for COVID-19. The number of clinical trials of MSCs for COVID-19 has been rising. However, the treatment protocols and therapeutic effects of MSCs for COVID-19 patients are inconsistent. This meta-analysis was performed to systematically determine the safety and efficacy of MSC infusion in COVID-19 patients. METHODS We conducted a comprehensive literature search from PubMed/Medline, Web of Science, EMBASE, and Cochrane Library up to 22 November 2023 to screen for eligible randomized controlled trials. Inclusion and exclusion criteria for searched literature were formulated according to the PICOS principle, followed by the use of literature quality assessment tools to assess the risk of bias. Finally, outcome measurements including therapeutic efficacy, clinical symptoms, and adverse events of each study were extracted for statistical analysis. RESULTS A total of 14 randomized controlled trials were collected. The results of enrolled studies demonstrated that patients with COVID-19 pneumonia who received MSC inoculation showed a decreased mortality compared with counterparts who received conventional treatment (RR: 0.76; 95% CI [0.60, 0.96]; p = 0.02). Reciprocally, MSC inoculation improved the clinical symptoms in patients (RR: 1.28; 95% CI [1.06, 1.55]; p = 0.009). In terms of immune biomarkers, MSC treatment inhibited inflammation responses in COVID-19 patients, as was indicated by the decreased levels of CRP and IL-6. Importantly, our results showed that no significant differences in the incidence of adverse reactions or serious adverse events were monitored in patients after MSC inoculation. CONCLUSION This meta-analysis demonstrated that MSC inoculation is effective and safe in the treatment of patients with COVID-19 pneumonia. Without increasing the incidence of adverse events or serious adverse events, MSC treatment decreased patient mortality and inflammatory levels and improved the clinical symptoms in COVID-19 patients. However, large-cohort randomized controlled trials with expanded numbers of patients are required to further confirm our results.
Collapse
Affiliation(s)
- Wenming Lu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, 341000, Jiangxi, People's Republic of China
- The First Clinical College of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Longxiang Yan
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, 341000, Jiangxi, People's Republic of China
- The First Clinical College of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Xingkun Tang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, 341000, Jiangxi, People's Republic of China
| | - Xuesong Wang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, 341000, Jiangxi, People's Republic of China
| | - Jing Du
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, 341000, Jiangxi, People's Republic of China
| | - Zhengwei Zou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Lincai Li
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Jiangxi Provincal Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Lin Zhou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China.
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
- Jiangxi Provincal Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
| |
Collapse
|
8
|
Marquez-Curtis LA, Elliott JAW. Mesenchymal stromal cells derived from various tissues: Biological, clinical and cryopreservation aspects: Update from 2015 review. Cryobiology 2024; 115:104856. [PMID: 38340887 DOI: 10.1016/j.cryobiol.2024.104856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Mesenchymal stromal cells (MSCs) have become one of the most investigated and applied cells for cellular therapy and regenerative medicine. In this update of our review published in 2015, we show that studies continue to abound regarding the characterization of MSCs to distinguish them from other similar cell types, the discovery of new tissue sources of MSCs, and the confirmation of their properties and functions that render them suitable as a therapeutic. Because cryopreservation is widely recognized as the only technology that would enable the on-demand availability of MSCs, here we show that although the traditional method of cryopreserving cells by slow cooling in the presence of 10% dimethyl sulfoxide (Me2SO) continues to be used by many, several novel MSC cryopreservation approaches have emerged. As in our previous review, we conclude from these recent reports that viable and functional MSCs from diverse tissues can be recovered after cryopreservation using a variety of cryoprotectants, freezing protocols, storage temperatures, and periods of storage. We also show that for logistical reasons there are now more studies devoted to the cryopreservation of tissues from which MSCs are derived. A new topic included in this review covers the application in COVID-19 of MSCs arising from their immunomodulatory and antiviral properties. Due to the inherent heterogeneity in MSC populations from different sources there is still no standardized procedure for their isolation, identification, functional characterization, cryopreservation, and route of administration, and not likely to be a "one-size-fits-all" approach in their applications in cell-based therapy and regenerative medicine.
Collapse
Affiliation(s)
- Leah A Marquez-Curtis
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada, T6G 1C9
| | - Janet A W Elliott
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada, T6G 1C9.
| |
Collapse
|
9
|
Li J, Tang Y, Yin L, Lin X, Luo Z, Wang S, Yuan L, Liang P, Jiang B. Mesenchymal stem cell-derived exosomes in myocardial infarction: Therapeutic potential and application. J Gene Med 2024; 26:e3596. [PMID: 37726968 DOI: 10.1002/jgm.3596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/15/2023] [Accepted: 09/03/2023] [Indexed: 09/21/2023] Open
Abstract
Myocardial infarction refers to the irreversible impairment of cardiac function resulting from the permanent loss of numerous cardiomyocytes and the formation of scar tissue. This condition is caused by acute and persistent inadequate blood supply to the heart's arteries. In the treatment of myocardial infarction, Mesenchymal stem cells (MSCs) play a crucial role because of their powerful therapeutic effects. These effects primarily stem from the paracrine secretion of multiple factors by MSCs, with exosome-carried microRNAs being the most effective component in promoting cardiac function recovery after infarction. Exosome therapy has emerged as a promising cell-free treatment for myocardial infarction as a result of its relatively simple composition, low immunogenicity and controlled transplantation dose. Despite these advantages, maintaining the stability of exosomes after transplantation and enhancing their targeting effect remain significant challenges in clinical applications. In recent developments, several approaches have been designed to optimize exosome therapy. These include enhancing exosome retention, improving their ability to target specific effects, pretreating MSC-derived exosomes and employing transgenic MSC-derived exosomes. This review primarily focuses on describing the biological characteristics of exosomes, their therapeutic potential and their application in treating myocardial infarction.
Collapse
Affiliation(s)
- Jing Li
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Yuting Tang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Leijing Yin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Xiaofang Lin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Zhengyang Luo
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Shuxin Wang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Ludong Yuan
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bimei Jiang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Amondarain M, Gallego I, Puras G, Saenz-Del-Burgo L, Luzzani C, Pedraz JL. The role of microfluidics and 3D-bioprinting in the future of exosome therapy. Trends Biotechnol 2023; 41:1343-1359. [PMID: 37302911 DOI: 10.1016/j.tibtech.2023.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/28/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023]
Abstract
Exosome-based strategies constitute a promising tool for therapeutics, avoiding potential immunogenic and tumorigenic side-effects of cell therapies. However, the collection of a suitable exosome pool, and the need for high doses with conventional administration approaches, hamper their clinical translation. To overcome these challenges, versatile exosome collection strategies together with advanced delivery platforms may represent major progress in this field. Microfluidics enables large-scale gathering of both natural and synthetic exosomes for their implementation into bioinks, while 3D-bioprinting holds great promise in regenerative medicine with the use of exosome-loaded scaffolds that mimic the target tissue with controlled pharmacokinetics and pharmacodynamics. Hence, the combination of both strategies might become the key for the translation of exosome therapies to clinical practice.
Collapse
Affiliation(s)
- Mikele Amondarain
- CONICET - Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Buenos Aires, Argentina
| | - Idoia Gallego
- Laboratory of Pharmaceutics, NanoBioCel Group, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| | - Gustavo Puras
- Laboratory of Pharmaceutics, NanoBioCel Group, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Laura Saenz-Del-Burgo
- Laboratory of Pharmaceutics, NanoBioCel Group, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Carlos Luzzani
- CONICET - Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Buenos Aires, Argentina
| | - José Luis Pedraz
- Laboratory of Pharmaceutics, NanoBioCel Group, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| |
Collapse
|
11
|
Zhuang X, Jiang Y, Yang X, Fu L, Luo L, Dong Z, Zhao J, Hei F. Advances of mesenchymal stem cells and their derived extracellular vesicles as a promising therapy for acute respiratory distress syndrome: from bench to clinic. Front Immunol 2023; 14:1244930. [PMID: 37711624 PMCID: PMC10497773 DOI: 10.3389/fimmu.2023.1244930] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is an acute inflammatory lung injury characterized by diffuse alveolar damage. The period prevalence of ARDS was 10.4% of ICU admissions in 50 countries. Although great progress has been made in supportive care, the hospital mortality rate of severe ARDS is still up to 46.1%. Moreover, up to now, there is no effective pharmacotherapy for ARDS and most clinical trials focusing on consistently effective drugs have met disappointing results. Mesenchymal stem cells (MSCs) and their derived extracellular vesicles (EVs) have spawned intense interest of a wide range of researchers and clinicians due to their robust anti-inflammatory, anti-apoptotic and tissue regeneration properties. A growing body of evidence from preclinical studies confirmed the promising therapeutic potential of MSCs and their EVs in the treatment of ARDS. Based on the inspiring experimental results, clinical trials have been designed to evaluate safety and efficacy of MSCs and their EVs in ARDS patients. Moreover, trials exploring their optimal time window and regimen of drug administration are ongoing. Therefore, this review aims to present an overview of the characteristics of mesenchymal stem cells and their derived EVs, therapeutic mechanisms for ARDS and research progress that has been made over the past 5 years.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Feilong Hei
- Department of Cardiopulmonary Bypass, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Sudduth ER, Trautmann-Rodriguez M, Gill N, Bomb K, Fromen CA. Aerosol pulmonary immune engineering. Adv Drug Deliv Rev 2023; 199:114831. [PMID: 37100206 PMCID: PMC10527166 DOI: 10.1016/j.addr.2023.114831] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/23/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023]
Abstract
Aerosolization of immunotherapies poses incredible potential for manipulating the local mucosal-specific microenvironment, engaging specialized pulmonary cellular defenders, and accessing mucosal associated lymphoid tissue to redirect systemic adaptive and memory responses. In this review, we breakdown key inhalable immunoengineering strategies for chronic, genetic, and infection-based inflammatory pulmonary disorders, encompassing the historic use of immunomodulatory agents, the transition to biological inspired or derived treatments, and novel approaches of complexing these materials into drug delivery vehicles for enhanced release outcomes. Alongside a brief description of key immune targets, fundamentals of aerosol drug delivery, and preclinical pulmonary models for immune response, we survey recent advances of inhaled immunotherapy platforms, ranging from small molecules and biologics to particulates and cell therapies, as well as prophylactic vaccines. In each section, we address the formulation design constraints for aerosol delivery as well as advantages for each platform in driving desirable immune modifications. Finally, prospects of clinical translation and outlook for inhaled immune engineering are discussed.
Collapse
Affiliation(s)
- Emma R Sudduth
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | | | - Nicole Gill
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kartik Bomb
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Catherine A Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
13
|
Zhou W, Hu S, Wu Y, Xu H, Zhu L, Deng H, Wang S, Chen Y, Zhou H, Lv X, Li Q, Yang H. A Bibliometric Analysis of Mesenchymal Stem Cell-Derived Exosomes in Acute Lung Injury/Acute Respiratory Distress Syndrome from 2013 to 2022. Drug Des Devel Ther 2023; 17:2165-2181. [PMID: 37521034 PMCID: PMC10386843 DOI: 10.2147/dddt.s415659] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND Mesenchymal stem cell-derived exosomes (MSC-exosomes) have been found to effectively improve the systemic inflammatory response caused by acute lung injury and acute respiratory distress syndrome (ALI/ARDS), regulate systemic immune disorders, and help injured cells repair. The purpose of this study was to take a holistic view of the current status and trends of MSC-exosomes research in ALI/ARDS. METHODS Bibliometrix, Citespace and VOSviewer software were used for bibliometric analysis of the data. We analysed the world trends, country distribution, institution contribution, most relevant journals and authors, research hotspots, and research hotspots related to Coronavirus Disease 2019 (COVID-19) based on the data collected. RESULTS China possessed the largest number of publications, while the USA had the highest H-index and the number of citations. Both China and the USA had a high influence in this research field. The largest number of publications in the field of MSC-exosomes and ALI/ARDS were mainly from the University of California system. Stem Cell Research & Therapy published the largest number of papers in this scope. The author with the greatest contribution was LEE JW, and ZHU YG published an article in Stem Cell with the highest local citation score. The most frequent keyword and the latest research hotspot were "NF-κB" and "Coronavirus Disease 2019". Furthermore, our bibliometric analysis results demonstrated that MSC-exosomes intervention and treatment can effectively alleviate the inflammatory response caused by ALI/ARDS. CONCLUSION Our bibliometric study suggested the USA and China have a strong influence in this field. COVID-19-induced ALI/ARDS had become a hot topic of research.
Collapse
Affiliation(s)
- Wenyu Zhou
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People’s Republic of China
| | - Song Hu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People’s Republic of China
- Graduate School, Wannan Medical College, Wuhu, AnHui, 241002, People’s Republic of China
| | - Yutong Wu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People’s Republic of China
| | - Huan Xu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People’s Republic of China
| | - Lina Zhu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People’s Republic of China
| | - Huimin Deng
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People’s Republic of China
| | - Sheng Wang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People’s Republic of China
| | - Yuanli Chen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People’s Republic of China
| | - Huanping Zhou
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People’s Republic of China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People’s Republic of China
| | - Quanfu Li
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People’s Republic of China
| | - Hao Yang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People’s Republic of China
| |
Collapse
|
14
|
Csobonyeiova M, Smolinska V, Harsanyi S, Ivantysyn M, Klein M. The Immunomodulatory Role of Cell-Free Approaches in SARS-CoV-2-Induced Cytokine Storm-A Powerful Therapeutic Tool for COVID-19 Patients. Biomedicines 2023; 11:1736. [PMID: 37371831 DOI: 10.3390/biomedicines11061736] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Currently, there is still no effective and definitive cure for the coronavirus disease 2019 (COVID-19) caused by the infection of the novel highly contagious severe acute respiratory syndrome virus (SARS-CoV-2), whose sudden outbreak was recorded for the first time in China in late December 2019. Soon after, COVID-19 affected not only the vast majority of China's population but the whole world and caused a global health public crisis as a new pandemic. It is well known that viral infection can cause acute respiratory distress syndrome (ARDS) and, in severe cases, can even be lethal. Behind the inflammatory process lies the so-called cytokine storm (CS), which activates various inflammatory cytokines that damage numerous organ tissues. Since the first outbreak of SARS-CoV-2, various research groups have been intensively trying to investigate the best treatment options; however, only limited outcomes have been achieved. One of the most promising strategies represents using either stem cells, such as mesenchymal stem cells (MSCs)/induced pluripotent stem cells (iPSCs), or, more recently, using cell-free approaches involving conditioned media (CMs) and their content, such as extracellular vesicles (EVs) (e.g., exosomes or miRNAs) derived from stem cells. As key mediators of intracellular communication, exosomes carry a cocktail of different molecules with anti-inflammatory effects and immunomodulatory capacity. Our comprehensive review outlines the complex inflammatory process responsible for the CS, summarizes the present results of cell-free-based pre-clinical and clinical studies for COVID-19 treatment, and discusses their future perspectives for therapeutic applications.
Collapse
Affiliation(s)
- Maria Csobonyeiova
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Apel, Dunajská 52, 811 08 Bratislava, Slovakia
- Regenmed Ltd., Medená 29, 811 08 Bratislava, Slovakia
| | - Veronika Smolinska
- Regenmed Ltd., Medená 29, 811 08 Bratislava, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Stefan Harsanyi
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | | | - Martin Klein
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| |
Collapse
|
15
|
Khosrojerdi A, Soudi S, Hosseini AZ, Khaligh SG, Hashemi SM. The combination of mesenchymal stem cell- and hepatocyte-derived exosomes, along with imipenem, ameliorates inflammatory responses and liver damage in a sepsis mouse model. Life Sci 2023; 326:121813. [PMID: 37257578 DOI: 10.1016/j.lfs.2023.121813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Aim Sepsis is a medical emergency with no definitive treatment. Animal experiments have confirmed the therapeutic characteristics of exosomes in reducing inflammation and tissue damage. The study investigates the effect of MSC and hepatocyte-derived exosomes along with imipenem in controlling systemic and local (liver) inflammation in a mouse model of sepsis. MAIN METHODS To induce sepsis in C57BL/6 mice, the Cecal Ligation and Puncture (CLP) model was used. The mice were given various treatments, including imipenem, MSC-derived exosomes, hepatocyte-derived exosomes, and a mixture of exosomes. Blood and liver samples were collected and analyzed for cell blood count, liver enzymes, NO levels, cytokine concentrations, and bacterial presence. The percentages of TCD3 + CD4+/CD8+ and Treg in the spleen and mesenteric lymph nodes were also assessed using flow cytometry. The pathological changes were assessed in the liver, lung, and heart tissues. In addition, the cytokine content of exosomes was measured by ELISA. KEY FINDINGS Our results demonstrated that MSC-derived exosomes+imipenem could control systemic and local inflammation and increase the TCD4+ and Treg populations. Hepatocyte-derived exosomes+imipenem reduced inflammation in the liver and increased the TCD8+ and Treg populations. The mixture of exosomes+imipenem had the best function in reducing inflammation, maintaining all T lymphocyte populations, reducing liver damage, and ultimately increasing the survival rate. SIGNIFICANCE The mixture of exosomes derived from MSCs and hepatocytes, along with imipenem, in the inflammatory phase of sepsis could be a promising therapeutic strategy in sepsis treatment.
Collapse
Affiliation(s)
- Arezou Khosrojerdi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Ahmad Zavaran Hosseini
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sahar Ghaffari Khaligh
- Department of Pathology, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Wright A, Snyder OL, He H, Christenson LK, Fleming S, Weiss ML. Procoagulant Activity of Umbilical Cord-Derived Mesenchymal Stromal Cells' Extracellular Vesicles (MSC-EVs). Int J Mol Sci 2023; 24:ijms24119216. [PMID: 37298168 DOI: 10.3390/ijms24119216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Many cell types, including cancer cells, release tissue factor (TF)-exposing extracellular vesicles (EVs). It is unknown whether MSC-EVs pose a thromboembolism risk due to TF expression. Knowing that MSCs express TF and are procoagulant, we hypothesize that MSC-EVs also might. Here, we examined the expression of TF and the procoagulant activity of MSC-EVs and the impact of EV isolation methods and cell culture expansion on EV yield, characterization, and potential risk using a design of experiments methodology. MSC-EVs were found to express TF and have procoagulant activity. Thus, when MSC-derived EVs are employed as a therapeutic agent, one might consider TF, procoagulant activity, and thromboembolism risk and take steps to prevent them.
Collapse
Affiliation(s)
- Adrienne Wright
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
- Midwest Institute of Comparative Stem Cell Biotechnology, Kansas State University, Manhattan, KS 66506, USA
| | - Orman Larry Snyder
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
- Midwest Institute of Comparative Stem Cell Biotechnology, Kansas State University, Manhattan, KS 66506, USA
| | - Hong He
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
- Midwest Institute of Comparative Stem Cell Biotechnology, Kansas State University, Manhattan, KS 66506, USA
| | - Lane K Christenson
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sherry Fleming
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Mark L Weiss
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
- Midwest Institute of Comparative Stem Cell Biotechnology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
17
|
Zhang E, Phan P, Zhao Z. Cellular nanovesicles for therapeutic immunomodulation: A perspective on engineering strategies and new advances. Acta Pharm Sin B 2023; 13:1789-1827. [PMID: 37250173 PMCID: PMC10213819 DOI: 10.1016/j.apsb.2022.08.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 02/08/2023] Open
Abstract
Cellular nanovesicles which are referred to as cell-derived, nanosized lipid bilayer structures, have emerged as a promising platform for regulating immune responses. Owing to their outstanding advantages such as high biocompatibility, prominent structural stability, and high loading capacity, cellular nanovesicles are suitable for delivering various immunomodulatory molecules, such as small molecules, nucleic acids, peptides, and proteins. Immunomodulation induced by cellular nanovesicles has been exploited to modulate immune cell behaviors, which is considered as a novel cell-free immunotherapeutic strategy for the prevention and treatment of diverse diseases. Here we review emerging concepts and new advances in leveraging cellular nanovesicles to activate or suppress immune responses, with the aim to explicate their applications for immunomodulation. We overview the general considerations and principles for the design of engineered cellular nanovesicles with tailored immunomodulatory activities. We also discuss new advances in engineering cellular nanovesicles as immunotherapies for treating major diseases.
Collapse
Affiliation(s)
- Endong Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Philana Phan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
- Translational Oncology Program, University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
18
|
Koh B, Sulaiman N, Fauzi MB, Law JX, Ng MH, Yuan TL, Azurah AGN, Mohd Yunus MH, Idrus RBH, Yazid MD. A Three-Dimensional Xeno-Free Culture Condition for Wharton's Jelly-Mesenchymal Stem Cells: The Pros and Cons. Int J Mol Sci 2023; 24:ijms24043745. [PMID: 36835154 PMCID: PMC9960744 DOI: 10.3390/ijms24043745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 02/15/2023] Open
Abstract
Xeno-free three-dimensional cultures are gaining attention for mesenchymal stem cell (MSCs) expansion in clinical applications. We investigated the potential of xeno-free serum alternatives, human serum and human platelet lysate, to replace the current conventional use of foetal bovine serum for subsequent MSCs microcarrier cultures. In this study, Wharton's Jelly MSCs were cultured in nine different media combinations to identify the best xeno-free culture media for MSCs culture. Cell proliferation and viability were identified, and the cultured MSCs were characterised in accordance with the minimal criteria for defining multipotent mesenchymal stromal cells by the International Society for Cellular Therapy (ISCT). The selected culture media was then used in the microcarrier culture of MSCs to determine the potential of a three-dimensional culture system in the expansion of MSCs for future clinical applications, and to identify the immunomodulatory potential of cultured MSCs. Low Glucose DMEM (LG) + Human Platelet (HPL) lysate media appeared to be good candidates for replacing conventional MSCs culture media in our monolayer culture system. MSCs cultured in LG-HPL achieved high cell yield, with characteristics that remained as described by ISCT, although the overall mitochondrial activity of the cells was lower than the control and the subsequent effects remained unknown. MSC microcarrier culture, on the other hand, showed comparable cell characteristics with monolayer culture, yet had stagnated cell proliferation, which is potentially due to the inactivation of FAK. Nonetheless, both the MSCs monolayer culture and the microcarrier culture showed high suppressive activity on TNF-α, and only the MSC microcarrier culture has a better suppression of IL-1 secretion. In conclusion, LG-HPL was identified as a good xeno-free media for WJMSCs culture, and although further mechanistic research is needed, the results show that the xeno-free three-dimensional culture maintained MSC characteristics and improved immunomodulatory activities, suggesting the potential of translating the monolayer culture into this culture system in MSC expansion for future clinical application.
Collapse
Affiliation(s)
- Benson Koh
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Ming Medical Sdn Bhd, D3-3 (2nd Floor), Block D3 Dana 1 Commercial Centre, Jalan PJU 1a/46, Petaling Jaya 47301, Malaysia
| | - Nadiah Sulaiman
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Min Hwei Ng
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Too Lih Yuan
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Abdul Ghani Nur Azurah
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mohd Heikal Mohd Yunus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Ruszymah Bt Hj Idrus
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Correspondence: ; Tel.: +60-3-9145-6995
| |
Collapse
|
19
|
Jerkic M, Szaszi K, Laffey JG, Rotstein O, Zhang H. Key Role of Mesenchymal Stromal Cell Interaction with Macrophages in Promoting Repair of Lung Injury. Int J Mol Sci 2023; 24:ijms24043376. [PMID: 36834784 PMCID: PMC9965074 DOI: 10.3390/ijms24043376] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Lung macrophages (Mφs) are essential for pulmonary innate immunity and host defense due to their dynamic polarization and phenotype shifts. Mesenchymal stromal cells (MSCs) have secretory, immunomodulatory, and tissue-reparative properties and have shown promise in acute and chronic inflammatory lung diseases and in COVID-19. Many beneficial effects of MSCs are mediated through their interaction with resident alveolar and pulmonary interstitial Mφs. Bidirectional MSC-Mφ communication is achieved through direct contact, soluble factor secretion/activation, and organelle transfer. The lung microenvironment facilitates MSC secretion of factors that result in Mφ polarization towards an immunosuppressive M2-like phenotype for the restoration of tissue homeostasis. M2-like Mφ in turn can affect the MSC immune regulatory function in MSC engraftment and tissue reparatory effects. This review article highlights the mechanisms of crosstalk between MSCs and Mφs and the potential role of their interaction in lung repair in inflammatory lung diseases.
Collapse
Affiliation(s)
- Mirjana Jerkic
- The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1T8, Canada
- Correspondence:
| | - Katalin Szaszi
- The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1T8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - John G. Laffey
- The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1T8, Canada
- Anaesthesia and Intensive Care Medicine, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
| | - Ori Rotstein
- The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1T8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Haibo Zhang
- The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1T8, Canada
- Department of Anesthesiology and Pain Medicine, Interdepartmental Division of Critical Care Medicine and Department of Physiology, University of Toronto, Toronto, ON M5G 1E2, Canada
| |
Collapse
|
20
|
Arjmand B, Alavi-Moghadam S, Sarvari M, Rezaei-Tavirani M, Rezazadeh- Mafi A, Arjmand R, Nikandish M, Nasli‐Esfahani E, Larijani B. Critical roles of cytokine storm and bacterial infection in patients with COVID-19: therapeutic potential of mesenchymal stem cells. Inflammopharmacology 2023; 31:171-206. [PMID: 36600055 PMCID: PMC9812357 DOI: 10.1007/s10787-022-01132-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 has been a shocking disaster for healthcare systems worldwide since December 2019. This virus can affect all systems of the body and its symptoms vary from a simple upper respiratory infection to fatal complications including end-organ damage. On the other hand, the normal immune system plays a pivotal role in the recovery of infectious diseases such as COVID-19. However, occasionally, exaggerated immune system inflammation and an excessive synthesis of cytokines, known as a "cytokine storm," can deteriorate the patient's clinical condition. Secondary bacterial co-infection is another problem in COVID-19 which affects the prognosis of patients. Although there are a few studies about this complication, they suggest not using antibiotics commonly, especially broad-spectrum ones. During this pandemic, various approaches and therapeutics were introduced for treating COVID-19 patients. However, available treatments are not helpful enough, especially for complicated cases. Hence, in this era, cell therapy and regenerative medicine will create new opportunities. Therefore, the therapeutic benefits of mesenchymal stem cells, especially their antimicrobial activity, will help us understand how to treat COVID-19. Herein, mesenchymal stem cells may stop the immune system from becoming overactive in COVID-19 patients. On the other side, the stem cells' capacity for repair could encourage natural healing processes.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Iranian Cancer Control Center (MACSA), Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Ahmad Rezazadeh- Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shaheed Beheshti Medical University, Tehran, Iran
| | - Rasta Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Nikandish
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Ensieh Nasli‐Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Norouzi-Barough L, Asgari Khosroshahi A, Gorji A, Zafari F, Shahverdi Shahraki M, Shirian S. COVID-19-Induced Stroke and the Potential of Using Mesenchymal Stem Cells-Derived Extracellular Vesicles in the Regulation of Neuroinflammation. Cell Mol Neurobiol 2023; 43:37-46. [PMID: 35025001 PMCID: PMC8755896 DOI: 10.1007/s10571-021-01169-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023]
Abstract
Ischemic stroke (IS) is a known neurological complication of COVID-19 infection, which is associated with high mortality and disability. Following IS, secondary neuroinflammation that occurs can play both harmful and beneficial roles and lead to further injury or repair of damaged neuronal tissue, respectively. Since inflammation plays a pivotal role in the pathogenesis of COVID-19-induced stroke, targeting neuroinflammation could be an effective strategy for modulating the immune responses following ischemic events. Numerous investigations have indicated that the application of mesenchymal stem cells-derived extracellular vesicles (MSC-EVs) improves functional recovery following stroke, mainly through reducing neuroinflammation as well as promoting neurogenesis and angiogenesis. Therefore, MSC-EVs can be applied for the regulation of SARS-CoV-2-mediated inflammation and the management of COVID-19- related ischemic events. In this study, we have first described the advantages and disadvantages of neuroinflammation in the pathological evolution after IS and summarized the characteristics of neuroinflammation in COVID-19-related stroke. Then, we have discussed the potential benefit of MSC-EVs in the regulation of inflammatory responses after COVID-19-induced ischemic events.
Collapse
Affiliation(s)
- Leyla Norouzi-Barough
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Ali Gorji
- Epilepsy Research Center, Department of Neurosurgery, Westfälische Wilhelms-Universitat Münster, Munster, Germany
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Fariba Zafari
- Cellular and Molecular Research Center, Research Institute for Prevention of Non- Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran.
- Shiraz Molecular Pathology Research Center, Dr. Daneshbod Pathol Lab, Shiraz, Iran.
| |
Collapse
|
22
|
Tan Y, Cai J, Wang Z. Epsilon-caprolactone-modified polyethylenimine as a genetic vehicle for stem cell-based bispecific antibody and exosome synergistic therapy. Regen Biomater 2022; 10:rbac090. [PMID: 36683744 PMCID: PMC9847525 DOI: 10.1093/rb/rbac090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/15/2022] [Accepted: 10/22/2022] [Indexed: 11/07/2022] Open
Abstract
Bispecific antibodies (BsAb) have gained significant momentum in clinical application. However, the rapid enzymolysis and metabolism of protein drugs usually induce short circulation in vivo, and developing an efficient protein delivery system still is a bottleneck. Mesenchymal stem cells (MSCs) have become an attractive therapeutic carrier for cancers. Genetic modification enables MSCs to express and secrete specific proteins, which is essential for therapeutic efficacy. However, efficient gene transfer into MSCs is still a challenge. In this study, we applied epsilon-caprolactone-modified polyethylenimine (PEI-CL) as an efficacy carrier for plasmid transfection into MSC that served as in situ 'cell factory' for anti-CD3/CD20 BsAb preparation. Herein, the PEI-CL encapsulates the minicircle plasmid and mediates cell transfection efficiently. Thus, the anti-CD3/CD20 BsAb is secreted from MSC and recruited T cell, resulting in highly sensitive cytotoxicity in the human B-cell lymphoma. Furthermore, these stem cells produce exosomes bearing MiR-15a/MiR-16, which could negatively regulate cancer's oncogenes BCL-2 for adjuvant therapy. Meanwhile, high immunologic factors like tumor necrosis factor-α and interferon-γ are generated and enhance immunotherapy efficacy. The engineered MSCs are demonstrated as an efficient route for BsAb production, and these bioactive components contribute to synergistic therapy, which would be an innovative treatment.
Collapse
Affiliation(s)
- Yan Tan
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jiali Cai
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Center for Functional Biomaterials, Sun Yat-Sen University, Guangzhou 510275, China
| | | |
Collapse
|
23
|
Abadi B, Aarabi Jeshvaghani AH, Fathalipour H, Dehghan L, Rahimi Sirjani K, Forootanfar H. Therapeutic Strategies in the Fight against COVID-19: From Bench to Bedside. IRANIAN JOURNAL OF MEDICAL SCIENCES 2022; 47:517-532. [PMID: 36380976 PMCID: PMC9652495 DOI: 10.30476/ijms.2021.92662.2396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/17/2021] [Accepted: 12/10/2021] [Indexed: 06/16/2023]
Abstract
In December 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in China. This virus rapidly spread worldwide and was declared a global pandemic by the World Health Organization (WHO) in March 2020. High incidence, long incubation period, and diverse clinical signs of the disease posed a huge challenge globally. The efforts of health systems have been focused on repurposing existing drugs or developing innovative therapies to reduce the morbidity and mortality associated with SARS-CoV-2. In addition, most of the large pharmaceutical companies are intensely working on vaccine development to swiftly deliver safe and effective vaccines to prevent further spread of the virus. In this review, we will discuss the latest data on therapeutic strategies undergoing clinical trials. Additionally, we will provide a summary of vaccines currently under development.
Collapse
Affiliation(s)
- Banafshe Abadi
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Brain Cancer Research Core, Universal Scientific Education and Research Network, Tehran, Iran
| | | | - Hadis Fathalipour
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Leili Dehghan
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
24
|
Rashidi M, Bijari S, Khazaei AH, Shojaei-Ghahrizjani F, Rezakhani L. The role of milk-derived exosomes in the treatment of diseases. Front Genet 2022; 13:1009338. [PMID: 36338966 PMCID: PMC9634108 DOI: 10.3389/fgene.2022.1009338] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Exosomes (EXOs) are natural nanoparticles of endosome origin that are secreted by a variety of cells in the body. Exosomes have been found in bio-fluids such as urine, saliva, amniotic fluid, and ascites, among others. Milk is the only commercially available biological liquid containing EXOs. Proof that exosomes are essential for cell-to-cell communication is increasingly being reported. Studies have shown that they migrate from the cell of origin to various bioactive substances, including membrane receptors, proteins, mRNAs, microRNAs, and organelles, or they can stimulate target cells directly through interactions with receptors. Because of the presence of specific proteins, lipids, and RNAs, exosomes act in physiological and pathological conditions in vivo. Other salient features of EXOs include their long half-life in the body, no tumorigenesis, low immune response, good biocompatibility, ability to target cells through their surface biomarkers, and capacity to carry macromolecules. EXOs have been introduced to the scientific community as important, efficient, and attractive nanoparticles. They can be extracted from different sources and have the same characteristics as their parents. EXOs present in milk can be separated by size exclusion chromatography, density gradient centrifugation, or (ultra) centrifugation; however, the complex composition of milk that includes casein micelles and milk fat globules makes it necessary to take additional issues into consideration when employing the mentioned techniques with milk. As a rich source of EXOs, milk has unique properties that, in addition to its role as a carrier, promotes its use in treating diseases such as digestive problems, skin ulcers, and cancer, Moreover, EXOs derived from camel milk are reported to reduce the risk of oxidative stress and cancer. Milk-derived exosomes (MDEs) from yak milk improves gastrointestinal tract (GIT) development under hypoxic conditions. Furthermore, yak-MDEs have been suggested to be the best treatment for intestinal epithelial cells (IEC-6 cell line). Because of their availability as well as the non-invasiveness and cost-effectiveness of their preparation, isolates from mammals milk can be excellent resources for studies related to EXOs. These features also make it possible to exploit MDEs in clinical trials. The current study aimed to investigate the therapeutic applications of EXOs isolated from various milk sources.
Collapse
Affiliation(s)
- Mehdi Rashidi
- Department of Medical Nanotechnology, Islamic Azad University of Pharmaceutical Sciences (IAUPS), Tehran, Iran
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Salar Bijari
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Hossein Khazaei
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- *Correspondence: Leila Rezakhani, ,
| |
Collapse
|
25
|
De Becker A, Heestermans R, De Brouwer W, Bockstaele K, Maes K, Van Riet I. Genetic profiling of human bone marrow mesenchymal stromal cells after in vitro expansion in clinical grade human platelet lysate. Front Bioeng Biotechnol 2022; 10:1008271. [DOI: 10.3389/fbioe.2022.1008271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are non-hematopoietic cells that have a broad therapeutic potential. To obtain sufficient cells for clinical application, they must be expanded ex vivo. In the initial expansion protocols described, fetal calf serum (FCS) was used as the reference growth supplement, but more recently different groups started to replace FCS with platelet lysate (PL). We investigated in this study the impact of the culture supplement on gene expression of MSCs. Human bone marrow derived MSCs were expanded in vitro in FCS and PL supplemented medium. We found that MSCs expanded in PL-containing medium (PL-MSCs) express typical MSC immunomorphological features and can migrate, as their counterparts expanded in FCS-containing medium, through a layer of endothelial cells in vitro. Additionally, they show an increased proliferation rate compared to MSCs expanded in FCS medium (FCS-MSCs). RNA sequencing performed for MSCs cultured in both types of expansion medium revealed a large impact of the choice of growth supplement on gene expression: 1974 genes were at least twofold up- or downregulated. We focused on impact of genes involved in apoptosis and senescence. Our data showed that PL-MSCs express more anti-apoptotic genes and FCS-MSCs more pro-apoptotic genes. FCS-MSCs showed upregulation of senescence-related genes after four passages whereas this was rarer in PL-MSCs at the same timepoint. Since PL-MSCs show higher proliferation rates and anti-apoptotic gene expression, they might acquire features that predispose them to malignant transformation. We screened 10 MSC samples expanded in PL-based medium for the presence of tumor-associated genetic variants using a 165 gene panel and detected only 21 different genetic variants. According to our analysis, none of these were established pathogenic mutations. Our data show that differences in culture conditions such as growth supplement have a significant impact on the gene expression profile of MSCs and favor the use of PL over FCS for expansion of MSCs.
Collapse
|
26
|
Regenerative mesenchymal stem c
ell‐derived
extracellular vesicles: A potential alternative to c
ell‐based
therapy in viral infection and disease damage control. WIREs Mech Dis 2022; 14:e1574. [DOI: 10.1002/wsbm.1574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/24/2022] [Indexed: 11/07/2022]
|
27
|
Tan MI, Alfarafisa NM, Septiani P, Barlian A, Firmansyah M, Faizal A, Melani L, Nugrahapraja H. Potential Cell-Based and Cell-Free Therapy for Patients with COVID-19. Cells 2022; 11:2319. [PMID: 35954162 PMCID: PMC9367488 DOI: 10.3390/cells11152319] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Since it was first reported, the novel coronavirus disease 2019 (COVID-19) remains an unresolved puzzle for biomedical researchers in different fields. Various treatments, drugs, and interventions were explored as treatments for COVID. Nevertheless, there are no standard and effective therapeutic measures. Meanwhile, mesenchymal stem cell (MSC) therapy offers a new approach with minimal side effects. MSCs and MSC-based products possess several biological properties that potentially alleviate COVID-19 symptoms. Generally, there are three classifications of stem cell therapy: cell-based therapy, tissue engineering, and cell-free therapy. This review discusses the MSC-based and cell-free therapies for patients with COVID-19, their potential mechanisms of action, and clinical trials related to these therapies. Cell-based therapies involve the direct use and injection of MSCs into the target tissue or organ. On the other hand, cell-free therapy uses secreted products from cells as the primary material. Cell-free therapy materials can comprise cell secretomes and extracellular vesicles. Each therapeutic approach possesses different benefits and various risks. A better understanding of MSC-based and cell-free therapies is essential for supporting the development of safe and effective COVID-19 therapy.
Collapse
Affiliation(s)
- Marselina Irasonia Tan
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia; (P.S.); (A.B.); (M.F.); (A.F.); (L.M.); (H.N.)
| | - Nayla Majeda Alfarafisa
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Popi Septiani
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia; (P.S.); (A.B.); (M.F.); (A.F.); (L.M.); (H.N.)
| | - Anggraini Barlian
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia; (P.S.); (A.B.); (M.F.); (A.F.); (L.M.); (H.N.)
| | - Mochamad Firmansyah
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia; (P.S.); (A.B.); (M.F.); (A.F.); (L.M.); (H.N.)
| | - Ahmad Faizal
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia; (P.S.); (A.B.); (M.F.); (A.F.); (L.M.); (H.N.)
| | - Lili Melani
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia; (P.S.); (A.B.); (M.F.); (A.F.); (L.M.); (H.N.)
| | - Husna Nugrahapraja
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia; (P.S.); (A.B.); (M.F.); (A.F.); (L.M.); (H.N.)
| |
Collapse
|
28
|
Association between Mesenchymal Stem Cells and COVID-19 Therapy: Systematic Review and Current Trends. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9346939. [PMID: 35782071 PMCID: PMC9242780 DOI: 10.1155/2022/9346939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/20/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022]
Abstract
Background The novel coronavirus first emerged in Wuhan, China, and quickly spread across the globe, spanning various countries and resulting in a worldwide pandemic by the end of December 2019. Given the current advances in treatments available for COVID-19, mesenchymal stem cell (MSC) therapy seems to be a prospective option for management of ARDS observed in COVID-19 patients. This present study is aimed at exploring the therapeutic potential and safety of using MSC obtained by isolation from health cord tissues in the treatment of patients with COVID-19. Methods A systematic search was done based on the guidelines of the PRISMA 2020 statement. A literature search was executed using controlled vocabulary and indexing of trials to evaluate all the relevant studies involving the use of medical subject headings (MeSH) in electronic databases like PubMed, Embase, Scopus, Cochrane Central Register of Controlled Trials (CENTRAL), and clinicaltrials.gov up to 31 December 2021. The protocol was registered in the PROSPERO register with ID CRD42022301666. Findings. After screening finally, 22 remaining articles were included in this systematic review. The studies revealed that MSC exosomes are found to be superior to MSC alone in terms of safety owing to being smaller with a lesser immunological response which leads to free movement in blood capillaries without clumping and also cannot further divide, thus reducing the oncogenic potential of MSC-derived exosomes as compared to MSC only. The studies demonstrated that the lungs healed with the use of exosomes compared to how they presented initially at the hospital. MSCs are found to increase the angiogenesis process and alveolar reepithelization, reducing markers like TNF alpha, TGF beta, and COL I and III, reducing the growth of myofibroblasts and increasing survivability of endothelium leading to attenuated pulmonary fibrosis and even reversing them. Interpretation. We can conclude that the use of mesenchymal stem cells or their derived exosomes is safe and well-tolerated in patients with COVID-19. It improves different parameters of oxygenation and helps in the healing of the lungs. The viral load along with different inflammatory cells and biomarkers of inflammation tend to decrease. Chest X-ray, CT scan, and different radiological tools are used to show improvement and reduced ongoing destructive processes.
Collapse
|
29
|
Role and Function of Mesenchymal Stem Cells on Fibroblast in Cutaneous Wound Healing. Biomedicines 2022; 10:biomedicines10061391. [PMID: 35740413 PMCID: PMC9219688 DOI: 10.3390/biomedicines10061391] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022] Open
Abstract
Skin wounds often repair themselves completely over time; however, this is true only for healthy individuals. Although various studies are being conducted to improve wound-healing therapy outcomes, the mechanisms of wound healing and regeneration are not completely understood yet. In recent years, mesenchymal stem cells (MSCs) have been reported to contribute significantly to wound healing and regeneration. Understanding the function of MSCs will help to elucidate the fundamentals of wound healing. MSCs are multipotent stem cells that are used in regenerative medicine for their ability to self-renew and differentiate into bone, fat, and cartilage, with few ethical problems associated with cell harvesting. Additionally, they have anti-inflammatory and immunomodulatory properties and antifibrotic effects via paracrine signaling, and many studies have been conducted to use them to treat graft-versus-host disease, inflammatory bowel disease, and intractable cutaneous wounds. Many substances derived from MSCs are involved in the wound-healing process, and specific cascades and pathways have been elucidated. This review aims to explain the fundamental role of MSCs in wound healing and the effects of MSCs on fibroblasts.
Collapse
|
30
|
Zoulikha M, Huang F, Wu Z, He W. COVID-19 inflammation and implications in drug delivery. J Control Release 2022; 346:260-274. [PMID: 35469984 PMCID: PMC9045711 DOI: 10.1016/j.jconrel.2022.04.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/15/2022] [Indexed: 01/09/2023]
Abstract
Growing evidence indicates that hyperinflammatory syndrome and cytokine storm observed in COVID-19 severe cases are narrowly associated with the disease's poor prognosis. Therefore, targeting the inflammatory pathways seems to be a rational therapeutic strategy against COVID-19. Many anti-inflammatory agents have been proposed; however, most of them suffer from poor bioavailability, instability, short half-life, and undesirable biodistribution resulting in off-target effects. From a pharmaceutical standpoint, the implication of COVID-19 inflammation can be exploited as a therapeutic target and/or a targeting strategy against the pandemic. First, the drug delivery systems can be harnessed to improve the properties of anti-inflammatory agents and deliver them safely and efficiently to their therapeutic targets. Second, the drug carriers can be tailored to develop smart delivery systems able to respond to the microenvironmental stimuli to release the anti-COVID-19 therapeutics in a selective and specific manner. More interestingly, some biosystems can simultaneously repress the hyperinflammation due to their inherent anti-inflammatory potency and endow their drug cargo with a selective delivery to the injured sites.
Collapse
Affiliation(s)
- Makhloufi Zoulikha
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Feifei Huang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
31
|
Multifunctional role of exosomes in viral diseases: From transmission to diagnosis and therapy. Cell Signal 2022; 94:110325. [PMID: 35367363 PMCID: PMC8968181 DOI: 10.1016/j.cellsig.2022.110325] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023]
Abstract
Efforts to discover antiviral drugs and diagnostic platforms have intensified to an unprecedented level since the outbreak of COVID-19. Nano-sized endosomal vesicles called exosomes have gained considerable attention from researchers due to their role in intracellular communication to regulate the biological activity of target cells through cargo proteins, nucleic acids, and lipids. According to recent studies, exosomes play a vital role in viral diseases including covid-19, with their interaction with the host immune system opening the door to effective antiviral treatments. Utilizing the intrinsic nature of exosomes, it is imperative to elucidate how exosomes exert their effect on the immune system or boost viral infectivity. Exosome biogenesis machinery is hijacked by viruses to initiate replication, spread infection, and evade the immune response. Exosomes, however, also participate in protective mechanisms by triggering the innate immune system. Besides that, exosomes released from the cells can carry a robust amount of information about the diseased state, serving as a potential biomarker for detecting viral diseases. This review describes how exosomes increase virus infectivity, act as immunomodulators, and function as a potential drug delivery carrier and diagnostic biomarker for diseases caused by HIV, Hepatitis, Ebola, and Epstein-Barr viruses. Furthermore, the review analyzes various applications of exosomes within the context of COVID-19, including its management.
Collapse
|
32
|
Tang Y, Wu P, Li L, Xu W, Jiang J. Mesenchymal Stem Cells and Their Small Extracellular Vesicles as Crucial Immunological Efficacy for Hepatic Diseases. Front Immunol 2022; 13:880523. [PMID: 35603168 PMCID: PMC9121380 DOI: 10.3389/fimmu.2022.880523] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cell small extracellular vesicles (MSC-sEVs) are a priority for researchers because of their role in tissue regeneration. sEVs act as paracrine factors and carry various cargos, revealing the state of the parent cells and contributing to cell–cell communication during both physiological and pathological circumstances. Hepatic diseases are mainly characterized by inflammatory cell infiltration and hepatocyte necrosis and fibrosis, bringing the focus onto immune regulation and other regulatory mechanisms of MSCs/MSC-sEVs. Increasing evidence suggests that MSCs and their sEVs protect against acute and chronic liver injury by inducing macrophages (MΦ) to transform into the M2 subtype, accelerating regulatory T/B (Treg/Breg) cell activation and promoting immunosuppression. MSCs/MSC-sEVs also prevent the proliferation and differentiation of T cells, B cells, dendritic cells (DCs), and natural killer (NK) cells. This review summarizes the potential roles for MSCs/MSC-sEVs, including immunomodulation and tissue regeneration, in various liver diseases. There is also a specific focus on the use of MSC-sEVs for targeted drug delivery to treat hepatitis.
Collapse
Affiliation(s)
- Yuting Tang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Peipei Wu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Linli Li
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wenrong Xu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Wenrong Xu, ; Jiajia Jiang,
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Wenrong Xu, ; Jiajia Jiang,
| |
Collapse
|
33
|
Exosomes for Regulation of Immune Responses and Immunotherapy. JOURNAL OF NANOTHERANOSTICS 2022. [DOI: 10.3390/jnt3010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Exosomes are membrane-enveloped nanosized (30–150 nm) extracellular vesicles of endosomal origin produced by almost all cell types and encompass a multitude of functioning biomolecules. Exosomes have been considered crucial players of cell-to-cell communication in physiological and pathological conditions. Accumulating evidence suggests that exosomes can modulate the immune system by delivering a plethora of signals that can either stimulate or suppress immune responses, which have potential applications as immunotherapies for cancer and autoimmune diseases. Here, we discuss the current knowledge about the active biomolecular components of exosomes that contribute to exosomal function in modulating different immune cells and also how these immune cell-derived exosomes play critical roles in immune responses. We further discuss the translational potential of engineered exosomes as immunotherapeutic agents with their advantages over conventional nanocarriers for drug delivery and ongoing clinical trials.
Collapse
|
34
|
Mesenchymal stem cell-based treatments for COVID-19: status and future perspectives for clinical applications. Cell Mol Life Sci 2022; 79:142. [PMID: 35187617 PMCID: PMC8858603 DOI: 10.1007/s00018-021-04096-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 01/08/2023]
Abstract
As a result of cross-species transmission in December 2019, the coronavirus disease 2019 (COVID-19) became a serious endangerment to human health and the causal agent of a global pandemic. Although the number of infected people has decreased due to effective management, novel methods to treat critical COVID-19 patients are still urgently required. This review describes the origins, pathogenesis, and clinical features of COVID-19 and the potential uses of mesenchymal stem cells (MSCs) in therapeutic treatments for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients. MSCs have previously been shown to have positive effects in the treatment of lung diseases, such as acute lung injury, idiopathic pulmonary fibrosis, acute respiratory distress syndrome, lung cancer, asthma, and chronic obstructive pulmonary disease. MSC mechanisms of action involve differentiation potentials, immune regulation, secretion of anti-inflammatory factors, migration and homing, anti-apoptotic properties, antiviral effects, and extracellular vesicles. Currently, 74 clinical trials are investigating the use of MSCs (predominately from the umbilical cord, bone marrow, and adipose tissue) to treat COVID-19. Although most of these trials are still in their early stages, the preliminary data are promising. However, long-term safety evaluations are still lacking, and large-scale and controlled trials are required for more conclusive judgments regarding MSC-based therapies. The main challenges and prospective directions for the use of MSCs in clinical applications are discussed herein. In summary, while the clinical use of MSCs to treat COVID-19 is still in the preliminary stages of investigation, promising results indicate that they could potentially be utilized in future treatments.
Collapse
|
35
|
Li X, Zhang Y, He L, Si J, Qiu S, He Y, Wei J, Wang Z, Xie L, Li Y, Teng T. Immune response and potential therapeutic strategies for the SARS-CoV-2 associated with the COVID-19 pandemic. Int J Biol Sci 2022; 18:1865-1877. [PMID: 35342348 PMCID: PMC8935217 DOI: 10.7150/ijbs.66369] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
Following onset of the first recorded case of Coronavirus disease 2019 (COVID-19) in December 2019, more than 269 million cases and over 5.3 million deaths have been confirmed worldwide. COVID-19 is a highly infectious pneumonia, caused by a novel virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, it poses a severe threat to human health across the globe, a trend that is likely to persist in the foreseeable future. This paper reviews SARS-CoV-2 immunity, the latest development of anti-SARS-CoV-2 drugs as well as exploring in detail, immune escape induced by SARS-CoV-2. We expect that the findings will provide a basis for COVID-19 prevention and treatment.
Collapse
Affiliation(s)
- Xianghui Li
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Science, Henan University, Kaifeng, Henan 475004, China
| | - Yabo Zhang
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Science, Henan University, Kaifeng, Henan 475004, China
| | - Libing He
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Science, Henan University, Kaifeng, Henan 475004, China
| | - Jiangzhe Si
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Science, Henan University, Kaifeng, Henan 475004, China
| | - Shuai Qiu
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Science, Henan University, Kaifeng, Henan 475004, China
| | - Yuhua He
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Science, Henan University, Kaifeng, Henan 475004, China
| | - Jiacun Wei
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Science, Henan University, Kaifeng, Henan 475004, China
| | - Zhili Wang
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Science, Henan University, Kaifeng, Henan 475004, China
| | - Longxiang Xie
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Science, Henan University, Kaifeng, Henan 475004, China.,✉ Corresponding authors: E-mail: ; Tel.: +86-0371-22892865
| | - Yanzhang Li
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Science, Henan University, Kaifeng, Henan 475004, China.,✉ Corresponding authors: E-mail: ; Tel.: +86-0371-22892865
| | - Tieshan Teng
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Science, Henan University, Kaifeng, Henan 475004, China.,✉ Corresponding authors: E-mail: ; Tel.: +86-0371-22892865
| |
Collapse
|
36
|
Bikorimana JP, Abusarah J, Salame N, El-Hachem N, Shammaa R, Rafei M. Humoral Immunity to Allogeneic Immunoproteasome-Expressing Mesenchymal Stromal Cells Requires Efferocytosis by Endogenous Phagocytes. Cells 2022; 11:cells11040596. [PMID: 35203247 PMCID: PMC8869887 DOI: 10.3390/cells11040596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/05/2023] Open
Abstract
The extensive use of mesenchymal stromal cells (MSCs) over the last decade has revolutionized modern medicine. From the delivery of pharmacological proteins to regenerative medicine and immune modulation, these cells have proven to be highly pleiotropic and responsive to their surrounding environment. Nevertheless, their role in promoting inflammation has been fairly limited by the questionable use of interferon-gamma, as this approach has also been proven to enhance the cells' immune-suppressive abilities. Alternatively, we have previously shown that de novo expression of the immunoproteasome (IPr) complex instills potent antigen cross-presentation capabilities in MSCs. Interestingly, these cells were found to express the major histocompatibility class (MHC) II protein, which prompted us to investigate their ability to stimulate humoral immunity. Using a series of in vivo studies, we found that administration of allogeneic ovalbumin (OVA)-pulsed MSC-IPr cells elicits a moderate antibody titer, which was further enhanced by the combined use of pro-inflammatory cytokines. The generated antibodies were functional as they blocked CD4 T-cell activation following their co-culture with OVA-pulsed MSC-IPr and mitigated E.G7 tumor growth in vivo. The therapeutic potency of MSC-IPr was, however, dependent on efferocytosis, as phagocyte depletion prior to vaccination abrogated MSC-IPr-induced humoral responses while promoting their survival in the host. In contrast, antibody-mediated neutralization of CD47, a potent "do not eat me signal", enhanced antibody titer levels. These observations highlight the major role played by myeloid cells in supporting antibody production by MSC-IPr and suggest that the immune outcome is dictated by a net balance between efferocytosis-stimulating and -inhibiting signals.
Collapse
Affiliation(s)
- Jean-Pierre Bikorimana
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC H3T 1A8, Canada;
| | - Jamilah Abusarah
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC H3T 1A8, Canada; (J.A.); (N.E.-H.)
| | - Natasha Salame
- Department of Biomedical Sciences, Université de Montréal, Montreal, QC H3T 1A8, Canada;
| | - Nehme El-Hachem
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC H3T 1A8, Canada; (J.A.); (N.E.-H.)
- Pediatric Hematology-Oncology Division, Centre Hospitalier Universitaire Sainte-Justine Research Centre, Montreal, QC H3T 1C5, Canada
| | - Riam Shammaa
- Canadian Centers for Regenerative Therapy, Toronto, ON M5R 1A8, Canada;
- IntelliStem Technologies Inc., Toronto, ON M5R 3N5, Canada
| | - Moutih Rafei
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC H3T 1A8, Canada;
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC H3T 1A8, Canada; (J.A.); (N.E.-H.)
- Molecular Biology Program, Université de Montréal, Montreal, QC H3T 1A8, Canada
- Correspondence:
| |
Collapse
|
37
|
Aguiar Koga BA, Fernandes LA, Fratini P, Sogayar MC, Carreira ACO. Role of MSC-derived small extracellular vesicles in tissue repair and regeneration. Front Cell Dev Biol 2022; 10:1047094. [PMID: 36935901 PMCID: PMC10014555 DOI: 10.3389/fcell.2022.1047094] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/07/2022] [Indexed: 03/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are crucial for tissue homeostasis and repair, secreting vesicles to the extracellular environment. Isolated exosomes were shown to affect angiogenesis, immunomodulation and tissue regeneration. Numerous efforts have been dedicated to describe the mechanism of action of these extracellular vesicles (EVs) and guarantee their safety, since the final aim is their therapeutic application in the clinic. The major advantage of applying MSC-derived EVs is their low or inexistent immunogenicity, prompting their use as drug delivery or therapeutic agents, as well as wound healing, different cancer types, and inflammatory processes in the neurological and cardiovascular systems. MSC-derived EVs display no vascular obstruction effects or apparent adverse effects. Their nano-size ensures their passage through the blood-brain barrier, demonstrating no cytotoxic or immunogenic effects. Several in vitro tests have been conducted with EVs obtained from different sources to understand their biology, molecular content, signaling pathways, and mechanisms of action. Application of EVs to human therapies has recently become a reality, with clinical trials being conducted to treat Alzheimer's disease, retina degeneration, and COVID-19 patients. Herein, we describe and compare the different extracellular vesicles isolation methods and therapeutic applications regarding the tissue repair and regeneration process, presenting the latest clinical trial reports.
Collapse
Affiliation(s)
- Bruna Andrade Aguiar Koga
- Cell and Molecular Therapy Group (NUCEL), School of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Letícia Alves Fernandes
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Paula Fratini
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Mari Cleide Sogayar
- Cell and Molecular Therapy Group (NUCEL), School of Medicine, University of São Paulo, São Paulo, Brazil
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, Brazil
| | - Ana Claudia Oliveira Carreira
- Cell and Molecular Therapy Group (NUCEL), School of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, São Paulo, Brazil
- *Correspondence: Ana Claudia Oliveira Carreira, ,
| |
Collapse
|
38
|
Aravind S, Mathew KA, Madathil BK, Mini S, John A. Current strategies and future perspectives in COVID-19 therapy. STEM CELLS AND COVID-19 2022:169-227. [DOI: 10.1016/b978-0-323-89972-7.00011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
39
|
Ardalan M, Chodari L, Zununi Vahed S, Hosseiniyan Khatibi SM, Eftekhari A, Davaran S, Cucchiarini M, Roshangar L, Ahmadian E. Stem cell-derived biofactors fight against coronavirus infection. World J Stem Cells 2021; 13:1813-1825. [PMID: 35069984 PMCID: PMC8727231 DOI: 10.4252/wjsc.v13.i12.1813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/12/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Despite various treatment protocols and newly recognized therapeutics, there are no effective treatment approaches against coronavirus disease. New therapeutic strategies including the use of stem cells-derived secretome as a cell-free therapy have been recommended for patients with critical illness. The pro-regenerative, pro-angiogenic, anti-inflammatory, anti-apoptotic, immunomodulatory, and trophic properties of stem cells-derived secretome, extracellular vesicles (EVs), and bioactive factors have made them suitable candidates for respiratory tract regeneration in coronavirus disease 2019 (COVID-19) patients. EVs including microvesicles and exosomes can be applied for communication at the intercellular level due to their abilities in the long-distance transfer of biological messages such as mRNAs, growth factors, transcription factors, microRNAs, and cytokines, and therefore, simulate the specifications of the parent cell, influencing target cells upon internalization and/or binding. EVs exhibit both anti-inflammatory and tolerogenic immune responses by regulation of proliferation, polarization, activation, and migration of different immune cells. Due to effective immunomodulatory and high safety including a minimum risk of immunogenicity and tumorigenicity, mesenchymal stem cell (MSC)-EVs are more preferable to MSC-based therapies. Thus, as an endogenous repair and inflammation-reducing agent, MSC-EVs could be used against COVID-19 induced morbidity and mortality after further mechanistic and preclinical/clinical investigations. This review is focused on the therapeutic perspective of the secretome of stem cells in alleviating the cytokine storm and organ injury in COVID-19 patients.
Collapse
Affiliation(s)
- Mohammadreza Ardalan
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| | - Leila Chodari
- Physiology Department, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 5715799313, Iran
| | - Sepideh Zununi Vahed
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| | | | - Aziz Eftekhari
- Department of Toxicology, Maragheh University of Medical Sciences, Maragheh 3453554, Iran
| | - Soodabeh Davaran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg D-66421, Germany
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran.
| |
Collapse
|
40
|
Mihaescu G, Chifiriuc MC, Vrancianu CO, Constantin M, Filip R, Popescu MR, Burlibasa L, Nicoara AC, Bolocan A, Iliescu C, Gradisteanu Pircalabioru G. Antiviral Immunity in SARS-CoV-2 Infection: From Protective to Deleterious Responses. Microorganisms 2021; 9:2578. [PMID: 34946179 PMCID: PMC8703918 DOI: 10.3390/microorganisms9122578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/26/2022] Open
Abstract
After two previous episodes, in 2002 and 2012, when two highly pathogenic coronaviruses (SARS, MERS) with a zoonotic origin emerged in humans and caused fatal respiratory illness, we are today experiencing the COVID-19 pandemic produced by SARS-CoV-2. The main question of the year 2021 is if naturally- or artificially-acquired active immunity will be effective against the evolving SARS-CoV-2 variants. This review starts with the presentation of the two compartments of antiviral immunity-humoral and cellular, innate and adaptive-underlining how the involved cellular and molecular actors are intrinsically connected in the development of the immune response in SARS-CoV-2 infection. Then, the SARS-CoV-2 immunopathology, as well as the derived diagnosis and therapeutic approaches, will be discussed.
Collapse
Affiliation(s)
- Grigore Mihaescu
- Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania; (G.M.); (C.O.V.); (L.B.)
| | - Mariana Carmen Chifiriuc
- Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania; (G.M.); (C.O.V.); (L.B.)
- Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest, 050096 Bucharest, Romania;
- The Romanian Academy, 25 Calea Victoriei, Sector 1, 010071 Bucharest, Romania
| | | | | | - Roxana Filip
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
- Regional County Emergency Hospital, 720284 Suceava, Romania
| | - Mihaela Roxana Popescu
- Department of Cardiology, Elias Emergency University Hospital “Carol Davila”, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania;
| | - Liliana Burlibasa
- Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania; (G.M.); (C.O.V.); (L.B.)
| | - Anca Cecilia Nicoara
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania;
| | - Alexandra Bolocan
- General Surgery, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania;
| | - Ciprian Iliescu
- National Institute for Research and Development in Microtechnologies—IMT, 077190 Bucharest, Romania;
- Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, 010071 Bucharest, Romania
| | | |
Collapse
|
41
|
Gedefaw L, Ullah S, Lee TMH, Yip SP, Huang CL. Targeting Inflammasome Activation in COVID-19: Delivery of RNA Interference-Based Therapeutic Molecules. Biomedicines 2021; 9:1823. [PMID: 34944639 PMCID: PMC8698532 DOI: 10.3390/biomedicines9121823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Mortality and morbidity associated with COVID-19 continue to be significantly high worldwide, owing to the absence of effective treatment strategies. The emergence of different variants of SARS-CoV-2 is also a considerable source of concern and has led to challenges in the development of better prevention and treatment strategies, including vaccines. Immune dysregulation due to pro-inflammatory mediators has worsened the situation in COVID-19 patients. Inflammasomes play a critical role in modulating pro-inflammatory cytokines in the pathogenesis of COVID-19 and their activation is associated with poor clinical outcomes. Numerous preclinical and clinical trials for COVID-19 treatment using different approaches are currently underway. Targeting different inflammasomes to reduce the cytokine storm, and its associated complications, in COVID-19 patients is a new area of research. Non-coding RNAs, targeting inflammasome activation, may serve as an effective treatment strategy. However, the efficacy of these therapeutic agents is highly dependent on the delivery system. MicroRNAs and long non-coding RNAs, in conjunction with an efficient delivery vehicle, present a potential strategy for regulating NLRP3 activity through various RNA interference (RNAi) mechanisms. In this regard, the use of nanomaterials and other vehicle types for the delivery of RNAi-based therapeutic molecules for COVID-19 may serve as a novel approach for enhancing drug efficacy. The present review briefly summarizes immune dysregulation and its consequences, the roles of different non-coding RNAs in regulating the NLRP3 inflammasome, distinct types of vectors for their delivery, and potential therapeutic targets of microRNA for treatment of COVID-19.
Collapse
Affiliation(s)
- Lealem Gedefaw
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
| | - Sami Ullah
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
| | - Thomas M. H. Lee
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China;
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
| | - Chien-Ling Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
42
|
Thapa K, Verma N, Singh TG, Kaur Grewal A, Kanojia N, Rani L. COVID-19-Associated acute respiratory distress syndrome (CARDS): Mechanistic insights on therapeutic intervention and emerging trends. Int Immunopharmacol 2021; 101:108328. [PMID: 34768236 PMCID: PMC8563344 DOI: 10.1016/j.intimp.2021.108328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023]
Abstract
AIMS The novel Coronavirus disease 2019 (COVID-19) has caused great distress worldwide. Acute respiratory distress syndrome (ARDS) is well familiar but when it happens as part of COVID-19 it has discrete features which are unmanageable. Numerous pharmacological treatments have been evaluated in clinical trials to control the clinical effects of CARDS, but there is no assurance of their effectiveness. MATERIALS AND METHODS A systematic review of the literature of the Medline, Scopus, Bentham, PubMed, and EMBASE (Elsevier) databases was examined to understand the novel therapeutic approaches used in COVID-19-Associated Acute Respiratory Distress Syndrome and their outcomes. KEY FINDINGS Current therapeutic options may not be enough to manage COVID-19-associated ARDS complications in group of patients and therefore, the current review has discussed the pathophysiological mechanism of COVID-19-associated ARDS, potential pharmacological treatment and the emerging molecular drug targets. SIGNIFICANCE The rationale of this review is to talk about the pathophysiology of CARDS, potential pharmacological treatment and the emerging molecular drug targets. Currently accessible treatment focuses on modulating immune responses, rendering antiviral effects, anti-thrombosis or anti-coagulant effects. It is expected that considerable number of studies conducting globally may help to discover effective therapies to decrease mortality and morbidity occurring due to CARDS. Attention should be also given on molecular drug targets that possibly will help to develop efficient cure for COVID-19-associated ARDS.
Collapse
Affiliation(s)
- Komal Thapa
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India; Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Nitin Verma
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | | | | | - Neha Kanojia
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Lata Rani
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| |
Collapse
|
43
|
Jeannerat A, Peneveyre C, Armand F, Chiappe D, Hamelin R, Scaletta C, Hirt-Burri N, de Buys Roessingh A, Raffoul W, Applegate LA, Laurent A. Hypoxic Incubation Conditions for Optimized Manufacture of Tenocyte-Based Active Pharmaceutical Ingredients of Homologous Standardized Transplant Products in Tendon Regenerative Medicine. Cells 2021; 10:cells10112872. [PMID: 34831095 PMCID: PMC8616528 DOI: 10.3390/cells10112872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/13/2022] Open
Abstract
Human fetal progenitor tenocytes (hFPT) produced in defined cell bank systems have recently been characterized and qualified as potential therapeutic cell sources in tendon regenerative medicine. In view of further developing the manufacture processes of such cell-based active pharmaceutical ingredients (API), the effects of hypoxic in vitro culture expansion on key cellular characteristics or process parameters were evaluated. To this end, multiple aspects were comparatively assessed in normoxic incubation (i.e., 5% CO2 and 21% O2, standard conditions) or in hypoxic incubation (i.e., 5% CO2 and 2% O2, optimized conditions). Experimentally investigated parameters and endpoints included cellular proliferation, cellular morphology and size distribution, cell surface marker panels, cell susceptibility toward adipogenic and osteogenic induction, while relative protein expression levels were analyzed by quantitative mass spectrometry. The results outlined conserved critical cellular characteristics (i.e., cell surface marker panels, cellular phenotype under chemical induction) and modified key cellular parameters (i.e., cell size distribution, endpoint cell yields, matrix protein contents) potentially procuring tangible benefits for next-generation cell manufacturing workflows. Specific proteomic analyses further shed some light on the cellular effects of hypoxia, potentially orienting further hFPT processing for cell-based, cell-free API manufacture. Overall, this study indicated that hypoxic incubation impacts specific hFPT key properties while preserving critical quality attributes (i.e., as compared to normoxic incubation), enabling efficient manufacture of tenocyte-based APIs for homologous standardized transplant products.
Collapse
Affiliation(s)
- Annick Jeannerat
- Applied Research Department, LAM Biotechnologies SA, CH-1066 Épalinges, Switzerland; (A.J.); (C.P.)
| | - Cédric Peneveyre
- Applied Research Department, LAM Biotechnologies SA, CH-1066 Épalinges, Switzerland; (A.J.); (C.P.)
| | - Florence Armand
- Proteomics Core Facility and Technology Platform, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; (F.A.); (D.C.); (R.H.)
| | - Diego Chiappe
- Proteomics Core Facility and Technology Platform, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; (F.A.); (D.C.); (R.H.)
| | - Romain Hamelin
- Proteomics Core Facility and Technology Platform, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; (F.A.); (D.C.); (R.H.)
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Épalinges, Switzerland; (C.S.); (N.H.-B.); (L.A.A.)
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Épalinges, Switzerland; (C.S.); (N.H.-B.); (L.A.A.)
| | - Anthony de Buys Roessingh
- Children and Adolescent Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
| | - Wassim Raffoul
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
- Plastic, Reconstructive, and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Épalinges, Switzerland; (C.S.); (N.H.-B.); (L.A.A.)
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
- Plastic, Reconstructive, and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| | - Alexis Laurent
- Applied Research Department, LAM Biotechnologies SA, CH-1066 Épalinges, Switzerland; (A.J.); (C.P.)
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Épalinges, Switzerland; (C.S.); (N.H.-B.); (L.A.A.)
- Manufacturing Department, TEC-PHARMA SA, CH-1038 Bercher, Switzerland
- Correspondence: ; Tel.: +41-21-546-42-00
| |
Collapse
|
44
|
Shen M, Chen T. Mesenchymal Stem Cell-Derived Exosomes and Their Potential Agents in Hematological Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4539453. [PMID: 34621464 PMCID: PMC8492257 DOI: 10.1155/2021/4539453] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs) are the most exploited stem cells with multilineage differentiation potential and immunomodulatory properties. Numerous lines of findings have reported their successful applications in a multitude of inflammatory conditions and immune disorders. However, it is currently discovered that these effects are mainly mediated in a paracrine manner by MSC-exosomes. Moreover, MSC-exosomes have been implicated in a wide variety of biological responses including immunomodulation, oxidative stress, tumor progression, and tissue regeneration. Meanwhile, they are reported to actively participate in various hematological diseases by the means of transferring different types of exosomal components to the target cells. Therefore, in this review, we briefly discuss the sources and biological features of MSCs and then illustrate the biogenesis and biological processes of MSC-exosomes. Of note, this paper especially highlights the latest research progress of MSC-exosomes in hematological diseases.
Collapse
Affiliation(s)
- Min Shen
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Tong Chen
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
45
|
Nazerian Y, Vakili K, Ebrahimi A, Niknejad H. Developing Cytokine Storm-Sensitive Therapeutic Strategy in COVID-19 Using 8P9R Chimeric Peptide and Soluble ACE2. Front Cell Dev Biol 2021; 9:717587. [PMID: 34540833 PMCID: PMC8446510 DOI: 10.3389/fcell.2021.717587] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/06/2021] [Indexed: 12/27/2022] Open
Abstract
Currently, the COVID-19 pandemic is an international challenge, largely due to lack of effective therapies. Pharmacotherapy has not yet been able to find a definitive treatment for COVID-19. Since SARS-CoV-2 affects several organs, treatment strategies that target the virus in a wider range are expected to be ultimately more successful. To this end, a two-step treatment strategy has been presented. In the first phase of the disease, when the patient is newly infected with the virus and the cytokine storm has not yet been developed, a chimeric peptide is used to inhibit virus entry into the host cell cytosol (by inhibiting endosomal pH acidification) and viral replication. After the virus entry and decrease of angiotensin converting enzyme 2 (ACE2) level, some people are unable to properly compensate for the ACE2 pathway and progress toward the cytokine storm. In the beginning of the cytokine storm, sACE2 protein is very effective in regulating the immune system toward the anti-inflammatory pathway, including M2 macrophages. Hence, the genes of 8P9R chimeric peptide and sACE2 would be inserted in an episomal vector with a separate promoter for each gene: the chimeric peptide gene promoter is a CMV promoter, while the sACE2 gene promoter is a NF-κB-sensitive promoter. The NF-κB-sensitive promoter induces the expression of sACE2 gene soon after elevation of NF-κB which is the main transcription factor of inflammatory genes. Thus, as the expression of inflammatory cytokines increases, the expression of sACE2 increases simultaneously. In this condition, sACE2 can prevent the cytokine storm by inhibiting the pro-inflammatory pathways. To deliver the designed vector to the target cells, mesenchymal stem cell-derived (MSC-derived) exosome-liposome hybrids are used. Herein, the strategy can be considered as a personalized clinical therapy for COVID-19, that can prevent morbidity and mortality in the future.
Collapse
Affiliation(s)
- Yasaman Nazerian
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Ebrahimi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Alzhrani GN, Alanazi ST, Alsharif SY, Albalawi AM, Alsharif AA, Abdel-Maksoud MS, Elsherbiny N. Exosomes: Isolation, characterization, and biomedical applications. Cell Biol Int 2021; 45:1807-1831. [PMID: 33913604 DOI: 10.1002/cbin.11620] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/30/2021] [Accepted: 04/18/2021] [Indexed: 12/13/2022]
Abstract
Exosomes are nano-sized bioactive vesicles of 30-150 nm in diameter. They are secreted by exocytosis of nearly all type of cells in to the extracellular fluid. Thereby, they can be found in many biological fluids. Exosomes regulate intracellular communication between cells via delivery of their cargo which include lipids, proteins, and nucleic acid. Many desirable features of exosomes made them promising candidates in several therapeutic applications. In this review, we discuss the use of exosomes as diagnostic tools and their possible biomedical applications. Additionally, current techniques used for isolation, purification, and characterization of exosomes from both biological fluids and in vitro cell cultures were discussed.
Collapse
Affiliation(s)
- Ghadi N Alzhrani
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Sarah T Alanazi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Sumayyah Y Alsharif
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Amani M Albalawi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Anwar A Alsharif
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohamed S Abdel-Maksoud
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Nehal Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
47
|
Zaki MM, Lesha E, Said K, Kiaee K, Robinson-McCarthy L, George H, Hanna A, Appleton E, Liu S, Ng AHM, Khoshakhlagh P, Church GM. Cell therapy strategies for COVID-19: Current approaches and potential applications. SCIENCE ADVANCES 2021; 7:eabg5995. [PMID: 34380619 PMCID: PMC8357240 DOI: 10.1126/sciadv.abg5995] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/22/2021] [Indexed: 05/03/2023]
Abstract
Coronavirus disease 2019 (COVID-19) continues to burden society worldwide. Despite most patients having a mild course, severe presentations have limited treatment options. COVID-19 manifestations extend beyond the lungs and may affect the cardiovascular, nervous, and other organ systems. Current treatments are nonspecific and do not address potential long-term consequences such as pulmonary fibrosis, demyelination, and ischemic organ damage. Cell therapies offer great potential in treating severe COVID-19 presentations due to their customizability and regenerative function. This review summarizes COVID-19 pathogenesis, respective areas where cell therapies have potential, and the ongoing 89 cell therapy trials in COVID-19 as of 1 January 2021.
Collapse
Affiliation(s)
- Mark M Zaki
- GC Therapeutics Inc., Cambridge, MA 02139, USA
- Department of Neurosurgery, University of Michigan, 1500 E Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Emal Lesha
- GC Therapeutics Inc., Cambridge, MA 02139, USA
- Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Khaled Said
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Kiavash Kiaee
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Angy Hanna
- Department of Medicine, Beaumont Hospital, Royal Oak, MI, USA
| | - Evan Appleton
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA
| | - Songlei Liu
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA
| | - Alex H M Ng
- GC Therapeutics Inc., Cambridge, MA 02139, USA.
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA
| | - Parastoo Khoshakhlagh
- GC Therapeutics Inc., Cambridge, MA 02139, USA.
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA
| | - George M Church
- GC Therapeutics Inc., Cambridge, MA 02139, USA.
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA
| |
Collapse
|
48
|
Mesenchymal Stem Cell-Based Therapy as an Alternative to the Treatment of Acute Respiratory Distress Syndrome: Current Evidence and Future Perspectives. Int J Mol Sci 2021; 22:ijms22157850. [PMID: 34360616 PMCID: PMC8346146 DOI: 10.3390/ijms22157850] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) represents a current challenge for medicine due to its incidence, morbidity and mortality and, also, the absence of an optimal treatment. The COVID-19 outbreak only increased the urgent demand for an affordable, safe and effective treatment for this process. Early clinical trials suggest the therapeutic usefulness of mesenchymal stem cells (MSCs) in acute lung injury (ALI) and ARDS. MSC-based therapies show antimicrobial, anti-inflammatory, regenerative, angiogenic, antifibrotic, anti-oxidative stress and anti-apoptotic actions, which can thwart the physiopathological mechanisms engaged in ARDS. In addition, MSC secretome and their derived products, especially exosomes, may reproduce the therapeutic effects of MSC in lung injury. This last strategy of treatment could avoid several safety issues potentially associated with the transplantation of living and proliferative cell populations and may be formulated in different forms. However, the following diverse limitations must be addressed: (i) selection of the optimal MSC, bearing in mind both the heterogeneity among donors and across different histological origins, (ii) massive obtention of these biological products through genetic manipulations of the most appropriate MSC, (iii) bioreactors that allow their growth in 3D, (iv) ideal culture conditions and (v) adequate functional testing of these obtaining biological products before their clinical application.
Collapse
|
49
|
Santos P, Almeida F. Exosome-Based Vaccines: History, Current State, and Clinical Trials. Front Immunol 2021; 12:711565. [PMID: 34335627 PMCID: PMC8317489 DOI: 10.3389/fimmu.2021.711565] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/30/2021] [Indexed: 12/23/2022] Open
Abstract
Extracellular vesicles (EVs) are released by most cell types as part of an intracellular communication system in crucial processes such as inflammation, cell proliferation, and immune response. However, EVs have also been implicated in the pathogenesis of several diseases, such as cancer and numerous infectious diseases. An important feature of EVs is their ability to deliver a wide range of molecules to nearby targets or over long distances, which allows the mediation of different biological functions. This delivery mechanism can be utilized for the development of therapeutic strategies, such as vaccination. Here, we have highlighted several studies from a historical perspective, with respect to current investigations on EV-based vaccines. For example, vaccines based on exosomes derived from dendritic cells proved to be simpler in terms of management and cost-effectiveness than dendritic cell vaccines. Recent evidence suggests that EVs derived from cancer cells can be leveraged for therapeutics to induce strong anti-tumor immune responses. Moreover, EV-based vaccines have shown exciting and promising results against different types of infectious diseases. We have also summarized the results obtained from completed clinical trials conducted on the usage of exosome-based vaccines in the treatment of cancer, and more recently, coronavirus disease.
Collapse
Affiliation(s)
- Patrick Santos
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
50
|
Pranskunas M, Simoliunas E, Alksne M, Kaupinis A, Juodzbalys G. Periosteum-Derived Mesenchymal Stem Cells Secretome - Cell-Free Strategy for Endogenous Bone Regeneration: Proteomic Analysis in Vitro. EJOURNAL OF ORAL MAXILLOFACIAL RESEARCH 2021; 12:e2. [PMID: 34377379 PMCID: PMC8326881 DOI: 10.5037/jomr.2021.12202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/22/2021] [Indexed: 12/29/2022]
Abstract
Objectives Millions of people worldwide are affected by diseases or injuries which lead to bone/tooth loss and defects. While such clinical situations are daily practice in most of the hospitals, the widely used treatment methods still have disadvantages. Therefore, this field of medicine is actively searching new tissue regeneration techniques, one of which could be stem cell secretome. Thus, the purpose of this research study was to perform the detail proteomic analysis of periosteum-derived mesenchymal stem cells secretome in order to evaluate if it is capable to induce osteo-regenerative process. Material and Methods Periosteum-derived mesenchymal stem cells (PMSCs) were extracted from adult male New Zealand White rabbits. Cells were characterised by evaluating their differentiation potential. After characterisation PMSCs secretomes were collected and their proteomic analysis was performed. Results PMSCs were extracted from adult male New Zealand White rabbits. In order to characterise the extracted PMSCs, they were differentiated in the directions which mainly describes MSC multipotency - osteogenic, myogenic and adipogenic. A total of 146 proteins were detected. After characterisation PMSCs secretomes were collected and their proteomic analysis was performed. The resulting protein composition indicates the ability to promote bone regeneration to fully mature bone. Conclusions Bioactive molecules detected in periosteum-derived mesenchymal stem cells secretome initiates the processes required for the formation of a fully functional bone.
Collapse
Affiliation(s)
- Mindaugas Pranskunas
- Department of Oral and Maxillofacial Surgery, Faculty of Odontology, Medical Academy, Lithuanian University of Health Sciences, KaunasLithuania.,32:Baltic dental clinic, VilniusLithuania.,These authors contributed equally to this work
| | - Egidijus Simoliunas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, VilniusLithuania.,These authors contributed equally to this work
| | - Milda Alksne
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, VilniusLithuania.,These authors contributed equally to this work
| | - Algirdas Kaupinis
- Proteomics Centre, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 VilniusLithuania
| | - Gintaras Juodzbalys
- Department of Oral and Maxillofacial Surgery, Faculty of Odontology, Medical Academy, Lithuanian University of Health Sciences, KaunasLithuania.,These authors contributed equally to this work
| |
Collapse
|